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Abstract

This paper considers the problem of inference in a linear regression model with outliers
where the number of outliers can grow with sample size but their proportion goes to 0.
We apply an estimator penalizing the `1-norm of a random vector which is non-zero for
outliers. We derive rates of convergence and asymptotic normality. Our estimator has the
same asymptotic variance as the OLS estimator in the standard linear model. This enables
to build tests and confidence sets in the usual and simple manner. The proposed procedure
is also computationally advantageous as it amounts to solving a convex optimization
program. Overall, the suggested approach constitutes a practical robust alternative to
the ordinary least squares estimator.
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1 Introduction

This paper considers a linear regression model with outliers. The statistican observes a
dataset of n i.i.d. realizations of an outcome scalar random variable yi and a random vector
of covariates xi with support in RK . We assume that the following relationship holds:

yi = x>i β + αi + εi ∀i = 1, . . . , n, , (1.1)

where β ∈ RK , εi, the error term, is a scalar random variable such that E[xiεi|αi = 0] = 0
and αi is a random variable. It also holds that {yi, xi, εi, αi}i are i.i.d. and E[xix>i |αi = 0]
exists and is positive definite. The observation i is called an outlier if αi 6= 0. Let P(αi 6= 0),
the average proportion of outliers, be denoted p. The goal is to obtain inference results on
the parameter β.

This model can represent various situations of practical interest. First, the statistician
could be interested in β if it corresponds to the coefficients of the best linear predictor of
yi given xi conditional on αi = 0. In the presence of outliers, the coefficient of the best
linear predictor of yi given xi for the whole population may differ greatly from β and hence
a statistical analysis based on the whole sample may lead to a poor estimate of β.

Second, if β is given a causal interpretation, then it may represent the causal effect of the
regressors for the population of "standard" individuals. That is, for instance, if the aim is to
evaluate the effect of treatment which is statistically represented by a binary variable which
takes value 1 if the individual is treated, it could be that the effect of treatment is negative
for most of the population but strongly positive for a small fraction of the individuals, the
outliers. The policy maker may not be willing to implement a policy that has a negative
effect on most of the population, giving interest to a statistical procedure that estimates the
treatment effect of the large majority of the population.

Finally, β could represent the true coefficient of the best linear predictor of ỹi given x̃i in a
measurement errors model where we do not observe (ỹi, x̃i) but (yi, xi). β may be of interest
if one possesses a second sample where xi is known but not yi and is interested in predicting
yi from xi. If the observed variables follow the model ỹi = x̃iβ + ε̃i with E[x̃iε̃i] = 0, this fits
our framework with εi = ε̃i and

αi = yi − ỹi + (x̃i − xi)β.

Hence, αi allows for both measurement errors in xi - called outliers in the x-direction - and in
yi, the outliers in the y-direction, for a small fraction of the population, see Rousseeuw and
Leroy (2005) for a precise discussion.

This paper develops results on the estimation of β when the vector α = (α1, . . . , αn)> is
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sparse in the sense that p goes to 0 with n. We rely on a variant of the square-root lasso
estimator of Belloni et al. (2011) which penalizes the `1-norm of the vector α. The advantages
of our estimator are that the penalty parameter does not depend on the variance of the error
term and is computationally tractable. If the vector α is sparse enough, we show that our
estimator is

√
n-consistent and asymptotically normal. It has the same asymptotic variance

as the OLS estimator in the standard linear model without outliers.

Related literature. This paper is connected to at least two different research fields.
First, it draws on the literature on inference in the high-dimensional linear regression model.
Our estimator is analogous to the concomitant lasso of Owen (2007). In particular, the
computation algorithm outlined in Section 3 is similar to the one proposed for the scaled-
lasso estimator introduced in Sun and Zhang (2012). We borrow from this literature by using
an `1-penalized estimator and derive new inference results for the linear regression model with
very few outliers.

Next, this paper is related to the literature on robust regression. For detailed accounts of
this field, see Rousseeuw and Leroy (2005); Hampel et al. (2011); Maronna et al. (2018). The
literature identifies a trade-off between efficiency and robustness, as explicited below. Indeed,
M -estimators (such as the Ordinary Least-Squares (OLS) estimator) are often efficient when
data is generated by the standard linear model without outliers and Gaussian errors but this
comes at the price of robustness, as they can be asymptotically biased in the presence of
outliers. By contrast, S-estimators such as the Least Median of Squares (LMS) and the Least
Trimmed Squares (LTS) are robust according to several measures of robustness developed in
the literature. They are also asymptotically normal in the model with Gaussian errors and
without outliers but have a larger asymptotic variance than the OLS estimator in the standard
linear model. They also suffer from computational issues because of the non-convexity of their
objective functions (see Rousseeuw and Leroy (2005)). The estimator proposed in this paper
attains the same asymptotic variance as the OLS estimator in the standard linear model.
Unlike in this literature, the computation algorithm outlined in Section 3 relies on a convex
program and is computationally tractable. The proposed approach therefore provides a simple
efficient alternative to the rest of the literature.

Within the robust regression literature some authors have considered the application of
`1-norm penalization to robust estimation. In particular, the model studied in this paper nests
the Huber’s contamination model for location estimation introduced in Huber et al. (1964).
Indeed, if there is a single constant regressor, model nests the following framework:

yi = β + αi + εi,

where εi ∼ N (0, 1) i.i.d., β ∈ R is the mean of yi for non-outlying coefficients while E[yi|αi 6= 0]
is left unrestricted. Chen et al. (2018) show that the minimax lower bound for the squared
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`2-norm estimation error is of order greater than max(1/n, p2) under gaussian errors, where
||α||0 is the number of outliers in the sample. When p

√
log(n)→ 0, we attain this lower bound

up to a factor log(n)2. Several strategies have been proposed to tackle this location estimation
problem. The one which is closest to the approach studied in this paper is soft-thresholding
using a lasso estimator, that is use

β̂ ∈ arg min
β∈RK

n∑
i=1

(yi − β − αi)2 + λ
n∑
i=1
|αi|, λ > 0,

see for instance Collier and Dalalyan (2017). We substitute this estimator with a square-
root lasso that has the advantage to provide guidance on the choice of the penalty level that
is independent from the variance of the errors (see Belloni et al. (2011)). We extend the
analysis of this type of estimators to the linear regression model and develop inference results
new to the literature. Other `1-norm penalized estimators for robust linear regression have
been studied in the literature such as in Lambert-Lacroix et al. (2011); Dalalyan (2012); Li
(2012); Alfons et al. (2013), but the authors do not provide inference results. Fan et al. (2017)
considers robust estimation in the case where β is a high-dimensional parameter. Its estimator
penalizes the Huber loss function by a term proportional to the `1-norm of β.

Notations. We use the following notations. For a matrix M , M> is its transpose,
||M ||2, ||M ||1 and ||M ||∞ are, respectively, the `2-norm, `1-norm and the sup-norm of the
vectorization of M . ||M ||op is the operator norm of M and ||M ||0 is the number of non-zero
coefficients in M , that is its `0-norm. For a probabilistic event E , the fact that it happens
w.p.a. 1 (with probability approaching 1) signifies that P (E) −−−→

n→∞
1. Then, for k = 1, . . . ,K,

Xk is the vector ((x1)k, . . . , (xn)k)> and X is the matrix (x1, . . . , xn)>. PX is the projector on
the vector space spanned by the columns of the matrix X and MX = In−PX , where In is the
identity matrix of size n. We denote by y and ε, the vectors (y1, . . . , yn)> and (ε1, . . . , εn)>,
respectively. For a real number x ∈ R, sign(x) is equal to 1 if x ≥ 0 and −1 otherwise.

2 Linear regression with outliers

2.1 Framework

The probabilistic framework consists of a sequence of data generating processes (hence-
forth, DGPs) that depend on the sample size n. The joint distribution of (xi, εi) is indepen-
dent from the sample size. We consider an asymptotic where n goes to ∞ and where p, the
contamination level, depends on n while the number of regressors remains fixed.

The proposed estimation strategy is able to handle models where α is sparse, that is
||α||0 /n = oP (1) or, in other words, p→ 0. Potentially, every individual’s yi can be generated
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by a distribution that does not follow a linear model but the difference between the distribution
of yi and the one yielded by a linear model can only be important for a negligible proportion
of individuals. The subsequent theorems will help to quantify these previous statements.

2.2 Estimation procedure

We consider an estimation procedure that estimates both the coefficients αi and the effects
of the regressors β by a square-root lasso that penalizes only the coefficients αi, that is

(β̂, α̂) ∈ arg min
β∈RK , α∈Rn

1√
n
||y −Xβ − α||2 + λ

n
||α||1,

where λ is a penalty level which choice is discussed later. The advantage of the square-root
lasso over the lasso estimator is that the penalty level does not depend on an estimate of the
variance of εi. Hence, the proposed procedure is simple in that it does not make use of any
tuning parameter unlike the least trimmed squares estimator. An important remark is that
if β is such that Xβ = PX(y − α̂), then

1√
n
||y −Xβ − α̂||2 + λ

n
||α̂||1 ≤

1√
n
||y −Xb− α̂||2 + λ

n
||α̂||1,

for any b ∈ RK . Therefore, ifX>X is positive definite, β̂ is the OLS estimator of the regression
of y − α̂ on X, that is

β̂ =
(
X>X

)−1
X>(y − α̂). (2.1)

Then, notice also that for all α ∈ Rn and b ∈ RK , we have

1√
n
||MX(y − α)||2 + λ

n
||α||1 ≤

1√
n
||y −Xb− α||2 + λ

n
||α||1.

Hence, because the value of 1√
n
||y−Xb−α||2 + λ

n ||α||1 is 1√
n
||MX(y−α)||2 + λ

n ||α||1 whenever
Xb = PX(y − α), it holds that

α̂ ∈ arg min
α∈RN

1√
n
||MX(y − α)||2 + λ

n
||α||1. (2.2)

Under assumptions developed below, this procedure yields consistent estimation and asymp-
totic normality for β̂. Remark that model (1) can be seen as a standard linear model with αi
corresponding to the parameter of a dummy variable which value is 1 for the individual i and
0 otherwise. Hence, the estimator can be viewed as the square-root lasso estimator of Belloni
et al. (2011). However, our approach is met with additional technical difficulties because we
penalize only a subset of the variables and there is no hope to estimate α consistently as each
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of its entries is indirectly observed only once. As a result, we develop new assumptions and
theorems that are better suited for the purposes of this paper.

2.3 Assumptions and results

The first assumption that we make formalizes the hypothesis made on the model that
where outlined of the introduction.

Assumption 2.1 The following holds :

(i) {(xi, εi)}i are i.i.d. random variables;

(ii) E[xiεi] = E[εi] = 0;

(iii) Σ = E[xix>i ] exists and is positive definite;

(iv) There exists σ > 0 such that 0 < var[ε2i |xi] = σ2 <∞.

This assumption is standard in linear regression models and guarantees that the law of large
numbers and the central limit theorem can be applied to certain quantity of interests. The
main assumption concerns the choice of the penalty level:

Assumption 2.2 We have lim
n→∞

P
(
λ ≥ 2

√
n
||MXε||∞
||MXε||2

)
= 1.

The tuning of λ prescribed by this assumption depends on the distributional assumptions
made on ε, in particular on the tails. The next lemma provides guidance on how to choose
the regularization parameter according to assumptions on ε.

Lemma 2.1 Under Assumption 2.1, it holds that 2
√
n
||MXε||∞
||MXε||2

= 2 ||ε||∞σ +oP (||ε||∞)+OP (1).

Additionally, if ψ is such that lim
n→∞

P
(
ψ ≥ 2 ||ε||∞σ

)
= 1 and ϕ → ∞, then for any c > 1,

λ = cψ + ϕ satisfies Assumption 2.2.

The proof is given in Appendix. This lemma suppresses the role of the matrix X in the choice
of the penalty and simplifies the decision procedure. It leads to the subsequent corollary.

Corollary 2.1 Under Assumption 2.1, the following holds:

(i) If εi are Gaussian random variables, then λ = 2c
√

2 log(n) satisfies Assumption 2.2 for
any c > 1;

(ii) If εi are sub-Gaussian random variables, then there exists a constant c > 0 such that
λ = c

√
log(n) satisfies Assumption 2.2;
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(iii) If εi are sub-exponential random variables, then then there exists a constant c > 0 such
that λ = c log(n) satisfies Assumption 2.2.

The proof is given in Appendix. The statistician can use Corollary 2.1 to decide on the
penalization parameter given how heavy she expects the tails of the error term to be in her
data. In practice, it is advised to choose the smallest penalty verifying Assumption 2.2.
This can be done by Monte-Carlo simulations if one is willing to specify the distribution of
the errors up to its variance. Notice that heavy-tailed distributions such as sub-exponential
random variables are allowed as one can always take λ = log(n)

3
2 to satisfy Assumption 2.2.

To derive the convergence rate of the estimator, we first bound the estimation error on α
and obtain the following result:

Lemma 2.2 Under assumptions 2.1 and 2.2 and if √pmax (λ, ||X||∞) = oP (1), it holds that

1
n
||α̂− α||1 = OP (pλ) .

The proof is given in Appendix. The rate of convergence of ||α̂ − α||1/n therefore is lower
than p

√
log(n) if the errors are gaussian or sub-gaussian and we choose the penalty level as

in Lemma 2.1. Note that, as standard in works related to the lasso estimator (see Bühlmann
and Van De Geer (2011)), in the proof, a condition that states that a compatibility constant is
bounded from below with probability approaching one. The condition that √p||X||∞ = oP (1)
is enough to show that this property holds as shown in Lemma 3.4 in Appendix. It is possible
to find other sufficient conditions but it is outside the scope of this paper. Remark that if
{xi}i are i.i.d. sub-Gaussian random vectors then ||X||∞ = OP

(√
log(n)

)
allowing for the

sparsity level p = oP (1/ log(n)).

Here, we show how to derive the rate of convergence of β̂ from Lemma 2.2. Assume that
the assumptions of Lemma 2.2 hold. Substituting y by Xβ + α+ ε in (2), we obtain

β̂ − β =
(
X>X

)−1
X>ε+ (X>X)−1X>(α− α̂). (2.3)

Now, notice that
(
X>X

)−1
X>(α− α̂) = (X>X/n)−1X>(α− α̂)/n. Because of Assumption

2.1, we can apply the law of large numbers and obtain
(
X>X/n

)−1
= OP (1), which implies

that ∣∣∣∣∣∣∣∣(X>X)−1
X>(α− α̂)

∣∣∣∣∣∣∣∣
2
≤
∣∣∣∣∣
∣∣∣∣∣
( 1
n
X>X

)−1
∣∣∣∣∣
∣∣∣∣∣
op

1
n

∣∣∣∣∣∣X>(α− α̂)
∣∣∣∣∣∣

2

= OP

( 1
n
||X||∞||α− α̂||1

)
(by Hölder’s inequality). (2.4)
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By Lemma 2.2, this implies that

||(X>X)−1X>(α− α̂)||2 = OP (pλ||X||∞) .

Finally, we have that
√
n(X>X)−1X>ε

d−→ N (0, σΣ−1). This leads to Theorem 2.2.

Theorem 2.2 Under assumptions 2.1 and 2.2 and if √pmax (λ, ||X||∞) = oP (1), it holds
that

β̂ − β
max

(
1√
n
, pλ||X||∞

) = OP (1) .

This result allows to derive the rates of convergence under different assumptions on the
tails of the distributions of the regressors and the error term. For instance, if {xi}i and {εi}i
are i.i.d. sub-Gaussian random variables, then β̂ is consistent as long as p log(n)→ 0 for the
choice of λ proposed in Lemma 2.1. In this case, this implies that the estimator reaches (up to
a logarithmic factor) the minimax lower bound for the Huber’s contamination location model
under gaussian errors, which is max(1/n, p2) in `2-norm according to Chen et al. (2018). We
attain the rate max(1/n, p2 log(n)). Remark also that equation (5) explains the role of ||X||∞
in the convergence rate of β̂. For an individual i, if xi is large then an error in the estimation
of αi can contribute to an error in the estimation of β via the term (X>X)−1X>(α − α̂) in
(4). ||X||∞ measures the maximum influence that an observation can have.

To show that the estimator is asymptotically normal, it suffices to assume that the term
(X>X)−1X>(α− α̂) in (4) vanishes asymptotically:

Theorem 2.3 Under assumptions 2.1 and 2.2, assuming that √pmax (λ, ||X||∞) = oP (1),
pλ
√
n = o(1) and pλ||X||∞

√
n = oP (1), we have

√
n(β̂ − β) d−→ N (0, σ2Σ−1).

Moreover, σ̂2 = 1
n

∑n
i=1(yi − x>i β̂ − α̂)2 and Σ̂ = 1

n

∑n
i=1 xix

>
i are consistent estimators of,

respectively, σ2 and Σ.

The proof that σ̂2 P−→ σ2 is given in Appendix. When the entries of X and ε are sub-Gaussian,
for the choice of the penalty prescribed in Lemma 2.1, the contamination level needs to
satisfy p log(n)

√
n → 0 to be able to use 2.3 to prove asymptotic normality. Notice that

the asymptotic variance of our estimator corresponds to the one of the OLS estimator in the
standard linear model under homoscedasticity. Hence, confidence sets and tests can be built
in the same manner as in the theory of the OLS estimator.

An important last remark concerns the meaning of confidence intervals developed using
Theorem 2.3. Note that they are obtained under an asymptotic with triangular array data
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under which the number of outliers is allowed to go to infinity while the proportion of outliers
goes to 0. The interpretation of a 95% confidence interval I built with Theorem 2.3 is as
follows: if the number of outliers in our data is low enough and the sample size is large
enough, then there is a probability of approximatively 0.95 that β belongs to I.

3 Computation and simulations

3.1 Iterative algorithm

We propose to use an algorithm already introduced in Section 5 of Owen (2007) to compute
our estimator. Because u = minσ>0

{
σ
2 + 1

2σu
2
}
, as long as

∣∣∣∣∣∣y −Xβ̂ − α̂∣∣∣∣∣∣2
2
> 0, we have that

(β̂, α̂, σ̂) ∈ arg min
β∈RK ,α∈Rn,σ∈R+

σ

2 + 1
2σ ||y −Xβ − α||

2
2 + λ√

n
||α||1 . (3.1)

This is a convex objective and the proposed approach is to iteratively minimize over β, α and
σ. Let us start from

(
β(0), α(0), σ(0)

)
and compute the following sequence for t ∈ N∗ until

convergence:

1. β(t+1) ∈ arg min
β∈RK

∣∣∣∣∣∣y −Xβ − α(t)
∣∣∣∣∣∣2

2
;

2. α(t+1) ∈ arg min
α∈Rn

∣∣∣∣∣∣y −Xβ(t+1) − α
∣∣∣∣∣∣2

2
+ 2λσ(t)

√
n
||α||1 ;

3. σ(t+1) =
∣∣∣∣∣∣y −Xβ(t+1) − α(t+1)

∣∣∣∣∣∣
2
.

The following lemma is a direct consequence of Section 4.2.2. in Giraud (2014) and explains
how to perform step 2:

Lemma 3.1 For i = 1, . . . , n, if
∣∣∣yi − (Xβ(t+1))i

∣∣∣ ≤ λσ(t)
√
n

then α(t+1)
i = 0. If

∣∣∣yi − (Xβ(t+1))i
∣∣∣ >

λσ(t)
√
n

then α(t+1)
i = yi −

(
Xβ(t+1)

)
i
− sign

(
yi −

(
Xβ(t+1)

)
i

)
λσ(t)
√
n
.

3.2 Simulations

We apply this algorithm in a small simulation exercise. The data generating process is as
follows: there are two regressors x1i and x2i, with x1i = 1 for all i and x2i are i.i.d. N (0, 1)
random variables. εi are i.i.d. N (0, 1) random variables. The parameter is β = (1, 1)>. Then,
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we set

αi =


0 if x2i < q1−p

5x2i if x2i ≥ q1−p,

where q1−p is such that P(x2i ≥ q1−p) = p. In tables 1, 2 and 3 we present the bias, the
variance, the mean squared error (MSE), of β̂ for various values of p and n. We use 100
iterations and λ = 2.01

√
2 log(n). This choice corresponds to the one outlined in Corollary

2.1. The bias, the variance and for the naive OLS estimator:

β̃OLS ∈ arg min
β∈RK

||y −Xβ||22

are also reported. The coverage of 95% confidence intervals based on the asymptotic vari-
ance of Theorem 2.3 are presented in Table 4. The presented results are averages over 8000
replications. We observe that our estimator brings a substantial improvement in estimation
precision with respect to the OLS estimator.

Table 1: p = 0.025, n = 100

β̂1 β̃OLS
1 β̂2 β̃OLS

2

bias 0.127 0.301 0.278 0.671

var 0.060 0.130 0.097 0.221

MSE 0.076 0.221 0.174 0.671

Table 2: p = 0.01, n = 1000

β̂1 β̃OLS
1 β̂2 β̃OLS

2

bias 0.044 0.133 0.120 0.361

var 0.002 0.003 0.004 0.007

MSE 0.004 0.021 0.018 0.152

Table 3: p = 0.001, n = 10000

β̂1 β̃OLS
1 β̂2 β̃OLS

2

bias 0.005 0.015 0.017 0.057

var 1.08 ×10−4 1.28 ×10−4 2.21 ×10−4 5.23 ×10−4

MSE 1.33 ×10−4 3.53 ×10−4 5.10 ×10−4 3.772 ×10−3

Table 4: Coverage of 95% confidence intervals based on Theorem 2.3

p n β̂1 β̃OLS
1 β̂2 β̃OLS

2

0.025 100 0.82 0.47 0.75 0.20

0.01 1000 0.74 0.16 0.24 0.00

0.001 10000 0.93 0.66 0.68 0.03
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Appendix

Proof of Lemma 2.1

We start by proving the next two lemmas:

Lemma 3.2 Under Assumption 2.1, it holds that ||PXε||∞ = OP (1).

Proof. We have that
√
n(X>X)−1X>ε

d−→ N (0, σΣ−1), therefore
√
n||(X>X)−1X>ε||2 =

OP (1). Because X(X>X)−1X>ε = X√
n

√
n(X>X)−1X>ε, we obtain that

||PXε||2 ≤
||X||2√

n

√
n||(X>X)−1X>ε||2 = OP

( ||X||2√
n

)
= OP (1),

by the law of large numbers. �

Lemma 3.3 Under Assumption 2.1, it holds that
√
n

||MXε||2
− 1

σ = oP (1).

Proof. First, remark that, by the Pythagorean theorem,

||MXε||22 =
〈
ε−X(X>X)−1X>ε, ε−X(X>X)−1X>ε

〉
= ||ε||22 − ε

>X(X>X)−1X>ε.

Now, this leads to 1
n ||MXε||22 = 1

n ||ε||
2
2 −

1
nε
>X(X>X)−1X>ε. By the law of large numbers

and the central limit theorem, we have that
√
n(X>X)−1X>ε = OP (1) and 1√

n
X>ε = OP (1).

This implies that ε>X(X>X)−1X>ε = OP (1). We also have that 1
n ||ε||

2
2

P−→ σ2, which leads
to 1

n ||MXε||22
P−→ σ2. We conclude by the continuous mapping theorem. �

Now, we proceed with the proof of Lemma 2.1. Notice that

2
√
n
||MXε||∞
||MXε||2

≤ 2
√
n

||MXε||2
(||ε||∞ + ||PXε||∞)

≤ 2
σ
||ε||∞ + 2

∣∣∣∣∣
√
n

||MXε||2
− 1
σ

∣∣∣∣∣ ||ε||∞ + 2
σ
||PXε||∞ + 2

∣∣∣∣∣
√
n

||MXε||2
− 1
σ

∣∣∣∣∣ ||PXε||∞.
Using lemmas 3.2 and 3.3, we obtain

2
√
n
||MXε||∞
||MXε||2

= 2 ||ε||∞
σ

+ oP (||ε||∞) +OP (1). (3.2)

The rest of proof of the lemma is a direct consequence of (7) and the pigeonhole principle.

10



Proof of Corollary 2.1

Proof of (i) By Lemma 2.1 it is sufficient to show that for c > 1,

lim
n→∞

P
(

2c
√

2 log(n) ≥ 2 ||ε||∞
σ

)
= 1.

Let us remember the Gaussian bound (see Lemma B.1 in Giraud (2014)): for t ≥ 0, we have
P
(
|εi|
σ ≥ t

)
≤ e−

t2
2 . Then, we have

P
(

2c
√

2 log(n) ≤ 2 ||ε||∞
σ

)
≤

n∑
i=1

P
(
c
√

2 log(n) ≤ |εi|
σ

)
≤ ne−c log(n) = e−(c−1) log(n) → 0.

Proof of (ii) By Lemma 2.1 it is sufficient to show that there exists c > 0 such that

lim
n→∞

P
(
c
√

log(n) ≥ 2 ||ε||∞
σ

)
= 1.

Recall the sub-Gaussian bound (see Proposition 2.5.2 in Vershynin (2018)): for t ≥ 0, there
exists b > 0 such that P

(
|εi|
σ ≥ t

)
≤ 2e−

t2
2b . Then, for ρ > 1, we have

P
(

2
√

2ρ
√
b
√

log(n) ≤ 2 ||ε||∞
σ

)
≤

n∑
i=1

P
(√

2ρ
√
b
√

log(n) ≤ |εi|
σ

)
≤ 2ne−ρ2 log(n) = 2e−(ρ2−1) log(n) → 0.

Proof of (iii) Using Lemma 2.1, we only need to show that there exists c > 0 such that

lim
n→∞

P
(
c log(n) ≥ 2 ||ε||∞

σ

)
= 1.

Let us state the sub-exponential bound (see Proposition 2.7.1 in Vershynin (2018)): for t ≥ 0,
there exists b > 0 such that P

(
|εi|
σ ≥ t

)
≤ 2e−

t
2b . Then, let ρ > 1, we have, for n large enough,

P
(

4ρb log(n) ≤ 2 ||ε||∞
σ

)
≤

n∑
i=1

P
(

2ρb log(n) ≤ |εi|
σ

)
≤ 2ne−ρ log(n) = 2e−(ρ−1) log(n) → 0.

Proof of Lemma 2.2

Compatibility constant. For δ ∈ Rn, we denote by δJ ∈ Rn the vector for which (δJ)i = δi

if αi 6= 0 and (δJ)i = 0 otherwise. Let us also define δJc = δ− δJ . We introduce the following

11



cone:
C = {δ ∈ Rn s.t. ||δJc ||1 ≤ 3 ||δJ ||1} .

We work with the following compatibility constant defined as

κ = min
δ∈C,δ 6=0

√
||α||0||MXδ||2
||δJ ||1

.

We use the following lemma:

Lemma 3.4 Under Assumption 2.1, if √p||X||∞ = oP (1), there exists κ∗ > 0 such that
κ > κ∗ w.p.a. 1.

Proof. Take δ ∈ C, to show this result, notice that

MXδ = δ −X(X>X)−1X>δ.

Therefore, we have

||MXδ||2 ≥ ||δ||2 − ||X(X>X)−1X>δ||2

= ||δ||2 −
∣∣∣∣∣
∣∣∣∣∣
K∑
k=1

Xk

(
(X>X)−1X>δ

)
k

∣∣∣∣∣
∣∣∣∣∣
2

≥ ||δ||2 −
K∑
k=1

∣∣∣∣∣∣Xk

(
(X>X)−1X>δ

)
k

∣∣∣∣∣∣
2

≥ ||δ||2 −
K∑
k=1
||Xk||2

∣∣∣∣∣∣(X>X)−1X>δ
∣∣∣∣∣∣
∞

≥ ||δ||2 −
K∑
k=1
||Xk||2

∣∣∣∣∣∣(X>X)−1X>δ
∣∣∣∣∣∣

2

≥ ||δ||2 −
K∑
k=1
||Xk||2

∣∣∣∣∣
∣∣∣∣∣
( 1
n
X>X

)−1
∣∣∣∣∣
∣∣∣∣∣
op

1
n
||X>δ||2.

12



Next, by Hölder’s inequality, we obtain

||MXδ||2 ≥ ||δ||2 −
K∑
k=1
||Xk||2

∣∣∣∣∣
∣∣∣∣∣
( 1
n
X>X

)−1
∣∣∣∣∣
∣∣∣∣∣
op

√
K

n
||X||∞||δ||1

≥ ||δ||2 −
K∑
k=1
||Xk||2

∣∣∣∣∣
∣∣∣∣∣
( 1
n
X>X

)−1
∣∣∣∣∣
∣∣∣∣∣
op

√
K

n
||X||∞4||δJ ||1 (because δ ∈ C)

≥ ||δ||2 −
K∑
k=1
||Xk||2

∣∣∣∣∣
∣∣∣∣∣
( 1
n
X>X

)−1
∣∣∣∣∣
∣∣∣∣∣
op

√
K

n
||X||∞4

√
||α||0||δJ ||2 (because ||δJ ||0 ≤ ||α||0)

≥ ||δ||2 −
K∑
k=1

||Xk||2√
n

∣∣∣∣∣
∣∣∣∣∣
( 1
n
X>X

)−1
∣∣∣∣∣
∣∣∣∣∣
op

4
√
K

√
||α||0
n
||X||∞||δ||2. (3.3)

Next, we have that

κ ≥ min
δ∈C,δ 6=0

√
||α||0||MXδ||2
||δJ ||1

≥ min
δ∈C,δ 6=0

√
||α||0||MXδ||2√
||α||0 ||δJ ||2

≥ min
δ∈C,δ 6=0

||MXδ||2
||δ||2

≥

1−
K∑
k=1

||Xk||2√
n

∣∣∣∣∣
∣∣∣∣∣
( 1
n
X>X

)−1
∣∣∣∣∣
∣∣∣∣∣
op

4
√
K

√
||α||0
n
||X||∞

 .
Now, by Assumption 2.1, we have

∣∣∣∣∣∣∣∣(X>X/n)−1
∣∣∣∣∣∣∣∣

op
= OP (1) and that

∑K
k=1||Xk||2/

√
n =

∑K
k=1

√
(X>X/n)kk = OP (1), both implying that 1√

n

∑K
k=1||Xk||2

∣∣∣∣∣∣∣∣(X>X/n)−1
∣∣∣∣∣∣∣∣

op
= OP (1).

We conclude the proof using that √p||X||∞ = oP (1). �

End of the proof of Lemma 2.2

Throughout this proof, we work on the event

{
λ ≥ 2

√
n||MXε||∞
||MXε||2

}
∩ {κ > κ∗} ∩


2
√
||α||0
n λ

κ

 < 1

 ,
which has probability approaching 1 according to Assumption 2.2, Lemma 3.4 and the con-
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dition that √pλ→ 0. Let us define ∆ = α̂− α. Now, remark that

||α̂||1 = ||α+ ∆||1
= ||α+ ∆J + ∆Jc ||1
≥ ||α+ ∆Jc ||1 − ||∆J ||1 . (3.4)

Next, we use the fact that ||α+ ∆Jc ||1 = ||α||1 + ||∆Jc ||1. Combining this and (9), we get

||α̂||1 ≥ ||α||1 + ||∆Jc ||1 − ||∆J ||1 . (3.5)

Using (3), we have

1√
n
||MX(y − α̂)||2 + λ

n
||α̂||1 ≤

1√
n
||MX(y − α)||2 + λ

n
||α||1. (3.6)

By convexity, if MXε 6= 0, it holds that

1√
n
||MX(y − α̂)||2 −

1√
n
||MX(y − α)||2 ≥ −

1√
n||MXε||2

〈MX(ε),∆〉

≥ − λ

2n ||∆||1, (3.7)

where (12) comes from λ ≥ 2
√
n||MXε||2/||MXε||∞. This last inequality is also straightfor-

wardly true when MXε = 0. This and (11) imply

||α̂||1 ≤
1
2 ||∆||1 + ||α||1. (3.8)

Using (10), we get
||α||1 + ||∆Jc ||1 − ||∆J ||1 ≤

1
2 ||∆||1 + ||α||1.

Then, because ||∆||1 = ||∆Jc ||1 + ||∆J ||1, we obtain

||∆Jc ||1 ≤ 3 ||∆J ||1 , (3.9)

which implies that ∆ ∈ C. Using y = Xβ + α+ ε, we get

1
n
||MX(y − α̂)||22 −

1
n
||MX(y − α)||22 = 1

n
||MX(α̂− α)||22 −

2
n
〈MXε, α̂− α〉 .

By Hölder’s inequality, this results in

1
n
||MX(y − α̂)||22 −

1
n
||MX(y − α)||22 ≤

1
n
||MX(α̂− α)||22 −

2
n
||MXε||∞||∆||1.
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Because λ ≥ 2
√
n
||MXε||∞
||MXε||2

, we obtain

1
n
||MX(α̂− α)||22 ≤

1
n
||MX(y − α̂)||22 −

1
n
||MX(y − α)||22 + λ||MXε||2

n
3
2

||∆||1.

This implies that

1
n
||MX(α̂− α)||22

≤ 1
n
||MX(y − α̂)||22 −

1
n
||MX(y − α)||22 + λ||MXε||2

n
3
2

||∆||1

= 1
n
||MX(y − α̂)||22 −

1
n
||MX(y − α)||22 + λ||MXε||2

n
3
2

(||∆J ||1 + ||∆Jc ||1)

≤ 1
n
||MX(y − α̂)||22 −

1
n
||MX(y − α)||22 + 4λ||MXε||2

n
3
2

||∆J ||1 (because ∆ ∈ C).

(3.10)

By equations (10) and (11), we have 1√
n
||MX(y−α̂)||2−

1√
n
||MX(y−α)||2 ≤

λ
n (||∆J ||1 − ||∆Jc ||1).

Using the fact that ∆ ∈ C and (12), this yields∣∣∣∣ 1√
n
||MX(y − α̂)||2 −

1√
n
||MX(y − α)||2

∣∣∣∣ ≤ 2λ
n
||∆J ||1 .

Next, notice that

1
n
||MX(y − α̂)||22 −

1
n
||MX(y − α)||22

=
( 1√

n
||MX(y − α̂)||2 −

1√
n
||MX(y − α)||2

)( 1√
n
||MX(y − α̂)||2 + 1√

n
||MX(y − α)||2

)
.

This implies∣∣∣∣ 1n ||MX(y − α̂)||22 −
1
n
||MX(y − α)||22

∣∣∣∣
≤ 2λ

n
||∆J ||1

( 2√
n
||MX(y − α)||2 + 2λ

n
||∆J ||1

)
≤
(2λ
n

)2
||∆J ||21 + 4√

n
||MX(y − α)||2

λ

n
||∆J ||1 . (3.11)

Combining (15) and (16) and noting that ||MXε||2 = ||MX(y − α)||2, we obtain

1
n
||MX(α̂− α)||22 ≤

(2λ
n

)2
||∆J ||21 + 4||MXε||2√

n

λ

n
||∆J ||1 + 4λ||MXε||2

n
3
2

||∆J ||1 .
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Now, because ∆ ∈ C, this implies that

1
n
||MX∆||22 ≤

(2λ
n

)2

√
||α||0||MX∆||2

κ

2

+ 8λ||MXε||2
n

3
2

√
||α||0||MX∆||2

κ
.

From now on assume that ||MX∆||2 6= 0, we get

1
n
||MX∆||2 ≤

1−

2
√
||α||0
n λ

κ

2
−1

8||MXε||2
√
||α||0
n λ

nκ
,

which implies again that

1
n
||∆J ||1 ≤

1−

2
√
||α||0
n λ

κ

2
−1

8||MXε||2
||α||0
n λ

√
nκ2 .

Finally, as ∆ ∈ C, we have

1
n
||∆||1 = 1

n
(||∆J ||1 + ||∆Jc ||1)

≤ 4
n
||∆J ||1

≤

1−

2
√
||α||0
n λ

κ∗

2
−1

32||MXε||2
||α||0
n λ

√
nκ∗

. (3.12)

The last inequality also holds if MX∆ = 0 because, as κ > 0 because we are on the event
κ > κ∗, this implies that ∆J = 0 and hence ∆ = 0 using the fact that ∆ belongs to C. To
conclude the proof, use (17), the fact that ||MXε||2/

√
n ≤ ||ε||2/

√
n = OP (1) by the law of

large numbers and the condition √pmax (λ, ||X||∞) = oP (1).

Proof that σ̂2 P−→ σ2 in Theorem 2.3

We have

σ̂2 = 1
n

∣∣∣∣∣∣y −Xβ̂ − α̂∣∣∣∣∣∣2
2

= 1
n

∣∣∣∣∣∣X (
β − β̂

)
+ (α− α̂) + ε

∣∣∣∣∣∣2
2

= 1
n

∣∣∣∣∣∣X (
β − β̂

)∣∣∣∣∣∣2
2

+ 1
n
||α− α̂||22 + 2

n

〈
X
(
β − β̂

)
, α− α̂

〉
+ 2
n

〈
X
(
β − β̂

)
, ε
〉

+ 2
n
〈α− α̂, ε〉+ 1

n
||ε||22 .
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Then, because of Lemma 2.2, Theorem 2.2, pλ
√
n = o(1) and pλ |X|∞ = oP (1), it holds that

||α̂− α||1 = oP
(√
n
)

;∣∣∣∣∣∣β̂ − β∣∣∣∣∣∣
2

= oP (1) .

Next, we have
1
n

∣∣∣∣∣∣X (
β − β̂

)∣∣∣∣∣∣2
2
≤ 1
n
||X||22

∣∣∣∣∣∣β̂ − β∣∣∣∣∣∣2
2

= oP (1),

by the law of large numbers. Then, by Hölder’s inequality, we obtain that

1
n
||α− α̂||22 ≤

1
n
||α− α̂||21 = oP (1).

By the Cauchy-Schwarz inequality, this also leads to
〈
X
(
β − β̂

)
, α− α̂

〉
/n = oP (1). Then,

by Assumption 2.1, the law of large numbers implies that ||ε||2/
√
n = OP (1). Thus, by the

Cauchy-Schwartz inequality, we have

1
n

〈
X
(
β − β̂

)
, ε
〉
≤ 1
n

∣∣∣∣∣∣X (
β − β̂

)∣∣∣∣∣∣
2
||ε||2 = oP (1)

and
〈α− α̂, ε〉 ≤ 1

n
||α̂− α||2 ||ε||2 = oP (1),

which concludes the proof.
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