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1 Introduction

Multiple contracting, whereby consumers purchase several policies from different public or

private insurers to cover the same risk, is a widespread phenomenon in insurance markets.

A case in point is the US life-insurance market, on which around 25% of consumers hold

more than one term policy.1 A similar phenomenon arises in annuity markets: for instance,

the six million annuities in payment in the UK in 2013 were owned by about five millions

individuals.2 Most health-insurance markets also exhibit multiple contracting in ways that

depend on the relative importance of the public and private insurance sectors:3 in the US,

the Medicare supplementary market enables 10 out of the 42 million consumers covered by

Medicare to opt for Medigap plans issued by private firms; similarly, retirees can complement

Medicare benefits with employer-sponsored retiree health plans.4

Since the early works of Arrow (1963), Akerlof (1970), Pauly (1974), and Rothschild and

Stiglitz (1976), there has been a concern that these markets may be exposed to adverse

selection, whereby high-risk consumers purchase more coverage than low-risk consumers,

increasing the riskiness of the insured pool and thus firms’ costs. Adverse selection can

severely hinder private insurance provision, potentially causing a market breakdown.5 As a

result, the recent decades have witnessed many proposals for public intervention aimed at

improving the efficiency of insurance markets under adverse selection. Yet few, if any, of

these proposals explicitly take into account the implications of multiple contracting. The

present paper addresses this issue.

To this end, we consider an insurance economy in which each consumer can purchase

coverage from several firms to cover an idiosyncratic income loss. There are two types of

consumers with different loss distributions and possibly different risk attitudes. The main

restrictions are a single-crossing condition and a monotonicity condition on loss distributions

1A term life-insurance policy provides coverage for a limited period of time, which makes it a pure
insurance product. Evidence about subscribers of such policies is provided by He (2009) on the basis of the
Health and Retirement Study (HRS) panel.

2See the 2014 UK Insurance Key Facts Document issued by the Association of British Insurers, available
at https://www.abi.org.uk/∼/media/Files/Documents/Publications/Public/2014/Key%20Facts/ABI%20K
ey%20Facts%202014.pdf.

3Private health insurance can be used as a source of basic coverage for consumers who choose not to obtain
public health insurance. This is the case in Germany, the Netherlands, and Switzerland, where more than
half of the population hold more than one policy (Paccagnella, Rebba, and Weber (2013)). Private insurance
can also be used to fund healthcare needs that are already partially covered by public funds. This is the case
in Australia, Denmark, and, in particular, France, where around 95% of the population complement public
mandatory coverage with private coverage (Mossialos, Wenzl, Osborn, and Sarnak (2016)).

4The income from employment-based pension schemes is currently relevant for about half of the US
retirees, see Poterba (2014).

5Consistent with this, Hendren (2013) finds that private information imposes large barriers to trade in
life-insurance, disability, and long-term-care markets.
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that together imply adverse selection, in the sense that consumers willing to make larger

purchases of coverage are also more likely to incur large losses and are thus more costly

to serve. Firms issue coinsurance contracts covering a fraction of the loss in exchange

for an insurance premium. Unlike in Rothschild and Stiglitz (1976), these contracts are

nonexclusive, so that consumers are free to combine contracts issued by different firms, and

no firm can monitor the trades a consumer makes with its competitors.

In this context, the benchmark is provided by a more restrictive notion of constrained

efficiency than the standard notion of informationally constrained efficient, or second-best,

allocation, defined as an allocation that cannot be Pareto-improved within the set of budget-

feasible and incentive-compatible allocations (Crocker and Snow (1985a)). Any second-best

allocation can be implemented by a social planner as long as he perfectly monitors consumers’

trades. By contrast, when the social planner, just like the firms in our economy, can neither

prevent consumers from privately engaging in further trades nor monitor these trades,

additional constraints reflecting this lack of information must be factored in to define an

appropriate notion of third-best efficiency.

Although these constraints can be represented in different ways, recent contributions

suggest that they severely restrict the set of allocations the social planner can implement.

Attar, Mariotti, and Salanié (2020) argue that the third-best efficiency frontier reduces to

a single allocation, precluding any redistribution of resources between the different types

of consumers.6 In this allocation, first described by Jaynes (1978), Hellwig (1988), and

Glosten (1994), and thus hereafter referred to as the JHG allocation, low- and high-risk

consumers purchase the same basic layer of coverage, which high-risk consumers complement

by purchasing a complementary layer of coverage. The amount of coverage supplied on each

layer matches the residual demand of the marginal type, and is fairly priced given the

consumer types who purchase it. As a result, all incentive-compatibility constraints are

slack, which implies that the JHG allocation does not belong to the second-best efficiency

frontier (Crocker and Snow (1985a)).

Given the marginal form of Akerlof (1970) competitive pricing specific to the JHG

allocation, it is natural to ask whether it can be implemented as the equilibrium outcome

of a game in which strategic firms compete to serve the consumers’ demand. A natural

candidate is a competitive-screening game in which firms first simultaneously post arbitrary

menus of contracts, from which privately informed consumers then choose in a nonexclusive

way. However, Attar, Mariotti, and Salanié (2014) show that any equilibrium of this game

6Stiglitz, Yun, and Kosenko (2020) deem a larger set of allocations third-best efficient because they do
not consider all the Pareto-improving trades that may be offered to the consumers.
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must feature market breakdown, whereby low-risk consumers are entirely driven out of the

market. As a result, an equilibrium exists, and implements the JHG allocation, if and only

if the basic layer of coverage in the JHG allocation is degenerate, so that low-risk consumers

are not willing to trade at a price equal to the consumers’ average riskiness.

This paper proposes a simple regulation that overcomes this problem and enables one

to implement the JHG allocation in a class of insurance economies. This regulation targets

firms’ pricing strategies, forbidding them to cross-subsidize between different contracts by

engaging in below-cost pricing. In the regulated competitive-screening game we consider,

firms can as above post menus of contracts that consumers are free to combine. The new

feature is that a regulator now has the power to punish any profit-making firm that incurs

a loss on a contract.

We provide two sets of results. Theorem 1 first shows that the JHG allocation is the

only candidate equilibrium allocation of the regulated game. The intuition is that each

firm aims at increasing its profit by complementing the aggregate coverage provided by its

competitors. Under adverse selection, this gives rise to a form of Bertrand competition over

each layer of coverage. This competitive behavior, which has no equivalent under exclusive

competition, is not undermined by our regulation. An important byproduct of Theorem 1

is that every contract traded in equilibrium must break even on average given the consumer

types who trade it, thus mimicking at the firm level the pricing of the aggregate layers of

basic and complementary coverage. In particular, basic coverage is sold at average cost,

to each consumer type. A related implication of Theorem 1 is that the aggregate amount

of coverage supplied by firms at this price must exceed the demand of the low-risk type;

otherwise, at least one firm would be indispensable for this type to obtain her equilibrium

utility, and this firm could make a profit by raising the premium it charges. In this sense,

any equilibrium must exhibit an excess supply of basic coverage.

We next implement the JHG allocation in an equilibrium of the regulated game. To

clarify the logic of our equilibrium construction, it is useful to observe that, because low-

and high-risk consumers are pooled on the same layer of basic coverage, the former subsidize

the latter in the JHG allocation. This raises the issue of its fragility against cream-skimming

deviations targeted at low-risk consumers. We show that such deviations can be blocked by

firms including appropriate latent contracts in their equilibrium menus. These contracts

are not meant to be traded in equilibrium; yet by posting them, firms offer additional

coverage that high-risk consumers are willing to combine with that incorporated in any

cream-skimming deviation. This makes it impossible for a firm to profitably deviate by
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separating low- from high-risk consumers.

In many circumstances that we characterize, equilibrium requires that latent contracts

be issued at a price different from those of the contracts actually traded on the equilibrium

path. Moreover, we identify an important class of consumer preferences, including quadratic

and CARA preferences as special cases, for which a single latent contract is needed to block

all cream-skimming deviations that, per se, attract low-risk consumers. This result is key

for Theorem 2, which shows that, for consumer preferences in this class, and provided that

there are sufficiently many firms, the JHG allocation can be implemented in a symmetric

equilibrium in which all firms are active on the equilibrium path. The many-firm assumption

ensures that the excess supply of basic coverage is sufficiently small to deter high-risk

consumers from only purchasing basic coverage.

Theorem 3 complements Theorem 2 by providing necessary and sufficient conditions

for free-entry equilibria, in which at least one firm is inactive on the equilibrium path—a

standard requirement in models of competitive markets under adverse selection. Although

Theorem 1 still holds under free entry, this refinement imposes additional restrictions on

the relative sizes of the layers of basic and complementary coverage, because inactive firms

must be deterred from exploiting the excess supply of basic coverage. As a result, this excess

supply must now be large. Specifically, the excess supply of basic coverage is achieved by

letting only a limited number of firms issue large basic-coverage contracts. In particular,

such contracts offer more coverage than complementary-coverage contracts. We discuss the

positive implications of this finding in Section 5.

Contributions to the Literature

The regulation we propose bears on the supply side rather than on the demand side of

the economy: public intervention should target firms’ pricing strategies, while consumers

should be left free to choose their preferred amount of coverage. This contrasts with

the policy recommendations that have been advocated in the literature. For instance,

mandatory insurance is evoked in Akerlof (1970), and has been empirically investigated by

Finkelstein (2004), Einav, Finkelstein, and Cullen (2010), and Einav and Finkelstein (2011).

Similarly, Wilson (1977), Dahlby (1981), and Crocker and Snow (1985a) show that making

basic coverage mandatory and simultaneously allowing private insurers to compete on an

extended coverage permits to reach a second-best outcome.7 Neither are taxes or subsidies

needed, unlike in Crocker and Snow (1985b). Instead, we show that regulated markets are

7Villeneuve (2003) performs a similar analysis under nonexclusive competition, albeit in a framework
that assumes linear pricing.
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powerful enough to select a unique equilibrium allocation in which prices efficiently reflect

costs—though this rule applies to successive layers of coverage and not to the aggregate

coverage amounts purchased by each type of consumers.

This paper contributes to the recent literature on nonexclusive markets under adverse

selection. Indeed, our regulation is motivated by the destabilizing role of cross-subsidies

between contracts highlighted by Attar, Mariotti, and Salanié (2014). In the absence of

regulation, they show that such cross-subsidies would allow any active firm to increase its

profit by selling basic coverage to low-risk consumers only, while incurring a small loss

by selling complementary coverage to high-risk consumers at slightly better terms than

its competitors. The deviating firm would thereby minimize its losses by dumping on its

competitors the burden of providing basic coverage to high-risk consumers (lemon dropping);

this in turn would enable it to profitably attract low-risk consumers on a basic-coverage

contract (cherry picking). This sophisticated deviation crucially exploits cross-subsidies

and the nonexclusive nature of competition. As we indicated earlier, this implies that the

unregulated nonexclusive competitive-screening game has no equilibrium in which low-risk

consumers trade, and that an equilibrium can fail to exist altogether.8 Free markets in which

firms’ pricing strategies are unchecked thus fail to be an effective device to share risk, and

the regulation we propose is precisely designed to avoid such an undesirable outcome. In this

sense, our work is directly connected to the normative analysis of Attar, Mariotti, and Salanié

(2020), who single out the JHG allocation as the unique third-best efficient allocation. Our

contribution is to show that, under suitable conditions on consumer preferences, the regulated

game uniquely implements this allocation, thereby establishing instances of the First and

Second Welfare Theorems for our economy.

Importantly, our approach does not rely on complex interfirm communication, unlike

those of Jaynes (1978, 2011), Hellwig (1988), and Stiglitz, Yun, and Kosenko (2020). For

these authors, an insurance contract issued by a firm can incorporate a potentially large

number of restrictions contingent on the information disclosed by its customers and its

competitors. The possibility to enforce exclusivity clauses and to withdraw a policy following

a violation of contractual agreements makes their analyses of limited relevance to study

competition on nonexclusive markets. In particular, their assumption that firms can choose

not to disclose the contracts they issue is in tension with the assumption that consumers

and, hence, in principle, firms should know about a firm selling insurance. Our regulated

8Though existence of a mixed-strategy equilibrium is guaranteed (Carmona and Fajardo (2009)), no
explicit characterization is available; we may also be concerned about the descriptive relevance and the
normative properties of such an equilibrium.
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game eschews these conceptual problems by staying as close as possible to the nonexclusive-

competition benchmark of Attar, Mariotti, and Salanié (2014).

Finally, our regulation can be related to the regulatory measures preventing retailers

from engaging in below-cost pricing or loss-leading practices, which have been adopted in

several countries since the early 90s.9 Whereas these measures are typically motivated by

the risk of predatory or anticompetitive pricing by multiproduct retailers (Chen and Rey

(2012, 2019)), they have so far not been invoked as a device to help insurance markets

function efficiently. More abstractly, we should observe that our regulatory requirement is

in line with competitive-search and competitive-equilibrium models of markets with adverse

selection. Indeed, the equilibrium concepts introduced in these approaches explicitly require

that each contract break even, as for instance in Guerrieri, Shimer, and Wright (2010) and

Azevedo and Gottlieb (2017). A key difference is that these authors focus on exclusive

competition, while we allow for multiple contracting.

The paper is organized as follows. Section 2 describes the model. Section 3 shows that the

JHG allocation is the only candidate equilibrium allocation of the regulated game. Section 4

shows how to implement the JHG allocation under oligopoly and free entry. Section 5 draws

the lessons from our analysis. Section 6 concludes. The main appendix provides the proofs

of Theorems 1–3. The online appendix collects supplementary material.

2 An Insurance Economy

We consider an economy in which each consumer can trade several coinsurance contracts

with several firms. This captures markets where multiple policies pay for the same loss, such

as life insurance. This also applies to cases in which the loss can be divided into units—such

as drugs, care, and various indemnities for pain or loss of income—and consumers can cover

different units with different insurers, the assumption being that all these units are fungible.

Consumers There is a continuum of consumers. Each consumer is privately informed

of her type i = 1, 2 and the proportion of type i among consumers is mi > 0. Every

consumer of type i has initial wealth W0 and faces the risk of a nonnegative idiosyncratic

loss distributed according to a density fi relative to a fixed measure l; we assume that 0

belongs to the support of fi. Each consumer aims at maximizing the expected utility of her

final wealth. We denote by vi the utility index of a consumer of type i, which is assumed to

9These practices are banned in several European countries (The Economist (2008) https://www.
economist.com/node/10430246 describes the Belgian case), and restricted in a number of US states; in
California, laws against loss leaders have been enforced as early as 1933.
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be strictly increasing, strictly concave, twice continuously differentiable, and to satisfy the

Inada condition limW→∞ v
′
i(W ) = 0.

Firms and Contracts There are n ≥ 3 risk-neutral firms, indexed by k. Each firm

observes the amount of coverage it sells to each consumer; thus it is without loss of generality

to assume that each consumer can trade at most one contract with each firm. A coinsurance

contract (q, t) between a firm and a consumer covers a fixed fraction q ≥ 0 of her loss for a

premium t, with premium rate t
q

if q > 0. A firm trading a contract (q, t) with a consumer

of type i thus earns an expected profit t− riq, where ri is type i’s riskiness:

ri ≡
∫
lfi(l) l(dl).

We assume that f2 dominates f1 in the monotone-likelihood-ratio order, which implies that

type 2 has higher riskiness than type 1:

r2 > r1. (1)

For instance, in the Rothschild and Stiglitz (1976) specification, there is a single loss level

L, l is the counting measure on {0, L}, and ri ≡ fi(L)L, with f2(L) > f1(L). We let

r ≡ m1r1 +m2r2 be the average riskiness of a consumer.

Allocations Each consumer can combine coinsurance contracts issued by different firms.

Her aggregate trade is then

(Q, T ) ≡

(∑
k

qk,
∑
k

tk

)
, (2)

where (qk, tk) is the contract she trades with firm k, with (qk, tk) ≡ (0, 0) in case she chooses

not to trade with firm k; the consumer thus overall bears a fraction 1 − Q of her loss. A

symmetric aggregate allocation, hereafter simply allocation, is a pair of aggregate trades,

one for each type.

It follows from our assumptions that type i’s preferences over aggregate trades are

represented by

ui(Q, T ) ≡
∫
vi(W0 − (1−Q)l − T )fi(l) l(dl). (3)

Observe that the function ui is strictly concave and twice continuously differentiable, with
∂ui

∂T
< 0. Hence type i’s marginal rate of substitution of coverage for premia,

τi(Q, T ) ≡ −
∂ui

∂Q

∂ui

∂T

(Q, T ),
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is finite, except possibly when Q = 0, and is strictly and continuously decreasing along any

of her indifference curves. The assumption that 0 belongs to the support of fi, along with the

Inada condition limW→∞ v
′
i(W ) = 0, ensures that, no matter her endowment point (Q, T ),

type i has a finite demand for coverage at any price p > 0,

arg max{ui(Q+Q′, T + pQ′) : Q′ ≥ 0} <∞, (4)

reflecting that, along any indifference curve of type i, the marginal rate of substitution

vanishes as aggregate coverage grows large.

The main assumption we impose on consumers’ demand for coverage is the following

single-crossing condition:

for each (Q, T ), τ2(Q, T ) > τ1(Q, T ). (5)

As a result, type 2 is more willing to increase her purchases of coverage than type 1. Together

with (1), (5) generates adverse selection. When v1 = v2, (5) follows from the assumption

that f2 dominates f1 in the monotone-likelihood-ratio order. More generally, (5) may hold

even if type 1 is more risk-averse than type 2, as long as type 2 is sufficiently riskier than

type 1; we refer to the online appendix for details.

The Regulated Game We consider a competitive-screening game in which firms compete

by posting menus of contracts, subject to a regulation prohibiting cross-subsidies between

contracts. The regulated game unfolds as follows.

1. Every firm k posts a compact menu of contracts Ck that contains at least the no-trade

contract (0, 0).

2. After privately learning her type, each consumer selects a contract from each of the

menus Ck.

3. If a firm overall earns a nonnegative profit but incurs a loss on a contract it actually

trades, then its profit is confiscated and the firm is fined.

The simultaneity of the menu offers in stage 1 captures the fact that a firm cannot react to

the menus posted by its competitors. Moreover, because consumers in stage 2 make their

purchase decisions only once all firms have posted their menus, a firm cannot make her menu

offer contingent on the contracts selected by a consumer in the menus of its competitors;

this captures the fact that a firm in a nonexclusive insurance market does not observe the

amounts of coverage its customers actually purchase from each of its competitors.
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Stage 3 embeds the key distinctive assumption of our model. Indeed, the truncated game

in which stage 3 is omitted coincides with the nonexclusive-competition game analyzed in

Attar, Mariotti, and Salanié (2014). While the equilibrium characterization developed by

these authors crucially relies upon firms cross-subsidizing between different contracts, the

proposed regulation prohibits such practices. It is important to observe that this prohibition

bears on the profits realized on the contracts actually traded in stage 2.

A pure strategy for a consumer is a function that maps any menu profile C ≡ (C1, . . . , Cn)

into a selection of contracts ((q1, t1), . . . , (qn, tn)) ∈ C1× . . .×Cn. Compactness of the menus

Ck ensures that type i’s utility-maximization problem

max

{
ui

(∑
k

qk,
∑
k

tk

)
: (qk, tk) ∈ Ck for all k

}

always has a solution. Throughout the analysis, we focus on symmetric pure-strategy

subgame-perfect equilibria, hereafter simply equilibria, in which all consumers of the same

type i play the same pure strategy and thus select, given any menu profile C, the same

contract (qki (C), tki (C)) in the menu Ck of firm k for all k. In line with stage 3 of the

regulated game, we say that these contracts are consistent with the regulation provided firm

k trades the same contract with each type, or, in case it does not and breaks even on average,∑
imi[t

k
i (C)−riqki (C)] ≥ 0, provided each contract it trades breaks even, tki (C)−riqki (C) ≥ 0

for all i. A free-entry equilibrium is an equilibrium in which at least one firm does not trade

on the equilibrium path; we say in that case that this firm is inactive.

Remark The characterization of aggregate equilibrium allocations provided in Section 3

is more generally valid for any utility functions ui over aggregate trades that are strictly

quasiconcave and twice continuously differentiable, with ∂ui

∂T
< 0, and that satisfy the

finite-demand condition (4) and the single-crossing condition (5). What matters is that

coverage is summarized by a one-dimensional index along which consumer preferences satisfy

single crossing.10 This allows for many alternative specifications of consumer preferences,

such as multiplier preferences (Hansen and Sargent (2001)) or smooth ambiguity aversion

(Klibanoff, Marinacci, and Mukerji (2005)).11 The only point at which we rely on the

expected-utility specification (3) is in Section 4, which discusses sufficient conditions for the

existence of an equilibrium. We shall thus state our main results for general utility functions

ui over aggregate trades satisfying the above properties, indicating when appropriate the

additional properties that are satisfied under expected utility.

10As a counterexample, contracts with deductibles do not nicely aggregate as in (2).
11See Attar, Mariotti, and Salanié (2021, online Appendix C) for a discussion.
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3 Equilibrium Characterization

This section establishes the first half of our implementation result, namely, that the JHG

allocation introduced by Jaynes (1978) and further studied by Hellwig (1988) and Glosten

(1994) is the unique allocation that can be supported in an equilibrium of the regulated

game. We first give a general characterization result. We then argue that equilibrium is

consistent with free entry only under additional restrictions on the JHG allocation. We

finally discuss the circumstances under which a necessary feature of equilibrium is that firms

issue latent contracts to discipline their competitors.

3.1 The Uniqueness Result

The uniqueness part of our implementation result can be stated as follows.

Theorem 1 The JHG allocation (Q∗i , T
∗
i )i=1,2 defined by

Q∗1 ≡ arg max{u1(Q, rQ) : Q ≥ 0}, (6)

T ∗1 ≡ rQ∗1, (7)

Q∗2 ≡ Q∗1 + arg max{u2(Q∗1 +Q, T ∗1 + r2Q) : Q ≥ 0}, (8)

T ∗2 ≡ T ∗1 + r2(Q
∗
2 −Q∗1), (9)

is the unique candidate equilibrium allocation of the regulated game. Under expected utility,

type 2 obtains full coverage, Q∗2 = 1, while type 1 only obtain partial coverage, Q∗1 < 1.

The JHG allocation features a marginal form of Akerlof (1970) competitive pricing. First,

by (7) and (9), type 1 and type 2 purchase basic coverage Q∗1 at premium rate r and type

2 purchase complementary coverage Q∗2 − Q∗1 at premium rate r2; thus every layer Q∗1 and

Q∗2 −Q∗1 is fairly priced given the types who purchase it. Second, by (6) and (8), the size of

each layer is optimal for type 1 and type 2, respectively, subject to this pricing constraint;

thus type 1 purchases her demand at price r, and type 2 purchases her residual demand at

price r2. Fair pricing, by contrast, does not apply to aggregate coverage amounts, unlike in

Rothschild and Stiglitz (1976): if Q∗1 > 0, then type 1 subsidizes type 2 in equilibrium as

Q∗1 is sold at the average premium rate r > r1.
12 Figure 1 depicts the candidate equilibrium

allocation and the corresponding indifference curves I∗1 and I∗2 of type 1 and type 2 when both

layers are strictly positive, so that the equilibrium marginal rates of substitution τ1(Q
∗
1, T

∗
2 )

and τ2(Q
∗
2, T

∗
2 ) of type 1 and type 2 are equal to r and r2, respectively.

12Moreover, if Q∗
2 > Q∗

1 > 0, then Q∗
2 is sold at a premium rate between r and r2. Thus, compared to

exclusive competition, nonexclusive competition reduces the convexity of the tariff for aggregate coverage.

10



Q

T

r

•

Q∗1

r2

T ∗1

•

Q∗2

T ∗2

I∗1

I∗2

Figure 1: The JHG allocation.

It follows from Attar, Mariotti, and Salanié (2020, Theorem 2) that the JHG allocation is

the only candidate equilibrium allocation under free entry. Indeed, in this case, the aggregate

equilibrium trade (Q1, T1) of type 1 must at least provide her with utility max{u1(Q, rQ) :

Q ≥ 0}; otherwise, an inactive firm can issue a contract with a premium rate slightly higher

than r that profitably attracts type 1 and remains profitable even if it attracts type 2.

Similarly, the aggregate equilibrium trade (Q2, T2) of type 2 must at least provide her with

utility max{u2(Q1 +Q, T1 + r2Q) : Q ≥ 0}; otherwise, an inactive firm can issue a contract

with a premium rate slightly higher than r2 that profitably attracts type 2 in combination

with the aggregate trade of type 1 and is even more profitable if it also attracts type 1.

Budget-feasibility of the aggregate equilibrium allocation then implies that it must coincide

with the JHG allocation. Thus, under free entry, the JHG allocation emerges as a simple

implication of an inactive firm’s inability to profitably attract both types 1 and 2, or only

type 2, by issuing a single contract; in particular, the regulation has no bite.

By contrast, the difficulty in the proof of Theorem 1 is that we cannot a priori suppose

that some firm is inactive in equilibrium. This means that we can no longer focus on

deviations consisting of a single contract, and that we must now take into account the

equilibrium profit a firm foregoes when deviating. If a firm could cross-subsidize between

contracts, as in Attar, Mariotti, and Salanié (2014), then it could deviate by issuing a

profitable contract targeted at one type while offering the coverage intended for the other
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type on the equilibrium path on more advantageous terms, incurring a loss on this second

contract. By contrast, the inability of a firm to cross-subsidize between contracts in the

regulated game requires more sophisticated arguments.

Because the JHG allocation is budget-balanced, each firm must earn zero profit in

equilibrium. We show in the proof of Theorem 1 that this implies that any traded contract

has premium rate r or r2: that is, every active firm either sells basic coverage to both types,

or complementary coverage to type 2 only. A related insight of our analysis is that no firm

is indispensable in providing each type with her equilibrium utility; that is, each type could

still obtain this level of utility, should a firm unilaterally withdraw its menu offer. As in

the case of standard Bertrand competition, the argument is that, otherwise, this firm could

make a profit by slightly increasing the premium it charges. Specifically, we show in the

appendix that, if any firm withdraws its menu offer, type 1 can still trade (Q∗1, T
∗
1 ) in the

aggregate, while type 2 can still obtain her equilibrium utility u2(Q
∗
2, T

∗
2 ) by purchasing an

amount of coverage at least equal to Q∗2. In particular, equilibrium requires that there be

excess supply of coverage at price r; that is, the aggregate amount of coverage supplied at

this price exceeds the demand Q∗1 of type 1, unless this demand is zero. This fact will play

an important role in our equilibrium constructions, both under oligopoly (Section 4.2) and

under free entry (Section 4.3).

Under expected utility, type 1 obtains partial coverage, Q∗1 < 1, while type 2 obtains

full coverage, Q∗2 = 1; hence the complementary layer Q∗2 − Q∗1 is strictly positive. By (6)

and (7), type 1 purchases her demand at price r and is thus not attracted by further trades

at price r2. Similarly, by (8) and (9), type 2 purchases her residual demand at price r2,

and thereby strictly improves on her utility from purchasing basic coverage only. Thus, as

illustrated in Figure 1, both types’ incentive-compatibility constraints are slack. As a result,

the candidate equilibrium allocation does not belong to the second-best efficiency frontier,

which consists only of allocations in which at least one incentive-compatibility constraint is

binding (Crocker and Snow (1985a)). Specifically, it would be possible to Pareto-improve on

the candidate equilibrium allocation by providing type 1 with some small additional amount

of coverage at premium rate r1, thereby maintaining budget balance, while keeping both

incentive-compatibility constraints slack.

However, the JHG allocation can be deemed efficient in a weaker, third-best sense.

Indeed, this allocation can be characterized as the unique budget-feasible allocation a social

planner can implement without inducing firms to secretly offer additional side trades to

consumers (Attar, Mariotti, and Salanié (2020)). Thus a social planner who can neither

12



observe consumer types nor monitor their trades with firms cannot Pareto-improve on the

candidate equilibrium allocation. In this weak sense, Theorem 1 can be interpreted as a

version of the First Welfare Theorem for our economy.

3.2 Free-Entry Equilibria and Size Restrictions

Standard approaches to the study of competitive insurance markets under adverse selection

often postulate free entry. This premise is shared by strategic models à la Rothschild and

Stiglitz (1976), as well as by the competitive-search and competitive-equilibrium models

of Guerrieri, Shimer, and Wright (2010) and Azevedo and Gottlieb (2017), though these

authors do not, as we do, consider the possibility of multiple contracting. As noted in

our discussion of Theorem 1, the JHG allocation is a quite direct implication of free entry

and budget feasibility, which can be drawn from the sole consideration of an inactive firm’s

optimal behavior. However, what we are looking for is a free-entry equilibrium, in which any

firm’s behavior is optimal given the menus posted by its competitors, regardless of whether

it is active or inactive. While Theorem 1 is fully general and thus also holds in a free-entry

equilibrium, this more demanding notion imposes additional restrictions on the candidate

equilibrium allocation.

Specifically, these additional restrictions bear on the relative sizes of the basic and

complementary layers of coverage. To see why, let us assume that the basic layer Q∗1 is

strictly positive, that is, τ1(0, 0) > r. The dispensability property then requires that the

aggregate amount of coverage supplied at price r exceed Q∗1. In any equilibrium, we must

make sure that type 2 is not tempted to purchase basic coverage in excess of Q∗1. But, in a

free-entry equilibrium, we must in addition make sure that it is impossible for an inactive

firm to exploit this excess supply of basic coverage to offer mutually advantageous trades to

type 2. The resulting size restrictions can be formulated as follows.

Lemma 1 Suppose Q∗1 > 0 and that the regulated game has a free-entry equilibrium. Then

the JHG allocation must satisfy

u2(Q
∗
2, T

∗
2 ) ≥ u2(2Q

∗
1, 2T

∗
1 ), (10)

Q∗1 > Q∗2 −Q∗1. (11)

Conditions (10)–(11) are easy to understand when only two firms issue contracts at the

average premium rate r. First, because neither of them is indispensable, both must issue a

contract equal to type 1’s equilibrium aggregate trade (Q∗1, T
∗
1 ). Condition (10) then simply
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Figure 2: Size restrictions in a free-entry equilibrium.

expresses that type 2 is not strictly better off trading the contract (Q∗1, T
∗
1 ) twice on the

equilibrium path. Next, if condition (11) were not satisfied, then an inactive firm could

profitably attract type 2 by offering a coverage Q∗2 − 2Q∗1 for a premium slightly lower than

T ∗2 −2T ∗1 , but at a premium rate higher than r2; indeed, combined with the trade (2Q∗1, 2T
∗
1 ),

which, by assumption, is available on the equilibrium path, this offer would enable type 2

to pay less than T ∗2 for her equilibrium coverage Q∗2.
13 This logic easily extends when more

than two firms issue contracts at the average premium rate r. Geometrically, conditions

(10)–(11) are satisfied when the aggregate trade (2Q∗1, 2T
∗
1 ) is located in the lower contour

set of (Q∗2, T
∗
2 ) for type 2, to the right of (Q∗2, T

∗
2 ). This implies that the complementary

layer is sufficiently small relative to the basic layer, as illustrated in Figure 2.

3.3 On the Necessity of Latent Contracts

Two types of contracts are traded in equilibrium: basic-coverage contracts with premium

rate r, and complementary-coverage contracts with premium rate r2. But other contracts

may be issued by firms without being actually traded on the equilibrium path, and still be

needed to sustain an equilibrium. Indeed, because cross-subsidies between types are present

in equilibrium as soon as Q∗1 > 0, it is possible to design contracts—such as the contract

13 Notice that this deviation is well-defined because Q∗
2 6= 2Q∗

1 in the equilibrium configuration under
consideration; otherwise, type 2 would be strictly better off trading the contract (Q∗

1, T
∗
1 ) twice instead of

(Q∗
2, T

∗
2 ) on the equilibrium path.
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represented by D in Figure 2—that profitably attract type 1. The only way to block these

cream-skimming deviations is to make them attract type 2 as well, who would trade the

deviation in combination with other contracts issued by nondeviating firms. These contracts

can take various forms, and we now discuss a few possibilities.

The first idea consists in relying on nonexclusivity, by trading the same contract several

times. For example, consider the special case where type 2 is indifferent between her

aggregate trade (Q∗2, T
∗
2 ) and purchasing twice the basic-coverage layer of the JHG allocation,

u2(Q
∗
2, T

∗
2 ) = u2(2Q

∗
1, 2T

∗
1 ).

Consider the following natural strategies for the firms: each of the n ≥ 3 firms issues a

basic-coverage contract (Q∗1, T
∗
1 ), and supplies any amount of complementary coverage at

price r2. Suppose in addition 2Q∗1 > Q∗2—otherwise, type 2 can obtain a utility higher

than u2(Q
∗
2, T

∗
2 ) given these contracts. Now, any contract that attracts type 1, either

per se or in combination with a basic-coverage contract, also attracts type 2, who can

trade it in combination with one basic-coverage contract and/or complementary coverage.

Because the aggregate trade (Q∗1, T
∗
1 ) is available at the deviation stage, as well as unlimited

complementary coverage, this natural candidate forms an equilibrium.14

Nevertheless, this conclusion is not robust to a slight change in preferences. Let us keep

the same natural strategies, but suppose now that type 2 strictly prefers her aggregate trade

(Q∗2, T
∗
2 ) to purchasing twice the basic-coverage layer of the JHG allocation,

u2(Q
∗
2, T

∗
2 ) > u2(2Q

∗
1, 2T

∗
1 ),

as illustrated in Figure 2. Now, any firm k can deviate by issuing the contract (q, t)

represented by D in Figure 2, which offers a coverage close to but lower than Q∗1 at a

premium rate slightly lower than r. This contract profitably attracts type 1, and it does not

attract type 2. Indeed, after the deviation, type 2 can still obtain her equilibrium utility

u2(Q
∗
2, T

∗
2 ) by trading with two firms l 6= k. By contrast, combining (q, t) with the contract

(Q∗1, T
∗
1 ) leads type 2 to excessive levels of coverage, thanks to the above inequalities; and

combining (q, t) with one or several contracts (Q∗2 −Q∗1, T ∗2 − T ∗1 ) leaves type 2 with a lower

utility than trading (Q∗2, T
∗
2 ) in the aggregate. This shows that the deviation is profitable,

and that this natural candidate fails to form an equilibrium.

Admittedly, there are many other contracts we may include in the menus posted by firms,

so as to ensure that cream-skimming deviations indeed attract type 2 as soon as they attract

type 1. Fortunately, the following result generalizes the above intuitions to all equilibria.

14The proof follows from a direct geometrical argument and is omitted for the sake of brevity.
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Lemma 2 Suppose Q∗2 > Q∗1 > 0. Then, in any equilibrium of the regulated game, consumers

are able to reach an aggregate trade (QP , T P ) such that

u2(Q
P , T P ) = u2(Q

∗
2, T

∗
2 ) and τ2(Q

P , T P ) ≤ r.

Observe that this covers the nongeneric case discussed above, in which (QP , T P ) is simply

(2Q∗1, 2T
∗
1 ). A natural question is whether the aggregate trade (QP , T P ) displays specific

qualitative features compared to the contracts actually traded in equilibrium. The following

result provides a quite complete characterization of when this has to be the case.

Lemma 3 Suppose Q∗2 > Q∗1 > 0. Then, the following holds:

(i) If u2(2Q
∗
1, 2T

∗
1 ) > u2(Q

∗
2, T

∗
2 ), then, in any equilibrium of the regulated game, some firm

issues a contract with a premium rate different from r and r2.

(ii) If u2(2Q
∗
1, 2T

∗
1 ) ≤ u2(Q

∗
2, T

∗
2 ), then, in any equilibrium of the regulated game, some firm

issues a contract with a premium rate different from r and r2, or consumers are able

to reach the aggregate trade (QR, TR) defined by

u2(Q
R, TR) = u2(Q

∗
2, T

∗
2 ) and TR = rQR.

The aggregate trade (QR, TR) is represented by R in Figure 2. The contracts whose

necessity is proven in Lemma 3(i) have premium rates that differ from those of the contracts

traded on the equilibrium path. Thus they are not actually traded in equilibrium, though

they are necessary to sustain an equilibrium; hence the name latent contracts.

Overall, the upshot of this discussion is that, to sustain an equilibrium, firms have to issue

additional, and sometimes latent contracts that are only meant to block cream-skimming

deviations. We now turn to the study of how these contracts operate. Our goal is to provide

a minimal implementation with as few latent contracts as possible.

4 Equilibrium Existence

Theorem 1 singles out the JHG allocation as the unique candidate equilibrium allocation of

the regulated game. We now provide sufficient conditions for the existence of an equilibrium,

thereby establishing the second half of our implementation result. We construct two types

of equilibria, an oligopoly equilibrium in which all firms are active on the equilibrium path,

and a free-entry equilibrium in which at least one firm is inactive on the equilibrium path.

To focus on the most relevant scenario for applications, which is also theoretically the most

16



challenging, we throughout assume that both the basic and complementary layers of the

JHG allocation are strictly positive.15 As we will see, the structure of equilibrium menus is

essentially determined by cream-skimming deviations, defined as contracts that only attract

type 1, either per se or—and this is the specificity of multiple contracting—in combination

with contracts issued by nondeviating firms.

4.1 Large Cream-Skimming Deviations and Latent Contracts

We first consider deviations that attract type 1 even if she does not trade other contracts.

These deviations are the standard ones considered by Rothschild and Stiglitz (1976) under

exclusive competition. We call them large cream-skimming deviations to emphasize that a

large amount of coverage is needed to match u1(Q
∗
1, T

∗
1 ) and attract type 1. Our goal in this

section is to show that, under suitable conditions on consumer preferences, a single latent

contract is needed to block all large cream-skimming deviations.

Specifically, suppose that each firm includes in its equilibrium menu a latent contract

(q`, t`). We say that this contract blocks large cream-skimming deviations if

for each (q, t), u1(q, t) ≥ u1(Q
∗
1, T

∗
1 ) implies u2(q + q`, t+ t`) ≥ u2(Q

∗
2, T

∗
2 ). (12)

That is, if (q, t) per se attracts type 1, then it also attracts type 2 in combination with

(q`, t`). As a result, (q, t) cannot make a profit, because u1(q, t) ≥ u1(Q
∗
1, T

∗
1 ) implies by

(6)–(7) that (q, t) has at most premium rate r.

The geometrical interpretation of (12) is that the translate of the upper contour set of

(Q∗1, T
∗
1 ) for type 1 along the vector (q`, t`) lies in the upper contour set of (Q∗2, T

∗
2 ) for type 2.

However, type 2 cannot strictly prefer (Q∗1 + q`, T ∗1 + t`) to (Q∗2, T
∗
2 ), because these aggregate

trades are available on the equilibrium path and type 2 trades (Q∗2, T
∗
2 ) in equilibrium. Thus

she must be indifferent between (Q∗1+q`, T ∗1 +t`) and (Q∗2, T
∗
2 ). By (12), this implies that the

translate of the equilibrium indifference curve I∗1 of type 1 along the vector (q`, t`) is tangent

at (Q∗1+q`, T ∗1 +t`) to the equilibrium indifference curve I∗2 of type 2. Thus the marginal rate

of substitution of type 2 at (Q∗1 + q`, T ∗1 + t`) must be equal to r. These properties single out

a unique latent contract (q`1, t
`
1), which is illustrated in Figure 3. Here D represents a large

cream-skimming deviation, which also attracts type 2 in combination with (q`1, t
`
1) because

the point D` ≡ D + (q`1, t
`
1) lies below the translate I`1 of I∗1 , and, therefore, by (12), below

I∗2 . The following lemma summarizes this discussion.

15The complementary layer is always strictly positive under expected utility, as in this case Q∗
1 < 1 and

Q∗
2 = 1. In general, when the basic layer is degenerate, Q∗

1 = 0, the JHG allocation can be implemented by
letting firms post linear tariffs at the fair premium rate r2 (Attar, Mariotti, and Salanié (2014)).
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Figure 3: The latent contract (q`1, t
`
1).

Lemma 4 The contract (q`1, t
`
1) defined by

u2(Q
∗
1 + q`1, T

∗
1 + t`1) = u2(Q

∗
2, T

∗
2 ), (13)

τ2(Q
∗
1 + q`1, T

∗
1 + t`1) = r (14)

is the unique latent contract issued by all firms in equilibrium that possibly blocks large cream-

skimming deviations.

Thus requiring that large cream-skimming deviation be blocked by a single latent contract

pins down (q`1, t
`
1) as the unique candidate. However, because the reasoning underlying

Lemma 4 is only local, we still need to make sure that (q`1, t
`
1) indeed satisfies the global

condition (12). We now provide a sufficient condition for this stronger property, which is

stated in terms of the Gaussian curvature κi(Q0, T0) of every type i’s indifference curve

at any aggregate trade (Q0, T0). Intuitively, κi(Q0, T0) measures how bent the indifference

curve of type i at (Q0, T0) is at this point. Denoting by T = Ii(Q, ui(Q0, T0)) the functional

expression of this indifference curve, we have

κi(Q0, T0) ≡
1

‖∇ui‖3

∣∣∣∣ −∇2ui ∇ui
−∇u>i 0

∣∣∣∣(Q0, T0) = −
∂2Ii
∂Q2 (Q0, ui(Q0, T0)){

1 +
[
∂Ii
∂Q

(Q0, ui(Q0, T0))
]2} 3

2

, (15)

where of course ∂Ii
∂Q

(Q0, ui(Q0, T0)) = τi(Q0, T0) (Debreu (1972)). Thus, for a given value of
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τi(Q0, T0), the higher κi(Q0, T0) is, the faster τi(Q, T ) declines in a neighborhood of (Q0, T0)

along the indifference curve of type i at (Q0, T0).

Now, a quick glance at Figure 3 reveals that, for the translation property (12) to be

satisfied, the equilibrium indifference curve of type 2 must be flatter at (Q∗1 + q`1, T
∗
1 + t`1)

than the equilibrium indifference curve of type 1 at (Q∗1, T
∗
1 ); that is, at those points, the

latter must exhibit at least as much curvature than the former. Generalizing this observation

leads to the following assumption.

Assumption C For all i, Q0 > 0, and T0, κi(Q0, T0) > 0. Moreover, one of the following

properties is satisfied:

(i) For all (Q1, Q2, T1, T2), if τ1(Q1, T1) = τ2(Q2, T2), then κ1(Q1, T1) > κ2(Q2, T2).

(ii) For all (Q1, Q2, T1, T2), if τ1(Q1, T1) = τ2(Q2, T2), then κ1(Q1, T1) = κ2(Q2, T2).

That the curvatures of consumers’ indifference curves nowhere vanish is a very weak

requirement that we only impose for technical reasons.16 Property C(i) states that type 2’s

indifference curves are flatter than type 1’s, once these curves are translated so as to make

them tangent at the relevant aggregate trade. This differs from the standard single-crossing

condition (5), which does not allow for translations. The latter are natural operations when

consumers can combine contracts issued by different firms, and we can view Assumption C

as a second-order version of the single-crossing condition. Property C(ii) is satisfied in the

limiting case where any two pairs of indifference curves for types 1 and 2 are, over the relevant

domains, translates of each other. Assumption C can alternatively be phrased in terms of

type 1’s and type 2’s Hicksian demand functions for coverage; we develop this interpretation

in the online appendix.

The following result then holds.

Lemma 5 If consumer preferences satisfy Assumption C, then the contract (q`1, t
`
1) blocks

large cream-skimming deviations.

We defer the discussion of Assumption C until Section 4.4, where we show that it is

consistent with the other assumptions of our model. In the next two sections, we provide

two alternative equilibrium constructions, in which the firms’ equilibrium menus include the

latent contract (q`1, t
`
1).

16This amounts to assuming that preferences are nonlinear, even in a local sense. Such preferences are
called differentiably strictly convex by Mas-Colell (1985, Definition 2.6.1).
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4.2 Equilibrium under Oligopoly

We start with the oligopoly case. Our focus is on an equilibrium in which each firm posts

the same menu, whose elements we first present in turn.

4.2.1 The Equilibrium Menu

The firms’ equilibrium menu first includes two contracts that enable each type to reach her

aggregate equilibrium trade.

The Basic-Coverage Contract We know from Theorem 1 that our candidate equilibrium

must implement the JHG allocation. Thus both types must be able to purchase the basic

layer Q∗1 in exchange for a transfer T ∗1 . In addition, we also know that, if any firm withdraws

its menu offer, then type 1 must still be able to trade (Q∗1, T
∗
1 ) in the aggregate. There are

various ways of ensuring this; in the present oligopoly case, we shall simply assume that each

of the n firms issues a basic-coverage contract, with premium rate r, consisting of a fraction

1
n−1 of the aggregate trade (Q∗1, T

∗
1 ),

(q∗1,n, t
∗
1,n) ≡ 1

n− 1
(Q∗1, T

∗
1 ). (16)

Thus the aggregate trade (Q∗1, T
∗
1 ) remains available following any firm’s unilateral deviation.

Notice that the excess supply of basic coverage is exactly equal to q∗1,n, which, by (16), is small

when n is large. Because u2(Q
∗
2, T

∗
2 ) > u2(Q

∗
1, T

∗
1 ), this implies that, for n large enough, type

2 will not be tempted to trade n basic-coverage contracts, one with each firm. The minimum

number of firms required to support this construction need not be large in an absolute sense,

and depends on how much the two types differ from each other; under expected utility, the

further apart their loss distributions are, the smaller this number is.

The Complementary-Coverage Contract In the JHG allocation, type 2 must, on top

of the basic layer Q∗1, purchase the complementary layer Q∗2 −Q∗1 in exchange for a transfer

T ∗2 − T ∗1 . Because the basic layer is provided through n − 1 basic-coverage contracts, the

complementary layer must be provided through a single contract. We thus require that

each firm issue the complementary-coverage contract (Q∗2−Q∗1, T ∗2 −T ∗1 ), with premium rate

r2. Trading one such contract with a firm and one basic-coverage contract with each of its

competitors enables type 2 to reach her aggregate trade (Q∗2, T
∗
2 ) on the equilibrium path.

In line with the analysis in Sections 3.3 and 4.1, the firms’ equilibrium menu also includes

two latent contracts, which are not meant to be traded in equilibrium, and whose role is to

block two types of cream-skimming deviations.
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Blocking Large Cream-Skimming Deviations We first require that each firm issue the

latent contract (q`1, t
`
1), which, under Assumption C, is known by Lemma 5 to block large

cream-skimming deviations.

Blocking Small Cream-Skimming Deviations Because type 1 can combine contracts

issued by different firms, a deviation may attract type 1 even if it only involves a small

amount of coverage. Such deviations are specific to nonexclusive competition. We call them

small cream-skimming deviations to emphasize that they attract type 1 only in combination

with other contracts. To block such deviations, we additionally require that each firm issue

the latent contract

(q`2,n, t
`
2,n) ≡ (q∗1,n, t

∗
1,n) + (q`1, t

`
1). (17)

It should first be noted that, as requested by equilibrium, the contract (q`2,n, t
`
2,n) enables type

2 to still obtain her equilibrium utility u2(Q
∗
2, T

∗
2 ), should any firm withdraw its menu offer;

indeed, she can reach the aggregate trade (Q∗1 + q`1, T
∗
1 + t`1) on her equilibrium indifference

curve by trading the contract (q`2,n, t
`
2,n) with a nondeviating firm in combination with the

n − 2 basic-coverage contracts issued by the other nondeviating firms. We now informally

argue that this contract blocks all small cream-skimming deviations. The key property,

which is formally established in the proof of Theorem 2, is that, if n is large enough, then,

for any small cream-skimming deviation (q, t), type 1 can at least obtain her equilibrium

utility u1(Q
∗
1, T

∗
1 ) by trading (q, t) with the deviating firm in combination with contracts

issued by nondeviating firms, including at least one basic-coverage contract. But then type 2

could mimic these trades, with the sole difference that she would substitute a latent contract

(q`2,n, t
`
2,n) to this basic-coverage contract.17 Under Assumption C, and following the logic

of Lemma 5, doing so would by (17) enable her to at least obtain her equilibrium utility

u2(Q
∗
2, T

∗
2 ), thus blocking the small cream-skimming deviation.

For each n, we let C∗n be the menu consisting of the no-trade contract and these four

contracts.

4.2.2 The Existence Result

We can now state our first existence result.
17The reason why we need n to be large enough, and hence the basic coverage q∗1,n offered by each

nondeviating firm to be small enough, is that, otherwise, (q, t) may attract type 1 only in combination
with complementary-coverage contracts or latent contracts issued by nondeviating firms, in which case the
mimicking argument loses its bite. Intuitively, what is needed is that, at the deviation stage, type 1 gives
priority to contracts with the lowest premium rate r when trading with nondeviating firms. This is not
necessarily the case when there are few such firms, for her budget set is not convex.
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Theorem 2 Suppose that consumer preferences satisfy Assumption C. Then, provided there

are sufficiently many firms, the regulated game has an equilibrium in which each of the n

firms posts the menu C∗n.

Together with Theorem 1, Theorem 2 can be interpreted as a weak version of the Second

Welfare Theorem for our economy: under suitable conditions on consumer preferences, the

regulated game has an equilibrium, and this equilibrium implements the unique third-best

allocation.

Whereas our discussion has so far focused on cream-skimming deviations, the proof of

Theorem 2 also has to deal with the case in which a firm attempts to screen type 1 and type

2 by posting a menu of contracts. This is here, and only here, that the regulation has bite,

as we now explain.

To do so, it is useful to recall that, in the absence of regulation—that is, in a truncated

version of our game in which stage 3 is omitted—no equilibrium exists when the basic layer

of the JHG allocation is strictly positive (Attar, Mariotti, and Salanié (2014)). Indeed,

while the JHG allocation remains the unique candidate equilibrium allocation, a firm can

now profitably deviate by issuing two contracts, exploiting the fact that the aggregate trade

(Q∗1, T
∗
1 ) is made available by its competitors. The first contract is approximatively the same

as the one it trades with type 1 on the candidate equilibrium path, and makes a profit when

traded by type 1 only. The second contract enables type 2 to purchase the complementary

layer at a premium rate slightly lower than r2. Because the deviating firm now offers the

complementary layer at slightly more advantageous terms, it is optimal for type 2 to trade

it on top of the basic layer collectively supplied by its competitors. By deviating in this

way, the firm manages to only incur a small loss with type 2, which it more than recoups by

making a large profit with type 1.

Our regulation is precisely designed to outlaw such a deviation. Specifically, we show

in the proof of Theorem 2 that, given the menus C∗n posted by its competitors, a deviating

firm cannot strictly screen type 1 and type 2 without incurring a loss with type 2, thereby

exposing itself to being punished if it overall earns a nonnegative profit. The only remaining

possibility is to attract both types with the same contract, but this cannot be profitable

as type 1 can purchase her demand at price r from the nondeviating firms. Overall, the

regulation we propose, by penalizing cross-subsidies between contracts, permits to support

cross-subsidies between types in equilibrium.

Finally, Theorem 2 differs from earlier contributions in two other ways. First, firms

in the regulated game cannot exchange information about their customers’ trades. This
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contrasts with Jaynes (1978, 2011), Hellwig (1988), and Stiglitz, Yun, and Kosenko (2020),

whose equilibrium constructions explicitly rely on interfirm communication. Second, firms

in the regulated game cannot react to the offers of their competitors. This contrasts with

Hellwig (1988), whose sequential timing requires several steps of interfirm communication

to implement the JHG allocation, and with Attar, Mariotti, and Salanié (2021), whose

discriminatory ascending-auction mechanism enables each firm to instantaneously react to

the past supply decisions of its competitors.

4.3 Equilibrium under Free Entry

The equilibrium exhibited in Theorem 2 is not a free-entry equilibrium. Indeed, an inactive

n+ 1th firm could offer complementary coverage Q∗2−Q∗1− q∗1,n for a premium slightly lower

than T ∗2 − T ∗1 − t∗1,n: in combination with the aggregate trade n
n−1 (Q∗1, T

∗
1 ) made available

by the active firms, this would attract type 2 at a premium rate higher than r2 and thus

make a profit.18 We know from Lemma 1 that a free-entry equilibrium exists only under

the size restrictions (10)–(11). The following result shows that, under Assumption C, these

restrictions are also sufficient for the existence of a free-entry equilibrium.

Theorem 3 Suppose that consumer preferences satisfy Assumption C. Then the regulated

game has a free-entry equilibrium if and only if the JHG allocation satisfies (10)–(11).

Our equilibrium construction relies on two active firms, each posting a menu recursively

defined on the basis of the basic-coverage contract (Q∗1, T
∗
1 ), the complementary-coverage

contract (Q∗2 −Q∗1, T ∗2 − T ∗1 ), and the latent contract (q`1, t
`
1). In addition, the inactive firms

issue the same complementary-coverage contract as the active firms. Thus, if an active

firm withdraws its menu offer, type 2 can still obtain her equilibrium utility u2(Q
∗
2, T

∗
2 )

by purchasing basic coverage from the other active firm and complementary coverage from

an inactive firm. Compared with Theorem 2, firms no longer play symmetric roles. In

particular, active and inactive firms face different market configurations at the deviation

stage; this issue is dealt with in the proof of Theorem 3 by showing that the latent contracts

issued by active firms also deter entry by inactive ones. The regulation plays the same role

as in the oligopoly case by making menu deviations unprofitable.

It is instructive to compare our equilibrium constructions in the oligopoly and free-entry

cases. In the oligopoly case, the excess supply of basic coverage needed to sustain an

18This does not mean that this equilibrium is less likely to exist when there are more firms—on the
contrary, Theorem 2 tells us that more competition makes it easier to sustain. Instead, what this shows is
that, although firms end up earning zero profit in equilibrium, the number of firms matters for how much
each of them is ready to contribute to the provision of basic coverage.

23



equilibrium is obtained by letting each of a large number of firms contribute a small fraction

of the basic layer Q∗1. The excess supply of basic coverage is thus small when there is a large

number of firms. In the free-entry case, this excess supply is obtained by letting each of two

firms offer the basic layer Q∗1. The excess supply of basic coverage is thus large, even when

only two firms supply such coverage. However, the JHG allocation must then satisfy the size

restrictions (10)–(11) for entry by an inactive firm to be unprofitable.

Theorem 3 differs from the earlier contributions of Glosten (1994) and Attar, Mariotti,

and Salanié (2020) in that these authors characterize the JHG allocation as the unique

budget-balanced allocation supported by an entry-proof market tariff, but do not implement

it as the outcome of a game. Indeed, Attar, Mariotti, and Salanié (2014, 2019b) show that

this task cannot in general be accomplished through an unregulated competitive-screening

game. By contrast, we construct a free-entry equilibrium of the regulated game that uniquely

supports the JHG allocation under the additional size restrictions (10)–(11).

4.4 On Assumption C

Given the crucial role Assumption C plays in our equilibrium construction, it is important

to assess how restrictive it is. The following examples show that Assumption C is consistent

with the other assumptions of our model.19

Example 1 When there is a single loss level L, as in Rothschild and Stiglitz (1976), property

C(ii) is satisfied if type 1 and type 2 have the same CARA utility index, while property C(i)

is satisfied if infW −v′′1
v′1

(W ) > maxW −v′′2
v′2

(W ), that is, if type 1 is uniformly more risk-averse

than type 2 in the sense of Aumann and Serrano (2008). The latter condition is clearly in

tension with the single-crossing condition (5); Lemma S.2 in the online appendix shows that

these conditions are consistent provided type 2 is sufficiently riskier than type 1, so that she

is more willing to increase her purchases of coverage despite being less risk-averse.

Example 2 When there are multiple loss levels and every type i’s density of losses belongs

to a natural exponential family

fi(l) ≡ h(l) exp(θil − A(θi)), (18)

property C(ii) is satisfied if type 1 and type 2 have the same CARA utility index, while

property C(i) is satisfied if every type i has a CARA utility index with absolute risk aversion

19Though these two examples rely on the expected-utility representation (3), other specifications are
possible. For instance, preferences represented by quadratic utility functions ui(Q,T ) = θiQ− α

2 Q
2 − T as

in Biais, Martimort, and Rochet (2000) also satisfy property C(ii).
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αi and type 1 is more risk-averse than type 2, α1 > α2. Again, the latter condition is clearly

in tension with the single-crossing condition (5); Lemma S.4 in the online appendix shows

that these conditions are consistent provided type 2 is sufficiently riskier than type 1 in the

sense that θ2 − θ1 > α1 − α2.

While these two examples show that Theorems 2–3 are not vacuous, they admittedly rest

on strong assumptions, namely, that both types have the same CARA utility index or that

type 1 be uniformly more risk-averse than type 2.20 In particular, our analysis falls short

of providing a general existence result in the Rothschild and Stiglitz (1976) specification

beyond the CARA case, reflecting that the possibility of combining contracts can interact

with income effects in a complex way.

This does not mean, however, that an equilibrium necessarily fails to exist beyond the

cases delineated in Examples 1–2. First, the condition in property C(i) is open, and thus

defines a countable intersection of open sets in the space of smooth strictly convex preferences

over (Q, T ) that are strictly decreasing in T (Attar, Mariotti, and Salanié (2019a)); thus

Examples 1–2 are robust. Second, the strong assumptions on consumers’ utility indices

made in these example are the price to pay to guarantee that Assumption C is satisfied,

and thus that Lemma 5 holds, irrespective of the loss probabilities or the distribution of

types. Once these are fixed, the translation property (12), which is all we need to establish

Theorems 2–3, may be satisfied even though Assumption C is not.

5 Discussion

In this section, we put our findings in perspective and relate them to the literature.

5.1 On Latent Contracts

A key feature of our equilibrium constructions is that we explicitly characterize the latent

20Though restrictive, the CARA assumption, implying that Hicksian and Marshallian demands for coverage
are the same, is common in the applied literature; see, for instance, Einav, Finkelstein, and Cullen (2010),
Einav and Finkelstein (2011), Chetty and Finkelstein (2013), and Einav, Finkelstein, Ryan, Schrimpf, and
Cullen (2013). The negative correlation between risk aversion and riskiness postulated in Examples 1–2 is
ultimately an empirical matter. In the annuity market, for instance, it may be argued that individuals who are
more likely to live longer—and thus are more risky from the perspective of insurance companies—may also be
less risk-averse, especially when it comes to wealth after death. In their study of the long-term-care market,
Finkelstein and McGarry (2006) develop a proxy for risk aversion, using information on how cautiously
respondents behave in terms of preventive health activities. They find that people who are more risk-averse
by this measure are more likely to purchase coverage but less likely to use long-term care, consistent with
multidimensional private information and advantageous selection based on risk aversion. Example 2 allows
preference-based (α1 > α2) and risk-based (θ2 > θ1) selection to act in offsetting directions, although not to
the point of overturning adverse selection (θ2 − θ1 > α1 − α2).
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contracts needed to block cream-skimming deviations. Specifically, Lemmas 4–5 strengthen

Lemmas 2–3 by showing that, under Assumption C, the contract (q`1, t
`
1) by itself blocks large

cream-skimming deviations, and is the single contract to do so.21 This has allowed us to

provide a minimal implementation with as few latent contracts as possible.

The role of latent contracts in competing-mechanism games has been well understood

since the seminal work of Peters (2001) and Martimort and Stole (2002). In the context

of insurance, their importance has been mainly emphasized in moral-hazard environments.

Hellwig (1983) and Arnott and Stiglitz (1991) argue that latent contracts deter entry on

insurance markets when agents’ effort decisions are not contractible, enabling active firms

to earn strictly positive profits in equilibrium. The equilibrium structure of latent contracts

and their welfare implications have been further examined by Bisin and Guaitoli (2004) and

Attar and Chassagnon (2009).

By contrast, the importance of latent contracts in adverse-selection environments is much

less appreciated in the literature. An exception is Attar, Mariotti, and Salanié (2011), but

their analysis is restricted to the special case of linear preferences, which is not well suited

for the study of insurance markets. This case is also special in that latent contracts can

be issued at the same price as the contracts traded on the equilibrium path and can break

even in all subgames. This is not the case in our implementation of the JHG allocation,

because the premium rate of (q`1, t
`
1) is higher than r and lower than r2; thus (q`1, t

`
1) incurs

a loss in any subgame in which it is traded by type 2 following a deviation. This property

is not a special feature of the latent contracts we use in our equilibrium constructions, and

is unavoidable when consumers have strictly convex preferences.

5.2 A Proposal for Actual Regulation

The main insight of our analysis is that penalizing cross-subsidies between contracts may play

a key role in regulating insurance markets under multiple contracting and adverse selection.

This reflects three types of considerations.

From a normative viewpoint, our regulation allows a policy maker to reach third-best

efficiency without shutting down competition. Indeed, equilibrium leads to competitive

pricing in spite of the restrictions imposed on firms’ pricing strategies: thus our regulation

does not hinder competition and does not prevent market forces from singling out a unique

equilibrium allocation. Notice, in that respect, that fair pricing of layers, and not of aggregate

21By contrast, the equilibrium construction sketched in Section 3.3 in the special case where u2(Q∗
2, T

∗
2 ) =

u2(2Q∗
1, 2T

∗
1 ) relies on each firm also supplying any amount of complementary coverage at price r2.
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coverage amounts, is the relevant notion of competitiveness under multiple contracting

because consumers are free to combine contracts issued by different firms.

From a practical viewpoint, our regulation is not overly demanding in informational

terms. Indeed, if a firm attempts to deviate by cross-subsidizing between contracts, it

attracts all consumers of type 2. Thus, even if the loss the firm incurs on each complementary-

coverage contract it trades is small, the law of large numbers implies that it can be detected

and punished by the regulator.22 Moreover, in the light of our equilibrium construction,

what matters for the regulator is the ability to detect firms that simultaneously sell basic

and complementary coverage and that screen the two types using these two types of contracts.

Hence an alternative regulation would be to assess the risk borne by each contract and to

require that it be at least equal to the consumers’ average riskiness.23 Overall, the regulator

only needs to observe the total profits a firm earns on each contract.24

Finally, our proposal does not rely on firms exchanging information about their customers.

Actual regulation sometimes encourages this practice;25 yet communication between firms

requires a rather sophisticated institutional setting to take place. Thus, while firms under

multiple contracting may in principle benefit from accessing information about all their

customers’ trades, the aggregation of this dispersed information would in practice involve

complex information-sharing mechanisms, possibly with several rounds of communication.

Our regulation bearing on realized profits seems in comparison easier to implement.

5.3 Positive Implications

Our analysis so far has been essentially normative. However, instead of penalizing cross-

subsidies between contracts, the regulation we propose can also be seen as banning profits

22We may also argue that, in practice, to attract all consumers of type 2, the deviating firm would have
to charge a premium rate significantly lower than r2 or pay significant advertising costs that the regulator
could also observe.

23With more than two types of consumers, the regulator would have to assess the risk borne by each
contract traded by a firm and compare it to the terms of trade.

24This is consistent with the recent evolution of financial reporting standards. Indeed, over the last
decade, the International Accounting Standards Board has suggested several measures aimed at defining
general principles that an entity should apply to report information in its financial statements about the
nature of cash flows from insurance contracts (IASB (2013)). In particular, since 2011, insurance companies
have been required to perform an onerous-contract test when circumstances indicate that the contract might
be loss-making. As soon as a contract is so assessed, the company has to record a provision in its financial
statements for the corresponding expected loss.

25The Commission Regulation 267/2010 of March 24, 2010 states: “Collaboration between insurance
undertakings or within associations of undertakings in the compilation of information (which may also
involve some statistical calculations) allowing the calculation of the average cost of covering a specified
risk in the past or, for life insurance, tables of mortality rates or of the frequency of illness, accident and
invalidity, makes it possible to improve the knowledge of risks and facilitates the rating of risks for individual
companies. This can in turn facilitate market entry and thus benefit consumers.”
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on basic-coverage contracts, a measure that is already in place in several insurance markets.

For instance, the health-insurance systems in Germany and Switzerland rely on a central

fund to redistribute costs among firms according to a risk-equalization scheme.26 These

cost-sharing mechanisms, by pooling and redistributing costs among sellers of a standardized

basic-coverage contract, prevent firms from earning abnormal profits on basic coverage.27

Because our analysis of the regulated game provides an equilibrium-existence result, it

may thus provide valuable insights on the positive implications of multiple contracting, in

particular for these insurance markets where a similar regulation is used.

5.3.1 Quantity Discounts

To formulate these insights, we focus on conditions (10)–(11) for a free-entry equilibrium,

which imply that traded contracts offering higher coverage have lower premium rates,

Q∗1 > Q∗2 −Q∗1 and
T ∗1
Q∗1

= r < r2 =
T ∗2 − T ∗1
Q∗2 −Q∗1

.

Thus, while consumers pay a quantity premium for higher aggregate coverage, firms issue

contracts that exhibit quantity discounts. In observable terms, this is a striking difference

with the exclusive-competition case, in which whether data on traded contracts are collected

from consumer surveys or from the trade records of a single firm is irrelevant as each

consumer’s demand must be met by a single contract issued by a single firm.

This result stands in stark contrast with the natural intuition that allowing for multiple

contracting should push consumers towards splitting their demands between firms:28 indeed,

this intuition is misleading unless each firm is active, as in the oligopoly case. The reason

why, in a free-entry equilibrium, firms end up proposing quantity discounts is that the basic

layer must be larger than the complementary layer to prevent type 2 from purchasing basic

coverage from different firms and to prevent inactive firms from entering the market.29 This

26See Thomson and Mossialos (2009, page 84). Besides Germany and Switzerland, other countries using
such schemes include Australia, Ireland, the Netherlands, and Slovenia.

27In Switzerland, the basic-coverage contract is defined at the national level; then firms compete over prices
to provide the corresponding amount of coverage. Yet an additional rule specifies that costs are pooled and
redistributed among firms. In Germany, the basic-coverage contract is also defined at the national level and
was offered in 2009 by 134 not-for-profit, nongovernmental “sickness funds.” Consumers contribute a fixed
fraction of their wealth; these contributions are then centrally pooled and redistributed to sickness funds
according to a rather precise risk-adjusted capitation formula. More generally, risk equalization involves
transfer payments between firms so as to spread some of the claims cost of the high-risk, older, and less
healthy consumers among all firms in the market, in proportion to their respective market shares.

28See, for instance, Chiappori (2000) for an articulation of this view.
29This explanation for quantity discounts differs from that proposed by Biais, Martimort, and Rochet

(2000) and Chade and Schlee (2012) in the monopolistic case of Stiglitz (1977). In both papers, the shape
of the hazard rate of the distribution of types plays an essential role.
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leads firms to only issue a few contracts that consumers can combine. In turn, consumers

find it in their interest to concentrate their trades on a minimum number of contracts: type

1 ends up trading a single contract, and type 2 two different contracts.

5.3.2 A Negative-Correlation Property

Since Chiappori and Salanié (2000), many empirical studies have tested the validity of the

positive-correlation property, which states that, under adverse selection, there should be a

positive correlation between the coverage purchased by a consumer and her riskiness. Due

to the single-crossing condition, this property still holds in our setting when we consider the

aggregate coverage bought by a consumer: indeed, riskier consumers are also those who are

more eager to purchase more coverage.30

Yet the above mentioned contrast, under multiple contracting, between the implications

of equilibrium for the demand and supply sides of the market is also relevant for the positive-

correlation property. Indeed, an implication of free-entry equilibrium is that, with data

originating from a single firm, we should observe a negative correlation between risk and

coverage, because the relatively small complementary layer is only purchased by type 2.

Finally, a robust prediction of our analysis is that consumers holding more than one insurance

policy should on average be more likely to experience greater losses.

These general observations are useful for assessing the empirical evidence, as exemplified

by the work of Cawley and Philipson (1999) on life insurance, that of Cardon and Hendel

(2001) on health insurance, and that of Finkelstein and Poterba (2004) on annuities. Because

these papers take as a benchmark the exclusive-competition model, the above distinction

between demand- and supply-side approaches is overlooked. As a result, the absence of

quantity premia or the failure of the positive-correlation property are interpreted as rejecting

the presence of adverse selection; yet multiple contracting is allowed and even prevalent on

these markets, leading to a potential misspecification problem. Admittedly, these markets

are not regulated in a manner similar to the one we propose. However, when it comes to

markets that are subject to such a regulation, such as the German and Swiss health-insurance

markets, our results suggest that we should be careful when testing for the existence of

quantity premia or for the positive-correlation property: in principle, we would need to

observe each consumer’s aggregate coverage and aggregate premia. In particular, checking

only the contracts traded by firms would be insufficient and even misleading.

30Chiappori, Jullien, Salanié, and Salanié (2006) show that this property, and similar ones, can be derived
in much more general settings from a simple inequality on equilibrium profits even when single crossing is
not postulated.
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6 Concluding Remarks

In modern economies, the insurance sector plays a key role by allowing agents to share risk.

Because those risks are often private information, the properties of equilibrium allocations,

and in fact the very existence of equilibrium, are still the subject of a lively debate among

academics. The absence of consensus on the justifications and on the right design of public

intervention may also be related to the fact that different countries display strikingly different

regulatory systems for, in particular, health insurance.

This paper has put multiple contracting and adverse selection at the center stage of the

analysis. Our main insight is that public intervention under these constraints should target

firms’ pricing strategies, while leaving consumers free to choose their preferred amount of

coverage. The regulation we have proposed achieves this goal by penalizing cross-subsidies

between contracts. As we have shown, this allows market forces to reach third-best efficiency,

leading to an allocation in which each layer of coverage is fairly priced given the consumer

types who purchase it. We have argued that this regulation is relatively light-handed and

should be easy to implement.

We have followed Rothschild and Stiglitz (1976) and Attar, Mariotti, and Salanié (2014)

in assuming that there are only two types of consumers, which imposed some discipline on

the analysis. Though the details of the equilibrium characterization and of the equilibrium

construction are likely to depend on this assumption, the general message that one of the

goals of regulation should be to proscribe cross-subsidies between contracts is of independent

interest. The key point is that the risk borne by each contract traded by a firm should reflect

an upper-tail conditional expectation of riskiness in the population. Whether this can be

achieved by market forces curbed by a light-handed regulation or necessitates a more direct

intervention is an interesting avenue for future research.

Finally, our analysis, by being the first to provide positive existence and efficiency results

for insurance markets under multiple contracting and adverse selection, opens a new and rich

avenue for empirical research. We also hope that it will renew the existing policy debates

about health insurance, and more generally about the management of financial markets

plagued by adverse selection.
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Appendix

Proof of Theorem 1. Suppose there exists an equilibrium, and fix an equilibrium in which

every firm k posts the menu Ck. Then

z−ki (q, t) ≡ max

{
ui

(
q +

∑
l 6=k

ql, t+
∑
l 6=k

tl

)
: (ql, tl) ∈ C l for all l 6= k

}
(A.1)

is type i’s indirect utility from trading a contract (q, t) with firm k given the menus posted by

firms l 6= k, which is continuous in (q, t) by Berge’s maximum theorem (Aliprantis and Border

(2006, Theorem 17.31)). The equilibrium outcome is specified by individual trades (qki , t
k
i )

between every type i and every firm k, leading to aggregate trades (Qi, Ti) ≡ (
∑

k q
k
i ,
∑

k t
k
i )

and utility levels ui ≡ ui(Qi, Ti) for every type i, and to type-by-type profits bki ≡ tki − riqki
and type-averaged profits bk ≡ m1b

k
1 +m2b

k
2 for every firm k.

Our first result relates individual and aggregate profits on the complementary layers

qk2 − qk1 and Q2 −Q1, which are given by

sk2 ≡ tk2 − tk1 − r2(qk2 − qk1) and S2 ≡ T2 − T1 − r2(Q2 −Q1),

respectively. Observe that sk2 6= 0 implies qk1 6= qk2 in equilibrium.

Lemma A.1 For each k,

S2 > max{0, sk2} implies qk1 = qk2 6= 0.

Proof. Suppose S2 > max{0, sk2} and, for each ε2 ≥ 0, define the contract

ck2(ε2) ≡ (qk1 +Q2 −Q1, t
k
1 + T2 − T1 − ε2).

This contract strictly attracts type 2 if ε2 > 0 because, by combining it with the contracts

(ql1, t
l
1) issued by firms l 6= k, she ends up with the aggregate trade (Q2, T2 − ε2). The proof

consists of three steps.

Step 1 We first claim that z−k1 (ck2(0)) < u1. Otherwise, firm k can deviate by issuing a

contract ck2(ε2) with ε2 > 0, which strictly attracts both types. Letting ε2 go to zero, we

obtain that, in equilibrium,

bk ≥ tk1 − rqk1 + T2 − T1 − r(Q2 −Q1).

Using the accounting identity

bk = m1(t
k
1 − r1qk1) +m2(t

k
2 − r2qk2) = tk1 − rqk1 +m2s

k
2,
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we can rewrite this inequality as

0 ≥ S2 −m2s
k
2 + (r2 − r)(Q2 −Q1).

But the first difference on the right-hand side of this inequality is strictly positive, because

S2 > sk2 > m2s
k
2 if sk2 > 0 and S2 > 0 ≥ m2s

k
2 otherwise, and the second difference is

nonnegative, because Q2 ≥ Q1 by single crossing. We have thus reached a contradiction.

The claim follows.

Step 2 We next claim that tk1 > r1q
k
1 . Indeed, if firm k deviates by issuing a contract

ck2(ε2) with ε2 > 0 small enough, it strictly attracts type 2 and does not attract type 1 by

Step 1. Letting ε2 go to zero, we obtain that, in equilibrium,

bk ≥ m2[t
k
1 − r2qk1 + T2 − T1 − r2(Q2 −Q1)]

or, equivalently,

m1(t
k
1 − r1qk1) ≥ m2(S2 − sk2) > 0.

The claim follows.

Step 3 To safeguard the profit it makes with type 1, firm k can deviate by issuing two

contracts, namely, a contract ck2(ε2) with ε2 > 0, and a contract

ck1(ε1) ≡ (qk1 , t
k
1 − ε1)

with ε1 > 0. Consider first type 1. By Step 1,

z−k1 (ck2(0)) < u1 = z−k1 (ck1(0)).

If ε2 is small enough, this implies

z−k1 (ck2(ε2)) < u1 < z−k1 (ck1(ε1)).

Then type 1 trades ck1(ε1) following firm k’s deviation and, if ε1 is small enough, firm k

makes a profit with type 1 by Step 2. Consider next type 2. By construction,

z−k2 (ck1(0)) ≤ u2 ≤ z−k2 (ck2(0)).

If ε1 is small enough compared to ε2, this implies

max{z−k2 (ck1(ε1)),u2} < z−k2 (ck2(ε2)).
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Then type 2 trades ck2(ε2) following firm k’s deviation, and firm k earns a profit

tk1 − r2qk1 + S2 − ε2 = tk2 − r2qk2 + S2 − sk2 − ε2

with type 2. If tk2 − r2qk2 + S2 − sk2 > 0 and ε2 is small enough, then the deviation entails no

cross-subsidies, and hence is consistent with the regulation. Letting ε1 and ε2 go to zero, we

obtain that, in equilibrium,

bk ≥ m1(t
k
1 − r1qk1) +m2(t

k
2 − r2qk2 + S2 − sk2)

or, equivalently,

0 ≥ m2(S2 − sk2),

a contradiction. Hence tk2 − r2qk2 + S2− sk2 ≤ 0, which implies tk2 − r2qk2 < 0 and thus qk2 6= 0.

This is consistent with the regulation only if qk1 = qk2 . The result follows. �

A consequence of Lemma A.1 is that the aggregate profit on the complementary layer

Q2 −Q1 is nonpositive.

Proposition A.1 S2 ≤ 0.

Proof. Suppose, by way of contradiction, that S2 > 0. The proof consists of six steps.

Step 1 Our first observation is that S2 > 0 implies that sk2 ≥ 0 for all k. Otherwise,

sk2 < 0 for some k and thus qk1 = qk2 by Lemma A.1, a contradiction. Moreover, because

S2 > 0, there exists some l such that sl2 > 0 and hence ql1 6= ql2. Lemma A.1 then implies

sl2 ≥ S2, and, from our first observation, we obtain that sl2 = S2 > 0 and sk2 = 0 for all k 6= l.

Thus firm l trades different contracts (ql1, t
l
1) and (ql2, t

l
2) with types 1 and 2, respectively,

and, by Lemma A.1 again, every firm k 6= l trades the same contract (qk, tk) 6= (0, 0) with

each type. In particular, Q1 > 0.

Step 2 Second, we claim that bk = 0 for all k 6= l. Let (Q−l, T−l) ≡ (
∑

k 6=l q
k,
∑

k 6=l t
k).

Any firm k 6= l can deviate by issuing a contract (Q−l, T−l − ε) with ε > 0, which strictly

attracts both types. Letting ε go to zero, we obtain that, in equilibrium,

bk ≥ T−l − rQ−l

for all k 6= l. The claim then follows from the fact that

T−l − rQ−l =
∑
k 6=l

bk

and that there are at least two firms k 6= l as n ≥ 3. Notice that, because r2 > r1 and every

firm k 6= l is active on the equilibrium path, bk2 < 0 for all k 6= l.
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Step 3 Third, we claim that τ1(Q1, T1) = r. Otherwise, any firm k 6= l can deviate by

issuing a contract (qk + δ, tk + ε) with δ and ε chosen so that

τ1(Q1, T1)δ > ε > rδ.

The first inequality ensures that this contract strictly attracts type 1 if δ and ε are small

enough. If it attracts type 2, then firm k’s profit increases by ε − rδ, a contradiction. If

it does not attract type 2, then, because bk2 < 0 by Step 2, firm k’s profit increases by

m1(ε− r1δ)−m2b
k
2 > 0, once again a contradiction. The claim follows.

Step 4 Fourth, we claim that u1 = z−k1 (0, 0) for all k 6= l. Otherwise, u1 > z−k1 (0, 0)

for some k 6= l. Then firm k can deviate by issuing a contract (qk, tk + ε) with ε > 0,

which strictly attracts type 1. If it attracts type 2, then firm k’s profit increases by ε, a

contradiction. If it does not attract type 2, then, because bk2 < 0 by Step 2, firm k’s profit

increases by m1ε−m2b
k
2 > m1ε, once again a contradiction. The claim follows. As a result,

for each k 6= l, there exists an aggregate trade (Q−k, T−k) made available by firms m 6= k

and such that u1(Q
−k, T−k) = u1.

Step 5 Fifth, we claim that Q−k < Q1. Notice that Q−k ≤ Q2; otherwise, because

u1(Q
−k, T−k) = u1 ≥ u1(Q2, T2) by incentive compatibility, we have u2(Q

−k, T−k) > u2 by

single crossing, a contradiction. We cannot have Q−k = Q2; otherwise, because S2 > 0

and τ1(Q1, T1) = r by Step 3, we again have u2(Q
−k, T−k) > u2. Finally, suppose, by way

of contradiction, that Q1 ≤ Q−k < Q2. Then firm k can deviate by issuing the contract

(Q2 − Q−k, T2 − T−k − ε) with ε > 0, which strictly attracts type 2 and possibly type 1 as

well. However, because u1(Q
−k, T−k) = u1 and S2 > 0, the premium rate of this contract is

strictly greater than T2−T1

Q2−Q1
> r2 if ε is small enough, in contradiction with the zero-profit

result in Step 2. The claim follows.

Step 6 By Steps 4–5, for every firm k 6= l, there exists an aggregate trade (Q−k, T−k)

made available by firms m 6= k and such that u1(Q
−k, T−k) = u1 and Q−k < Q1. Because

τ1(Q1, T1) = r by Step 3, τ1(Q
−k, T−k) > r. Then firm k can deviate by issuing a contract

(δ, ε) with δ > 0 and ε > 0 chosen so that

τ1(Q
−k, T−k)δ > ε > rδ.

The first inequality implies that this contract strictly attracts type 1 if δ and ε are small

enough. If it attracts type 2, then firm k’s profit is ε − rδ > 0, in contradiction with the

zero-profit result in Step 2. If it does not attract type 2, then, because bk2 < 0 by Step 2,
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firm k’s profit is m1(ε − r1δ) −m2b
k
2 > m1(ε − r1δ) > 0, once again in contradiction with

Step 2. Hence the result. �

Our next goal is to show that each firm earns zero profit in equilibrium, that is, B ≡∑
k b

k = 0. The argument relies on the following intuitive lemma.

Lemma A.2 T1 ≤ r2Q1.

Proof. Suppose, by way of contradiction, that T1 > r2Q1. In particular, 0 < Q1 ≤ Q2.

Any firm k can then deviate by issuing the contract (Q1, T1− ε1) with ε1 > 0, which strictly

attracts type 1. Because T1 > r2Q1, the worst case for firm k is that it does not attract type

2. Letting ε1 go to zero, we obtain that, in equilibrium,

bk ≥ m1(T1 − r1Q1)

or, equivalently,

m2(T2 − r2Q2) ≥ B − bk.

Therefore, T2 ≥ r2Q2. Any firm k can then deviate by issuing the contract (Q2, T2−ε2) with

ε2 > 0, which strictly attracts type 2. Because T2 ≥ r2Q2 > r1Q2, the worst case for firm k

is that it does not attract type 1. Letting ε2 go to zero, we obtain that, in equilibrium,

bk ≥ m2(T2 − r2Q2) ≥ B − bk

for all k. Summing these inequalities over k yields (n− 2)B ≤ 0 and hence, because n ≥ 3,

B = bk = T2 − r2Q2 = 0 for all k. This implies T1 = r1Q1, in contradiction with T1 > r2Q1.

The result follows. �

A consequence of Proposition A.1 and Lemma A.2 is that the aggregate profits on both

the basic and the complementary layers Q1 and Q2 − Q1 are zero, and thus that each firm

earns zero profit.

Proposition A.2 B = T1 − rQ1 = S2 = 0.

Proof. Any firm k can deviate by issuing the contract (Q1, T1 − ε1) with ε1 > 0, which

strictly attracts type 1. Because T1 ≤ r2Q1 by Lemma A.2, the worst case for firm k is that

this contract attracts type 2. Letting ε1 go to zero, we obtain that, in equilibrium,

bk ≥ T1 − rQ1.
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Using the accounting identity

B = T1 − rQ1 +m2S2,

we can rewrite this inequality as

B − bk ≤ m2S2

for all k. Because S2 ≤ 0 by Proposition A.1, we obtain that B = bk = 0 for all k, S2 = 0,

and T1 − rQ1 = 0. Hence the result. �

We are now ready to complete the proof of Theorem 1.

Proposition A.3 (Q1, T1) = (Q∗1, T
∗
1 ).

Proof. We know that each firm earns zero profit in equilibrium. If any firm k withdraws

its menu offer, then every type i obtains at most her equilibrium utility, that is,

ui ≥ z−ki (0, 0). (A.2)

Now, observe that

z−k1 (0, 0) ≥ max{u1(Q, rQ) : Q ≥ 0}. (A.3)

Otherwise, firm k can deviate by issuing a contract at a premium rate slightly higher than

r that strictly and profitably attracts type 1 and that remains profitable even if it attracts

type 2. Chaining (A.2)–(A.3) and using the fact that T1 = rQ1 by Proposition A.2, we

obtain that (Q1, T1) satisfies (6)–(7) and thus coincides with (Q∗1, T
∗
1 ). Hence the result. �

Remark A.1 The aggregate trade (Q∗1, T
∗
1 ) can only be reached by means of contracts with

premium rate r. Otherwise, some contract (q, t) such that q < Q∗1 and t < rq is issued by

some firm. Any other firm can then issue the contract (Q∗1 − q, T ∗1 − t− ε) with ε > 0. This

contract strictly attracts type 1 in combination with (q, t) and, because T ∗1 − t > r(Q∗1 − q),
it is profitable for ε small enough even if it attracts type 2, a contradiction.

Lemma A.3 The aggregate trade (Q∗1, T
∗
1 ) remains available if any firm k withdraws its

menu offer.

Proof. By Proposition A.3,

u1 = u1(Q
∗
1, T

∗
1 ) = max{u1(Q, rQ) : Q ≥ 0}.
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Hence, by (A.2)–(A.3),

u1 = z−k1 (0, 0)

for all k. As a result, for each k, there exists an aggregate trade (Q−k, T−k) made available

by firms l 6= k and such that u1(Q
−k, T−k) = u1. We show that Q−k = Q∗1 by eliminating

the other cases. First, if Q−k < Q∗1, then, because τ1(Q
∗
1, T

∗
1 ) = r and T ∗1 = rQ∗1 by

Proposition A.3, the premium rate of (Q−k, T−k) is lower than r, in contradiction with the

reasoning of Remark A.1. Second, if Q−k ≥ Q∗2, then u2(Q
−k, T−k) > u2 by single crossing,

a contradiction. Third, if Q∗1 < Q−k < Q∗2, then firm k can profitably deviate as in Step 5 of

the proof of Proposition A.1, once again a contradiction. The result follows. �

Proposition A.4 (Q2, T2) = (Q∗2, T
∗
2 ).

Proof. For each k, we have, in analogy with (A.3),

z−k2 (0, 0) ≥ max{u2(Q∗1 +Q, T ∗1 + r2Q) : Q ≥ 0}. (A.4)

Otherwise, firm k can issue a contract at a premium rate slightly higher than r2 that

strictly and profitably attracts type 2 in combination with the aggregate trade (Q∗1, T
∗
1 )

made available by firms l 6= k by Lemma A.3, and that is even more profitable if it also

attracts type 1. Chaining (A.2) and (A.4) and using the fact that T2− T1 = r2(Q2−Q1) by

Proposition A.3, we obtain that (Q2, T2) satisfies (8)–(9) and thus coincides with (Q∗2, T
∗
2 ).

Hence the result. �

Remark A.2 Any traded contract is sold at premium rate r or r2. Indeed, consider a

contract (q, t) with q > 0 that is traded in equilibrium. If it attracts both types, then it

yields zero profit; thus its premium rate is r. If it attracts only one type, then it must yields

a nonnegative profit to be consistent with the regulation, and hence exactly zero profit; thus

its premium rate is either r1 or r2. Finally, because Remark A.1 implies that a contract with

premium rate r1 cannot be traded by type 1 in equilibrium, this premium rate must be r2.

Remark A.3 We know that no firm is indispensable to provide type 1 with her equilibrium

aggregate trade. A slightly weaker property is satisfied for type 2, namely, that no firm is

indispensable to provide her with her equilibrium utility: for each k, there exists an aggregate

trade (Q−k, T−k) made available by firms l 6= k and such that u2(Q
−k, T−k) = u2. We claim

that Q−k ≥ Q∗2. Otherwise, T ∗2 − T−k > r2(Q
∗
2 − Q−k) by (8)–(9) because u2 is strictly

quasiconcave. Firm k can then deviate by issuing a contract (Q∗2 −Q−k, T ∗2 − T−k − ε) with
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ε > 0, which attracts type 2 in combination with the aggregate trade (Q−k, T−k) and is

profitable for ε small enough, a contradiction.31

The proof of Theorem 1 is now complete. Hence the result. �

Proof of Lemma 1. Suppose Q∗1 > 0 and that there exists a free-entry equilibrium, and

fix such an equilibrium in which every firm k posts the menu Ck. Let Kr be the set of firms

issuing contracts at premium rate r and, for each k ∈ Kr, let

Ck
r ≡ {(q, t) ∈ Ck : q > 0 and t = rq}

be the set of such contracts issued by firm k. Finally, for all k ∈ Kr and (q, t) ∈ Ck
r , let

α(q, t) ≡ q

Q∗1

be the fraction of Q∗1 covered by the contract (q, t). Now, consider some firm k ∈ Kr that

trades a contract (qk, tk) ∈ Ck
r on the equilibrium path, so that

0 < α(qk, tk) ≤ 1. (A.5)

By Lemma A.3, type 1 can still trade (Q∗1, T
∗
1 ) if firm k withdraws its menu offer, and,

by Remark A.1, the aggregate trade (Q∗1, T
∗
1 ) can only be reached through contracts with

premium rate r. Hence there exists a subset K−kr of Kr \ {k} and contracts (ql, tl) ∈ C l
r

issued by firms l ∈ K−kr such that ∑
l∈K−k

r

α(ql, tl) = 1. (A.6)

Summing (A.5)–(A.6) yields

1 <
∑

l∈K−k
r

α(ql, tl) + α(qk, tk) ≤ 2.

Because the aggregate trade [1 + α(qk, tk)](Q∗1, T
∗
1 ) is available on the equilibrium path, we

must have

u2(Q
∗
2, T

∗
2 ) ≥ u2([1 + α(qk, tk)](Q∗1, T

∗
1 )). (A.7)

To conclude the proof, we only need to show that

[1 + α(qk, tk)]Q∗1 > Q∗2. (A.8)

31Unlike for type 1, the equilibrium aggregate trade of type 2 need not remain available if any firm who
trades with her withdraws its menu offer. In Attar, Mariotti, and Salanié (2014), this property is satisfied
because trades of negative quantities are allowed, which is not the case in the present setting.
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Indeed, (A.8) implies 2Q∗1 > Q∗2, which is (11). In turn, along with (A.7) and 2Q∗1 > Q∗2,

(A.8) implies u2(Q
∗
2, T

∗
2 ) ≥ u2(2Q

∗
1, 2T

∗
1 ), which is (10). To establish (A.8), observe first that,

because T ∗2 > rQ∗2, it must be that

[1 + α(qk, tk)]Q∗1 6= Q∗2.

Let us suppose, by way of contradiction, that [1 + α(qk, tk)]Q∗1 < Q∗2. Then an inactive firm

can issue the contract (Q∗2 − [1 + α(qk, tk)]Q∗1, T
∗
2 − r[1 + α(qk, tk)]Q∗1 − ε) with ε > 0, which

attracts type 2 in combination with the aggregate trade [1 + α(qk, tk)](Q∗1, T
∗
1 ). Because the

JHG allocation satisfies

T ∗1 − rQ∗1 = T ∗2 − T ∗1 − r2(Q∗2 −Q∗1) = 0,

we find that the corresponding profit on type 2,

T ∗2 − r[1 + α(qk, tk)]Q∗1 − r2{Q∗2 − [1 + α(qk, tk)]Q∗1} − ε = (r2 − r)α(qk, tk)Q∗1 − ε,

is strictly positive for ε small enough. Hence this contract is profitable even if it does not

attract type 1, a contradiction. The result follows. �

Proof of Lemma 2. Suppose Q∗2 > Q∗1 > 0 and that there exists an equilibrium, and fix

an equilibrium in which every firm k posts the menu Ck. Because Q∗1 > 0, some firm k sells

qk1 > 0 to type 1 on the equilibrium path. Because all the contracts traded by type 1 on the

equilibrium path have premium rate r, qk1 is sold for a transfer rqk1 .

For all i and Q, let I∗i (Q) be the transfer for the aggregate coverage Q along the

equilibrium indifference curve of type i, that is, ui(Q, I∗i (Q)) = ui(Q
∗
i , T

∗
i ). By assumption,

I∗i is strictly concave and continuously differentiable, except possibly at zero. We also define

A−k as the set of aggregate trades (Q, T ) that can be reached with firms l 6= k, that is,

A−k =
∑

l 6=k C
l. Because A−k is compact, the function

y−ki (q) ≡ max{I∗i (q +Q)− T : (Q, T ) ∈ A−k} (A.9)

is well-defined. Now, suppose that firm k deviates by issuing the contract (q, t). This contract

attracts type i if and only if there exists (Q, T ) ∈ A−k such that

ui(q +Q, t+ T ) ≥ ui(Q
∗
i , T

∗
i )

or, equivalently, t ≤ y−ki (q). Therefore, if r1q < t < y−k1 (q), the contract (q, t) strictly

and profitably attracts type 1. Hence, it must also attract type 2, and this must make the
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deviation unprofitable. This shows that r1q < t < y−k1 (q) implies that t ≤ y−k2 (q) and t ≤ rq,

or, equivalently, that r1q < y−k1 (q) implies that y−k1 (q) ≤ y−k2 (q) and y−k1 (q) ≤ rq.

Now, because type 1 purchases aggregate coverage Q∗1 at price r in equilibrium, it must

be that (Q∗1 − qk1 , r(Q∗1 − qk1)) belongs to A−k. Therefore,

y−k1 (q) ≥ Y −k(q) ≡ I∗1 (q +Q∗1 − qk1)− r(Q∗1 − qk1).

The function Y −k(q) on the right-hand side of this inequality is strictly concave in q, with

value rqk1 and derivative r at q = qk1 . This shows that the condition r1q < y−k1 (q) is satisfied

in a neighborhood Q of qk1 . From our previous result, it follows that Y −k(q) ≤ y−k1 (q) ≤
y−k2 (q) for all q ∈ Q. Moreover, because the contract (qk1 , rq

k
1) is issued by firm k on the

equilibrium path, it must be that type 2 can at most obtain her equilibrium utility if she

selects this contract; that is, it must be that y−k2 (qk1) ≤ rqk1 . These two facts together imply

Y −k(qk1) = y−k1 (qk1) = y−k2 (qk1) = rqk1 .

Consider next a strictly increasing sequence (qN)N∈N in Q converging to qk1 , and, for each

N , fix some solution (QN , TN) to problem (A.9) for i = 2 and q = qN , so that

for each N ∈ N, y−k2 (qN) = I∗2 (qN +QN)− TN . (A.10)

Because (Y −k)′(qk1) = r, there exists a function η : Q → R such that limq→qk1
η(q) = 0 and

Y −k(q) = Y −k(qk1) + r(q − qk1) + η(q)(q − qk1) for all q ∈ Q. Hence

for each N ∈ N, r + η(qN) =
Y −k(qk1)− Y −k(qN)

qk1 − qN

≥ y−k2 (qk1)− y−k2 (qN)

qk1 − qN

≥ I
∗
2 (qk1 +QN)− I∗2 (qN +QN)

qk1 − qN
, (A.11)

where the first inequality follows from Y −k(qk1) = y−k2 (qk1) and Y −k(qN) ≤ y−k2 (qN), and the

second inequality follows from (A.10) and the definition of y−k2 (qk1).

Finally, for each N , (QN , TN) belongs to the compact set A−k, so that the sequence

{(QN , TN)}N∈N admits a convergent subsequence, with limit (Q̂−k, T̂−k) ∈ A−k. Moreover,

by Berge’s maximum theorem (Aliprantis and Border (2006, Theorem 17.31)), the sequence

{y−k2 (qN)}n∈N converges to y−k2 (qk1) = rqk1 . Taking limits in (A.10)–(A.11), we obtain

rqk1 = I∗2 (qk1 + Q̂−k)− T̂−k and (I∗2 )′(qk1 + Q̂−k) ≤ r.

This shows that the aggregate trade (QP , T P ) ≡ (qk1 + Q̂−k, rqk1 + T̂−k) belongs to the
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equilibrium indifference curve of type 2, with τ2(Q
P , T P ) ≤ r, and is thus strictly at the

right of (Q∗2, T
∗
2 ). Finally, consumers can reach (QP , T P ) in equilibrium because it is the

sum of a contact (qk1 , rq
k
1) issued by k and of an element of A−k. The result follows. �

Proof of Lemma 3. Suppose that the aggregate trade (Q̂−k, T̂−k) constructed in the proof

of Lemma 2 is only built up from contracts with premium rates r or r2. Then this also holds

true for (QP , T P ), so that one can write

QP = Q+Q′ and T P = rQ+ r2Q
′.

Because QP > Q∗2, it must be that Q > Q∗1. If Q′ > 0, then this construction involves at

least one contract with premium rate r2, which must be issued by some firm l 6= k. However,

because Q > Q∗1 and u2(Q
P , T P ) = u2(Q

∗
2, T

∗
2 ), firm l can deviate by issuing a contract with

a premium rate higher than r2 that strictly and profitably attracts type 2 in combination

with the aggregate trade (Q, rQ), and that is even more profitable if it also attracts type 1.

We have thus reached a contradiction.

Therefore, as the aggregate trade (Q̂−k, T̂−k) is only built up from contracts with premium

rates r or r2, the only possibility is that it has premium rate r. It follows that (QP , T P ) =

(QR, TR), where u2(Q
R, TR) = u2(Q

∗
2, T

∗
2 ) and TR = rQR. Notice finally that Q̂−k ≤ Q∗1;

otherwise, and by the same reasoning as above, firm k can strictly and profitably attract

type 2. Because we also have qk1 ≤ Q∗1, it must thus be that

QR = qk1 + Q̂−k ≤ 2Q∗1,

which implies u2(2Q
∗
1, 2T

∗
1 ) ≤ u2(Q

∗
2, T

∗
2 ) by construction of (QR, TR). By contraposition,

we obtain that, if u2(2Q
∗
1, 2T

∗
1 ) > u2(Q

∗
2, T

∗
2 ), then some firm l 6= k must issue a contract

with a premium rate different from r and r2. The result follows. �

Proof of Lemma 4. If a latent contract (q`, t`) issued by all firms in equilibrium blocks

large cream-skimming deviations, then, by (12) applied to (q, t) = (Q∗1, T
∗
1 ), we have

u2(Q
∗
1 + q`, T ∗1 + t`) ≥ u2(Q

∗
2, T

∗
2 ).

This inequality cannot be strict. Otherwise, on the equilibrium path, type 2 would be strictly

better off trading (q`, t`) with one firm in combination with the aggregate trade (Q∗1, T
∗
1 ),

which, by Lemma A.3, is made available by the other firms. Hence (13). Next, by (12), the

translate of the upper contour set of (Q∗1, T
∗
1 ) for type 1 along the vector (q`, t`) lies in the

upper contour set of (Q∗2, T
∗
2 ) for type 2. As these two sets intersect at (Q∗1 + q`, T ∗1 + t`)
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by (13), we obtain along the lines of Benveniste and Scheinkman (1979, Lemma 1) that the

slope of type 2’s indifference curve at (Q∗1 + q`, T ∗1 + t`) must be equal to the slope of type

1’s indifference curve at (Q∗1, T
∗
1 ), that is, r. Hence (14). Finally, that (q`1, t

`
1) is well-defined,

with Q∗1 + q`1 > Q∗2, follows from τ2(Q
∗
2, T

∗
2 ) = r2 along with the fact that type 2’s marginal

rate of substitution strictly and continuously decreases along her equilibrium indifference

curve and vanishes as aggregate coverage grows large. The result follows. �

Proof of Lemma 5. Defining I∗i as in the proof of Lemma 2, observe that, by construction,

I∗2 (Q∗1 + q`1) = I∗1 (Q∗1) + t`1, (A.12)

Suppose first that property C(i) is satisfied. By (A.12), a sufficient condition for the

translation property (12) is

for each Q ∈ dom I∗1 , I∗′1 (Q) ≷ I∗′2 (Q+ q`1) if Q ≶ Q∗1.

In turn, a sufficient condition for this is the following single-crossing condition:

I∗′1 (Q) = I∗′2 (Q+ q`1) implies I∗′′1 (Q) < I∗′′2 (Q+ q`1),

which, under property C(i), is by (15) a direct implication of the identities

τi(Q, I∗i (Q)) = I∗′i (Q) and κi(Q, I∗i (Q)) = − I∗′′i (Q)

{1 + [I∗′i (Q)]2} 3
2

along the equilibrium indifference curve of type i.

Suppose next that property C(ii) is satisfied. We show that

for each Q ∈ dom I∗1 , I∗2 (Q+ q`1) = I∗1 (Q) + t`1, (A.13)

so that, over the relevant domains, I∗2 is obtained from I∗1 by translation along the vector

(q`1, t
`
1), which again implies (12). Define implicitly a function φ by

I∗′2 (φ(Q) + q`1) = I∗′1 (Q). (A.14)

Notice that φ is strictly increasing as both I∗1 and I∗2 are strictly concave, and that

φ(Q∗1) = Q∗1 (A.15)

by (14). For each Q > 0, we have I∗′′2 (φ(Q) + q`1) > 0 as κ∗2(φ(Q) + q`1, I∗2 (φ(Q) + q`1)) > 0 by

Assumption C. Hence, by the implicit function theorem, φ is differentiable and

for each Q ∈ dom I∗1 , I∗′′2 (φ(Q) + q`1)φ
′(Q) = I∗′′1 (Q). (A.16)
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Now, under property C(ii), (A.14) implies

I∗′′2 (φ(Q) + q`1) = I∗′′1 (Q).

Hence, by (A.15)–(A.16), φ must be the identity function. This in turn implies, by (A.12)

and (A.14), that (A.13) holds for all Q > 0. The result follows. �

Proof of Theorem 2. We must show that, for n large enough, the regulated game has an

equilibrium in which each firm posts the same menu C∗n consisting of five contracts:

1. The no-trade contract (0, 0);

2. The basic-coverage contract c∗1,n ≡ (q∗1,n, t
∗
1,n) defined by (16);

3. The complementary-coverage contract c∗2 ≡ (Q∗2 −Q∗1, T ∗2 − T ∗1 );

4. The latent contract c`1 ≡ (q`1, t
`
1) defined by (13)–(14);

5. The latent contract c`2,n ≡ (q`2,n, t
`
2,n) defined by (17).

Notice that, by construction, all the nonnull contracts in C∗n have premium rates at least

equal to r. Moreover, because, by assumption, the complementary layer is strictly positive,

we have u2(Q
∗
2, T

∗
2 ) > u2(Q

∗
1, T

∗
1 ) and hence

u2(Q
∗
2, T

∗
2 ) > u2

(
n

n− 1
(Q∗1, T

∗
1 )

)
= u2(nc

∗
1,n) (A.17)

for n large enough. The proof consists of four steps.

Step 1 We first claim that, on the equilibrium path, consumers have a best response such

that they trade according to the JHG allocation, so that each firm earns zero profit.

Consider first type 1. Because (n− 1)c∗1,n = (Q∗1, T
∗
1 ) and τ1(Q

∗
1, T

∗
1 ) = r, and because all

the nonnull contracts in C∗n have premium rates at least equal to r, trading n− 1 contracts

c∗1,n with, say, firms k = 1, . . . , n− 1 is optimal for type 1, leading her to the aggregate trade

(Q∗1, T
∗
1 ), as in the JHG allocation.

Consider next type 2. By trading n − 1 contracts c∗1,n with firms k = 1, . . . , n − 1 and

one contract c∗2 with firm n, type 2 can reach the aggregate trade (Q∗2, T
∗
2 ), as in the JHG

allocation. Firms k = 1, . . . , n− 1 then each trade c∗1,n with both types 1 and 2 at premium

rate r and firm n trades c∗2 with type 2 at premium rate r2, so that each firm earns zero

profit. We thus only have to check that type 2 has no profitable deviation. This follows from

two observations. First, by (A.17), if n is large enough, type 2 is not tempted to trade the

43



contract c∗1,n with each of the n firms. Second, by (13)–(14) and (17), trading some contracts

c`1 or c`2,n, possibly along one or several contracts c∗1,n or c∗2, brings type 2 at best on the line

with slope r that supports her upper contour set of (Q∗2, T
∗
2 ); indeed, the best she can do is

to trade n − 1 contracts c∗1,n and one contract c`1, or n − 2 contracts c∗1,n and one contract

c`2,n, reaching the aggregate trade (Q∗1 + q`1, T
∗
1 + t`1) and thus obtaining, by (13), the same

utility as at (Q∗2, T
∗
2 ). The claim follows.

Step 2 We next prove that no firm k has a profitable deviation that only attracts type

2. With a slight abuse of terminology, we identify such a deviation Ck with the contract

(q, t) type 2 chooses to trade in Ck according to her best response. The proof follows from

three observations. First, type 2 can obtain her equilibrium utility u2(Q
∗
2, T

∗
2 ) by trading

a contract c∗1,n with n − 2 firms l 6= k and a contract c`2,n with the remaining firm l 6= k.

Second, if type 2 at most trades contracts c∗1,n or c∗2 with firms l 6= k following firm k’s

deviation, then the contract (q, t) attracts her only if r2q ≥ t, and thus the deviation Ck is

not profitable. Third, if type 2 trades some contracts c`1 or c`2,n with firms l 6= k following

firm k’s deviation, possibly along one or several contracts c∗1,n or c∗2, then this brings her

at best on the line with slope r that supports her upper contour set of (Q∗2, T
∗
2 ); hence the

contract (q, t) attracts type 2 only if rq ≥ t, and again the deviation Ck is not profitable.

Step 3 We then prove that, for n large enough, no firm k has a profitable deviation that

only attracts type 1 (hereafter cream-skimming deviation). As in Step 2, we identify such

a deviation Ck with the contract (q, t) type 1 chooses to trade in Ck according to her best

response. Observe that, because type 1 can purchase her demand Q∗1 at price r from firms

l 6= k by trading a contract c∗1,n with each of them, the contract (q, t) attracts her only if

rq ≥ t; moreover, this contract is profitable only if t > r1q. Hence any cream-skimming

deviation must belong to the cone

X ≡ {(q, t) : rq ≥ t ≥ r1q}.

We distinguish two cases.

Consider first the case of a large cream-skimming deviation, that is, a contract (q, t) ∈ X
issued by some firm k such that

u1(q, t) ≥ u1(Q
∗
1, T

∗
1 ). (A.18)

This case is easily dealt with under Assumption C, because, according to Lemma 5, (q, t) is

blocked by the latent contract c`1. Indeed, (A.18) implies

u2((q, t) + c`1) ≥ u2(Q
∗
2, T

∗
2 )
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by (12); hence (q, t) also attracts type 2 in combination with a contract c`1 issued by some

firm l 6= k. We can thus construct the consumers’ best response in such a way that both

types trade the contract (q, t) with firm k. But then, because rq ≥ t as (q, t) ∈ X, this

deviation is not profitable, as desired.

Consider next the case of a small cream-skimming deviation, that is, a contract (q, t) ∈ X
issued by some firm k such that

z∗−k1,n (q, t) ≥ u1(Q
∗
1, T

∗
1 ) > u1(q, t), (A.19)

where, in analogy with (A.1),

z∗−ki,n (q, t) ≡ max

{
ui

(
q +

∑
l 6=k

ql, t+
∑
l 6=k

tl

)
: (ql, tl) ∈ C∗n for all l 6= k

}

is type i’s indirect utility from trading the contract (q, t) with firm k given the menus posted

by firms l 6= k. Thus (q, t) attracts type 1, but only in combination with other contracts

issued by firms l 6= k. We can then no longer use the latent contract c`1 as in the case of a

large cream-skimming deviation, because, for all we know, type 1 may have to trade with

all firms l 6= k to obtain the utility z∗−k1,n (q, t).

However, notice that, in case type 1 can at least obtain her equilibrium utility u1(Q
∗
1, T

∗
1 )

by trading (q, t) in combination with one contract c∗1,n and possibly other contracts, then,

according to Lemma 5, type 2 can at least obtain her equilibrium utility u2(Q
∗
2, T

∗
2 ) by

trading (q, t) in combination with one contract c`2,n = c∗1,n + c`1 and these other contracts,

which amounts to mimicking type 1’s trades and trading an additional contract c`1; hence, in

this case, (q, t) also attracts type 2 and, by the same reasoning as for a large cream-skimming

deviation, we can thus construct the consumers’ best response in such a way that this

deviation is not profitable, as desired. We thus only need to show that this case arises for n

large enough, uniformly in (q, t). To do so, let, in analogy with (A.1),

z∗−k1,n (q, t) ≡ max

{
u1

(
q +

∑
l 6=k

ql, t+
∑
l 6=k

tl

)
: (ql, tl) ∈ C∗n for all l 6= k

and (ql, tl) = c∗1,n for some l 6= k

}

be type 1’s indirect utility from trading the contract (q, t) with firm k in combination with

at least one contract c∗1,n issued by some firm l 6= k. By construction,

z∗−k1,n (q, t) ≥ z∗−k1,n (q, t).
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The following lemma shows that, for n large enough, the additional constraint embedded in

the definition of z∗−k1,n (q, t) does not prevent type 1 from at least obtaining her equilibrium

utility, which completes the proof of Step 3.

Lemma A.4 There exists n ∈ N such that, for each n ≥ n,

z∗−k1,n (q, t) ≥ u1(Q
∗
1, T

∗
1 ) (A.20)

for all (q, t) ∈ X that satisfy (A.19).

Proof. Suppose, by way of contradiction, that there exists a sequence ((qn, tn))n∈N in X

such that

z∗−k1,n (qn, tn) ≥ u1(Q
∗
1, T

∗
1 ) > max{u1(qn, tn), z∗−k1,n (qn, tn)}.

For each n, because u1(Q
∗
1, T

∗
1 ) > u1(qn, tn), type 1 must trade, on top of the contract

(qn, tn) issued by firm k, some contracts cln ∈ C∗n issued by firms l 6= k to obtain the utility

z∗−k1,n (qn, tn); moreover, because u1(Q
∗
1, T

∗
1 ) > z∗−k1,n (qn, tn), all these contracts must be different

from c∗1,n. By definition, we have

u1

(
(qn, tn) +

∑
l 6=k

cln

)
= z∗−k1,n (qn, tn) ≥ u1(Q

∗
1, T

∗
1 ). (A.21)

For each n, the contract (qn, tn) belongs to the compact set

Y ≡ X ∩ {(q, t) : q ≤ Q∗1 and u1(q, t) ≤ u1(Q
∗
1, T

∗
1 )}.

Thus we can with no loss of generality assume that the sequence ((qn, tn))n∈N converges to

some contract (q∞, t∞) ∈ Y . Notice that q∞ ≤ Q∗1 by definition of Y .

Next, for each n, cln belongs to the finite set C∗n \ {c∗1,n} and at least one contract cln is

different from the no-trade contract; hence, by construction of the contracts c∗2, c
`
1, and c`2,n,

the sequence (
∑

l 6=k c
l
n)n∈N is bounded away from (0, 0). Noticing that

C∗∞ ≡ {(0, 0), c∗2, c
`
1}

is the closed limit of the sequence of sets (C∗n \ {c∗1,n})n∈N (Aliprantis and Border (2006,

Definition 3.80.1)), we can with no loss of generality assume that, for each l 6= k, the

sequence (cln)n∈N converges to some contract cl∞ ∈ C∗∞ such that∑
l 6=k

cl∞ 6= (0, 0).
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We claim that

t∞ < rq∞. (A.22)

Indeed, taking the limit in (A.21) yields, by continuity of u1,

u1

(
(q∞, t∞) +

∑
l 6=k

cl∞

)
≥ u1(Q

∗
1, T

∗
1 ).

However, the aggregate trade
∑

l 6=k c
l
∞ has a premium rate higher than r as it is only built

up from contracts c∗2 or c`1. Because Q∗1 is the demand for coverage of type 1 at price r and

T ∗1 = rQ∗1, it must be that t∞ < rq∞, as claimed.

Finally, because, for each n, u1(Q
∗
1, T

∗
1 ) > z∗−k1,n (qn, tn), we a fortiori have

u1(Q
∗
1, T

∗
1 ) > max{u1((qn, tn) + (Q−k, T−k)) : (Q−k, T−k) ∈ C∗−kr,n }, (A.23)

where

C∗−kr,n ≡ {νc∗1,n : ν ∈ N and ν ≤ n− 1}

is the set of aggregate trades that consumers can make at premium rate r with firms l 6= k.

Noticing that

C∗−kr,∞ ≡ {(Q−k, T−k) : Q−k ∈ [0, Q∗1] and T−k = rQ−k}

is the closed limit of the sequence of sets (C∗−kr,n )n∈N, taking the limit superior in (A.23)

yields, by continuity of u1,

u1(Q
∗
1, T

∗
1 ) ≥ lim sup

n→∞
max{u1((qn, tn) + (Q−k, T−k)) : (Q−k, T−k) ∈ C∗−kr,n }

≥ max{u1((q∞, t∞) + (Q−k, T−k)) : (Q−k, T−k) ∈ C∗−kr,∞ }

≥ u1(Q
∗
1, T

∗
1 + t∞ − rq∞),

where the third inequality follows from letting type 1 trade (q∞, t∞) ∈ Y with firm k and

(Q∗1 − q∞, r(Q
∗
1 − q∞)) ∈ C∗−kr,∞ with firms l 6= k, which is feasible as q∞ ≤ Q∗1. Because

t∞ < rq∞ by (A.22), and because Q∗1 is the demand for coverage of type 1 at price r and

T ∗1 = rQ∗1, we have thus reached a contradiction. The result follows. �

Step 4 There remains to prove that no firm k has a profitable menu deviation

Ck ≡ {(0, 0), (q1, t1), (q2, t2)},
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where (qi, ti) 6= (0, 0) is the contract type i chooses to trade in Ck according to her best

response. If (q1, t1) 6= (q2, t2), then this deviation is consistent with the regulation only if

t2 ≥ r2q2. However, we can construct type 2’s best response in such a way that she trades

the contract (q2, t2) only if it strictly attracts her; otherwise, type 2 may as well obtain her

equilibrium utility u2(Q
∗
2, T

∗
2 ) by only trading with firms l 6= k. Arguing as in Step 2, we

then obtain t2 < r2q2, a contradiction. If (q1, t1) = (q2, t2) ≡ (q, t), then, because type 1 can

purchase her demand Q∗1 for coverage at price r from firms l 6= k, it must be that t ≤ rq and

the deviation is not profitable. Hence the result. �

Proof of Theorem 3. The necessity of conditions (10)–(11) follows from Lemma 1. We

show that, under conditions (10)–(11), the regulated game has a free-entry equilibrium in

which only two firms, say, firms 1 and 2, are active on the equilibrium path and post the

same menu C∗, which is recursively defined on the basis of the following three contracts:

1. The no-trade contract (0, 0);

2. The basic-coverage contract c∗1 ≡ (Q∗1, T
∗
1 );

3. The complementary-coverage contract c∗2 ≡ (Q∗2 −Q∗1, T ∗2 − T ∗1 ).

Specifically, let C∞ be the smallest set that contains these three contracts and that is closed

under addition with the latent contract c`1 ≡ (q`1, t
`
1) defined by (13)–(14); that is,

c ∈ C∞ implies c+ c`1 ∈ C∞.

Notice that C∞ is unbounded and hence not compact. To construct from C∞ a compact

menu C∗, consider the line M with slope r1 that supports type 1’s upper contour set of

(Q∗1, T
∗
1 ), which is well-defined as τ1(Q

∗
1, T

∗
1 ) = r and type 1’s marginal rate of substitution

strictly and continuously decreases along her equilibrium indifference curve and vanishes as

aggregate coverage grows large. Let H be the lower closed half-space defined by M . Because

nonnull contracts in C∞ have premium rates at least equal to r, whereas the line M has

slope r1, the set C∞ ∩H is finite. We define C∗ as follows:

C∗ ≡ (C∞ ∩H) + {(0, 0), c`1}. (A.24)

Finally, every inactive firm k 6= 1, 2 issues the contract c∗2. The remainder of the proof

consists of four steps.

Step 1 The proof that consumers have a best response such that, on the equilibrium
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path, they trade according to the JHG allocation, is similar to that of Step 1 of the proof of

Theorem 2, except that both types now trade the contract c∗1 with, say, firm 1, and type 2

in addition trades c∗2 with firm 2. In particular, by (10), type 2 is not tempted to trade two

contracts c∗1 with firms 1 and 2. All firms earn zero profit.

Step 2 The proof that no firm has a profitable deviation that only attracts type 2 is

similar to that of Step 2 of the proof of Theorem 2, observing in addition that type 2 can

obtain her equilibrium utility u2(Q
∗
2, T

∗
2 ) by trading c∗1 with one active firm and c∗2 with an

inactive firm.

Step 3 We next show that no firm has a cream-skimming deviation. As in Step 3 of the

proof of Theorem 2, let X be the cone of such deviations. We distinguish two cases.

Consider first the case of an active firm, say, firm 1. Let (q, t) ∈ X be some contract,

issued by firm 1, that attracts type 1 in combination with a contract c ∈ C∗ issued by firm

2 and ν ∈ {0, . . . , n − 2} contracts c∗2 issued by firms k 6= 1, 2. Because firm 2 issues the

contract c∗1, the equilibrium utility of type 1 remains available following firm 1’s deviation.

Hence we have

u1((q, t) + c+ νc∗2) ≥ u1(Q
∗
1, T

∗
1 ). (A.25)

Now, (q, t) ∈ X implies t ≥ r1q. As a result, it must be that c ∈ C∞ ∩ H, where C∞ and

H are defined as above; otherwise, type 1 would not be willing to combine (q, t) with c.

Therefore, by (A.24), c + c`1 ∈ C∗. In particular, because Assumption C is satisfied, we can

apply Lemma 2, so that (A.25) implies

u2((q, t) + c+ c`1 + νc∗2) ≥ u2(Q
∗
2, T

∗
2 )

by (12); hence (q, t) also attracts type 2 in combination with the contract c + c`1 issued by

firm 2 and the ν contracts c∗2 issued by firms k 6= 1, 2. We can thus construct the consumers’

best response in such a way that both types trade the contract (q, t) with firm 1. But then,

because rq ≥ t as (q, t) ∈ X, this deviation is not profitable, as desired.

Consider next the case of an inactive firm k 6= 1, 2. Let (q, t) ∈ X be some contract,

issued by firm k, that attracts type 1 in combination with contracts c, c′ ∈ C∗ issued by

firms 1 and 2 and ν ∈ {0, . . . , n − 3} contracts c∗2 issued by firms l 6= 1, 2, k, provided such

firms exist. In analogy with (A.25), we have

u1((q, t) + c+ c′ + νc∗2) ≥ u1(Q
∗
1, T

∗
1 ). (A.26)

By the same reasoning as in the previous case, it must be that c+ c′ ∈ (C∞ +C∞)∩H and
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hence c, c′ ∈ C∞ ∩ H. Therefore, for instance, c′ + c`1 ∈ C∗. Applying again Lemma 2, we

obtain that (A.26) implies

u2((q, t) + c+ c′ + c`1 + νc∗2) ≥ u2(Q
∗
2, T

∗
2 )

by (12); hence (q, t) also attracts type 2 in combination with the contracts c and c′ + c`1

issued by firms 1 and 2, respectively, and the ν contracts issued by firms l 6= 1, 2, k. We can

then conclude as in the previous case.

Step 4 There remains to prove that no firm k has a profitable menu deviation. For active

firms, the proof proceeds as in Step 3 of the proof of Theorem 2. For inactive firms, the key

observation is that, under conditions (10)–(11), no such firm can exploit the trade (2Q∗1, 2T
∗
1 )

made available by active firms on the equilibrium path to attract type 2 in a profitable way.

The proof then proceeds as for active firms. Hence the result. �
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[26] Chiappori P.-A., and B. Salanié (2000): “Testing for Asymmetric Information in

Insurance Markets,” Journal of Political Economy, 108(1), 56–78.

52



[27] Crocker, K.J., and A. Snow (1985a): “The Efficiency of Competitive Equilibria in

Insurance Markets with Asymmetric Information,” Journal of Public Economics, 26(2),

207–219.

[28] Crocker, K.J., and A. Snow (1985b): “A Simple Tax Structure for Competitive

Equilibrium and Redistribution in Insurance Markets with Asymmetric Information,”

Southern Economic Journal, 51(4), 1142–1150.

[29] Dahlby, B.G. (1981): “Adverse Selection and Pareto Improvements through Compulsory

Insurance,” Public Choice, 37(3), 547–558.

[30] Debreu, G. (1972): “Smooth Preferences,” Econometrica, 40(4), 603–615.

[31] Einav, L., and A. Finkelstein (2011): “Selection in Insurance Markets: Theory and

Empirics in Pictures,” Journal of Economic Perspectives, 25(1), 115–138.

[32] Einav, L., A. Finkelstein, and M.R. Cullen (2010): “Estimating Welfare in Insurance

Markets Using Variation in Prices,” Quarterly Journal of Economics, 125(2), 877–921.

[33] Einav, L., A. Finkelstein, S.P. Ryan, P. Schrimpf, and M.R. Cullen (2013): “Selection

on Moral Hazard in Health Insurance,” American Economic Review, 103(1), 178–219.

[34] Finkelstein, A. (2004): “Minimum Standards, Insurance Regulation and Adverse

Selection: Evidence from the Medigap Market,” Journal of Public Economics, 88(12),

2515–2547.

[35] Finkelstein, A., and K. McGarry (2006): “Multiple Dimensions of Private Information:

Evidence from the Long-Term Care Insurance Market,” American Economic Review,

96(4), 938–958.

[36] Finkelstein, A., and J.M. Poterba (2004): “Adverse Selection in Insurance Markets:

Policyholder Evidence from the U.K. Annuity Market,” Journal of Political Economy,

112(1), 183–208.

[37] Glosten, L.R. (1994): “Is the Electronic Open Limit Order Book Inevitable?” Journal

of Finance, 49(4), 1127–1161.

[38] Guerrieri, V., R. Shimer, and R. Wright (2010): “Adverse Selection in Competitive

Search Equilibrium,” Econometrica, 78(6), 1823–1862.

[39] Hansen, L.P., and T.J. Sargent (2001): “Robust Control and Model Uncertainty,” Amer-

53



ican Economic Review, 91(2), 60–66.

[40] He, D. (2009): “The Life Insurance Market: Asymmetric Information Revisited,” Jour-

nal of Public Economics, 93(9–10), 1090–1097.

[41] Hellwig, M.F. (1983): “On Moral Hazard and Non-Price Equilibria in Competitive

Insurance Markets,” Discussion Paper No. 109, Institut für Gesellschafts- und

Wirtschaftswissenschaften, Sonderforschungsbereich 21, Universität Bonn.

[42] Hellwig, M.F. (1988): “A Note on the Specification of Interfirm Communication in

Insurance Markets with Adverse Selection,” Journal of Economic Theory, 46(1), 154–163.

[43] Hendren, N. (2013): “Private Information and Insurance Rejections,” Econometrica,

81(5), 1713–1762.

[44] IASB (2013): Insurance Contracts. London: IFRS Foundation Publications

Department.

[45] Jaynes, G.D. (1978): “Equilibria in Monopolistically Competitive Insurance Markets,”

Journal of Economic Theory, 19(2), 394–422.

[46] Jaynes, G.D. (2011): “Equilibrium and Strategic Communication in the Adverse

Selection Insurance Model,” Economics Department Working Paper No. 91, Yale

University.

[47] Klibanoff, P., M. Marinacci, and S. Mukerji (2005): “A Smooth Model of Decision

Making under Ambiguity,” Econometrica, 73(6), 1849–1892.

[48] Martimort, D., and L. Stole (2002): “The Revelation and Delegation Principles in

Common Agency Games,” Econometrica, 70(4), 1659–1673.

[49] Mas-Colell, A. (1985): The Theory of General Economic Equilibrium: A Differentiable

Approach. Cambridge, UK: Cambridge University Press.

[50] Mossialos, E., M. Wenzl, R. Osborn, and D. Sarnak (2016): 2015 International Profiles

of Health Care Systems. New York: Commonwealth Fund.

[51] Paccagnella, O., V. Rebba, and G. Weber (2013): “Voluntary Private Health Insurance

among the over 50s in Europe,” Health Economics, 22(3), 289–315.

[52] Pauly, M.V. (1974): “Overinsurance and Public Provision of Insurance: The Roles of

54



Moral Hazard and Adverse Selection,” Quarterly Journal of Economics, 88(1), 44–62.

[53] Peters, M. (2001): “Common Agency and the Revelation Principle,” Econometrica,

69(5), 1349–1372.

[54] Poterba, J.M. (2014): “Retirement Security in an Aging Society,” American Economic

Review, 104(5), 1–30.

[55] Rothschild, M., and J.E. Stiglitz (1976): “Equilibrium in Competitive Insurance

Markets: An Essay on the Economics of Imperfect Information,” Quarterly Journal of

Economics, 90(4), 629–649.

[56] Stiglitz, J.E. (1977): “Monopoly, Non-Linear Pricing and Imperfect Information: The

Insurance Market,” Review of Economic Studies, 44(3), 407–430.

[57] Stiglitz, J.E., J. Yun, and A. Kosenko (2020): “Bilateral Information Disclosure in

Adverse Selection Markets with Nonexclusive Competition,” NBER Working Paper No.

27041.

[58] Thomson, S., and E. Mossialos (2009): Private Health Insurance in the European Union.

Brussels: European Commission.

[59] Villeneuve, B. (2003): “Mandatory Pensions and the Intensity of Adverse Selection in

Life Insurance Markets,” Journal of Risk and Insurance, 70(3), 527–548.

[60] Wilson, C. (1977): “A Model of Insurance Markets with Incomplete Information,” Jour-

nal of Economic Theory, 16(2), 167–207.

55



Online Appendix

S.1 A Reformulation of Assumption C

The following result shows that Assumption C is equivalent to the property that type 2’s

Hicksian demand for coverage be more sensitive, or as sensitive, to changes in the premium

rate than type 1’s, whatever utility levels are used as references.

Lemma S.1 Let Hi(p,u) be type i’s Hicksian demand function. Then property C(i) (C(ii))

is satisfied if and only if
∣∣∂H2

∂p
(p,u2)

∣∣ >(=)
∣∣∂H1

∂p
(p,u1)

∣∣ for all (p,u1,u2).

Proof. Let T = Ii(Q,u) be the functional expression of type i’s indifference curve at utility

level u. Then Hi(·,u) is the inverse of ∂Ii
∂Q

(·,u), so that ∂Hi

∂p
(p,u) =

[
∂2Ii
∂Q2 (Hi(p,u),u)

]−1
for

all (p,u). By (15), property C(i) is satisfied if and only if

for all (Q1, Q2,u1,u2),
∂I1
∂Q

(Q1,u1) =
∂I2
∂Q

(Q2,u2) implies
∂2I1
∂Q2

(Q1,u1) <
∂2I2
∂Q2

(Q2,u2),

that is, because p = ∂Ii
∂Q

(Qi,ui) if and only if Qi = Hi(p,ui), if and only if

for all (p,u1,u2),
∂2I1
∂Q2

(H1(p,u1),u1) <
∂2I2
∂Q2

(H2(p,u2),u2),

which is the desired property of Hicksian demand functions. The proof for property C(ii) is

similar, replacing all inequalities by equalities. The result follows. �

S.2 Omitted Calculations

If every type i’s preferences have the expected-utility representation (3), then type i’s

marginal rate of substitution of coverage for premia is

τi(Q, T ) =

∫
lgi(l |Q, T ) l(dl), (S.1)

where gi(· |Q, T ) is the risk-neutral density

gi(l |Q, T ) ≡ v′i(W0 − (1−Q)l − T )fi(l)∫
v′i(W0 − (1−Q)`− T )fi(`) l(d`)

. (S.2)

We first provide a convenient expression for ∂2Ii
∂Q2 .

Lemma S.2 Let αi(W ) ≡ −v′′i
v′i

(W ) be type i’s coefficient of absolute risk-aversion at wealth

W, and let L̃ be a random variable with density fi with respect to the measure l. Then

∂2Ii
∂Q2

(Q,u) = −Covgi(·|Q,Ii(Q,u))

[
L̃, αi(W0 − (1−Q)L̃+ Ii(Q,u))

[
L̃− ∂Ii

∂Q
(Q,u)

]]
. (S.3)
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Proof. By (S.1)–(S.2), we only need to differentiate

∂Ii
∂Q

(Q,u) = τi(Q, Ii(Q,u)) =

∫
l

v′i(W0 − (1−Q)l − Ii(Q,u))fi(l)∫
v′i(W0 − (1−Q)`− Ii(Q,u))fi(`) l(d`)

l(dl)

with respect to Q. Omitting the index i and the arguments of the functions for the sake of

clarity, this yields

∂2I
∂Q2

=

∫
l

[
v′′
(
l − ∂I

∂Q

)∫
v′f dl− v′

∫
v′′
(
l − ∂I

∂Q

)
f dl

]
f

(
∫
v′f dl)2

dl

= −
∫
l

[
α

(
l − ∂I

∂Q

)
−
∫
α

(
l − ∂I

∂Q

)
v′f∫
v′f dl

dl

]
v′f∫
v′f dl

dl,

which implies (S.3) upon noticing that the bracketed term on the right-hand side of this

equality has zero mean under the risk-neutral density g = v′f∫
v′f dl

. The result follows. �

We now use Lemma S.2 to show that Assumption C is consistent with the other assumptions

of our model. We consider two examples to this end.

Example 1 Suppose first that there is a single loss level L, so that

ui(Q, T ) = fi(L)vi(W0 − (1−Q)L− T ) + [1− fi(L)]vi(W0 − T ). (S.4)

The following result then holds.

Lemma S.3 The preferences represented by (S.4) satisfy both property C(i) and the single-

crossing condition if type 1 is uniformly more risk-averse than type 2,

inf
W
α1(W ) > sup

W
α2(W ), (S.5)

and type 2 is sufficiently riskier than type 1,

ln

(
f2(L)

1− f2(L)

)
− ln

(
f1(L)

1− f1(L)

)
>

[
sup
W

α1(W )− inf
W
α2(W )

]
L. (S.6)

Moreover, the preferences represented by (S.4) with f2(L) > f1(L) satisfy both property C(ii)

and the single-crossing condition if type 1 and type 2 have the same CARA utility index.

Proof. Consider first Assumption C. By (S.1)–(S.2) and (S.4),

gi(L |Qi, Ii(Qi,ui)) =
τi(Qi, Ii(Qi,ui))

L
=

∂Ii
∂Q

(Qi,ui)

L
.

Hence

∂I1
∂Q

(Q1,u1) =
∂I2
∂Q

(Q2,u2) ≡
∂I
∂Q
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implies

g1(L |Q1, I1(Q1,u1)) = g2(L |Q2, I2(Q2,u2)) =

∂I
∂Q

L
.

That is, the two risk-neutral densities are the same under the premise of Assumption C. We

can now apply the covariance formula (S.3) to obtain

∂2Ii
∂Q2

(Qi,ui) = − ∂I
∂Q

(
L− ∂I

∂Q

)
αi(Qi,ui),

where

αi(Qi,ui) ≡
∂I
∂Q

L
αi(W0 − Ii(Qi,ui)) +

(
1−

∂I
∂Q

L

)
αi(W0 − (1−Qi)L− Ii(Qi,ui)).

If (S.5) holds, then α1(Q1,u1) > α2(Q2,u2), so that

∂I1
∂Q

(Q1,u1) =
∂I2
∂Q

(Q2,u2) implies
∂2I1
∂Q2

(Q1,u1) <
∂2I2
∂Q2

(Q2,u2),

which is property C(i) by (15). If type 1 and type 2 have the same CARA utility index, then

∂I1
∂Q

(Q1,u1) =
∂I2
∂Q

(Q2,u2) implies
∂2I1
∂Q2

(Q1,u1) =
∂2I2
∂Q2

(Q2,u2),

which is property C(ii).

Consider next the single-crossing condition. By (S.1)–(S.2), (5) holds if and only if[
1− f2(L)

f2(L)

][
v′2(W0 − T )

v′2(W0 − (1−Q)L− T )

]
<

[
1− f1(L)

f1(L)

][
v′1(W0 − T )

v′1(W0 − (1−Q)L− T )

]
. (S.7)

This is clearly the case if v1 = v2 and f2(L) > f1(L). Assume from now on that v1 6= v2 and

that (S.5) holds. Suppose first Q ≤ 1. As
v′′2
v′2

(W ) ≤ − infW α2(W ), we have

v′2(W0 − T )

v′2(W0 − (1−Q)L− T )
≤ exp

(
− inf

W
α2(W ) (1−Q)L

)
.

Similarly, because
v′′1
v′1

(W ) ≥ − supW α1(W ),

v′1(W0 − T )

v′1(W0 − (1−Q)L− T )
≥ exp

(
− sup

W
α1(W ) (1−Q)L

)
.

Thus a sufficient condition for (S.7) to hold for a fixed Q ≤ 1 is

ln

(
f2(L)

1− f2(L)

)
− ln

(
f1(L)

1− f1(L)

)
>

[
sup
W

α1(W )− inf
W
α2(W )

]
(1−Q)L.

In turn, (S.6) is a sufficient condition for this to hold for all Q ≤ 1 under (S.5). Suppose
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next Q > 1. As −v′′2
v′2

(W ) ≤ supW α2(W ), we have

v′2(W0 − T )

v′2(W0 − (1−Q)L− T )
≤ exp

(
− sup

W
α2 (1−Q)L

)
.

Similarly, because −v′′1
v′1

(W ) ≥ infW α1(W ),

v′1(W0 − T )

v′1(W0 − (1−Q)L− T )
≥ exp

(
− inf

W
α1(W ) (1−Q)L

)
.

As f2(L) > f1(L) under (S.5)–(S.6) and infW α1(W ) > supW α2(W ) under (S.5), this implies

that (S.7) holds for all Q > 1. The result follows. �

Example 2 Suppose next that every type i has a CARA utility index with absolute

risk-aversion coefficient αi and a loss density fi that belongs to the natural exponential

family (18), which includes, beyond the Bernoulli case of Example 1, binomial, gamma, and

Poisson loss distributions. Hence, up to a multiplicative constant,

ui(Q, T ) = − exp(αiT )

∫
exp([αi(1−Q) + θi]l)h(l) l(dl) (S.8)

and type i’s preferences are quasilinear. The following result then holds.

Lemma S.4 The preferences represented by (S.8) satisfy both property C(i) and the single-

crossing condition if type 1 is uniformly more risk-averse than type 2,

α1 > α2, (S.9)

and type 2 is sufficiently riskier than type 1,

θ2 − θ1 > α1 − α2. (S.10)

Moreover, the preferences represented by (S.8) with θ2 > θ1 satisfy both property C(ii) and

the single-crossing condition if type 1 and type 2 have the same CARA utility index.

Proof. Consider first Assumption C. Thanks to quasilinearity, we can simplify notation by

omitting transfers and utility levels. By (S.1)–(S.2) and (S.8),

τi(Q) = I ′i(Q) = ψ(αi(1−Q) + θi), (S.11)

where, for each x in the relevant range,

ψ(x) ≡
∫
l

exp(xl)h(l)∫
exp(x`)h(`) l(d`)

l(dl).
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Observe that

ψ′(x) ∝
∫
l2

exp(xl)h(l)∫
exp(x`)h(`) l(d`)

l(dl)−
[∫

l
exp(xl)h(l)∫

exp(x`)h(`) l(d`)
l(dl)

]2
> 0

by Jensen’s inequality, so that ψ(x) is strictly increasing in x. Hence

τ1(Q1) = τ2(Q2)

implies

α1(1−Q1) + θ1 = α2(1−Q2) + θ2 ≡ x

and thus

g1(l |Q1) = g2(l |Q2) = g(l) ≡ exp(xl)h(l)∫
exp(x`)h(`) l(d`)

.

That is, the two risk-neutral densities are the same under the premise of Assumption C. We

can now apply the covariance formula (S.3) to obtain

I ′′i (Qi) = −αiVarg[L̃].

If (S.9) holds, then

I ′1(Q1) = I ′2(Q2) implies I ′′1 (Q1) < I ′′2 (Q2),

which is property C(i) by (15). If type 1 and type 2 have the same CARA utility index, then

I ′1(Q1) = I ′2(Q2) implies I ′′1 (Q1) = I ′′2 (Q2),

which is property C(ii).

Consider next the single-crossing condition. By (S.11), (5) holds if and only if

α2(1−Q) + θ2 > α1(1−Q) + θ1. (S.12)

This is clearly the case if α1 = α2 and θ2 > θ1. If α1 > α2 as in (S.9), a necessary and

sufficient condition for (S.12) to hold for all Q is (S.10). The result follows. �
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