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Abstract

The mass transportation approach to multivariate quantiles in Chernozhukov et al. [3] was modified in Faugeras and
Rüschendorf [8] by a two steps procedure. In the first step, a mass transportation problem from a spherical reference
measure to the copula is solved and combined in the second step with a marginal quantile transformation in the sample
space. Also, generalized quantiles given by suitable Markov morphisms are introduced there.

In the present paper, this approach is further extended by a functional approach in terms of membership functions,
and by the introduction of randomized quantile regions. In addition, in the case of continuous marginals, a smoothed
version of the empirical quantile regions is obtained by smoothing the empirical copula. All three extended approaches
give empirical quantile ares of exact level and improved stability. The resulting depth areas give a valid representation
of the central quantile areas of a multivariate distribution and provide a valuable tool for their analysis.
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1. Introduction

1.1. The combined copula-mass transportation approach to multivariate quantiles and depth areas

In Chernozhukov et al. [3], a mass transportation approach has been proposed to the definition of multivariate
quantiles and depth areas. The basic idea is that balls give a natural definition of central regions of a spherical
distribution. By mass transportation, these central ball regions are mapped to central center-outward quantile domains,
i.e., depth regions, in the observation domain.

Mass transportation can be regarded as a quantitative approach for transforming measures. Under regularity
assumptions, the optimal mass transportation is induced by mappings– in general, it is induced by Markov kernels.
Transformation of measures by mappings can also be studied from a more qualitative and geometric viewpoint, by
pushing forward a non-atomic measure by a cyclically monotone mapping, see McCann [12]. This was used in
Hallin et al. [11] to defining a multivariate quantile function at the observed sample points by solving an empirical
optimal matching problem. (See also Ghosal and Sen [10]). Note that the idea of defining a multivariate quantile by a
push-forward from a reference distribution can be traced back to early ideas in Easton and McCulloch [5], where the
authors looked for the optimal matching between a sample of observed values and a dataset sampled from a reference
distribution, in order to construct multivariate Q − Q plots.

In Faugeras and Rüschendorf [8], the mass transportation approach of Chernozhukov et al. [3] was generalized by
defining the “quantile” as a Markov kernel between such a reference spherical distribution and the multivariate distri-
bution under consideration, compatible with corresponding algebraic, ordering and topological structures. In addition,
a copula step was introduced, so that the regularity assumptions are satisfied and that the optimal transportation step,
now between the reference spherical measure and the copula measure, is indeed induced by a mapping.

More precisely, the setting and notations of Chernozhukov et al. [3], and Faugeras and Rüschendorf [8] are as
follows: for a random vector X ∈ Rd with c.d.f. F, we denote by G = (G1, . . . ,Gd) the vector of marginal cdfs,
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i.e., Gi(xi) := F(∞, . . . ,∞, xi,∞, . . . ,∞). We consider the spherical uniform distribution PS of a r.v. S on the unit
ball B1 = {s ∈ Rd; ||s|| ≤ 1}. Identifying S ∈ B1 with the pair (r, a), where the radial part r ∼ U[0,1] is uniformly
distributed on the interval [0, 1], and the angular part a is uniformly distributed on the unit sphere in Rd, such a
spherical distribution PS gives natural depth regions of PS mass τ as the balls Bτ of radius τ, since PS (Bτ) = τ. The
basic idea of Chernozhukov et al. [3] and Hallin et al. [11] is then to transform these balls Bτ into depth regions of
level τ in the observational space, by setting

Aτ := QF(Bτ), (1)

where QF is the optimal mass transportation mapping obtained by pushing forward PS to PX by optimal transport, i.e.,

QF#PS = PX . (2)

QF is the optimal mapping induced by the solution of the Monge-Kantorovich Wasserstein metric,

W2
2 (PS ,PX) = inf

∫
||x − y||2γ(dx, dy),

where the infimum is over all couplings γ of (PS ,PX). (In Hallin et al. [11], QF is defined as the gradient of the convex
potential in the qualitative McCann [12] approach, so second moment assumptions are not needed for the existence of
QF). By noting RF the corresponding “rank” reciprocal optimal mass transportation mapping, i.e.,

RF#PX = PS , (3)

one gets that
PX(Aτ) = P(QF(S ) ∈ QF(Bτ)) = P(S ∈ RF ◦ QF(Bτ)) = PS (Bτ) = τ. (4)

For (2), (3) and thus (4) to hold, one needs regularity conditions on the distribution PX (see Rüschendorf and
Rachev [16], Brenier [2], and McCann [12]). These regularity assumptions are, e.g., not satisfied when PX has a
discrete component, so, in particular, when PX is replaced by the empirical measure PX∗n := n−1 ∑n

i=1 δXi based on an
ergodic sample realization X1, X2, . . . of X. Thus, the empirical versions of the depth areas in Chernozhukov et al. [3]
require a smoothed version of the empirical measure and regularity assumptions. This kind of regularity assumptions
is not needed anymore by the approach of Faugeras and Rüschendorf [8], who introduce a copula step and do instead
the optimal transportation between the reference spherical measure PS and a/the copula measure PU associated to
PX. Thus, this step is based on an analysis of the dependence structure. In a second step, the copula measure PU is
transformed to PX by the marginal quantile functions, resp. in opposite direction by the distributional transform. This
combined copula-mass transportation approach modifies (1) and is summarized as follows:

1. Transform X ∼ F into a copula representer U = G(X,V), whose c.d.f. C is a copula of F. Here, V is a vector
with i.i.d. components uniformly distributed on [0, 1], and

X 7→ G(X,V) = (G1(X1,V1), . . . ,Gd(Xd,Vd)) (5)

is the multivariate marginal distributional transform: Gi(xi, vi) = P(Xi < xi) + viP(Xi = xi). If PX is discrete,
this transformation randomizes the jumps of each components Xi so that each Ui is uniformly distributed on
[0, 1]. In this way, it associates to PX a particular copula PU . If PX is continuous, it reduces to the probability
integral transform G(X) and the copula is unique, see Faugeras and Rüschendorf [8]. In both cases, under the
assumptions of Lemma 9, PU is absolutely continuous so that the optimal transportation plans between PU and
PS are induced by mappings.

2. Transport PU into the spherical reference distribution PS via optimal mass transportation maps QC ,RC , i.e.,

QC#PS = PU , RC#PU = PS . (6)

3. The balls Bτ of PS -mass τ, are mapped into depths regions Aτ at the copula level of PU-mass τ:

Aτ := QC(Bτ), PU(Aτ) = τ. (7)
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4. Use the multivariate marginal quantile transform G−1 = (G−1
1 , . . . ,G−1

d ), whose components are the inverse
marginal distribution functions, to define depth regions Zτ in the observational space as

Zτ := G−1(Aτ). (8)

Under regularity assumptions on the marginal c.d.f.s. (e.g., each marginal c.d.f. is continuous and strictly
increasing), one obtains depth regions of level τ at the observational PX level, i.e.,

PX(Zτ) = τ.

The procedure can be formulated in terms of transformations of probability measures via Markov kernels, as in
Fig. 1. We denote by QC ,RC ,G

−1 the degenerate Markov morphisms induced by the mappings QC ,RC ,G−1, e.g.,
QC(S , .) = δQC (S )(.). D denotes the (non-degenerate) Markov kernel corresponding to the distributional transform
X → U = G(X,V), i.e., D(x, .) = PU |X=x(.) = PG(x,V)(.), since V is chosen independent of X.

PS U PX

QC

RCP

G−1

D

Fig. 1: Markov morphisms of probability measures

Empirical central quantile areas require a modified treatment, as described by the following diagram in Fig. 2,
with notations similar as in Fig. 1:

PS Un PX∗n

QCn

RCnP

G−1
n

Dn

Fig. 2: Markov morphisms of empirical probability measures

Here, we have:

1. X∗n ∼ Fn is, conditionally on the sample, a bootstrap replication, distributed according to the empirical c.d.f.
Fn. Set Un = Gn(X∗n,V) as an empirical copula representer, whose c.d.f. Cn is a copula of Fn, obtained by the
specific empirical distributional transform

X∗n 7→ Gn(X∗n,V), (9)

with corresponding Markov kernelDn.
2. QCn ,RCn are the optimal transportation maps between the empirical copula and reference measures, viz.

QCn #PS = PUn , RCn #PUn = PS . (10)

3. Defining, similarly to (7) and (8) the depth regions

An := QCn (Bτ), Zn := G−1
n (An), (11)

for a fixed level 0 < τ < 1, one obtains PUn (An) = τ, but in general Zn is not of exact PX∗n -level τ. If τ is not in the
range of values {0, 1/n, . . . , 1} of the empirical measure PX∗n , it is clear that Zn can not be a set of PX∗n -mass τ. A
more fundamental reason comes from the fact that since D (in the case of a discrete X) and Dn (in every case)
are non-degenerate Markov kernels (due to the presence of the randomizer V in the distributional transforms),
sets like A (resp. An) are no longer transformed into sets by the contravariant action of the Markov kernels D
(resp. Dn), but into randomized sets or functions, see Sections 2 and 3 for details.
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1.2. Outline

As a consequence of the above given discussion, for a general distribution and also at the empirical level, the
natural constructions in (11) lead to depth domains in the observation space of inexact level, which also induces
problems in the proof of the consistency result of Corollary 6.4 in Faugeras and Rüschendorf [8]. In this paper, we
show how these issues can be circumvented by three possible approaches.

In the first approach in Section 2, we abandon the idea of having depth areas of given exact level τ in the ob-
servation space, getting only depth areas at the copula level, and introduce instead membership functions. These
membership functions generalize indicator functions of sets and specify for any point x with which probability it
is contained in a corresponding randomized depth area. This allows to turn depth area at the level of the reference
distribution PS into depth region functions at the observation level.

In Section 3, we introduce randomized depth areas as random sets, which attain the exact level τ. Both descriptions
are closely connected and allow to deal with the empirical versions as well as to prove consistency results.

In Section 4, we circumvent the issues related to the nondegeneracy of the distributional transform kernel by
introducing a preliminary smoothing of the empirical measure. For a continuous PX , this allows to retain the advantage
of the copula + mass transportation approach while obtaining only degenerate Markov kernels and depth areas as
proper deterministic sets.

The different versions of the depth areas introduced turn out as a reliable and useful data analytical tool for the
analysis of multivariate distributions. Section 5 illustrates by numerical simulations some of the remarkable features
of the proposed quantile regions, in particular the ability of the proposed methods to capture non-convex or even
non-connected domains, and its equivariance w.r.t general monotone transformations of the marginals. A summary of
the main features of the proposed approaches is presented in the Conclusion. Proofs of the main results are relegated
to Section 6.

1.3. Setting and notation

We interpret operations between vectors componentwise. PX will stand for the law associated with its representing
variable X. We follow the framework and assumptions used in Faugeras and Rüschendorf [8]:

• Ergodicity hypothesis: let X1, X2, . . . be an ergodic sample realization of PX defined on some probability space
(Ω,A,P). It will be understood that all random variables defined in this article, S ,U, X,V , and S n,Un, X∗n
of Sections 2-4, Ŝ n, Ûn, X̂∗n of Section 4, are defined on the auxiliary probability space (Ω∗,A∗,P∗) on which
Skorohod’s Theorem in Theorem 6.2 in Faugeras and Rüschendorf [8] holds, i.e., on the auxiliary probability
space (Ω∗,A∗,P∗) which allows to construct representers X∗n of the empirical measure, resp. X of PX , s.t., with
P-probability one, holds

X∗n
P∗a.s.
−→ X, (12)

see steps one and two in the proof of Theorem 6.2 in Faugeras and Rüschendorf [8]. (Compared to the notation
in Faugeras and Rüschendorf [8], we simplify notation and drop the ∗ in the X∗, which reminded that X∗

representing PX was defined on this auxiliary probability space (Ω∗,A∗,P∗)). We will also denote, for simplicity,
e.g., by PS the law of S , and not by P∗S .

• Regularity assumption on PX: Unless stated otherwise, PX will be assumed to be either discrete, or absolutely
continuous w.r.t. λd, the d−dimensional Lebesgue measure.

In the absolutely continuous case, PX � λd, we will occasionally have to make the following mild regularity
assumption on the support of PX:

PX(E̊) = 1, (13)

where E = {x ∈ Rd : f (x) > 0} and E̊ denotes its interior.
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2. Depth areas defined by membership functions

As described in Section 1, the mass transformations between probability measures QC , RCn and the marginal
quantile transformations G−1, D, as well as their empirical counterparts (see 1 and 2), are given by Markov kernels
and in general are not defined in terms of degenerate kernels, i.e., by measurable functions. Only kernelsK : P(X)→
P(Y) arising from a transformation obtained by mass transportation of a non-atomic probability measure P ∈ P(X),
can be identified with a measurable mapping f : X → Y as

K(x, dy) = δ f (x)(dy).

As a consequence, a non-degenerate Markov kernel K transforms a measurable set A ⊂ Y into a measurable function
x → K(x, A), which is generally not binary valued and hence can not be identified with the indicator function of a
measurable set in X. Therefore, the use of these kernels to define depth areas leads to a serious regularity condition
(see the discussion in Remark 3) for the mass transportation approach to depth sets.

This problem leads us in our first approach to replace depth sets by membership functions. A membership function
describes, for a point x in the space considered, the probability with which x belongs to a (randomized) depth area.
More precisely, for fixed level 0 < τ < 1, and using the simplified notation B = Bτ, A = Aτ, Z = Zτ, we define the
notion of membership function as follows:

Definition 1 (Membership functions). Define the membership functions b, a, z as

(i) b(s) = 1B(s), for s ∈ B1 on the spherical reference space,

(ii) a = RCb on the copula space,

(iii) z = Da = DRCb on the observation space.

Similarly, the membership functions for the empirical versions are defined by an = RCn b, on the copula space,
zn = Dnan = DnRCn b, on the observation space.

By definition, one has PS (b) =
∫

b(s)dPS (s) = τ and

a(u) =

∫
RC(u, ds)b(s), u ∈ [0, 1]d, (14)

z(x) =

∫
D(x, du)a(u) =

∫ (∫
RC(u, ds)b(s)

)
D(x, du), x ∈ Rd,

and similarly for the empirical versions. In diagram form, these relations are given in Fig. 3, the dual diagram of
Fig. 1.

b a z

b an zn

RC D

RCn Dn

Fig. 3: Membership functions

Note that by Lemma 9, the copula measures PU , PUn are absolutely continuous, therefore RC , RCn are degener-
ate Markov kernels induced by the mappings RC , RCn . Hence, the membership functions a, an are proper indicator
functions, defining proper subsets A = QC(B), An = QCn (B) as in (7) and (11) in the copula space. Indeed, by (14),

a(u) =

∫
B
δRC (u)(ds) = 1RC (u)∈B = 1u∈R−1

C (B) = 1u∈QC (B) = 1A(u)
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This is a main feature of the copula and mass transportation approach to depth sets, compared to the direct approach
of Chernozhukov et al. [3]. In the observational space, the membership functions z (in the case of non-Lebesgue
continuous PX), and zn (in any case) can no longer be identified with the deterministic depth set Z and Zn of (11).

The following theorem is a main result of the paper. It clarifies the coverage probability of membership functions
and depth sets, establishes the consistency of their empirical versions towards their population versions, and corrects
an inaccuracy in Corollary 6.4 in Faugeras and Rüschendorf [8]:

Theorem 2.

1. At the copula level:
(a) A is exactly of PU-mass τ, An is exactly of PUn -mass τ:

PU(A) = PUn (An) = τ.

(b) With P−probability one, the empirical depth area An at the copula level is asymptotically of PU-mass τ:

PU(An)→ τ, as n→ ∞.

(c) With P−probability one, the L1(PU) distance between the membership functions an and a, (equivalently
the PU symmetric distance between the depth sets An and A) is asymptotically null:

PU(|an − a|) = PU(An 4 A)→ 0, (15)

as n→ ∞, with P−probability one.
2. At the observational X level:

(a) the depth set Z is of PX-mass at least τ, the depth set Zn is of PX∗n -mass at least τ,

PX(Z) ≥ τ, PX∗n (Zn) ≥ τ,

while the membership functions z, zn are of exactly PX ,PX∗n -expectation τ:

PX(z) = τ, PX∗n (zn) = τ.

If PX is absolutely continuous, then Z is exactly of PX-mass τ: PX(Z) = τ.
(b) With P−probability one, if PX is absolutely continuous, the PX symmetric distance between Z and Zn

becomes asymptotically negligible,
PX(Zn 4 Z)→ 0,

so that Zn is asymptotically of PX-mass τ:

PX(Zn)→ τ.

(c) With P−probability one, if i) PX is discrete or ii) PX � λd and (13) holds, then the L1(PX) distance between
the membership functions zn and z, is asymptotically null:

PX(|z − zn|)→ 0,

as n→ ∞.

3. Randomized depths areas

The interpretation in Section 2 of the Markov kernels D, resp. Dn, by means of the multivariate distributional
transforms (5), resp. (9), gives us a tool to define directly a random depth area as a random set.

Definition 3 (Randomized depth area). Let V be the randomizer used in the distributional transforms.
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a) Define, for fixed level 0 < τ < 1, and for v ∈ [0, 1]d,

Zv := {x ∈ Rd : G(x, v) ∈ A}. (16)

The randomized depth area at level τ is defined as the random set ZV .
b) Similarly, define the empirical randomized depth region as ZV,n, where

Zv,n := {x ∈ Rd : Gn(x, v) ∈ An}. (17)

These randomized depth areas are random subsets of Rd of exact mass τ:

Proposition 4. The randomized and empirical randomized depth areas ZV and ZV,n are of exact mass τ, i.e.,

P∗(X ∈ ZV ) = τ and P∗(X∗n ∈ ZV,n) = τ.

Proof. By definition, we get

P∗(X ∈ ZV ) = P(X,V)({(x, v) : x ∈ Zv}) = P(X,V)({(x, v) : G(x, v) ∈ A})
= P∗(G(X,V) ∈ A) = P∗(U ∈ A) = P∗(S ∈ B) = τ.

Similarly, P∗(X∗n ∈ ZV,n) = P∗(Gn(X∗n,V) ∈ An) = P∗(Un ∈ An) = τ.

The consistency properties of the empirical randomized depth areas are stated in the following theorem:

Theorem 5. If i) PX is discrete, or ii) PX � λd and (13) holds, then the empirical randomized depth area ZV,n is
asymptotically consistent in the PX-symmetric difference distance towards ZV , viz.

PX(ZV,n 4 ZV )→ 0, as n→ ∞,

with P-probability one.

The membership depth functions z, zn have a close connection with the randomized sets ZV ,ZV,n:

z(x) = (D1A)(x) = P∗(G(x,V) ∈ A) = E∗[1ZV (x)] = E∗[1ZV (X)|X = x],

and similarly for zn,

zn(x) = (Dn1An )(x) = E∗[1ZV,n (x)] = E∗[1ZV,n (X)|X = x].

As a direct corollary, one obtains a simple proof of the coverage probabilities of the membership functions and of
the asymptotic nullity of the L1(PX) distance z and zn:

Corollary 6.

1. For PX either absolutely continuous or discrete, PX(z) = PX∗n (zn) = τ.
2. If i) PX is discrete, or ii) PX � λd and (13) holds, then, PX |zn − z| → 0, with P-probability one, as n→ ∞.

Proof. 1. By the law of total expectation,

PX(z) = E∗z(X) = P∗(X ∈ ZV ) = τ,

and similarly for zn.
2. By the elementary properties of conditional expectation,

PX |zn − z| = E∗|zn(X) − z(X)| = E∗|E∗[1ZV,n (X) − 1ZV (X)|X]| ≤ E∗
(
E∗[|1ZV,n (X) − 1ZV (X)||X]

)
= E∗[|1ZV,n (X) − 1ZV (X)|] = PX(ZV,n 4 ZV )→ 0

by Theorem 5.
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4. Empirical depth areas obtained from a smoothed empirical measure

The previous sections showed how to circumvent the complications induced by the discreteness of the empirical
measure in order to obtain empirical membership functions zn, which can be thought of as a set in the enlarged space
Rd × [0, 1]d, or to obtain empirical random depth sets ZV,n. If PX is continuous, ZV,n is a cloud of the sample points,
whereas the population depth set Z is a “continuum” of Rd. Similarly for the (enlarged) set interpretation of the
function zn. One may consider that this renders these proposals not visually appealing as depth region.

In that regard and in view of the discussion of Section 2, one is naturally inclined in the continuous case to
consider a smoothing of the empirical measure in order to obtain a continuous empirical measure. The corresponding
transformations of measures are then induced by mappings, i.e., degenerate Markov morphisms, and sets are now
transformed into sets.

A probabilistic description of the (kernel) smoothing procedure is as follows: On (Ω∗,A∗,P∗) where the r.v.s. live,
add to the bootstrap representer X∗n of the empirical measure a small “scaled error” with multivariate bandwidth hn

from some fixed independent r.v. η with continuous distribution function K, i.e., define

X̂∗n := X∗n + hnη. (18)

The law of X̂∗n is the convolution of the empirical measure with the law of hnη, i.e.,

PX̂∗n = PX∗n ∗ Phnη.

Denote by F̂n, Ĝn the corresponding joint and marginal (continuous) c.d.f.s. of X̂∗n. F̂n corresponds to the well-known
kernel smoothed empirical cdf,

F̂n(x) =
1
n

n∑
i=1

K
(

x − Xi

hn

)
,

where K is the joint cdf of η. Since F̂n is continuous, its copula is unique, and one can define its corresponding
empirical copula representer Ûn via the multivariate marginal probability integral transform,

Ûn := Ĝn(X̂∗n), (19)

and denote by Ĉn its (copula) c.d.f. The rest of the procedure is as before: Monge-mass transport PÛn to PS by the
transport map RĈn

with inverse QĈn
. Eventually, Ŝ n is obtained by setting Ŝ n = RĈn

(Ûn). One has transformed all
corresponding measures by pushing forward them by mappings and so we can reason at the level of random variables
according to the diagram in Fig. 4.

Ŝ n Ûn X̂∗n

QĈn

RĈn

Ĝ−1
n

Ĝn

Fig. 4: Transformations of the smooth empirical measure by mappings of the corresponding random variables

For continuous G, the distributional transform X → G(X,V) reduces to the probability integral transform X →
G(X), so the population counterparts of (18) and (19) are obtained similarly by transformations of random variables
by non-randomized mappings, as in the diagram in Fig. 5. (Recall that S ,U, X are defined on (Ω∗,A∗,P∗)).

S U X
QC

RC

G−1

G

Fig. 5: Transformations of random variables by mappings–population version for a continuous X
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One obtains for both the empirical and the population depths areas at the X level genuine sets Z, Ẑn, defined
naturally as

Z = G−1(QC(B)), Ẑn = Ĝ−1
n (QĈn

(B)).

Remark 1 (On bandwidth and kernel choice). In (18) it is recommended to choose η with independent components,
i.e., a product kernel K, so that one does not introduce artificial dependence in the components of X̂∗n. Moreover,
Ûn in (19) is obtained from X̂∗n by the transform Ĝn which acts marginal by marginal. Therefore, for the choice
of the multivariate bandwidth hn, one can use univariate bandwidth choice techniques for each component of Ĝn

and optimize each marginal bandwidth of hn separately. The optimal bandwidth choice depends on the degree of
regularity of the involved marginal densities and can be effected using nonparametric methods like plug-in or least
squares cross-validation, see, e.g., [18] or [17].

The following Proposition is the analogue of the main Theorem 6.2 in Faugeras and Rüschendorf [8]:

Proposition 7. If PX is absolutely continuous, and hn ↓ 0, one has, with P probability one,

(X̂∗n, Ûn, Ŝ n)
P∗a.s.
−→ (X,U, S ).

In turn, Proposition 7 translates at the level of depth sets as follows:

Corollary 8. If PX is absolutely continuous, and hn ↓ 0, the PX symmetric distance between the population depth area
Z and its empirical smoothed counterpart Ẑn becomes asymptotically negligible,

PX(Ẑn 4 Z)→ 0, P-a.s.

so that Ẑn is asymptotically of PX-mass τ: PX(Ẑn)→ τ,P − a.s..

Proof. Similar to the proof of Theorem 2 1. (c) and 2. (b).

5. Simulations

We present below some numerical simulations which illustrate the properties of the quantile areas obtained. The
proposed depth areas are easily computable thanks to a fast implementation of the optimal transport step using the
entropy regularised / Sinkhorn algorithm. Details on the implementation and extensive simulations will be given in a
subsequent paper of the authors.

5.1. Convergence of depth areas

In order to illustrate the convergence properties of the empirical quantile areas to their population counterparts
as the sample size increases, we take for PX a standard bivariate Gaussian distribution, whose theoretical quantile
areas are known and easy to calculate: they are disks whose radius is the corresponding quantile of the Rayleigh
distribution.

Fig. 6 illustrates Corollary 8 of the smoothed approach of Section 4. We have drawn the empirical quantile
contours for τ = .25, .50, .75, .90 (colored lines) together with their theoretical counterparts (shaded disks) and sample
data clouds. Compared to Fig. 1 in Hallin et al. [11], one also obtains nicely converging nested regions, as expected,
somehow less “spiked”. Notice that for high quantile areas (τ = 0.9), the convergence takes longer to occur, as one
enters the domain of application of extreme value theory.
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Fig. 6: Smoothed empirical quantile contours (probability contents .25(blue) .50 (brown), .75 (green), .90 (red)) computed from n = 100, 200, 500,
1000, 2000, 5000 i.i.d. observations from a bivariate standard Gaussian distribution, along with their (spherical) theoretical counterparts (shaded
disks).

For the randomized depth areas of Section 3, one obtains as quantile contours a subset of the data points. These
can be connected (by linear or cyclical interpolation) to give a contour line. In turn, one gets a similar picture, which
is therefore omitted.

5.2. Distributions with non-convex/non-connected support

Fig. 7 and 8 illustrate the remarkable ability of the randomized depth areas of Section 3 to pick the correct geom-
etry of a distribution with non-convex or non-connected support. The observed sample points which fall inside the
0.5−quantile region are represented by red circles, and those outside by blue filled squares: the half central quantile
area nicely adapts to the non-convex “banana” or disconnected geometry of the distribution considered.
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Fig. 7: Non-convex quantile region obtained for the regression model X = (X1, X2), X2 = −1 + X2
1 + ε, X1 ∼ U[−2,2] independent of ε ∼ U[−1,1],

. (Red) circles: sample points inside the 0.5−quantile region, (Blue) filled squares: sample points sample points outside the 0.5−quantile region.
5000 observations.

Fig. 8: Non-connected quantile region for a uniform distribution on two disjoint disks. (Red) circles: sample points inside the 0.5−quantile region,
(Blue) filled squares: sample points sample points outside the 0.5−quantile region.

5.3. Monotone equivariance

Fig. 9 and 10 illustrate the monotone equivariance property of the proposed quantile areas on a Frank copula
model with varied marginals (smoothed approach).
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Fig. 9: Smoothed empirical quantile contours (probability contents .25(blue) .50 (brown), .75 green), .90 red)) computed from n = 1000 i.i.d.
observations from a Frank (θ = 500) copula distribution with Uniform marginals. left panel: bootstrap sample from the empirical copula and
empirical contours in the copula space. right panel: observed data and empirical contours in the original sample space.

Fig. 10: Smoothed empirical quantile contours (probability contents .25(blue) .50 (brown), .75 green), .90 red)) computed from n = 1000 i.i.d.
observations from a Frank (θ = 500) copula distribution with Exponentials Exp(2) marginals in the copula space (left) and the original sample
space (right).

In Fig. 9, the distribution has uniform marginals and, as expected, one obtains the same quantile contours in the
copula space [0, 1]2 (left panel) as in the sample space R2 (right panel). In Fig. 10, both marginals are changed to two
exponential Exp(2) distributions: one obtains, up to sample fluctuations, the same contour regions as before in the
copula space, which reveals the underlying dependence structure of the model. However, in the observation space,
one now obtains empirical quantile regions stretched by the exponential marginal transformation, which gives depth
areas nicely located in the concentration areas of the data.

Conclusion

We proposed three multivariate notions of central quantile regions: membership functions z, randomized depth
areas ZV , and marginally smoothed depth areas Ẑ. These are based on the copula and mass transportation approach of
Faugeras and Rüschendorf [8] to multivariate quantiles. In particular, their empirical counterparts zn, ZV,n, Ẑn attain the
exact level and are strongly consistent. The introduced depth areas give a valid representation of the central quantile
area of a multivariate distribution, and thus are a valuable tool for their analysis. In the following comments, we
summarize the main results and point out some interesting aspects of our approach:
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• The copula step of the proposed method turns out to have several theoretical advantages: it regularizes the
optimal transportation problem between absolutely continuous measures on bounded domains, and so one does
not need the regularity assumptions as in Chernozhukov et al. [3], such as existence of moments, compactness
and convexity of the support of PX . This feature is obtained by our particular choice of copula representations,
obtained by distributional transforms.

• It is noteworthy to remark that the marginal quantile transformation step, by the distributional transform G(.,V)
and the marginal quantile function G−1 in the opposite direction, can be seen as optimal W2 transports be-
tween PX and the copula PU , as follows directly from the basic characterization result for optimal transports in
Rüschendorf and Rachev [16].

The question thus arises to what extent the measures PS , PU , PX are compatible in the sense of composition of
optimal transportation maps, as in Definition 2.3.1 in Panaretos and Zemel [14], i.e., to determine whether the
proposed copula-marginal two steps approach is equivalent to the direct approach of Chernozhukov et al. [3].
In general, the composition of two successive optimal transportation maps is not the optimal transportation map
from the first to the last measure. As a consequence, both approaches lead to different quantile areas.

In the continuously differentiable case, Panaretos and Zemel [14] p. 50 show that a necessary condition is the
commutativity of gradient of the transport maps. In our setting, this corresponds to the commutativity of the
matrices ∇G−1(QC(s))) and ∇QC(s). As G−1 is made of separable variables, ∇G−1 is diagonal, which further
reduces, in case of identical marginals, to a multiple of the identity matrix. For “approximately compatible”
optimal transport maps, one gets constructions looking similar. This explains why Figures 6, resp. 7, give
similar quantile areas as the direct approach, Figure 1 in Hallin et al. [11], resp. Figure 2 in Chernozhukov et al.
[3].

• A relevant practical advantage of the proposed two steps approach is that for changing marginal conditions, the
quantile based areas remain the same at the copula level, while the quantile area at the observational level can
easily be adapted by the marginal quantile step. As a consequence, one can obtain an overview in the change
of quantile regions w.r.t. a change on marginals. In comparison, the direct approach of Chernozhukov et al.
[3] and Hallin et al. [11] requires for each marginal situation a separate optimal transportation problem to be
solved. This point seems quite relevant for prediction purposes, e.g. in risk analysis in order to predict changes
in the quantile and tail regions under different scenarii of marginals.

• Because copulas are invariant w.r.t. monotone increasing transformations of the marginals, see, e.g., Theorem
2.4.3 in Nelsen [13], one obtains depth areas which are equivariant w.r.t. monotone increasing transformations
of the marginals of X. In other words, if X is transformed into T (X) := (T1(X1), . . . ,Td(Xd)), where each map
T1, . . . ,Td are increasing, the depth areas will remain the same at the copula level, and will be transformed at the
X level by the corresponding T . One therefore retains a key feature of univariate quantiles, equivariance w.r.t.
a nonlinear monotone change of scale. This monotone marginal equivariance is a useful property as regards
robustness of the quantile areas w.r.t. general (nonlinear) changes of scales. It is different from and complements
the affine equivariance property of the Chernozhukov et al. [3] direct approach. When the above-mentioned
compatibility condition holds, the two steps approach will also inherit the affine equivariance property of the
direct approach.

• As may appear surprising at first sight, the Markov morphism view on multivariate quantiles we advocate
in Faugeras and Rüschendorf [8] and in this paper allows to define multivariate quantile objects even for a
discrete distribution PX! This increased generality requires a conceptual change in the corresponding notion of
“multivariate central quantile areas”: one either can introduce membership functions z, (which can be interpreted
as describing the probability of membership), or consider randomized quantile sets ZV . This is also convenient
for their statistical counterparts zn and ZV,n, which leads to the problem of making inference from the discrete
empirical measure PX∗n .

• The distributional transform approach to copulas allows to obtain genuine absolutely continuous empirical
copulas, see Faugeras [6, 7]. This results in a nonparametric procedure without any bandwidth to optimize.
In particular, the empirical membership function zn and randomized depth area ZV,n are bandwidth free. For
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the marginally smoothed quantile areas Ẑn, one simply has d-univariate bandwidths to optimize in the kernel
smoothing step, which is much easier than smoothing a d-variate distribution, as in Chernozhukov et al. [3],
where one has in practice a d × d positive definite matrix of bandwidths to optimize. Note also that multivariate
density estimation is subject to the curse of dimensionality.
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6. Appendix: Proofs

6.1. Absolute continuity and open support set of the chosen copula measure.
In this section, we state and an auxiliary result on the chosen copula measure PU , obtained by the distributional

transform (5), with uniform randomizer V ∼ λd. Under the assumption that PX is discrete or that PX is absolutely
continuous together with the mild regularity assumption (13) on the support, Lemma 9 below shows the absolute
continuity of PU , together with the existence of an open support set of PU .

If G is continuous, the copula is unique, and PU is the push-forward of PX by G. If, in addition, PX is absolutely
continuous, it is not immediately clear that PU is also absolutely continuous, since G may have flat spots (the result
would be obvious if the marginals of X had strictly positive densities). Intuitively, the points where the components
of G have a zero derivative are those which are not charged by PX .

If PX is discrete, its associated copulas are no longer unique. They should not be considered as a given, but as a
construct, see Faugeras [7] for details. In particular, one can always obtain an absolutely continuous copula by the
specific distributional transform construct with an absolutely continuous randomizer. This is the standard construction
in Sklar’s Theorem, which is also absolutely continuous in the discrete case, as is shown below.

Lemma 9. Let U = G(X,V) be the distributional transform (5), with independent randomizer V ∼ λd. If i) PX is
discrete, or ii) PX � λd and (13) holds, then PU � λd and there exists an open support set of PU , i.e., there exists an
open subset W s.t. PU(W) = 1. In particular, for case ii), the copula density is given for u ∈ W by

c(u) =
f (G−1(u))∏d

i=1 gi(G−1
i (ui))

, (20)

where f denotes the density of PX , while gi denotes the marginal density of the ith component PXi .

Proof. i) Case one: PX discrete. By conditioning on X = x, the distribution PU writes as a mixture PU =
∑

x P(X =

x)PG(x,V), since V is chosen independent of X. In addition, since V ∼ λd, PU |X=x = PG(x,V) is uniform on the cube
[G(x−),G(x)], a fortiori absolutely continuous. Hence, PU � λd. Moreover, it is clear that

W :=
⋃

x:PX (x)>0

]G(x−),G(x)[

is an open support set of PU .
ii) Case two: PX � λd and (13) holds. The proof is based on the transformation formula Theorem 7.26 in Rudin

[15] p. 154: for every measurable function h : Rd 7→ [0,∞], one has∫
T (N)

hdλd =

∫
N

(h ◦ T )|JT |dλd, (21)

for a Lebesgue measurable set N ⊂ O ⊂ Rd, s.t. O is open, T : O 7→ Rd is continuous, T differentiable and one-to-one
on N, and λd(T (O \ N)) = 0.

Since G is continuous, the distributional transform reduces to the probability integral transform U = G(X). Let
A be any Borel set of [0, 1]d. Let E = {x ∈ Rd : f (x) > 0} and M = {x ∈ Rd :

∏d
i=1 gi(xi) > 0}. If x ∈ Mc, then
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∃i ∈ {1, . . . , d} s.t. 0 = gi(xi) =
∫

f (x)dλd−1
−i , where the integration is w.r.t. all coordinates x1, . . . , xd, except xi.

Therefore, f (x) = 0 a.e. Hence, E ⊂ M, λd−a.e. and E̊ ⊂ M̊, λd−a.e.
Moreover, on M̊, G is continuous and strictly increasing (coordinate wise) with continuous inverse G−1. Therefore,

G(E̊ ∩ M̊) is open.
Thus, one has

PU(A) = PG(X)(A) =

∫
1A(G(x))PX(dx) =

∫
1A(G(x))1E(x) f (x)λd(dx)

=

∫
1A(G(x))1E̊(x) f (x)λd(dx) =

∫
1A(G(x))1E̊∩M̊(x) f (x)λd(dx) (22)

=

∫
G−1(G(E̊∩M̊))

1A(G(x)) f (x)λd(dx), (23)

where (22) and (23) follow from assumption (13), E̊ ⊂ M̊, λd−a.e. and G−1 ◦G = id on M̊. On G(M̊), G−1 is differen-
tiable, one-to-one, with inverse G continuous, and the Jacobian of G−1 writes as |JG−1 (u)| =

(∏d
i=1 gi(G−1

i (ui))
)−1

. We
can now apply Rudin’s transformation formula (21), with O = N = G(E̊ ∩ M̊), T = G−1. Thus, (23) becomes

PU(A) =

∫
A∩G(E̊∩M̊)

f (G−1(u))∏d
i=1 gi(G−1

i (ui))
λd(du). (24)

Equation (24) means that PU � λd has the copula density c(u) = f (G−1(u))/(
∏d

i=1 gi(G−1
i (ui)))1G(E̊∩M̊)(u). On G(E̊ ∩

M̊), 0 < c(u) < ∞. Moreover, for A = G(E̊ ∩ M̊) in (24) and (22), one has, under the stated assumptions, that

PU(G(E̊ ∩ M̊)) = PX(G−1 ◦G(E̊ ∩ M̊)) = PX(E̊ ∩ M̊) = PX(E̊) = 1.

Therefore W := G(E̊ ∩ M̊) is an open support set of PU.

Remark 2.
i) Assumption (13) is satisfied if E is open (i.e., f = 0 on the boundary bd(E) of the support), or if λd(bd(E)) = 0.

The latter condition is satisfied, e.g., if bd(E) has Hausdorff dimension < d. A counter-example in dimension
two would be a distribution whose boundary of the support is an Osgood curve. Absolutely continuous distri-
butions whose boundary of the support has positive λd Lebesgue measure are somewhat pathological and are
seldom met in practice. Hence, the regularity assumption (13) is very mild and appears natural.

ii) For a mixture of absolutely continuous and discrete distributions, i.e., for PX = αPXac
+ (1 − α)PXdis

, with
0 < α < 1, PXac

� λd, PXdis
discrete, one can construct a corresponding absolutely continuous copula measure,

with a modified distributional transform Ũ as follows: X writes X = ζXac + (1 − ζ)Xdis, where ζ ∼ B(1, α) and
ζ, Xac, Xdis are independent. Define Ũ = ζGac(Xac) + (1 − ζ)Gdis(Xdis,V), where Gac is the vector of marginal
c.d.f. of Xac and Gdis(Xdis,V) is the distributional transform of Xdis. Then, the c.d.f. of Ũ is a copula associated
to X. Its distribution is PŨ = αPGac(Xac) + (1−α)PGdis(Xdis,V). Hence, PŨ is a mixture of two absolutely continuous
distributions by cases one and two of Lemma 9, and thus is absolutely continuous.
However, the empirical copula representer Un = Gn(X∗n,V) will not converge to this modified Ũ. One would
require a different statistical setting (separate samples for each component) to construct a converging empirical
copula representer. Therefore, we do not include this case in our results.

6.2. Proofs of the main results
Proof of Theorem 2.

1. (a) follows from the definitions of the Markov morphisms:

PU(A) = PU(a) = PU(RCb) = (PURC)(b) = PS (b) = τ,

and similarly
PUn (An) = PUn (an) = PUn (RCn b) = (PUnRCn )(b) = PS (b) = τ.
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(b) |PU(an − a)| ≤ PU |an − a| → 0, as n→ ∞ by Theorem 2 1. (c).
(c) One has

PU(|an − a|) = PU(|1An − 1A|) = P∗(U ∈ A,U < An) + P∗(U < A,U ∈ An) := (I) + (II)

with

(I) = P∗(U ∈ A,U < An,Un ∈ An) + P∗(U ∈ A,U < An,Un < An),

where U,Un are the coupling constructions of Theorem 6.2 in Faugeras and Rüschendorf [8]. Let d be the
Euclidean distance on Rd. By the triangle inequality,

d(U, An) ≤ d(U,Un) + d(Un, An).

By Theorem 6.2 in Faugeras and Rüschendorf [8], d(U,Un)
P∗a.s.
−→ 0, and if Un ∈ An then d(Un, An) = 0.

Therefore, if Un ∈ An, then d(U, An) → 0, i.e., U ∈ An asymptotically with probability one. Hence,
P∗(U ∈ A,U < An,Un ∈ An) → 0. Similarly, P∗(U ∈ A,U < An,Un < An) ≤ P∗(S ∈ B, S n < B). By the
triangle inequality,

d(S n, B) ≤ d(S n, S ) + d(S , B).

By Theorem 6.2 in Faugeras and Rüschendorf [8], d(S , S n)→ 0 and S ∈ B implies S n ∈ B asymptotically
with probability one. Hence, P∗(S ∈ B, S n < B)→ 0. The treatment of (II) is similar. All statements occur
w.r.t. the original P-probability one.

2. (a) By definition of the Markov morphisms, one has P∗ a.s.

S ∈ B ⇔ RC(U) ∈ B⇔ U ∈ R−1
C (B) = QC(B) = A

⇒ G−1(U) ∈ G−1(A) = Z ⇔ X ∈ Z, (25)

where X ∼ F also sits on the probability space (Ω∗,A∗,P∗) of Theorem 6.2 in Faugeras and Rüschendorf
[8], and (25) follows from the fact that G−1(U) = X, P∗-a.s., by definition of the distributional transform.
Therefore, τ = P(S ∈ B) ≤ P(X ∈ Z). The proof for Zn is similar: for S n = RCn (Un),

S n ∈ B⇔ Un ∈ An ⇒ X∗n ∈ Zn. (26)

The proof that PX(z) = PX∗n (zn) = τ follows as in Theorem 2 1. (a) from the definitions of the Markov
morphisms. If PX is continuous, the distributional transform X → G(X,V) reduces to X → G(X) and the
implications in (25) become equivalences P∗ a.s.,

S ∈ B⇔ U ∈ A⇔ X ∈ Z, (27)

which yields PX(Z) = τ.
(b) One has

PX(|1Zn − 1Z |) = P∗(X ∈ Z, X < Zn) + P∗(X < Z, X ∈ Zn) := (I) + (II)

with
(I) = P∗(X ∈ Z, X < Zn,Un ∈ An) + P∗(X ∈ Z, X < Zn,Un < An) := (Ia) + (Ib).

By the implication in (26), one has

(Ia) := P∗(X ∈ Z, X < Zn,Un ∈ An) ≤ P∗(X ∈ Z, X < Zn, X∗n ∈ Zn) ≤ P∗(X < Zn, X∗n ∈ Zn)

The triangle inequality gives d(X,Zn) ≤ d(X, X∗n)+d(X∗n,Zn). By Theorem 6.2 in Faugeras and Rüschendorf
[8], d(X, X∗n)→ 0 as n→ ∞, and X∗n ∈ Zn implies d(X∗,Zn)→ 0. Therefore, (Ia)→ 0. For PX continuous,
by the equivalences in (26) and (27),

(Ib) := P∗(X ∈ Z, X < Zn,Un < An) ≤ P∗(S ∈ B, S n < B).

The triangle inequality gives d(S n, B) ≤ d(S n, S ) + d(S , B). By Theorem 6.2 in Faugeras and Rüschendorf
[8], d(S n, S )→ 0 as n→ ∞, and S ∈ B implies d(S n, B)→ 0. Therefore, (Ib)→ 0. The treatment of (II)
is similar. PX(Zn)→ τ follows.
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(c) See Corollary 6.

Proof of Theorem 5. One has, with P and P∗-probability one,

{X ∈ ZV } = {G(X,V) ∈ A} = {U ∈ A} = {S ∈ B}

{X ∈ ZV,n} = {Gn(X,V) ∈ An} = {Gn(X,V) ∈ QCn (B)} = {RCn ◦Gn(X,V) ∈ B}.

Therefore,

P∗(X ∈ ZV \ ZV,n) = P(X,V)({(x, v) : G(x, v) ∈ A,Gn(x, v) < An}) = P∗(G(X,V) ∈ A,Gn(X,V) < An)
= P∗({S ∈ B} \ {RCn ◦Gn(X,V) ∈ B})

It suffices to show that
RCn (Gn(X,V))

P∗
→ S , (28)

where
P∗
→ stands for convergence in P∗-probability. Indeed, if (28) holds, then this imply convergence in distribution

and thus
P∗(X ∈ ZV \ ZV,n) = P∗({S ∈ B} \ {RCn ◦Gn(X,V) ∈ B})→ 0,

since B is a continuity set of PS . One has similarly, for the other inclusion,

P∗(X ∈ ZV,n \ ZV )→ 0,

which yields the result.
Let us show (28). By ergodicity, for all x ∈ Rd, with P-probability one,

|Gn(x−) −G(x−)| → 0, |Gn(x) −G(x)| → 0.

Therefore, for all x ∈ Rd, v ∈ [0, 1]d, with P-probability one, Gn(x, v)→ G(x, v), which yields

Gn(X,V)→ G(X,V) = U, (29)

with P and P∗-probability one.
Consider next the decomposition

RCn ◦Gn(X,V) − S = RCn ◦Gn(X,V) − RC ◦Gn(X,V) + RC ◦Gn(X,V) − RC ◦G(X,V)
:= (I) + (II) (30)

Convergence of (I) in (30): For i) PX discrete, or ii) PX absolutely continuous and assumption (13), Lemma 9 in
Section 6.1 entails that there exists bounded open sets W,Wn ⊂ [0, 1]d, s.t. PU(W) = 1 and PUn (Wn) = 1. Let φ be the
optimal convex potential associated with the optimal transport of PU towards PS . Let Σ be the λd-null set which the
subdifferential ∂φ is not univalued. Let ε > 0. By inner regularity of the Lebesgue measure, and since PU � λd, there
exists a compact set K ⊂ W \ Σ, s.t.

PU(Kc) < ε. (31)

Decompose (I) further as,

(I) =
(
RCn ◦Gn(X,V) − RC ◦Gn(X,V)

)
1Gn(X,V)∈K +

(
RCn ◦Gn(X,V) − RC ◦Gn(X,V)

)
1Gn(X,V)<K := (Ia) + (Ib).

By Theorem 6.2 in Faugeras and Rüschendorf [8], d(U,Un)
P∗a.s.
−→ 0, therefore by the Portmanteau Theorem,

lim inf P∗(Un ∈ W) ≥ P∗(U ∈ W) = 1.
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Thus, P∗(Un ∈ W∩Wn)→ 1. Hence, the restriction µn := PUn |W∩Wn converges in distribution to µ := PU , and similarly,

νn := RCn #µn
d
→ ν := PS .

To deal with (Ia), we apply Proposition 1.7.11 of Panaretos and Zemel [14]: since PUn ,PS live on bounded sets and

PU � λd, their assumption 1 is satisfied for µn
d
→ µ and νn

d
→ ν. Therefore, RCn converges uniformly on any compact

set of Lebesgue density points of the support of PU on which the subdifferential ∂φ is univalued. But ∂φ = {RC} is
univalent on W \ Σ, since PU � λd. Therefore, supy∈K ||RCn (y) − RC(y)|| → 0, which entails that (Ia)→ 0 a.s.

To deal with (Ib), by the Portmanteau theorem and (31),

lim sup
n→∞

P∗(Gn(X,V) < K) ≤ P∗(U < K) ≤ ε.

Moreover, since RC ,RCn ∈ B(0, 1), ||(Ib)|| ≤ 21Gn(X,V)<K . For every ε1 > 0, by Markov inequality,

P∗(||(Ib)|| > ε1) ≤ 2
P∗(Gn(X,V) < K)

ε1
≤ 2ε/ε1

for n large enough. Since ε is arbitrary, letting ε ↓ 0 yields (Ib)
P∗
→ 0.

Convergence of (II) in (30): By Proposition 2.4 in Cuesta-Albertos et al. [4], RC is λd-a.e. continuous. Therefore, by
the continuous mapping Theorem, (29) yields

(II) = RC ◦Gn(X,V) − RC ◦G(X,V)
P∗a.s.
→ 0.

Collecting all elements, we have thus shown that RCn (Gn(X,V))
P∗
→ S , which ends the proof.

Remark 3.

i) The proof is based on the aforementioned general result of uniform convergence on compacta of optimal trans-
portation maps of Panaretos and Zemel [14], Proposition 1.7.11. The latter does not require a convexity as-
sumption on the support of the measures, nor a homeomophism condition of the transport maps, as mandated
by previous results in the literature, such as Theorems A.1 and A.2 in Chernozhukov et al. [3] (see also Theorem
1.7.7 in Panaretos and Zemel [14]). The second main ingredient of the proof is the continuity result for optimal
mappings of Cuesta-Albertos et al. [4].

ii) As in Chernozhukov et al. [3] and Hallin et al. [11], in our approach we take as source measure PS the spherical
measure defined as the product of the uniform distributions on [0, 1] and on the unit sphere. This choice
introduces a complication in the regularity theory of the transport maps, as the density of PS is unbounded at
the center zero. Chernozhukov et al. [3] require a homeomorphism condition (C) for the validity of Theorem
A.2, which is studied in Figalli [9] and del Barrio et al. [1].
Alternatively, it would be possible to avoid this difficulty by replacing the spherical PS by, e.g., the uniform
distribution on the unit ball: the latter is also absolutely continuous, with the same bounded convex support, but
without a singularity in its density. The only change is that the depth sets of level τ for PS are no longer the
balls Bτ, but the balls of radius r(τ) s.t.

πd/2

Γ(d/2 + 1)
(r(τ))d = τ,

i.e., s.t. PS (Br(τ)) = τ, as before.

Proof of Proposition 7. The proof follows the main arguments of Theorem 6.2 in Faugeras and Rüschendorf [8],
with minor modifications. On the auxiliary probability space (Ω∗,A∗,P∗) on which (12) holds, hn ↓ 0 and (12) in (18)
yields, with P-probability one,

X̂∗n
P∗a.s.
−→ X. (32)

We have the decomposition,

Ûn − U = Ĝn(X̂∗n) −G(X̂∗n) + G(X̂∗n) −G(X) ≤ ||Ĝn −G||∞ + G(X̂∗n) −G(X), (33)
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where the operations and the ||.||∞ norm are to be understood componentwise. By ergodicity, one has that ∀x ∈ Rd,
Gn(x) → G(x). Since G is continuous, this implies by Polya’s Theorem, a Glivenko-Cantelli type Theorem for Gn,

i.e., ||Gn −G||∞ → 0, with P-probability one. Obviously Phnη
d
→ δ0, so one has, as in Winter [19] Theorem 2, that

||Ĝn −G||∞ → 0, (34)

with P-probability one. Hence, (34) in (33), and continuity of G with (32) entails Ûn
P∗a.s.
−→ U, with P-probability one.

The rest of the proof is as Theorem 6.2 in Faugeras and Rüschendorf [8]: by Cuesta-Albertos et al. [4] Theorem 3.4,

one gets Ŝ n
P∗a.s.
−→ S , with P-probability one.
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