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Abstract

We propose informational spillovers as a new rationale for the use of multiple policy

instruments to mitigate a single externality. We investigate the design of a pollution

standard when the firms’ abatement costs are unknown and emissions are taxed. A firm

might abate pollution beyond what is required by the standard by equalizing its marginal

abatement costs to the tax rate, thereby revealing information about its abatement cost.

We analyze how a regulator can take advantage of this information to design the standard.

In a dynamic setting, the regulator relaxes the initial standard in order to induce more

information revelation, which would allow her to set a standard closer to the first best

in the second period. Updating standards, though, generates a ratchet effect since the

low-cost firms might strategically hide their cost by abating no more than required by

the standard. We provide conditions for the separating equilibrium to hold when firms

act strategically. We illustrate our theoretical results with the case of NOx regulation

in Sweden. We find evidence that the firms that are taxed experience more frequent

standard updates.
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1 Introduction

The economic literature traditionally argues for the general superiority of market-based pol-

icy instruments over command-and-control regulation, primarily because of the relative cost

savings expected with market-based approaches. These cost savings arise principally because

the latter approaches economize on scarce information about control costs, capitalize on dif-

ferences in costs among regulated firms, give firms the incentive to minimize costs of current

technology, and provide a basis for environmentally sound and cost-effective technological

innovation. In practice, the laws pertaining to many major environmental problems, as for

instance, clean air, clean water and management of hazardous waste - are typically enacted

and managed at all levels of government, implying that many regulations covering the same

emission sources overlap and override each other. This is, for instance, the case of climate

policy, where all countries and regions that have implemented climate policies seem to rely

on several policy instruments (covering the same emission sources) rather than a single one

(see e.g., Fankhauser et al. 2010, Levinson 2011 and Novan 2017).

The multiplicity of policy instruments to address a single pollution problem has been

justified on several grounds. For instance, some (additional) market failures, regulatory

failures or behavioral failures may reduce the economic efficiency of market-based instruments

and justify additional policy instruments (see e.g., Bennear and Stavins 2007, Lehmann 2012,

Lecuyer and Quirion 2013, Coria et al. 2018). The aim of this paper is not to discuss these

justifications, but to introduce and discuss another rationale: the informational value of

the policy overlap. In particular, we highlight the informational value of a pollution tax

in the design of other environmental regulations when the firm’s costs of abating pollution

are unknown by the regulatory authorities. We investigate whether and how a tax can help

regulators set and update a standard (a cap) on pollutant emissions. Our idea is that the

tax rate reveals information about the marginal cost of compliance that can be used to

better target the standard to the firm’s true cost. Thus, the paper deals with the design of

environmental policy with multiple instruments (emission tax and non-tradable caps).

The empirical motivation behind our paper is the regulation of NOx emissions by station-

ary pollution sources in Sweden. Since NOx causes environmental damages at both a national

and local level, it is regulated through a combination of a nationally determined emission tax

and locally negotiated emission standards which are revised over time. The level of the tax

has remained stable since its implementation, although not all pollution sources are taxed.

We investigate how taxing emissions has modified emission standards. Does taxing polluters

result in more or less stringent standards? How does the standard evolve over time with and

without tax? To answer these questions, we develop a theoretical analysis of the design of an

emission standard by a welfare-maximizing regulator under asymmetric information about

abatement costs, with a tax on emissions which is set exogenously (i.e. out of the control of

the regulator). We highlight the informational spillover that the tax induces on the design
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of the standard over time. We then take advantage of the regulatory heterogeneity between

stationary pollution sources in Sweden to investigate the extent to which this informational

spillover has been used in the design of NOx standards at the county level.

To the best of our knowledge, this is the first study investigating the informational value of

the use of multiple instruments. Previous studies have analyzed the effectiveness of multiple

instruments when there is uncertainty about abatement costs. Building on Weitzman (1974),

Roberts and Spence (1976) show, for instance, that a mixed system, involving taxes and

quantity regulations (in the form of marketable tradable permits) is preferable to either

instrument used separately because such a mix better approximates the shape of the pollution

damage function. A similar argument is developed by Mandell (2008) and Caillaud and

Demange (2017), who show that, under some conditions, it is more efficient to regulate a

part of emissions by a cap-and-trade program and the rest by an emission tax, rather than

using a single instrument. Our paper complements this literature by investigating how the

information provided by taxes can improve the design of emission standards over time.

Another strand of the literature has taken a mechanism design approach to analyze en-

vironmental regulation when abatement costs are unknown by the regulator. Starting with

pioneer papers such as Dasgupta, Hammond, and Maskin (1980), Spulber (1988), Lewis

(1996) and Duggan and Roberts (2002), this approach has been later applied in specific con-

texts such as international environmental agreements (Martimort and Sand-Zantman, 2016)

or carbon leakage (Ahlvik and Liski, 2017). Those studies rely on direct revelation mech-

anisms to identify a regulation that induces truthful revelation of abatement costs without

restricting the choice of instrument. They end up recommending complex instruments, such

as non-linear pollution taxes, that are difficult to implement in practice. In contrast, here

we focus on the two most widely used policy instruments to tackle pollution: a tax and a

non-tradable cap on emissions. Furthermore, we examine not only how those instruments

can induce information revelation but also how the regulator can take advantage of the new

information to update the regulation. The dynamic design of regulation with information

revelation leads to the well-known ratchet effect that has been studied in contract theory but

seldom investigated in the context of environmental policies. Previous theoretical analysis

has shown that the ratchet effect precludes information revelation, often leading to pooling

and semi-pooling equilibria (Freixas, Guesnerie and Tirole, 1985, Laffont and Tirole, 1988).

In our framework, we identify under which conditions the separating equilibrium survives the

ratchet effect and how much information is revealed. Furthermore, we show that a higher tax

level improves information revelation, and that this effect remains despite the ratchet effect.

The paper is organized as follows. Section 2 motivates our research question based on

actual regulation in Sweden. Section 3 introduces the theoretical model. Sections 4 and 5

analyze the choice of emission standard under pooling and separating equilibrium, discussing

how the level of the tax can be used to induce revelation of information in a static and
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dynamic setting, respectively. Section 6 generalizes the results when firms take into account

the effect of information revelation on the update of stringency of the regulation. Section 7

illustrates the theoretical analysis in a two-types framework. Section 8 revisits NOx regulation

in Sweden in light of our theoretical analysis. Finally, Section 9 concludes the paper.

2 Empirical Background

For geological reasons, Sweden is particularly vulnerable to acidification, causing negative

impacts on lake and forest ecosystems. Consequently, NOx emissions have been an important

environmental policy target in Sweden. Combustion plants are subject to a heavy NOx

national tax and most (but not all) are also subject to individual NOx emissions standards

specified in operating licenses issued case-by-case, either by one of the 21 regional County

Administrative Boards, or by one of the five Environmental Courts that cover a geographical

area of several counties.1 Important legislative frameworks that the County Administrative

Boards must consider in the determination of NOx emission standards are some EU directives

and the Swedish Environmental Code. If motivated, the regional decision maker can impose

more stringent standards than the minimum requirements specified in these directives. These

should be determined in line with the Environmental Code which, for example, states that

regulations should be based on what is environmentally desirable, technically possible and

economically reasonable.

NOx emissions standards at the production plant level were introduced in the 1980s.

There is no legal limit for how long a standard specified in an operating license is valid,

though the common practice seemes to be that operating licenses and standards are revised

no latter than every tenth year. Firms must, however, apply for a new operating license if

they make large changes to the operations (e.g. installing a new boiler or retrofitting a boiler

to use a different type of fuel). In addition, there can be appeals that change the original

permissions, or postpone conditions for operation. In the application, firms are required

to submit information about the operations at the plant and they can propose emission

standards based on evidence. However, each County Administrative Board considers whether

the suggested emission standards are reasonable. In order not to distort competitiveness,

they usually compare emission standards of boilers with similar characteristics in terms of,

for example, size and sector classification. If a firm violates the standard specified in the

operating license, it risks criminal charges and could face fines to be determined in court.

Regarding the Swedish tax on NOx emissions from large combustion plants, at the time

it was introduced in 1992, close to 25% of the Swedish NOx emissions came from stationary

combustion plants and the tax was seen as a faster and more cost-efficient way of reducing

NOx emissions than the already existing standards. The installation of measuring equipment

1After the first of June 2012, only 12 County Administrative Boards, instead of 21, are responsible for
issuing the operating licenses.
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was judged too costly for smaller plants and the charge therefore was only imposed on larger

boilers. In order not to distort competition between larger plants and smaller units not sub-

jected to the tax, a scheme was designed to refund the tax revenues back to the regulated

plants in proportion to energy output. Energy output is measured in terms of so-called useful

energy, which can be in the form of electricity or heat depending on end-use. Regulated enti-

ties belong to the heat and power sector, the pulp and paper industry, the waste incineration

sector and the chemical, wood, food and metal industries. Initially the tax only covered

boilers and gas turbines with a yearly production of useful energy of at least 50 GWh, but in

1996 the threshold was lowered to 40 GWh and in 1997 further lowered to 25 GWh per year.

We provide evidence that taxed and untaxed boilers are regulated differently by local

authorities. We collected information about boiler specific standards for the period 1980-2012

from county authorities (such information is specified in the operating licenses of combustion

plants). First, we examine the evolution of standards of both types of boiler (taxed and

untaxed), expressed in milligrams of NOx per MegaJoule (mg/MJ) of useful energy, before

and after the tax was introduced. We report the number of boilers and the average standards

in Table 1.2 It turns out that the stringency of standards has increased significantly over

time (about 44%, decreasing from an average of 187.05 mg/MJ before the implementation

of the charge in 1992 to 104.86 mg/MJ afterward). Moreover, the increased stringency is

more pronounced for the group of boilers that are charged (e.g., 48% vs 31% reduction,

respectively).

Number of Standard (mg/MJ) Standard (mg/MJ)
Boilers before 1992 after 1992

Taxed boilers 516 193.23 101.05
Untaxed boilers 225 165.17 113.90
Total 741 187.05 104.86

Table 1: Average standard before and after the NOx tax was introduced

We graph the evolution of the average standard between the years 1985 and 2012 for

taxed and untaxed boilers in Figure 1.

2In total, 819 boilers have been subject to standards. Out of these, 240 have been exempted from the
NOx tax while 579 have been subject to the NOx tax at least one year since 1992. Standards are, however,
expressed in different units. In order to compare their stringency we focus mainly on standards expressed in
the same unit: milligrams of NOx per MegaJoule (mg/MJ) of useful energy. We exclude the 78 boilers whose
standards are expressed in other units. We end up with 741 boilers, out of which 516 are taxed.
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Figure 1: Average Standard by Year

The average standards of the two type of boilers, those that are taxed at some point in time

and those that are exempted, follow a similar trend of reduction of the emission standard

over time prior to the introduction of the NOx tax in 1992, 1996 or 1997, depending on the

boiler’s annual energy use. The two lines diverge just after the tax was introduced, as taxed

boilers experienced more stringent standard updates on average.

Second, we examine how standards are updated before and after the tax has been in-

troduced. For a given boiler, we compute the magnitude of the revision ∆Standard as

the difference between the standard that applies to the boiler before and after the revi-

sion. The revision strengthens the standard when ∆Standard > 0, while it relaxes it when

∆Standard < 0. In the data, about 20% of the standards of taxed boilers have been revised

towards less stringent standards. In Figure 2, we plot the distribution of the magnitude of the

standard revisions for the taxed boilers, separating between those revisions that took place

before and after the boilers were taxed.3

3Note that some boilers became subject to the tax in 1992, while other boilers became subject to the tax
in 1996 or 1997. Moreover, our data is composed of an unbalanced panel where new boilers appear in the data
every year. Thus, the year when a given boiler started to be taxed will depend on the year when the boiler
started operating and on the boiler’s size.
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Figure 2: Variations in standard stringency of taxed boilers

The figure suggests a different distribution before and after the introduction of the tax. A

two-sample Kolmogorov-Smirnov test allows us to reject the null hypothesis of equality of

the distribution. It seems that there is a greater spread in the magnitude of the revision in

absolute values when the boilers are taxed, with a higher share of extreme values on both the

positive and negative sides. This evidence is consistent with the idea that the information

provided by the tax system is used by the local regulators to better tailor the standard.

When updating standards, the regulator might take into account whether the boiler over-

complies with current standards, and by how much; this would explain the larger variation

of the update of stringency of standards for taxed boilers. We explore this explanation in a

theoretical framework introduced in the next section.

3 The model

We rely on the textbook model of environmental externality with pollution abatement. Let us

assume that a public authority called ‘the regulator’ (hereafter referred as ‘she’) is regulating

air pollution emitted by a firm through an emission standard. The regulator is a welfare-

maximizer: she cares about environmental damage and the cost of controlling pollution.

Emissions can be abated by the firm at some cost which is unknown by the regulator. Let

q denote pollution abatement. The benefit from reducing pollution by q units is B(q) while

the cost is θC(q). The parameter θ captures the level of abatement costs. It is called the

firm’s type and it is exogenously given.4 It belongs to the range [θ, θ̄] with ∆θ = θ̄ − θ > 0.

The density and cumulative distribution of the a priori beliefs on the distribution of θ over

4The model can easily be extended to endogenize θ via the investment in new technologies at expenses of
a fixed cost. The same argument would hold as long as the investment is profitable for the firm. If not, the
standard might be strengthened further to induce this investment.
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the range [θ, θ̄] are denoted f and F respectively. The benefit function B(q) is increasing and

(weakly) concave, reflecting decreasing (or constant) marginal benefit from abating pollution.

Similarly, the cost function C(q) is increasing and convex, thereby implying an increasing

marginal cost of abating.

The welfare from having a firm of type θ abating q units of polluting emissions is:

W (q, θ) ≡ B(q)− θC(q). (1)

The first-best abatement level q∗(θ) maximizes W (q, θ) with respect to q. It is defined by the

following first-order condition:

B′(q∗(θ)) = θC ′(q∗(θ)), (2)

for every θ ∈ [θ, θ̄].

An emission standard defines a minimal abatement effort denoted s.5 Assume that pol-

lution is regulated solely through the standard. Under uncertainty about θ, the regulator

imposes a standard that maximizes the expected welfare given her beliefs about the firm’s

type. Let θ̂ ≡ Eθ[θ] be the firm’s expected type given the regulator’s beliefs. The ex ante

efficient abatement standard q̂∗ maximizes the expected welfare

Eθ[W (q, θ)] = W (q, θ̂) = B(q)− θ̂C(q),

with respect to q. The first-order condition that defines q∗(θ̂) equalizes the marginal benefit

from abatement to the expected marginal cost:

B′(q∗(θ̂)) = θ̂C ′(q∗(θ̂)). (3)

Consider now a tax per unit of pollution denoted τ . It makes abatement profitable for the

firms even in the absence of an emission standard because the firm saves τ each time it reduces

emissions by one unit. Therefore, in absence of a standard, the firm chooses the abatement

level that minimizes its cost including the tax bill saved, formally θC(q)− τq. Let us denote

as qτ (θ) the abatement effort carried out by the firm of type θ. It is defined by the first-order

condition that equalizes the marginal abatement cost to the tax rate:

θC ′(qτ (θ)) = τ. (4)

5Although the NOx standard in Sweden is a relative standard determined by units of energy used, we
consider an absolute standard (a cap) on emissions in the theoretical model to avoid adding production
(energy) as another decision variable. By doing so we ignore output-based strategies to comply with the
standard, such as the so-called dilution effect; see e.g. Phaneuf and Requate (2017, Chapter 5). Nevertheless,
the main argument holds with relative standards.
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Therefore qτ (θ) = C ′−1
(
τ
θ

)
for every θ. It is increasing with the tax rate τ and decreasing

with the type θ.

We analyze the design of a standard s with an exogenous tax on emissions. We assume

that the tax does not fully internalize the benefit of abatement. This is to say, the abatement

level induced by the tax is sub-optimal regardless of the type: qτ (θ) < q∗(θ) for every θ.6

The regulation game is the non-cooperative game aiming at modeling the relationship

between the regulator setting the standard and the firm. The tax is exogenous to the two

players and common-knowledge. The game is played under adverse selection since the firm

observes its type θ before choosing its abatement strategy. The regulator sets the standard s

before the firm chooses its abatement effort q. We first consider a static version of the game

played only once. We then extend it to two periods to investigate standard revision with

information acquisition.

4 The tax as a separating device

4.1 The pooling and separating solutions

We solve the static regulation game by backward induction. Given the abatement standard

s, the firm chooses its abatement effort that minimizes its cost subject to complying with

the standard. The firm of type θ chooses q that minimizes θC(q) − τq subject to q ≥ s. If

the constraint is not binding, the tax rate drives the firm’s abatement effort and the firm

equalizes marginal abatement cost to the tax rate by choosing the abatement level qτ (θ),

defined in (4). Otherwise, the firm’s abatement effort matches the standard s. Thus, firm θ’s

best reply to the standard s defines an incentive-compatibility (IC) constraint:

q(θ) = max{s, qτ (θ)}. (5)

The regulator chooses the standard s that maximizes the expected welfare E[W (q(θ), θ)] =

E[B(q(θ))− θC(q(θ))] subject to the firm’s IC constraint (5).

For low tax rates, the tax is not binding and the solution is pooling as all types abate

at the standard level. The abatement level qτ (θ) is so low that the IC constraint simplifies

to q(θ) = s for every θ. The standard is set at the first-best level for the mean type θ̂, i.e.,

s = q∗(θ̂). For higher tax rates and a given standard s, the IC constraint defines a threshold

θ̃ such that q(θ) = qτ (θ) if θ ≤ θ̃ and q(θ) = s if θ ≥ θ̃. This is to say, firms with a type θ

below the threshold abate a level determined by the tax while firms with a type θ above the

6This assumption implies that standards are set for all firm types. It avoids considering the case of
over-abatement with tax compared to the optimal level. This can easily be justified empirically since most
environmental taxes are set below the Pigouvian rate. It is also theoretically grounded because the national
tax should reflect only part of the marginal damages due to a boiler’s polluting emissions: the part that is not
internalized at the county level from the emissions that exit the county’s borders.
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threshold abate what is required by the standard. The threshold is defined by qτ (θ̃) = s or,

equivalently, by θ̃ = τ
C ′(s)

. Hence, the regulator chooses the standard s to maximize:

max
s

∫ θ̃

θ
W (qτ (θ), θ)dF (θ) +

∫ θ̄

θ̃
W (s, θ)dF (θ) subject to qτ (θ̃) = s.

Let us denote the standard that solves this problem as ss (with an upper-script ‘s’ for static).

The first-order condition yields:

B′(ss)[1− F (θ̃)] =

∫ θ

θ̃
θdF (θ)C ′(ss).

Using the Bayes rule f(θ|θ ≥ θ̃) =
f(θ)

1− F (θ̃)
leads to

B′(ss) = E[θ|θ ≥ θ̃]C ′(ss), (6)

In the separating solution, the standard is chosen such that the marginal benefit of abatement

equals the marginal cost in expectation for all types for which the standard is binding, i.e,

with a θ higher than θ̃.7

4.2 More information revealed with higher taxes

We now examine how the standard varies with the tax rate.8 First, the tax rate determines

whether the solution is pooling or separating. The solution is separating if the tax rate

is higher than a threshold defined by the marginal abatement cost of the lowest-cost type

firm θ with the pooling standard q∗(θ̂). That is, if qτ (θ) > q∗(θ̂). Using (4), this leads to

τ > θC ′(q∗(θ̂)).

Second, an increase of the tax has two effects on type revelation in the separating solution.

The first one is a direct positive effect as higher tax rates induce more revelation of types,

since the threshold θ̃ for which the tax determines abatement increases with τ . Indeed, using

the definition of θ̃, we obtain dθ̃
dτ

= 1
C ′(s)

> 0, implying that more types are revealed with

higher taxes for a given standard s. The second effect is indirect and negative because a

higher tax makes the standard more stringent, which reduces θ̃ for a given tax rate. By

differentiating (6) with respect to τ , we observe that

ds

dτ
= − C ′(ss)

B′′(ss)− E[θ|θ ≥ θ̃]C ′′(ss)
> 0

7Note that our assumption q∗(θ) > qτ (θ) implies that the standard is binding for some types because θ̃ > θ.
8We consider variation of tax rates such that our assumption qτ (θ) < q∗(θ) for every θ is still valid.

10



implying that a higher tax increases the standard which, because dθ̃
ds

= −θ̃C
′′(s)

C ′(s)
< 0, reduces

the threshold type θ̃ and, thus, it reduces revelation of types. We show in Appendix A that

the net effect is positive: more types are revealed when the tax increases.

We close this section by summarizing our finding in the following proposition.

Proposition 1 In the static setting in which firms are regulated both by a standard and a

tax, the low cost firms reveal their type by over-complying with the standard. The standard is

relaxed and more types are revealed with higher taxes.

As mentioned in Section 1, previous studies (see e.g., Roberts and Spence (1976) and Pizer

(2002)) have shown that using multiple instruments to regulate the same pool of polluters can

be welfare enhancing when there is uncertainty about abatement costs. For instance, using

an initial distribution of tradable emission permits to set a quantitative target on emissions

abatement but allowing for a price cap can be a cost-efficient alternative to either a pure

price or quantity system. Proposition 1 is in line with such a result in the sense that a

combination of quantity and price control provide firms with greater flexibility to choose the

level of emissions abatement closer to the optimal. Nevertheless, the previous studies have

ignored another benefit from using multiple instruments: the information revealed about

abatement costs. We now investigate how the regulator can make use of this information to

improve the regulation. To do that, we need to add a new period into the regulation game.

We investigate not only how the information revealed can be used to update the standard

but also how it modifies the choice of the initial standard by comparing it to ss .

5 Information revelation with a myopic firm

5.1 Regulation update

Let us assume now that the regulation game is repeated twice with a discount factor β.

The type θ is observed by the firm at the beginning of the game and remains unchanged.

Each period t, the regulator sets a standard st and the firm chooses the abatement qt(θ) for

t = 1, 2. We assume that the firm is myopic or short-term in its thinking, as it considers only

the current abatement costs when picking its abatement strategy. This assumption is relaxed

in the next section.

The regulation game with update is a dynamic game under adverse selection. We use

the concept of Perfect Bayesian Equilibrium (PBE). The equilibrium strategies are formally

described in Appendix B.1. In this section, we solve the game by backward induction. Given

the first-period standard s1, after having observed the firm’s abatement strategy in period 1,

the regulator designs a new standard s2. The regulator takes advantage of the information

revealed by the firm’s abatement decision during the first period to update its beliefs on the
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firm’s type. Given the information obtained, she tailors the standard closer to the firm’s

expected type.9 If the firm was over-complying by abating qτ (θ) > s1, the regulator can

perfectly infer that its type is θ. She updates the standard to the first-best abatement level

s2 = q∗(θ). All firm with types lower than the threshold given by:

τ = θ̃1C
′(s1), (7)

are over-complying and, therefore, experience a standard update s2 = q∗(θ). If the firm was

only abating the level required by the standard s1, some uncertainty about its type remains.

Nevertheless the information on the firm’s type becomes more precise because types lower

than θ̃1 can be excluded. The firm’s type should therefore belong to the range [θ̃1, θ̄]. It is

distributed according to the conditional cumulative F (θ|θ ≥ θ̃1).

The updated standard s2 maximizes the expected welfare given the updated beliefs:

E[B(q2(θ))− θC(q(θ))|θ ≥ θ̃1] subject to q2(θ) = max{s2, q
τ (θ)} (8)

The program is similar to that in the static model with the updated beliefs. Let’s call V (s2, θ̃1)

the maximal value of (8) given θ̃1, i.e.

V (s2, θ̃1) ≡ max
s2

E[W (q2(θ), θ)|θ ≥ θ̃1] subject to q2(θ) = max{s2, q
τ (θ)}.

Let us denote sd2 the solution to problem (8). In what follows, we discuss the optimal choice

of the standards in each period.

5.2 First period’s standard

In the first period, the regulator chooses the standard s1 that maximizes the discounted

expected welfare given that the standard will be updated to s2 = q∗(θ) if the firm abates

more than s1 and to the standard s2 = sd2 if the firm abates s1. The regulator thus maximizes:

∫ θ̃1

θ
W (qτ (θ), θ)dF (θ) +

∫ θ̄

θ̃1

W (s1, θ)dF (θ) + β

[∫ θ̃1

θ1

W (q∗(θ), θ)dF (θ) + V (sd2, θ̃1)

]
(9)

where θ̃1 is defined in (7) with θ < θ̃1 < θ̄. The last term in the brackets in (9) is the second-

period welfare in expectation. It includes two terms: (i) the first-best welfare W (q∗(θ), θ) for

firm types θ ≤ θ̃1 that revealed their type by over-complying, and (ii) the maximal value of

the expected welfare with the revised standard s2 given the updated beliefs that the firm is

of types θ ≥ θ̃1.

9We focus on the separating solution because no new information is revealed if the solution is pooling. The
regulator’s beliefs are thus unchanged and so is the standard.
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The solution to the problem (9) denoted sd1 satisfies the following first-order condition:

B′(sd1) = E[θ|θ ≥ θ̃1]C ′(sd1)− β
[
W (q∗(θ̃1), θ̃1)−W (q2(θ̃1), θ̃1)

]
︸ ︷︷ ︸

Welfare gain from revealing θ̃1

f(θ̃1|θ ≥ θ̃1)
dθ̃1

ds1
, (10)

where dθ̃1
ds1

= −θ̃1
C ′′(sd1)

C ′(sd1)
< 0 is found by differentiating (7) and q2(θ̃1) is the firm θ̃1’s

abatement level during the second period. The standard sd1 is such that the marginal benefit

of a more stringent standard on the left-hand side of (10) equals the marginal cost on the right-

hand side. Likewise for the first-order condition of the static problem in (6), the marginal

cost is computed in expectation over all types for which the standard is binding, i.e., all θ

higher than θ̃1. What is new compared to (6) is the second term on the right-hand side

that accounts for the marginal value of the information revealed by the tax. This value is

the marginal loss of welfare from not revealing types with a more stringent standard. It is

decomposed into three terms. First, dθ̃1
ds1

< 0 captures the fact that increasing s1 decreases the

threshold type θ̃1, which means that fewer firm’s types are revealed. Second, the difference in

the brackets W
(
q∗(θ̃1), θ̃1

)
−W

(
q2(θ̃1), θ̃1

)
is the welfare gain of revealing the marginal type

θ1 (or the welfare loss of not revealing it). Indeed, if θ̃1 had been revealed, the standard could

be set at the efficient level q∗(θ̃1) in the next period, thereby achieving the maximal welfare

W
(
q∗(θ̃1), θ̃1

)
. Instead, the welfare level achieved is W

(
q2(θ̃1), θ̃1

)
, where the abatement

of the firm of type θ̃1 is determined by the second-period standard s2.10 Third, this loss is

weighted by the regulator’s updated beliefs about the share of threshold types f(θ̃1|θ ≥ θ̃1)

and discounted with the factor β to be expressed in first-period welfare units.

The welfare gain from revealing θ̃1 in (10) is strictly positive, provided that q∗(θ̃1) 6= q2(θ̃1)

and β > 0. Hence the marginal loss of making the standard more stringent is higher in the

dynamic model than in the static one, because the right-hand side of (10) is higher than the

right-hand side of (6) for a given standard.11 Since the left-hand side of both conditions (6)

and (10) are the same function of the standard, we have sd1 < ss. This is to say, the standard

is relaxed to acquire information that is used next period.

5.3 Second period’s standard

Given s1 and, therefore the threshold type θ̃1, we can now solve the second-period maxi-

mization program V (s2, θ̃1) that defines the second-period standard s2 if the firm does not

over-comply with the standard s1. V (s2, θ̃1) is similar to the static problem with updated

beliefs f(θ|θ ≥ θ̃1) on the range of types [θ̃1, θ̄]. In Appendix B.2., we show that the second-

10We have q2(θ̃1) = qτ (θ̃1) if the standard is relaxed at s2 < s1 or q2(θ̃1) = s2 if it is strengthened at s2 > s1.
The standard update s2 is examined later on.

11Consistently, the first-order (10) boils down to the one of the static model (6) when β = 0.

13



period standard denoted sd2 pools of all types in this range: the threshold type is θ̃2 = θ̃1.

The first-order condition is then:

B′(sd2) = E[θ|θ ≥ θ̃1]C ′(sd2). (11)

The above first-order condition differs from the one that defines sd1 in (10) by the last term in

brackets in (10). It does not show up in (11) because, as the game ends, there is no future gain

from revealing types. As the consequence, the standard is strengthened in the second period:

sd2 > sd1. Updating to a more stringent standard in the second period implies q2(θ̃1) = sd2 in

(10). Hence, the firm of the threshold type θ̃1 abates at the standard level in both periods.

Thus, the welfare gain from revealing θ1 in (10) becomes W (q∗(θ̃1, θ̃1) − W (sd2, θ̃1), which

corresponds to the difference between the first-best welfare and the welfare with abatement

at the standard level sd2 when the firm is of type θ̃1.

Proceeding as in Appendix A, one can show that a higher tax induces more revelation of

types, i.e. a lower θ̃1, in the dynamic regulation game.

Our results are summarized in the proposition below.

Proposition 2 In a dynamic setting in which firms are regulated by a standard and a tax,

the tax is used to reveal information about the marginal cost of abatement over time. The

first-period standard is lower than in the static model to induce more revelation of types, i.e.,

sd1 < ss. It is then strengthened to the first-best abatement level if the firm reveals its type by

over-complying, i.e., if q1(θ) = qτ (θ) > sd1 then s2 = q∗(θ) > sd1. It is also strengthened if the

firm does not overcomply with the standard, i.e., s2 = sd2 > sd1 if q1(θ) = sd1. More revelation

of types is achieved with higher taxes.

Before moving to the analysis of a strategic firm, we briefly discuss how our results would

change if the firm’s type changes over time. By assuming perfect correlation of type across

periods, we assign a maximal value to the information revealed by the environmental tax

about the abatement costs in the second period. Full information is revealed if the firm

over-complies during the first period, which leads the regulator to implement the first-best.

Furthermore, the regulator can exclude a full range of potential types if the firm does not

overcomply. In reality, a firm’s abatement costs evolve over time due to technological progress

and the business environment, which means in our model that the first-period cost type is only

partly correlated to the second-period one. Nevertheless, as long as the types are correlated

over time, the information revealed in the first period has some value in the second period.

Even though the first-best might not be achieved if the firm over-complies, welfare is improved

as long as the information about the first-period type allows the regulator to reduce the

variance of her beliefs about the second-period type. The standard is probably strengthened

but not as much as it would be with perfect correlation. Similarly, when the firm’s abatement

does not exceed the standard, the full range of potential types excluded in the first period
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cannot be excluded in the second period. Yet the regulator has more precise information

about the firm’s type in the second period than she had initially in the first period, which

allows her to modify the standard in the second period. Hence, the informational spillovers

between policy instruments would remain under imperfect but positive correlation among the

firms’ abatement costs across time.

6 Information revelation with a strategic firm

Let us assume now that firms are forward looking and strategic. They take into account the

impact of their abatement strategy in the first period on the second period standard. The

revision of the standard leads to the well-known ratchet effect in the separating equilibrium

of the dynamic regulation game. As the regulator makes the standard more stringent for

firms revealing their low-cost type, it induces them to hide their type by abating only the

level required by the standard.

Two behaviors might prevent the revelation of types. First, the firm of type θ might hide

its cost by abating at the level of the standard s1 instead of its cost-minimizing abatement

level qτ (θ) > s1. Doing so, the firm increases its cost in the first period. However, this

extra cost can be more than offset by the future gain from a lower standard updating, as the

firm the will be required to abate s2 instead of q∗(θ). Second, firm θ might mimic a higher-

cost type θ′ > θ by picking the abatement strategy qτ (θ′) > s1 to avoid a more stringent

standard update in the future, i.e. s2 = q∗(θ′) instead of s2 = q∗(θ) with q∗(θ′) < q∗(θ). We

examine these two types of opportunistic behavior separately.12 They define two dynamic

incentive-compatibility constraints ensuring truthful revelation of types with strategic firms.

Firm θ reveals its type by abating more than the standard, if the following dynamic

incentive-compatible constraint holds:

θC(qτ (θ))− τqτ (θ) +β[θC(q∗(θ))− τq∗(θ)] ≤ θC(s1)− τs1 +β[θC(qτ (θ))− τqτ (θ)]. (12)

The discounted cost if the type is revealed on the left-hand side of (12) should be not be

higher than if it is hidden in the right-hand side. The firm has to balance the current extra

cost of abating s1 instead of its cost-minimization level qτ (θ) (first two terms on each side

of the inequality), with the future benefit of being able to minimize cost by abating qτ (θ)

instead of updated standard q∗(θ) (terms in brackets on the two sides of the inequality),

discounted in present value.13

12Note that a firm would never mimic a lower type because it would imply abating more both periods.
13Note that if the game lasted more than two periods (i.e. the standard was updated several times), the firm

might hide its type again in the second period to avoid the standard being updated to q∗(θ) later on. This
reduces the benefit from hiding type in the future and, therefore, relaxes the dynamic-incentive compatible
constraint (12). In this sense, we are conservative about the conditions for information revelation when we
limit our analysis to only two periods. If the separation equilibrium can be implemented in a two-period game,
it can also be implemented if the game continues for more periods.
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It is possible to show that the dynamic incentive-compatible constraint for hiding the

type is binding for any standard. Indeed, substituting s1 = qτ (θ̃1) into (12) shows that this

inequality does not hold. By continuity, it does not hold either for types close to θ̃1. Hence,

strategic firms undermine information revelation. However, if the cost difference between

revealing and hiding type is increasing with θ, condition (12) might hold for the lowest cost-

types θ. In Appendix C.1 we define conditions for which this is indeed the case. It basically

requires that the cost function C(q) is not too convex and/or the discount factor β is not too

high. Under Assumption 1 in Appendix C.1, we can define θ̇ as the threshold such that (12)

holds for all θ < θ̇. Formally, θ̇ is defined by binding the dynamic IC constraint (12), i.e.,

θ̇C(qτ (θ̇))−τqτ (θ̇)+β[θ̇C(q∗(θ̇))−τq∗(θ̇)] = θ̇C(qτ (θ̃1))−τqτ (θ̃1)+β[θ̇C(qτ (θ̇))−τqτ (θ̇)]. (13)

Second, firm θ does not mimic another type θ′ by abating qτ (θ′) > s1 if the following

dynamic-incentive constraint holds:

θC(qτ (θ))−τqτ (θ)+β[θC(q∗(θ))−τq∗(θ)] ≤ θC(qτ (θ′))−τqτ (θ′)+β[θC(q∗(θ′))−τq∗(θ′)]. (14)

Firm θ might be tempted to abate less that its cost-minimizing level qτ (θ) because, due to the

convexity of the cost function C(q), the present extra cost θC(qτ (θ′))−τqτ (θ′)− [θC(qτ (θ))−
τqτ (θ)] is more than offset by the future cost saved θC(q∗(θ))−τq∗(θ)− [θC(q∗(θ′))−τq∗(θ′)].
Let us denote by x the best type to mimic (if any). The type x is formally defined by:

x = arg min
θ′>θ̇
{θC(qτ (θ′))− τqτ (θ′) + β[θC(q∗(θ′))− τq∗(θ′)]}.

We denote by β̃(θ) the highest discount rate such that the dynamic incentive-compatibility

constraint holds for type θ:

β̃(θ) ≡ θC(qτ (x))− τqτ (x)− [θC(qτ (θ)− τqτ (θ)]

θC(q∗(θ)− τq∗(θ)− [θC(q∗(x)− τq∗(x)]
, (15)

In Appendix C.2, we show that
dβ̃(θ)
dτ

> 0 for every θ > θ̇ and dθ̇
dτ

> 0, which leads to the

following proposition.

Proposition 3 In the dynamic regulation game with a strategic firm, a higher tax improves

information revelation by increasing the threshold type θ̇ and by increasing the maximal dis-

count rate β̃(θ) for every θ at which the firm does not have incentive to reveal its type.

Under Assumption 1, the separating solution is still feasible when the firm acts strategically

when choosing its level of abatement. Proposition 3 states that a higher tax makes the

separating solution more likely because it relaxes the dynamic-incentive constraint in (14).

A higher tax makes mimicking other types less attractive and, therefore, (14) holds for lower
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discount rates. Furthermore, in line with Propositions 1 and 2, Proposition 3 establishes that

a higher tax rate reveals more types in the separating solution by increasing the threshold

type θ̇. The latter result relies on the same intuition: a higher tax favors over-compliance

despite the fact that the standard becomes more stringent. As the tax increases, hiding cost

by not over-complying is not profitable anymore for a larger range of firm types.

7 Illustration with two types

The choice between a pooling or a separating solution can be illustrated in the two-types

case. Let us assume that θ can only take two values: θ̄ (high) and θ (low). The regulator

assigns a probability ν that θ = θ̄. For simplicity, let us denote q(θ) and q(θ̄) by q and

q̄ respectively. We graph the marginal abatement costs as well as the marginal benefit of

reducing pollution in Figure 3. The ex post efficient abatement levels q∗ and q∗ can be found

Figure 3: Welfare loss with the pooling and separating solutions.

where the marginal abatement cost curve crosses the marginal benefit curve for each type of

firm. Similarly, the pooling abatement standard q̂∗ is such that the marginal abatement cost

curve for the expected type θ̂ (in dotted line) crosses the marginal benefit curve. The tax

rate is represented by the horizontal line τ . The abatement level with tax for the low-cost

firm qτ can be found where this horizontal line crosses the marginal abatement cost for the
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low-cost firm θC ′(q).

The loss of welfare under the pooling solution is represented by the areas A and B. If the

firm’s cost type is θ̄, the standard q̂∗ induces too much pollution reduction q̂∗ > q∗. The cost

of reducing emissions is higher than the benefit for all reduction units between q∗ and q̂∗.

The loss of welfare is thus the difference between the marginal cost and the marginal benefit

of abatement given by the area A. Symmetrically, if the firm’s cost-type is θ, more pollution

should be abated than prescribed by the standard. The benefit from reducing pollution is

higher than the cost for all abatement levels from q̂∗ to q∗. The loss of welfare is thus the

difference between the marginal benefit and the marginal cost of abating pollution given by

the area B. Since the regulator assigns probabilities ν and 1 − ν that the firm is of type

θ and θ, the expected loss of welfare is νA + (1 − ν)B. Under the separating solution, the

standard corresponds to q∗. Thus, the standard implements the efficient abatement level if

the firm’s type is θ and, hence, there is no loss of welfare in this case. If the firm’s type is θ,

its abatement is given by qτ . However, qτ is lower than the efficient abatement level q∗, and

thus the loss of welfare under the separating solution is represented by the area C+B. Since

the firm is of the low cost-type with probability ν, the expected loss of welfare is ν(C +B).

For a low tax rate such that the standard q∗ is close to the abatement level qτ , the expected

loss of welfare with the separating solution ν(C+B) might be greater than the loss of welfare

under the pooling solution νA + (1 − ν)B.14 In this case, pooling dominates separation of

types. As the tax rate increases, the horizontal line moves up and, at some point, the ranking

is reversed.15 It dominates as well as τ increases further. When τ is such that qτ = q∗, the

separating solution implements the first-best abatement levels in the two-types case.

Let us denote τs as the tax rate such that expected welfare is equal under the screening

and separating solutions:

νW (qτ , θ) + (1− ν)W (q∗, θ) = W (q̂∗, θ̂). (16)

We show in Appendix D.2 that the pooling solution dominates when the tax rate is lower

than τs, while the screening dominates when it is above.

In the two-types case, the regulator can perfectly infer the firm’s type with the separating

solution. If the firm abates more than required by the standard, the regulator knows that the

firm is of type θ. If it does not exceed the standard, the firm is of type θ. Therefore, in both

cases, the regulator can implement the ex-post efficient abatement levels. The standard is

tightened to the efficient level for the low-cost type q∗ when the firm was abating more than

required by the standard. If not, the standard is left unchanged at the efficient level for the

14This is particularly the case when the low cost-type is more likely so that ν is high.
15In particular, the separating solution dominates when the rate τ is such that qτ = q̂∗. If the firm is of

type θ, the loss of welfare is the same under separating and pooling (i.e. area B in Figure 1). If it is of type
θ, there is no loss of welfare under separating but a loss corresponding to area A under pooling. Hence the
separating solution dominates.
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high-cost type q∗.

The information acquisition makes the separating solution more attractive for the reg-

ulator in the dynamic setting. Indeed, the expected discounted welfare with the screening

solution is νW (qτ , θ) + (1 − ν)W (q∗, θ) + βEθ[W (q∗(θ), θ)]. This has to be compared with

the expected discounted welfare with pooling (1 + β)W (q̂∗, θ̂). The minimal tax rate τd with

screening dominates pooling; this is implicitly defined by equalizing the expected discounted

welfare from the two solutions:

νW (qτ , θ) + (1− ν)W (q∗, θ) = W (q̂, θ̂)− β
[
Eθ[W (q∗(θ), θ)]−W (q̂∗, θ̂)

]
. (17)

Since the last term in brackets is positive, the right-hand term in (17) is lower than the

right-hand term of (16), while the left-hand terms are the same. Furthermore, the left-hand

terms are increasing with τ while the right-hand terms do not vary with τ . Therefore τd < τs.

Put differently, for tax rates in-between τd and τs, the standard update makes the screening

solution more attractive through the revelation of types.16

Regarding strategic firms, the trade-off facing a low-type firm when decided whether to

reveal its type is illustrated in the two-types case in Figure 4 below.

16Interestingly, welfare increases with the tax rate in the separating solution. Differentiating the expected

welfare under the separating solution (the left-hand side of (16)) with respect to τ leads to νWq(q
τ , θ)

dqτ

dτ
which is strictly positive because (i) abatement qτ increases with the tax rate (last term positive), (ii) welfare
increase with abatement for qτ ≤ q∗ and, therefore, Wq(q

τ , θ) > 0. Intuitively, a higher tax moves the
abatement level of the low-cost firm closer to the first-best.
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Figure 4: Loss if the low-cost firm reveals or hides its cost.

For a tax rate graphed by the horizontal line τ , the cost of revealing type or hiding it is

represented by areas A and B respectively. If the firm reveals its type, the standard is revised

to q∗ in the next period, which forces the firm to abate q∗ − qτ more units. The cost of each

of those abatement units is the difference between the marginal cost and the tax rate: that

difference is equal to the area A. This extra cost in period two is valued at βA in period

1. If the firm hides its type by abating less than it otherwise would have at the standard

q∗, it loses the difference between the tax rate and the marginal cost for all abatement units

between standard q∗ and its best choice qτ ; that difference is area B. The horizontal line

moves upward as τ increases and, therefore, B expends while A shirks. At some point βA

becomes smaller than B: the cost of revealing the type becomes lower than the cost of hiding

it.

8 Empirical Analysis

We now look more closely at the data collected on NOx regulation in Sweden in light of the

theoretical analysis. To be precise, we investigate two theoretical predictions of our model:

(i) boilers that are taxed experience more updating of their standards (more frequent and

greater magnitude) compared to boilers that are not, (ii) the standards for the taxed boilers

become more stringent for over-complying boilers compared to boilers that emit no more than
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the standard. The first prediction is analyzed by comparing taxed and untaxed boilers while

the second is analyzed by invesigating the determinants of the magnitude of the update of

the standards for taxed boilers.

8.1 Impact of the NOx tax on emission standard updates

Since standards are examined unevenly across time, we use two statistics to measure the stan-

dard update: the frequency and the magnitude of the revisions. Table 2 presents summary

statistics of the revisions of stringency of untaxed boilers (223 boilers in the sample)17 and

taxed boilers (516 boilers in the sample). On average, there is a statistically larger fraction

of revisions for taxed boilers than for untaxed boilers (e.g., 60% vs 41%). Moreover, the

magnitude of the revision ∆ Standard is statistically larger for taxed boilers. Furthermore,

the number of years between revisions is statistically lower for taxed boilers.

Untaxed Taxed Diff.

# Boilers 223 516 —
# Standards 324 901 —
Standards revised (%) 41 60 ∗∗∗

∆ Standard (mg/MJ) 23.63 38.87 ∗∗∗

Years between revisions 6.02 6.69 ∗∗∗

∗ p < 0.1,∗∗ p < 0.05 and ∗∗∗ p < 0.01

Table 2: Statistics on standards update

We first evaluate the effect of the NOx tax on the probability of standard revision and on

the magnitude of the revision. The outcomes variables correspond to Pijt and ∆Standardijt,

where Pijt takes a value equal to one if the standard that applied to boiler i located at county

j was revised at time t, and zero otherwise. As described before, ∆Standardijt corresponds

to the difference between the standard that applies to boiler i (located at county j) at time

t− 1 and the standard that applies to boiler i at time t.

The outcome variables Pijt and ∆ Standardijt are regressed as a function of the NOx

tax regulation, measured by the dummy variable Taxijt−1 that takes a value equal to one

if boiler i located at county j is subject to the NOx tax at time t − 1 and zero otherwise.

We should expect the probability of standard revision and the stringency of the revision to

depend on the length of time that has elapsed since the previous revision. We proxy for this

by the log of the number of years that have elapsed since the boiler was regulated by the

last time, denoted as ∆ log Yearsijt. For boilers whose standard has never been revised, the

17We have excluded outliers.
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variable corresponds to the log of the number of years that have elapsed since the boiler was

assigned the first standard. For those boilers whose standard has been revised, the variable

corresponds to the log of the number of years that have elapsed between standard revisions.

We use a logarithmic transformation because the number of years that have elapsed since the

boiler was last regulated is a highly skewed variable.

Additional controls include a vector Z of L boiler and firm characteristics (for instance,

industrial sector and boiler size). Moreover ζj are county fixed effects that account for non-

observable characteristics of the county that can affect the stringency of the standards, ηt

are yearly fixed effects to account for any variation in the outcome that occurs over time and

that is not attributed to the other explanatory variables, and εijt is the error term.

Pijt = α+ βTaxijt−1 + γ∆ log Yearsijt+
L∑
l=1

κlZil + ζj + ηt + εijt, (18)

∆Standardijt = α+ βTaxijt−1 + δ∆ log Yearsijt+

L∑
l=1

κlZil + ζj + ηt + εijt, (19)

We estimate equations (18) and (19) with robust standard errors clustered at the boiler level

to account for the potential correlation of the standard designed for a given boiler.

The data is an unbalanced pooled cross-section over time panel of boilers, where boilers

are observed every year from the year when they are assigned the first standard. In our

sample, each boiler has received (on average) 1.92 standards, and 427 out of 739 boilers have

been assigned only one standard during the whole sampled period. Those boilers that have

received more than one standard have received (on average) 2.7 standards, and the average

number of years between revisions is 6.1 years.

Regarding the sources of data, information about standards over the period 1980-2012

specified in the operating licenses of combustion plants was obtained from county authori-

ties. Information on NOx emissions over the period 1992-2012 comes from the Swedish NOx

database, which is a panel covering all boilers monitored under the tax system. The NOx

database also includes information on boiler capacity and industrial sector.

See Table 3 for a description of the variables.
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Variable Description N Mean Std.Dev. Min Max

Standard mg/NOx 11477 110.77 50.22 21.90 300

Tax 1 if subject to NOx tax; 0 otherwise 11477 0.70 0.45 0 1

# Standards # of Standards 11477 1.92 1.09 1 7

Standard Revised (%) 11477 0.54 0.50 0 1

∆Standard Current − Previous standard 3757 35.68 60.21 -160 230

log∆Years log of # years last regulated 10585 1.65 0.84 0 3.33

Boiler/Firm Characteristics

Waste 1 if waste; 0 otherwise 11477 0.11 0.31 0 1

Food 1 if food; 0 otherwise 11477 0.07 0.25 0 1

Heat and Power 1 if heat and power; 0 otherwise 11477 0.68 0.47 0 1

Pulp and Paper 1 if pulp and paper ; 0 otherwise 11477 0.06 0.24 0 1

Metal 1 if metal; 0 otherwise 11477 0.015 0.12 0 1

Chemicals 1 if chemicals; 0 otherwise 11477 0.025 0.16 0 1

Wood 1 if wood ; 0 otherwise 11477 0.04 0.20 0 1

Boiler Size Installed boiler effect in MW 10895 55.14 94.51 1.3 825

Table 3: Summary Statistics

From Table 3, we observe that 70% of the boilers have been taxed at some point in time, and

that the majority of the boilers in the dataset belong to the heat and power sector. Moreover,

there is large variation among standards both in stringency and frequency of revision. Such

variation reflects differences in boiler size, technology availability, and industrial sector, among

others.

Table 4 presents the results of the regression model specified in equation ( 18): see cols (1)-

(3). In col (1) we control for sectorial fixed effects. In col (2) we control also for county fixed

effects, while in col (3) we control for sectorial, county and yearly fixed effects. Moreover, cols

(4)-(6) present the results of the regression model specified in equation (19), where - again-

in col (4) we only control for sectorial fixed effects, in col (5) we control for sectorial and

county fixed effects, and in col (6) we control for sectorial, county and yearly fixed effects.

In cols (1) and (3), a negative sign of the coefficient indicates that the determinant reduces

the probability of standard revision. We observe that taxed boilers have indeed a statistically

significant higher probability of being revised. In the specifications in cols (1) and (2), being

taxed increases the probability of standard revision by about 20%. In specification (3), the

effect is even larger as the probability of revisions for taxed boilers is about 30% higher than

that of tax-free boilers.

The time that has elapsed since the boiler was last regulated also increases the probability

of revisions in all specifications. Interestingly, the results in cols (1) and (2) show that the

standards of larger boilers are also more likely to be revised.

Regarding cols (4)-(6), in col (3) the results do not support the hypothesis that the
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stringency of the standard revisions is larger for boilers that are taxed. The results show,

however, that the longer the time that elapses between standard revisions, the greater is the

magnitude of the revision. Moreover, the magnitude of the revisions seem to be larger for

larger boilers.

Hence, we can conclude that the results provide empirical support to our hypothesis that

the standards of taxed boilers are revised more often, yet it is unclear whether the stringency

of the revisions is greater for taxed boilers. A potential explanation is the existence of spillover

effects between taxed and untaxed boilers. After increasing the stringency of standards for

taxed boilers, the regulator might require boilers that are not taxed to implement similar

technologies and management practices for reducing pollution. This argument is consistent

with the trends observed in Figure 1, where both taxed and untaxed boilers have reduced

their emissions significantly over time. Moreover, even if the magnitude of the revisions is not

affected by the NOx tax, the fact that the standards of taxed boilers are revised more often

should, over time, also increase the overall stringency of the standards, since more frequent

increases in the standard stringency for taxed boilers should lead to greater increases in the

standard stringency for untaxed boilers when these are revised.

(1) (2) (3) (4) (5) (6)

Pijt ∆Standardijt

NOx Taxt−1 0.19
∗∗∗

0.19
∗∗∗

0.29
∗∗∗

3.50 -2.10 -0.52

Log ∆Yearst 0.17
∗∗∗

0.19
∗∗∗

0.28
∗∗∗

4.90
∗∗∗

3.78
∗∗

8.76
∗∗

Sizeijt 0.0006
∗∗∗

0.0004
∗∗∗

0.0002 0.062
∗

0.063
∗∗

0.050
∗

FE Sector YES YES YES YES YES YES

FE County NO YES YES NO YES YES

FE Year NO NO YES NO NO YES

#Obs 9981 9981 9732 3490 3490 3490

#Boilers 681 673 673 301 301 301

Pseudo R2/R2 0.023 0.037 0.068 0.04 0.22 0.24
∗ p < 0.1,∗∗ p < 0.05 and ∗∗∗ p < 0.01

Table 4: Probability and Stringency of standard revisions

8.2 How taxed boilers standards are updated

To address our second research question, we regress our dependent variables, Pijt and ∆Standardijt,

only for the sample of taxed boilers.18 The dependent variables are explained as a function of

actual emissions for boiler i at time t−1, Eijt−1, the availability of NOx reducing technologies

18Another reason for restricting ourself to taxed boilers is that we have information about NOx emissions
only if the boiler is taxed, as the untaxed boilers are not required to report their NOx emissions to the
regulator.
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at year t− 1, and the lagged value of a proxy for ”overcompliance” with the standard, mea-

sured as the difference between the emissions’ concentration specified by the standard and the

actual emissions (i.e., Standardijt−Eijt). Our dummy variable overcompliance takes a value

equal to one if boiler i overcomplies at a level greater than the median overcompliance of all

boilers at year t− 1. It takes a value equal to zero otherwise. Regarding actual emissions, we

consider it as a proxy of cost taxed boilers should optimally reduce emissions up to the point

where marginal abatement costs equalize the NOx tax. Thus, greater abatement of emissions

should be expected for low cost type firms than for high cost type firms. Finally, regarding

technologies, NOx is produced largely from an unintended chemical reaction between nitro-

gen and oxygen in the combustion chamber. The process is quite non-linear in temperature

and other parameters of the combustion process, which implies that there is a large scope for

NOx reduction through various technical measures. For example, it is possible to reduce NOx

emissions through investment in post-combustion technologies that clean up NOx once it has

been formed, or through combustion technologies involving the optimal control of combustion

parameters to inhibit the formation of thermal and prompt NOx. Because the adoption of

these technologies allows further reductions of NOx emissions, we expect that their availabil-

ity increases the probability and stringency of standard revisions. To account for the effect

of the availability of NOx abatement technologies, we include a dummy variable that takes a

value equal to one if the boiler had installed NOx abatement technologies at year time t− 1,

and zero otherwise.

The table below presents the statistics on the three new variable of interest: the over-

compliance dummy, NOx emissions and technology.

Variable Description N Mean Std.Dev. Min Max

Overcompliancet−1 1 if overcomplies more 4275 0.52 0.5 0 1

than median; 0 otherwise

NOx Emissiont−1 mg of NOx 4605 66.17 29.27 6 250

NOx Technologyt−1 1 if NOx reducing 7112 0.57 0.50 0 1

technology; 0 otherwise

Table 5: Statistics on Technology and Compliance by Taxed Boilers

As before, we control for boiler’s and firm’s characteristics, and sectorial, county and

yearly fixed effects. Moreover, we estimate the regressions with robust standard errors clus-

tered at the boiler level. Results are summarized in Table 5 below.
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(1) (2) (3) (4) (5) (6)

Pijt ∆Standardijt

Overcomplianceijt−1 0.33
∗∗∗

7.92

Actual Emissionsijt−1 0.002 -0.020

Technologyijt−1 0.17
∗∗

-8.66

Log ∆Yearst 0.23
∗∗∗

0.29
∗∗∗

0.31
∗∗∗

8.97
∗∗∗

10.08
∗∗∗

10.77
∗∗∗

Sizeijt 0.000 0.000 0.000 0.011 0.005 0.05
∗

FE Sector YES YES YES YES YES YES

FE County YES YES YES YES YES YES

FE Year YES YES YES YES YES YES

#Obs 4178 4233 6715 1954 1995 2728

#Boilers 471 472 499 220 221 238

Pseudo R2/R2 0.08 0.07 0.07 0.25 0.24 0.28
∗ p < 0.1,∗∗ p < 0.05 and ∗∗∗ p < 0.01

Table 6: Probability and Stringency of revisions according to over-compliance and cost type

In col (1) we observe that belonging to the group of boilers that over-complies with

standards more than the median increases the probability of standard revision. Likewise,

in col (3) we observe that having adopted NOx reducing technologies the previous year also

increases the probability of revision. In contrast, in col (2) we observe that the probability

of revisions does not seem to be affected by the level of emissions of the boiler (i.e., revisions

affecting low and high cost type boilers are equally likely). As before, the number of years

that have elapsed since the boiler was last regulated is an important determinant of the

probability of revision.

Regarding the stringency of the revisions, the results in cols (4)-(6) show that stringency is

not statistically affected by the extent of over-compliance, nor by emissions or the availability

of NOx reducing technologies, but it is significantly affected by the number of years that have

elapsed between revisions. We thus obtain no clear empirical pattern on how standards

are updated depending on emissions, technology and compliance. However, it is clear that

the standards of firms having the best management practices (so they do over-comply with

the current level of the standards) are revised more often. As discussed before, a potential

explanation of the lack of a significant statistical effect of the NOx tax on the magnitude of

the revisions is that the increased stringency of the standards for taxed boilers spills over,

leading to a similar trend of the stringency of the standards of untaxed boilers.
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9 Conclusion

Most major environmental problems are addressed by a series of policy instruments enacted at

all levels of government, implying that regulations covering the same emission sources overlap

and override each other. This paper investigates the informational value of the policy overlap.

When one of the instruments in the mix is a market-based instrument incentivizing firms to

abate pollution to the cost-minimizing level, information about the firms’ abatement costs is

revealed and can be used to improve the design of other regulations. Concretely, observing

that the firm reduces its emissions beyond what is required by an emission standard, a

regulator can conclude that the cost of reducing emissions is lower than expected and can

respond by strengthening the standard in the future, to better balance benefits with costs.

We characterize the value of such information. To take advantage of the information revealed

by the tax, the regulator can relax the standard to obtain a more precise distribution of

abatement costs. Although the standard is updated based on the firm’s abatement strategy, it

always strengthened after the learning phase, regardless of whether the firm overcomplies with

the standards. A firm anticipating the future standard update might hide its abatement cost

by distorting its abatement effort. This induces a ratchet effect which undermines information

revelation. Nevertheless, the tax can still be used to reveal information about abatement costs

when the costs are high enough.

Our analysis of the case of the regulation of NOx emissions by stationary pollution sources

in Sweden provides support to our theoretical predictions. We observe that the standards of

taxed boilers are revised more often and since, regulators often implement similar standards

for similar pollution sources, over time their increased stringency spills over to the stringency

of untaxed boilers. The information revealed by the tax thus plays an important role in

increasing the overall stringency of regulation of stationary sources of NOx emissions.

Our paper focuses on the case of a policy mix composed of emission taxes and emission

standards. However, the rationale for the informational value of the policy overlap could

be easily generalized to the case of other environmental policy mixes where a market-based

instrument is used (e.g, interaction of tradable emission permits (TEPs) with other instru-

ments, because TEPs reveal the same type of information about abatement costs as taxes).

It could also be generalized to other regulatory policy overlaps. An exampleis the regulation

of public utilities, where the regulator often encounters asymmetric information about the

cost of production, and the regulation of prices is usually complemented with the regulation

of the quality of the products or of pollution, as in Baron (1985). If the costs of improved

quality are revealed when the firms make their production decisions, the regulator might be

able to infer relevant information about the firms’ costs that can be used to better design the

quality standards.
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A More type revelation with higher tax

Let us consider a tax τ leading to the separating solution ss with threshold type θ̃ = τ
C ′(ss)

.

We show that the threshold type with a higher tax rate is higher: θ̃′ = τ ′

C ′(s′)
> θ̃ for any

τ ′ > τ where s′ is the standard implemented with τ ′.

Suppose the reverse. First, we cannot have θ̃′ = θ̃ because then τ ′

C ′(s′)
= τ
C ′(ss)

, which

implies s′ > ss for τ ′ > τ . Furthermore, the first-order condition implies
B′(s′)
C ′(s′)

=
B′(ss)
C ′(ss)

which, in turn, implies s′ = ss, a contradiction.

Second, suppose now θ̃′ < θ̃ and τ ′ > τ . Let s̃ be such that θ̃ = τ ′

C ′(s̃)
. Since s′ is the

standard implemented by the regulator, this implies that the expected welfare is higher with

s′ than with s̃, that is:

∫ θ̃′

θ
W (qτ (θ), θ)dF (θ) +

∫ θ̄

θ̃′
W (s′, θ)dF (θ) >

∫ θ̃

θ
W (qτ (θ), θ)dF (θ) +

∫ θ̄

θ̃
W (s̃, θ)dF (θ)

Since θ̃′ < θ̃, dividing the above inequality by 1−F (θ̃′) and using the fact that abatement is

at the same level qτ (θ) with both standards ss and s′ for all types θ < θ̃′, we obtain:

∫ θ̄

θ̃′
W (s′, θ)dF (θ|θ ≥ θ̃′) >

∫ θ̃

θ̃′
W (qτ (θ), θ)dF (θ|θ ≥ θ̃′) +

∫ θ̄

θ̃
W (s̃, θ)dF (θ|θ ≥ θ̃′) (20)

The left-and side of (20) is the expected welfare with s′ as a pooling standard over the range

θ ∈ [θ̃′, θ̄] with beliefs F (θ|θ ≥ θ̃′) while the right-hand side is the expected welfare with s̃

as a separating standard on the same support with the same beliefs. Inequality (20) tells

us that the pooling standard s′ dominates the separating standard s̃. The standard s′ being

pooling implies that the abatement level induced by the tax rate τ for firm θ̃′ is not higher

that the standard, formally qτ
′
(θ̃′) ≤ s′ with qτ

′
(θ̃′) being defined by τ ′ = θ̃′C ′(qτ

′
(θ̃′)) (see

(4)). The last inequality implies θ̃′C ′(qτ
′
(θ̃′)) ≤ θ̃′C ′(s′).

Using τ ′ = θ̃′C ′(qτ
′
(θ̃′)), we obtain:

τ ′ ≤ θ̃′C ′(s′). (21)

On the other hand, since ss is a separating standard on the support θ ∈ [θ̃′, θ̄] with beliefs

F (θ|θ ≥ θ̃′) when the tax rate is τ , we have qτ (θ̃′) > ss, where qτ (θ̃′) is the abatement level

induced by the tax τ for the firm of type θ̃′. The last inequality implies θ̃′C ′(qτ (θ̃′)) > θ̃′C ′(ss).

Using τ = θ̃′C ′(qτ (θ̃′)), we obtain:

τ > θ̃′C ′(q∗(θ̃′)). (22)

Using s′ = q∗(θ̂′) where θ̂′ = E[θ|θ ≥ θ̃′], the two inequalities (21) and (22) imply τ ′ < τ ,
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which contradicts our starting assumption. Hence for τ ′ > τ , it must hold that θ̃′ < θ̃.

B Details and proofs in the dynamic regulation game

with myopic firm

B.1 Perfect Bayesian Equilibrium in the dynamic game

A Perfect Bayesian Equilibrium (PBE) of the regulation game with a myopic firm is a set of

strategies s1, s2(q1), q1(s1, θ), q2(s2, θ) for θ ∈ [θ, θ], and beliefs f(θ) and µ(θ|q1) for θ ∈ [θ, θ]

such that:

• qt(st, θ) minimizes the firm’s cost in period t for t = 1, 2.

• s1 maximizes the expected welfare given the beliefs f(θ).

• s2(q1) maximizes the expected welfare given the beliefs µ(θ|q1) for every q1.

• µ(θ|q1) are updated using Bayes’ rule when possible.

Assuming (out-of-equilibrium) passive beliefs, the separating solution is supported by the

following strategies and beliefs when τ ≥ τd:

qt(st, θ) = max{st, qτ (θ)} for every θ ∈ [θ, θ], t = 1, 2

s1 = sd1

s2(q1) =


q∗(θ) if q1 = qτ (θ)

sd2 if q1 = sd1
ss otherwise

µ(θ|q1) =


1 if q1 = qτ (θ)

f(θ|θ ≥ θ̃1) if q1 = sd1
f(θ) otherwise

for all θ ∈ [θ, θ̄], where θ̃1 is such that qτ (θ̃1) = s1.

B.2 Proof that θ̃2 = θ̃1

Suppose the reverse: θ̃2 6= θ̃1. First, we cannot have θ̃2 < θ̃1 because s2 = q∗(θ) for all types

θ < θ̃1 by definition of the separating equilibrium. Second, assume θ̃2 > θ̃1. This implies

sd2 < sd1 by definition of θ̃T = τ
C ′(st)

for t = 1, 2. Furthermore, since the second-period
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expected welfare is higher with sd2 under any other standard including sd1, we have:

∫ θ̃2

θ̃1

W (qτ (θ), θ)dF (θ|θ ≥ θ̃1)+

∫ θ̄

θ̃2

W (sd2, θ)dF (θ|θ ≥ θ̃1) >

∫ θ̄

θ̃1

W (sd1, θ)dF (θ|θ ≥ θ̃1). (23)

We show that (23) implies that sd2 should have been implemented in period 1 rather than sd1,

which contradicts that sd1 is the optimal standard in period 1. With sd2 implemented in both

periods, the discounted expected welfare is:

∫ θ̃2

θ
[W (qτ (θ), θ) + βW (q∗(θ), θ)] dF (θ) + [1 + β]

∫ θ̄

θ̃2

W (sd2, θ)dF (θ). (24)

Since W (q∗(θ), θ) > W (qτ (θ), θ) by definition of q∗(θ) for every θ, (24) is strictly higher than:

∫ θ̃1

θ
[W (qτ (θ), θ) + βW (q∗(θ), θ)] dF (θ) + [1 + β]

∫ θ̃2

θ̃1

W (qτ (θ), θ)dF (θ)

+[1 + β]

∫ θ̄

θ̃2

W (sd2, θ)dF (θ). (25)

Using (23) multiplied by 1− F (θ̃1) we obtain that (25) is strictly higher than:

∫ θ̃1

θ
[W (qτ (θ), θ) + βW (q∗(θ), θ)] dF (θ) +

∫ θ̄

θ̃1

W (sd1, θ)dF (θ)

+β

[∫ θ̃2

θ̃1

W (qτ (θ), θ)dF (θ) +

∫ θ̄

θ̃2

W (sd2, θ)dF (θ)

]
, (26)

which is the discounted welfare in the separating equilibrium with standard sd1 in period 1 and

sd2 in period 2. We conclude that (24) is strictly higher than (26): the discounted expected

welfare is higher if sd2 rather than sd1 is implemented in period 1, a contradiction by definition

of sd1.
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C Details and proofs in the dynamic problem with

strategic firm

C.1 Variation of the dynamic incentive-compatibility constraints

with θ

Let us write the dynamic incentive-compatible constraint (12) as follow:

θC(qτ (θ))−τqτ (θ)+β[θC(q∗(θ))−τq∗(θ)]− [θC(s1)−τs1]−β[θC(qτ (θ))−τqτ (θ)] ≤ 0 (27)

Differentiating (27) with respect to θ and substituting τ = C ′(qτ (θ)), we obtain:

C(qτ (θ))− C(s1)︸ ︷︷ ︸
(a)

+β [C(q∗(θ))− C(qτ (θ))]︸ ︷︷ ︸
(b)

+β θ
[
C ′(q∗(θ))− C ′(qτ (θ))

] dq∗(θ)
dθ︸ ︷︷ ︸

(c)

, (28)

where
dq∗(θ)
dθ

=
C ′(q∗(θ))

B′′(q∗(θ))− θC ′′(q∗(θ)) is found by differentiating (2).

Condition (28) decomposes the effects of a marginally higher type θ on the dynamic

incentive-compatible constraint of hiding type into three terms. It includes two direct costs:

(a) the current cost of hiding type by abating s1 instead of qτ (θ), (b) the future benefit from

hiding type, which is being allowed to abate qτ (θ) units instead of the standard updated

at the first-best level q∗(θ). Both differences are strictly positive because qτ (θ) > s1 and

q∗(θ) > qτ (θ), meaning that the direct effect increases (27) with θ. The remaining term (c) is

the indirect effect of a marginally higher type θ: it implies a higher first-best abatement level

q∗(θ) due to a more stringent regulation update if the type is revealed. This indirect effect is

negative because
dq∗(θ)
dθ

< 0. Overall (28) is positive if the direct effect offsets the indirect

effect. In this case, the dynamic incentive-compatible constraint from hiding type (12) holds

for θ < θ̇ where θ̇ is defined as the threshold type such that (12) is binding in (13). Hence,

the solution separates types lower than θ when (28) is positive, that is under the following

assumption.

Assumption 1

C(qτ (θ))− C(s1) + β [C(q∗(θ))− C(qτ (θ))] + βθ
[
C ′(q∗(θ))− C ′(qτ (θ))

] dq∗(θ)
dθ

> 0.

When Assumption 1 is violated, the dynamic incentive-compatible constraint from hiding

type (12) never holds and, hence, the solution is pooling.

To see under which conditions Assumption 1 holds, let us write the right-hand side of
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(28) as follows:

−β
[
C ′(q∗(θ))− C ′(qτ (θ))

]
C ′(q∗(θ))

B′′(q∗(θ))

θ
− C ′′(q∗(θ))

. (29)

Condition (28) is positive when (29) is small compared to the other terms in (28). That is,

(i) when C(q) is not “too convex” because then C ′(q∗(θ)) is close to C ′(qτ (θ)) and C ′′(.) is

low and positive so that the denominator is high, (ii) B′′(.) is high, meaning that B is “very

concave” (or the damage from pollution is “very convex”, implying that the marginal damage

from pollution is increasing substantially with pollution concentration), (iii) β is low so that

the present extra cost of hiding dominates the future gain.

C.2 Proof of Proposition 3

In the definition of β̃(θ) in (15), let N(θ) ≡ θC(qτ (x))− τqτ (x)− [θC(qτ (θ))− τqτ (θ)] denote

the numerator and D(θ) ≡ θC(q∗(θ)− τq∗(θ)− [θC(q∗(x))− τq∗(x)] the denominator. Since

x > θ, we have
dN(θ)
dτ

= qτ (θ)− qτ (x) > 0 and
dD(θ)
dτ

= q∗(x)− q∗(θ) < 0. Therefore, since

N > 0 and D > 0, we conclude:

β̃(θ)

dτ
=

dN(θ)

dτ
D −N dD(θ)

dτ
D2 > 0,

for all θ > x.

Differentiating (13) leads to:

dθ̇

dτ
=

qτ (θ̇)− qτ (θ̃1) + β[q∗(θ̇)− qτ (θ̇)]

C(qτ (θ̇)− C(qτ (θ̃1)) + β[C(q∗(θ̇)− C(qτ (θ̇)] + β[θ̇C ′(q∗(θ̇)− τ ]
dq∗(θ̇)

dθ̇

. (30)

The numerator in (30) is positive because θ̇ > θ̃1 so that qτ (θ̇) < qτ (θ̃1). The denominator is

also positive under Assumption 1.

D Details and proofs in the two-types case

D.1 Perfect Bayesian Equilibrium with two types

A Perfect Bayesian Equilibrium (PBE) of the (two-periods) regulation game with two types

(and myopic firm) is a set of strategies s1, s2(q1), q1(s1, θ), q2(s2, θ) for θ = θ, θ, and beliefs

ν1, ν2(θ|q1) for θ = θ, θ such that:

• qt(st, θ) minimizes the firm’s cost in period t for t = 1, 2
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• s1 maximizes the expected welfare given the beliefs ν1

• s2(q1) maximizes the expected welfare given the beliefs µ2(q1) for every q1

• ν2(q1) are updated using Bayes’ rule when possible.

Assuming (out-of-equilibrium) passive beliefs, the separating solution is supported by the

following strategies and beliefs when τ ≥ τd:

qt(st, θ) = max{st, qτ (θ)}for θ = θ, θ, t = 1, 2

s1 = q∗

s2(q1) =


q∗ if q1 = s1

q∗ if q1 = qτ (θ)

q̂∗ otherwise

ν2(θ|q1) =


1 if q1 = qτ

0 if q1 = s1

ν1 otherwise

and ν2(θ|q1) = 1−ν2(θ|q1). The pooling solution is supported by the following strategies and

believes when τ ≤ τd:

qt(st, θ) = max{s2, q
τ (θ)} for θ = θ, θ, t = 1, 2

s1 = s2(q1) = q̂∗ for all q1

ν2(θ|q1) = ν1 for all q1

and ν2(θ|q1) = 1− ν2(θ|q1) = 1− ν1.

D.2 Proof that τs is the minimal tax for the separating solution

First we show that νW (qτ , θ) + (1 − ν)W (q∗, θ) > W (q̂∗, θ̂) when τ > τs and νW (qτ , θ) +

(1 − ν)W (q∗, θ) < W (q̂∗, θ̂) when τ < τs. To show that, first observe that qτ increases with

τ while q∗ and q̂∗ do not change with τ . Therefore the left-hand side of (16) is increasing

with τ while the right-hand side does not change when τ varies. Second, for a low tax rate

such that qτ ≈ q∗, we have νW (qτ , θ) + (1 − ν)W (q∗, θ) ≈ Eθ[W (q∗, θ)] < W (q̂∗, θ̂), where

the last inequality is due to the definition of q̂∗ that maximizes Eθ[W (q, θ)] with respect to

q. Therefore, the left-hand side of (16) is lower than the right-hand side. The reverse holds

when the tax is increased up to qτ = q̂∗ because W (qτ , θ) = W (q̂, θ̂) while W (q∗, θ) = W (q̂, θ̂)

by definition of q∗.
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Next we show that the separating solution is incentive-compatible when τ ≥ τs, i.e.

qτ > s = q∗ if τ ≥ τs. Suppose that the reverse holds: qτ < q∗ while τ ≥ τs. Then

W (qτ , θ) ≤ W (q∗, θ) because qτ ≤ q∗ < q∗, which implies νW (qτ , θ) + (1 − ν)W (q∗, θ) ≤
νW (q∗, θ) + (1 − ν)W (q∗, θ) = W (q∗, θ̂) < W (q̂∗, θ̂) where the last inequality is due to the

definition of q̂∗. This contradicts νW (qτ , θ) + (1− ν)W (q∗, θ) ≥W (q̂∗, θ̂) when τ ≥ τs.
Second, we show that the pooling solution is incentive-compatible when τ ≤ τs, i.e.

q(θ) = q̂∗ < qτ if τ ≤ τs. Suppose that the reverse holds: qτ > q̂∗ while τ ≤ τs. Then

W (q∗, θ) > W (q̂∗, θ) because q∗ ≥ qτ > q̂∗. Furthermore, since W (q∗, θ) > W (q̂∗, θ), it

implies νW (q∗, θ)+(1−ν)W (q∗, θ) > Eθ

[
W (q̂∗, θ̂

]
= W (q̂∗, θ̂), which contradicts νW (qτ , θ)+

(1− ν)W (q∗, θ) ≤W (q̂∗, θ̂) when τ ≤ τs.
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