
AVERTISSEMENT 

 
 
Ce document est le fruit d’un long travail approuvé par le jury de 
soutenance et mis à disposition de l’ensemble de la 
communauté universitaire élargie. 
 
Il est soumis à la propriété intellectuelle de l’auteur : ceci 
implique une obligation de citation et de référencement lors de 
l’utilisation de ce document. 
 
D’autre part, toute contrefaçon, plagiat, reproduction illicite de 
ce travail expose à des poursuites pénales. 
 
Contact : portail-publi@ut-capitole.fr 
 
 
 
 
 

LIENS 

 
 
Code la Propriété Intellectuelle – Articles L. 122-4 et L. 335-1 à 
L. 335-10 
Loi n° 92-597 du 1er juillet 1992, publiée au Journal Officiel du 2 
juillet 1992 
http://www.cfcopies.com/V2/leg/leg-droi.php 
http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm 
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M. Farid GASMI, Professeur, Université Toulouse 1 - Sciences Sociales
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Acknowledgements vi

Introduction viii

1 Controlling regional monopolies in the natural gas industry 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Industry configuration . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Controlling the regional monopoly with

transfers, price, and transport capacity . . . . . . . . . . . . . . . . 5
1.4 Controlling the regional monopoly with price and capacity only . . 12
1.5 Controlling the regional monopoly with

transport capacity only . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.6 Role of control instruments . . . . . . . . . . . . . . . . . . . . . . . 33

1.6.1 Absence of transfers . . . . . . . . . . . . . . . . . . . . . . 33
1.6.2 Lack of price control . . . . . . . . . . . . . . . . . . . . . . 36
1.6.3 Absence of transfers and lack of price control . . . . . . . . . 38

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2 Regulation of regional monopolies in natural gas markets 56

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.2 Basic market configuration and information structures . . . . . . . 58
2.3 Firm’s incentives and transport capacity under scheme A . . . . . . 61

2.3.1 Scheme A under uncertainty . . . . . . . . . . . . . . . . . . 63
2.3.2 Scheme A under asymmetric information . . . . . . . . . . . 66
2.3.3 Incentives and capacity investments

under scheme A . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.4 Firm’s incentives and transport capacity under scheme B . . . . . . 71

i



Contents ii

2.4.1 Scheme B under uncertainty . . . . . . . . . . . . . . . . . . 73
2.4.2 Scheme B under asymmetric information . . . . . . . . . . . 78
2.4.3 Incentives and capacity investments

under scheme B . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.5 Timing of decisions and transport capacity

under scheme C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.5.1 Regulation with uncertainty

and sequential decisions . . . . . . . . . . . . . . . . . . . . 92
2.5.2 Regulation with uncertainty and

simultaneous decisions . . . . . . . . . . . . . . . . . . . . . 96
2.5.3 Capacity effect of timing of decisions

under scheme C . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3 Transport capacity and competition in gas markets 122

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.2 Transport regulation: general setting . . . . . . . . . . . . . . . . . 123
3.3 Transport regulation and downstream competition . . . . . . . . . . 127

3.3.1 No downstream competition . . . . . . . . . . . . . . . . . . 127
3.3.2 Stackelberg downstream competition . . . . . . . . . . . . . 129
3.3.3 Cournot downstream competition . . . . . . . . . . . . . . . 133
3.3.4 Downstream competitive fringe . . . . . . . . . . . . . . . . 134

3.4 Comparative analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Bibliography 147



Abstract

The European gas industry has been experiencing substantial changes due to both
the liberalization process started in the mid nineties and the increasing dependency
on gas imports from few countries outside of the EU. Given the high degree of con-
centration, the issue of the impact of transport capacity on market structure and
market power bears particular importance. The general goal of this dissertation
is to address this strategic question using simple regulatory models and numeri-
cal simulations. It is composed of a general introduction and three self-contained
chapters.

The first chapter analyzes some policies implemented by a social planner seek-
ing to control regional monopoly power in the natural gas industry when, because
of liberalization, the planner sees the set of available control instruments progres-
sively reduced. The analysis allows us to assess the extent to which transfers,
transport capacity, and price are substitutes or complements when fighting mar-
ket power. We focus on the role of transport capacity and characterize the cases
where loss of control instruments results in “over” or “under” sizing of the trans-
port network. The analysis yields some insights on the social planner’s incentives
to invest in infrastructure with the objective of integrating separated markets.

The second chapter extends the model of the regulator-firm relationship to
account for information problems. Assuming an industry configuration in which a
monopoly market and a competitive market can be linked by a pipeline, we first
derive normative policies corresponding to different sets of available regulatory
instruments. By focusing on the capacity variable, we then examine the extent
to which information and incentive problems affect pipeline capacity. Finally, we
explore the (capacity) effects of the regulator’s ability to commit to investments
in the transport network.

The third chapter develops a (complete information) model with an upstream
firm providing transport capacity at a regulated price to a marketer competing
in output with an incumbent in a downstream gas commodity market. The equi-
librium outcome of the firms’ interaction in the downstream market is explicitly
taken into account by the regulator when setting the transport charge. We con-
sider various forms of competition in this market and derive the corresponding
optimal transport charge policies. We then run simulations that allow us to per-
form a comparative welfare analysis of these transport capacity policies based on
different assumptions about the competitiveness of the gas commodity market.

iii



Resumé

L’industrie gazière européenne a connu des changements importants à la suite
du processus de libéralisation entamé au milieu des années quatre-vingt-dix dans
un contexte de dépendance accrue d’importations provenant d’un petit nombre
de pays hors Union Européenne. Ainsi, étant donnée la forte concentration qui
caractérise la filière gazière européenne, la question de l’impact de la capacité
du réseau de transport sur la structure de marché et l’exercice du pouvoir de
marché par les acteurs de cette filière revêt un caractère particulièrement important
pour l’UE. L’objectif général des travaux constituant cette thèse est d’analyser
cette question stratégique en nous appuyant sur des modèles issus de la nouvelle
économie de la régulation et sur des simulations numériques de ces modèles. Elle
comprend une introduction et trois chapitres autonomes.

Le premier chapitre consiste en une analyse de politiques mises en œuvre par un
planificateur social pour contrôler le pouvoir de monopole régional dans l’industrie
du gaz naturel lorsque, en raison d’une libéralisation progressive des marchés, le
planificateur voit l’ensemble des instruments de contrôle qui sont à sa disposition
se réduire. L’étude permet d’examiner dans quelle mesure les transferts, la ca-
pacité du réseau de transport et la tarification du gaz, sont des substituts ou des
compléments dans la mission de contrôle du pouvoir de marché par le planificateur
social. En prêtant une attention particulière à la capacité du réseau de transport,
nous sommes en mesure de caractériser les conditions sous lesquelles la perte pro-
gressive d’instruments de contrôle conduit à un “sur dimensionnement” ou un
“sous dimensionnement” du réseau. L’analyse fournit ainsi un éclairage quant aux
incitations du planificateur à investir dans les infrastructure de transport dans un
but d’intégrer des marchés séparés.

Le second chapitre est une extension du modèle de la relation régulateur-firme
qui tient compte explicitement des problèmes d’information. En supposant une
configuration industrielle simple dans laquelle deux marchés distincts, un marché
de monopole et un marché concurrentiel, peuvent être connectés via un gazoduc,
nous dérivons dans un premier temps des politiques normatives correspondant à
différents ensembles d’instruments de régulation. En nous concentrant sur la ca-
pacité du réseau de transport, nous examinons dans un deuxième temps l’impact
des contraintes informationnelles et d’incitation sur le dimensionnement du réseau.
Enfin, nous explorons le rôle de la capacité du régulateur à s’engager sur les in-
vestissements en infrastructure de transport.

iv
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Le troisième chapitre développe un modèle en information complète dans lequel
une firme en amont fournit à un prix régulé de la capacité de transport à un
négociant qui concurrence sur un marché de gaz naturel en aval un opérateur
historique. L’équilibre sur le marché-aval est explicitement pris en compte par
le régulateur lorsqu’il fixe le prix de la capacité. Nous considérons différentes
formes de concurrence sur ce marché et nous caractérisons les politiques optimales
de tarification de la capacité qui y sont associées. A l’aide de simulations, nous
menons une analyse comparative de ces politiques basées sur différentes hypothèses
concernant le degré de concurrence sur le marché de la molécule, afin d’évaluer leur
performance relative en terme de bien-être économique.
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Introduction

The last two decades have witnessed a marked interest around the world for the

introduction of competition in the natural gas industry. In the European Union,

the gas market has experienced since the second half of the nineties a wide and

complex liberalization process.1 The European Commission (EC), under the terms

of the 2003 EC gas directive, has committed to the establishment of a single market

throughout Europe scheduled to be fully open by July 2007.2 Although a large

number of gas consumers in Europe are now able to choose their suppliers and

many steps have been taken towards the harmonization of national legislation as

a result of the EU directives, barriers to competition still remain. These primarily

relate to market structure, national attitudes towards liberalization, access to gas

supplies, and access to key infrastructure facilities.3

Natural gas plays an important role in the European energy economy. Various

factors such as the high population density, the extensive urbanization, and the

local availability of gas production have contributed to the development of intensive

gas use within western Europe. These factors are reinforced by the fact that

natural gas has a large potential for being the most preferred input-choice for power

generation in the European Union since it is a “clean” fuel with higher efficiency

levels that those of its close competitors such as coal and fuel oil. However, in

most European countries, gas production is expected to significatively decline over

1. See Cremer et al. (2003) for an overview of these reforms.

2. Currently, all European Union Member States, unless specifically exempt from the liberaliza-
tion requirements, have a similar level of market opening. Indeed, industrial gas consumers have
been able to choose their suppliers since July 2004.

3. Overall, by the end of 2004, at least 56% of gas consumed in Europe was supplied to end-users
who were legally able to choose their suppliers.

viii
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the next decade as existing gas fields are reaching maturity and new discoveries

are generally small. Thus, the European gas market will most probably become

increasingly dependent on imports from outside the region.4

Norway is Europe’s only major gas exporter supplying around 14% of European

gas consumption. Russia supplies more than 60% of the gas imported into Europe

and is expected to remain its largest external supplier for decades. Algeria supplies

more than 25% of the gas imported into Europe by pipeline to southern Europe and

as LNG to several countries including France, Belgium, Greece, and Portugal. The

need for supply diversification is strong and European gas importers are willing to

diversify their sources and LNG provides a way to do this. LNG imports currently

represent 11% of total imports into the region and this figure is expected to steadily

grow in the future.

Recently developed demand and supply projections for Europe, even when

based on moderate expectations of future demand for natural gas, have shown

the existence of a substantial gap between demand and the potential supply from

outside Europe. The extensions and new gas connections that need to be put in

place in order to meet demand in 2020 mainly involve new pipelines from Russia,

Algeria and the Caspian sea Area, and new LNG terminals to receive LNG from

Egypt and the Middle East.5

Given the above discussed features of demand and supply, the European gas

system raises interesting “investment” questions that may not be found in the US.

This is due to the fact that the market is likely to remain dominated by a few large

producers in the long run. Thus, the issue of the impact of transport capacity

on market structure and market power certainly deserves some attention. This

topic has been documented in both the institutional/empirical and the theoretical

literature on energy.

In the electricity sector, competitive strategies in deregulated markets have

become a very active area of research. Most of the published literature (see, e.g.,

4. Almost all countries in Europe are net importers of gas and many, including major users such
as France and Spain, are almost totally dependent on gas imports. Moreover, Europe is expected
to be the largest world market for imported natural gas between 2000 and 2020 (Cayrade, 2004).

5. A rough estimate of the bill for these infrastructure projects lies between 150 and 200 billion
US dollars. See Sagen and Aune (2004) for more details.
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Green and Newbery, 1992, Von der Fehr and Harbord, 1993, Borenstein and Bush-

nell, 1999, Rudkevich et al., 1999, and Green, 1999) examines strategic behavior

in a static setting. Concerning imperfect competition in generation, many authors

have proposed models in which generators take advantage of transmission con-

straints to exert local market power (Oren, 1997, Cardell et al. 1997, Borenstein

et al., 2000, and Nasser, 1998). These studies have either abstracted from the

details of transmission or used a variant of a standard transportation model to

describe the geographic differences among markets. The choice of possible strate-

gies follows the common Cournot quantity approach. A general finding is that the

role of the transmission segment goes beyond that of simply bringing power from

competitive sources.

More relevant to the European power market, Smeers and Wei (1999) pro-

pose an oligopoly model where both power generators and consumers are spatially

dispersed. The generators compete à la Cournot in a context where transmis-

sion prices are regulated, i.e., they take their rivals’ output and the prices for

transmission services as fixed when deciding about profit-maximizing output. The

transmission firm takes the quantities of transmission services demanded by the

generators as fixed when it determines the transmission prices according to certain

regulatory rules. In this framework, they analyze the impact of the market power

retained by the generators after the restructuring of the electricity industry. They

also assess the effect of pricing of transmission services on the generation segment

and the investment in transmission assets. A similar issue was analyzed in Smeers

and Wei (1997) where they consider two-stage models for the electricity indus-

try where the second stage (the energy market) and the first stage (investment)

behaviors obey different competition paradigms.

From a regulatory perspective, Nasser (1998) describes how generation and

transmission of power have been unbundled to foster the introduction of competi-

tion in the electricity industry. The author identifies the importance of designing

institutions that lead to “optimal” network expansion. He describes alternative

arrangements that have been proposed which can be classified as follows: planning

by a government entity, regulation of the network operator, and decentralization
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of investment decisions supported by pricing of congestion of the network.6 He

shows that the socially optimal network expansion is such that the marginal cost

of capacity equals its social marginal value. This value is given in terms of the

congestion reduction brought about by a marginal increase of capacity.

Léautier (2000) highlights the importance of the optimal design of regulatory

contracts for the operators of power transmission networks in the United States.

He examines the regulation of a for-profit transmission company in charge of bring-

ing competitive power to wholesale power markets. Such contract should ensure

financial viability of the transmission activity, promote adequate usage of the ser-

vice, induce productive efficiency, and encourage optimal expansion of the network.

This last feature is considered by the author as critical for the development of ef-

ficient wholesale power markets.7

Similarly, Léautier (2001) identifies two important effects of transmission ex-

pansion. First, part of market demand will be met by cheap power instead of ex-

pensive local power, the so called substitution effect. Second, competition among

power generators is increased, the so called strategic effect. The author finds that

while the substitution effect is always welfare improving, the welfare impact of the

strategic effect is not unambiguous, i.e., it might be the case that consumers pay

a lower price but generators earn lower profits.

In the natural gas sector, for the case of the US gas industry and mainly on

the empirical front, a large stream of the literature has examined the impact of

interconnecting sub-networks on the degree of market integration and competition

(see, e.g., Doane and Spulber, 1994, and De Vany and Walls, 1994).8 Some of the

earlier efforts at characterizing various aspects of the European natural gas market

include Tzoannos (1977) and Haurie et al. (1987). Mathiesen et al. (1987) screen

the European market with respect to three scenarios, namely, perfect competition,

6. Brazil has opted for the first solution, the United Kingdom for the second, and Argentina for
the third.

7. From Léautier (2000), insufficient transmission capacity creates four costs: higher than opti-
mal congestion, higher than optimal power losses, lower than optimal reliability, and imperfect
competition in generation.

8. For a review of the literature related to the impact of third-party access to pipelines in the
natural gas industry see Cremer et al. (2003) and Cremer and Laffont (2002).
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Cournot, and collusion of the producers. Other applications of the Cournot-type

competitive framework have since been developed for the purpose of analyzing the

European gas market. A three-level Stackelberg game has been developed by Grais

and Zheng (1996) to study the transport of natural gas from Russia to Western

Europe.

The potential impact of the possible introduction of open access in the Euro-

pean gas system was also studied by means of a Cournot framework in Golombek et

al. (1995). The authors explore the impact of open access on market power exerted

by natural gas producers through the development of marketers. Using a numer-

ical model where producers behave in a Cournot fashion and face a competitive

fringe of marketers, they show that this competitive effect is indeed significant.

In a more elaborated model, Golombek et al. (1998) study the impact on the

imperfectly competitive supply side of the natural gas industry of policies that

introduce competition in the demand side. They show that these pro-competitive

demand measures will generate incentives to break up national gas producers into

several independent domestic producers.

De Wolf and Smeers (1997) adopt a Stackelberg game perspective for their work

on the European natural gas market. Breton and Zaccour (2001) concentrate on

analyzing a duopoly of producers under a security constraint but in a somewhat

abstract form. More recently, Boots et al. (2004) model a successive oligopoly

applied to the European natural gas market. In this numerical model, Cournot

producers are also Stackelberg leaders with respect to traders, who may be Cournot

oligopolists or price takers. They obtain that successive oligopoly yields higher

prices and lower consumer welfare than an oligopoly with only one level. Moreover,

due to the high concentration of traders, prices are distorted more by market power

in trading than in production. Finally, they show that when traders increase in

number, prices approach competitive levels.9

Even though the literature shows the abundance of models supposed to repre-

sent the European natural gas market, these models are meant to be short-term

models where there is no place for capacity expansion decisions. This constitutes

9. Egging and Gabriel (2005) extend the model of Boots et al. (2004) by considering the role of
storage and transmission both assumed to be perfectly competitive.
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a critical handicap when it comes to analyzing the “normative” implications of

capacity expansion and its impact on market structure. For the purpose of our

work, the closest approach to ours is that followed by Cremer and Laffont (2002)

who examine the possibility of building ”excess” capacity in order to mitigate local

market power. They obtain results that are not unambiguous although their main

focus is on cases where excess capacity arises.

The work reported in this dissertation builds on the results obtained in Cre-

mer and Laffont (2002) and generalizes their framework by enlarging the set of

instruments that can be used to control regional market power. The question of

interest is then what types of policies, including imports, are to be implemented

by network operators concerned by the exercise of market power by incumbent

local monopolies. The first chapter of this dissertation considers a sample of such

policies and analyzes their impact on the natural gas transport network. The basic

theoretical setting used to analyze this issue consists of a local market dominated

by a single firm linked to a competitive market by a transport line. Gas produced

in the competitive market at some relatively low marginal cost can be imported

to the regional market through the transport line.

The capacity of this line is under the control of the network owner/operator

whose objectives are assumed to coincide with those of a social planner. Within

this basic framework, capacity control can be motivated in two ways. First, it

can act as a remedy to any possible productive inefficiency due to the incumbent

monopolist’s use of a low efficiency technology by allowing for access to a more

efficient source of natural gas. Second, by the very fact that the building of capacity

allows to import cheaper gas into the regional market, competitive pressure can

be put on the local firm in order to mitigate the exercise of its market power and

hence to alleviate the allocative inefficiency it entails.

In addition to capacity, the analysis introduces the possibility for the social

planner to set price and use transfers between consumers and the firm. However,

price control and transfers are both intended to exclusively deal with the alloca-

tive inefficiency associated with the exercise of market power. Our main goal then

is to study the degree to which transport capacity and the two alternative con-

trol instruments substitute or complement each other as instruments to maximize
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social welfare in this second-best environment. We examine this substitutability

relationship both for a fixed and a variable set of control instruments available to

the network operator.

A necessary first step in our investigation is to assume complete information.

With no information problems, one would expect capacity to be a substitute to the

other control instruments used by the social welfare maximizing network operator,

that is, the absence of one of them would imply that capacity is more intensively

used. To investigate this conjecture, we define three control schemes that differ in

the set of instruments available to the social planner. We start from a situation

where the social planner has three control instruments, namely, transfers, price (or

equivalently output), and capacity, and then restrain the available instruments to

price and capacity only, and finally to capacity only.10

Comparing the levels achieved by the endogenous variables in the three con-

trol schemes, we show that this conjecture does not hold in general. This type

of analysis allows us to investigate the incentives of a social planner to develop

transport infrastructure in order to fight market power. In our framework, we find

that the incentives of the social planner to build infrastructure capacity depend

on the available control instruments, how relatively inefficient the regional firm is,

whether there is indeed a fixed cost of this firm to be financed, the cost struc-

ture of the capacity building activity, and how costly raising public funds through

taxation is.

In the first chapter of the dissertation, we analyze the interaction among con-

trol instruments under the admittedly strong assumption of complete information.

A natural extension is then to introduce incomplete information, and this is un-

dertaken in the second chapter of the dissertation. There are various ways to

incorporate information incompleteness in our framework. In this chapter, we in-

troduce adverse selection by assuming that the local monopoly privately knows its

10. When capacity is the only available instrument to the social planner, we are in a framework
similar to that of a mixed oligopoly model with a Stackelbeg leadership given to the social
planner. See Merill and Schneider (1966), Cremer et al. (1989 and 1991), and De Fraja and
Delbono (1989) for models of this type. More particularly, De Fraja and Delbono (1989) show
that the presence of a publicly-owned welfare maximizing enterprise can be seen as a direct
regulatory instrument to maximize social welfare if the market is not competitive enough.
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marginal cost and that the regulator has only some beliefs on it described by a

probability that it takes on either a low or a high value.

We then investigate how asymmetric information affects capacity planning for

a given control scheme. In this incomplete information framework, the appropri-

ate benchmark is a scheme in which the network operator sets the levels of the

regulatory instruments in a sequential way under uncertainty. More specifically,

we assume that the network operator first chooses the transport capacity of the

network and then sets the remaining control variables, i.e., price and transfers (if

he is allowed to do so), with the additional assumption that when deciding on the

network capacity, the operator is uncertain about the level of the firm’s marginal

cost (and hence he maximizes expected social welfare where the expectation is

taken with respect to the distribution of the firm’s marginal cost). The optimal

level of capacity achieved under this benchmark control scheme is then compared

to that obtained under a regulatory scheme with asymmetric information. The

key feature of this regime that differentiates it from the benchmark is that, at

the time of setting price and transfers (if available), the regulator must offer an

incentive compatible contract to the firm.

In the case where the network operator controls capacity, price, and transfers,

we obtain that asymmetric information leads to a size of the transport network

that is unambiguously larger or equal to that under the benchmark. When trans-

fers are not available, it turns out that the impact of information incompleteness

on capacity planning is not unambiguous and we identify the region of the param-

eters of the model in which asymmetric information calls for “excess” or “less”

capacity. When the network operator sets capacity only, since we assume that the

local monopoly maximizes profits, the firm’s incentive compatibility constraint is

trivially satisfied, and then capacity is unaffected by asymmetric information in

this scenario. In this case, we explore the effect on capacity of the regulator’s

ability to commit to investments in the transport network.

In the first two chapters of the dissertation, we analyze the role of transport

capacity as an instrument available to the regulator to mitigate the effect of gas

suppliers’ market power. In the third chapter we take a step further and study

the case where, because of an advanced liberalization process, the regulator looses
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the possibility of itself building transport capacity. Since the natural gas industry

combines activities with natural monopoly characteristics (pipeline transport and

distribution) with those that are potentially competitive (production and commod-

ity supply), it is natural to see a combination of regulation of price and non-price

behavior coexisting with competition.11

More specifically, we study the case where transport capacity is provided by a

vertically separated private firm (upstream) and used in the commodity gas market

by a trading agent, the marketer (downstream), which competes in quantities with

an incumbent firm. However, since pipeline transportation and distribution have

natural monopoly characteristics, regulation of price and non-price behavior is

required. In this first exercise, we focus on the impact of the regulation of the

upstream transport charge on the competitive performance of the downstream gas

commodity market.12

We assume that a perfectly informed regulator sets the transport charge tak-

ing as given competition in output between an incumbent and the marketer in a

downstream gas commodity market. The outcome of the downstream firms’ in-

teraction is synthesized by generic equilibrium output responses to changes in the

transport charge. We then apply this general setting to specific forms of market

conduct with a varying degree of competition, namely, no competition, Stackelberg

competition, Cournot competition, and competition exercised by a fringe of gas

traders. Once we have studied the impact of price regulation on the alternative

downstream equilibria considered, we proceed to perform a comparative analysis of

the optimal transport charge policies with the objective of assessing their relative

welfare performance by means of simulations. While the simulations confirm the

general wisdom that more competition is preferred to less from the consumers and

the social welfare points of view, they also show some less expected results about

the ordering of key policy variables, such as the capacity of pipelines and its price,

across different competitive scenarios that reveal some redistribution conflicts.

11. The UK industry is a good illustration of this coexistence (see Waddams Price,1997).

12. See Smeers and Wei (1999) for a similar exercise performed in the electricity industry. The
timing of events we use is the one assumed by these authors, but we follow a simplified approach
that allows us to perform some ex-post welfare analysis.
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The work undertaken in this dissertation has brought to surface a whole set of

open questions to be investigated in the near future. The results obtained so far in

our simple industry configuration have shown that transport capacity plays a ma-

jor role in the shaping of the industry. Indeed, it affects its horizontal structure, its

regional developments, and its degree of vertical integration. Adequate regulation

is crucial for the networks to follow an “optimal” expansion path and to be finan-

cially viable, and for the capacity building activity to be efficient.13 Concerning

the latter, an immediate extension of the model considered in the third chapter

consists in introducing in the regulator-transporter relationship the assumption

that the transporter is privately informed about some cost parameter. One would

expect this asymmetry of information to have an important impact on the capacity

pricing schedules and hence on the functioning of the downstream market. Our

model can also be used to analyze the role of temporary initiatives such as gas-

release measures. Under gas release programs, the incumbent in the downstream

gas commodity market is mandated to release a share of its supply, i.e., long-term

contracts, to its competitors. In effect, these measures are short-term substitutes

to investments in capacity and hence could foster effective competition in the short

run.

13. An example that shows how an excessive regulation could hinder the development of gas
infrastructure was recently given by the Federal Energy Regulatory Commission (FERC) in the
US. The obligation of open access to newly constructed LNG-receiving terminals had to be
relaxed, as major companies argued that they could not justify building new LNG terminals if
they could not also control the shipments through the plants.



Chapter 1

Controlling regional monopolies

in the natural gas industry

1.1 Introduction

Following the US and the UK that reformed their natural gas industries in the late

70s and the 80s respectively, the EU has launched in the late 90s structural policies

for enhancing gas-to-gas competition with the objective of complete liberalization

of the market by 2007. More recently, EU Member States have been heavily

investing in the development of their pipeline networks and Liquefied Natural Gas

(LNG) liners. Such investments can be seen as driven by the need to anticipate

growth of demand and import dependency. Indeed, gas penetration in energy

consumption across activities in Europe has increased from less than 10% in the

70s to a current level of about 25% with an external dependency around 50%.1

Still, some observers have come to wonder whether such large-scale investments in

capacity expansion are all that needed (see, e.g., Junola, 2003).

Since bringing the benefits of competition to consumers is a stated goal of

the EU gas directive adopted in 1998 and amended in 2003, and given the high

concentration of both commodity supply and transport in the EU region, it makes

sense to investigate the role of network investments in the liberalization process.

1. Algeria, Norway, and Russia are the main suppliers for Europe.

1
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An issue that is particularly important in the European context is the nature of

policies that should accompany this liberalization process and their effectiveness

in mitigating the economic distortions that would result from the working of a

competition that is going to be at best imperfect, at least in the foreseeable future.

This chapter considers a sample of fiscal-, pricing-, and investment-type policies in

the polar case where a social planner is concerned with the exercise of market power

by a regional monopoly in the commodity gas market. We analyze the degree to

which these alternative policies are substitutes to each other as instruments to

lessen the effect of market power with a particular emphasis on the role of network

transport capacity.2

The impact of transport capacity on market structure and market power in

energy has drawn the attention of both empirical and theoretical economists. For

the case of the US gas industry, a large empirical literature has examined the

impact of investments in sub-network interconnection on the degree of market

integration and the level of competition (Doane and Spulber, 1994, and De Vany

and Walls, 1994). From a more theoretical perspective, in electricity, one line

of literature has directly examined the impact of transmission capacity on local

market power (Borenstein et al., 2000, Léautier, 2001) reaching the conclusion that

transmission link expansion is effective for promoting competition. Building on a

framework developed in Cremer et al. (2003), Cremer and Laffont (2002) argue

that countering local market power in the natural gas industry might necessitate

building “excess” transport capacity. The purpose of this chapter is to further

investigate the relationship between network size and regional market power.

At this initial stage of the investigation, our analysis assumes away information

problems.3 We consider a social planner who has complete information on demand

and technology and the objective of controlling an incumbent monopoly in a re-

gional commodity gas market potentially by means of three instruments: transfers

between consumers and the firm, pricing of the gas commodity, and investment

2. It is worth mentioning here that the issue of fighting market power due to geographic isolation
and the role of communications/transport means should not be unique to gas markets and more
generally to network industries.

3. In Gasmi et al. (2003) we have used a similar approach as here to study the control of regional
market power under the assumption that there is no productive inefficiency.
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in capacity of the transport network. We initially assume that the social planner

indeed disposes of these three instruments of control. Then, we restrict the set of

available instruments by successively removing transfers and price from this set.

As this set of control instruments gets reduced, one expects the social planner to

intensively rely on the remaining instruments to fight monopoly power. Hence,

fulfilling this objective without the ability to use transfers and to control price can

be expected to require a strictly higher level of transport capacity. Testing this

conjecture is the main motivation for this research and this leads us to analyze the

optimal policies under the alternative control regimes and compare the levels of

capacity they prescribe. We find that these comparisons are not unambiguous and

we produce a characterization of the conditions under which control of regional

monopoly power requires “over”- (“under”) - sizing the transport network. This

close examination of optimal dimensioning of networks yields some insights on

the social planner’s incentives to invest in infrastructure in increasingly liberalized

markets.

The plan of the chapter is as follows. The next section describes the model of

the industry configuration we consider and its basic theoretical ingredients. Sec-

tions 1.3, 1.4, and 1.5 characterize the optimal policies under three control regimes,

respectively, one that lets the social planner have the largest set of instruments,

namely, transfers, price, and capacity, one in which transfers are not allowed, and

one in which the social planner controls only the capacity of the transport net-

work. The optimal policies are illustrated using some specific functional forms for

the demand and cost functions. Section 1.6 focuses on the capacity variable and

provides a systematic comparison of the optimal levels achieved under each of the

three control regimes. This section also presents the results of some simulations

that allow us to perform comparisons of capacity levels in cases where closed-

form solutions couldn’t be obtained. We summarize our main findings, discuss

some of their policy implications, and give some directions for further research in

the conclusion. Formal proofs and background material for the simulation results

presented in section 1.6 are given in the appendix.
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1.2 Industry configuration

Consider a regional natural gas commodity market, market M , supplied by a

single incumbent firm, firm m, producing with a technology Cm(qm) = θqm + Fm,

where qm is output, θ is marginal cost, and Fm is fixed cost.4 Gas is also supplied

at marginal cost c in a competitive market, market Cp, which is geographically

distinct from market M but could be linked to it if a pipeline of capacity K is

built at cost C(K), where C(·) is increasing convex, C ′(0) = 0, and C ′′(0) > 0.

See Figure 1.1. We assume that the regional monopoly’s marginal cost is at least

as large as that at which gas is produced in market Cp, i.e., θ ≥ c. Gas produced

under competitive conditions in this market Cp and imported into the regional

market M should counter the exercise of monopoly power by the firm in its “local”

commodity gas market.

s s

Cp

c

M

Cm(θ, qm) = θqm + Fm

K, C(K)

✲

Figure 1.1: Industry configuration

Our analysis rests, indeed, on the presumption that the very reason for a social

planner to support a policy of building a transport line that links these two mar-

kets is to allow imports of gas from market Cp into market M that would bring

consumers in this market the benefits of competition. Letting QM(·) represent

these consumers’ demand function which is assumed to be downward-slopping and

concave, if a quantity of gas corresponding to full capacity of the pipeline K is

shipped from the competitive market into the regional market, the firm remains a

monopoly on the residual demand QM(pM) − K, where pM is price.

We assume that the social planner knows the demand and cost functions QM(·)
and Cm(·) and proceed to characterize the prescriptions of policies that he may use

to restrain the firm from exerting its monopoly power in the regional market M ,

most importantly the policy of interconnecting this market and the competitive

4. We assume that the fixed cost Fm is bounded and later provide a technical justification for
this assumption. Even though shutting down the firm is sometimes prescribed by the optimal
policies considered in this chapter, the financing of this fixed cost is always accounted for.
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market Cp. This public intervention is implemented under a second-best framework

in which public funds are raised through distortionary taxes at social cost of λ > 0.

We observe that since in the industry configuration considered here all demand

takes place in the regional market, any pricing policy that is implemented in this

market wouldn’t affect welfare in the competitive market where price is at the

first-best level (marginal cost c). Hence, without loss of generality, we do not

incorporate welfare in this competitive market into the analysis.5

We start from a situation where the social planner has the ability to control

the regional monopoly by means of three instruments, namely, (possibly two-way)

transfers between consumers and the firm, price, transport capacity of the network,

and hence monopoly output. We then restrict the set of available control instru-

ments. We first consider the case where the social planner may not use transfers

when he sets the price and capacity levels. Then, we examine the situation where

in addition to the fact that transfers are not allowed, the social planner can only

affect the gas commodity price in the regional market through transport capacity

and the firm exerts its residual monopoly power.

1.3 Controlling the regional monopoly with

transfers, price, and transport capacity

In this section, we assume that the social planner may use public funds to make

transfers between consumers and the firm. These funds are raised through taxation

that generates welfare losses and hence, a monetary transfer to the firm T costs

society (1+λ)T where λ is the cost of public funds. Let S(·) represent gross surplus

of consumers in market M . Total supply of gas QM(pM) in this market, composed

of K units imported from the competitive market and qm units produced locally

5. Another factor that is also neglected in the analysis without affecting its main qualitative
results is the marginal cost of transport. Alternatively, if marginal cost of transport is constant
it can be included in the constant c, i.e., we may write c = cp + ct where cp is now the marginal
cost of production in the competitive market and ct is the marginal cost of transport.



Chapter 1 Controlling regional monopolies in the natural gas industry 6

by the firm, brings taxpayers an aggregate (net) welfare V given by

V = {S(QM(pM)) − pMQM(pM)}
+{(1 + λ) [(pM − c)K − C(K)]} − {(1 + λ)T} (1.1)

This taxpayers’ welfare comprises the net surplus of consumers in the regional

market M , the social valuation of profits generated by the K units of gas imported

from the competitive market, and the social cost of the transfer T made to the

firm. The latter’s welfare is measured by its utility U that sums its profits from

sales and the transfer it receives:

U = {(pM − θ) [QM(pM) − K] − Fm} + T (1.2)

When controlling the regional monopoly, the social planner has to account for

the participation constraint of the firm and the constraint of nonnegativity of its

output:6

U ≥ 0 (1.3)

qm = QM(pM) − K ≥ 0 (1.4)

The utilitarian social welfare function W is the sum of taxpayers’ welfare V and

firm’s utility U . Substituting for V from (1.1) and for T from (1.2) yields social

welfare

W = {S(QM(pM)) + λpMQM(pM)

−(1 + λ) [θ(QM(pM) − K) + cK + C(K) + Fm]} − λU (1.5)

as the social valuation of total production minus its social cost, minus the social

opportunity cost of the firm’s utility. From this expression of social welfare we see

that reducing the monopoly’s utility is socially desirable for this utility includes a

transfer of public funds collected through distortive taxation (see (1.2)). Similarly,

6. The output nonnegativity constraint needs to be taken into account here because transfers T
(here unconstrained in sign and magnitude) can be used to finance any fixed cost that wouldn’t
be recovered through revenues from gas.
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we see from (1.5) that the social valuation of total production explicitly includes

the fiscal value of the revenues that it generates λpMQM(pM).7

With transfers, monopoly output, and capacity as instruments of control, the

social planner’s program consists in maximizing social welfare W given by (1.5)

with respect to pM , K, and U , under the firm’s participation and output non-

negativity constraints, respectively (1.3) and (1.4).8 Letting φ and ν denote the

Lagrange multipliers associated with these two constraints respectively, and using

the fact that ∂S(QM )
∂QM

= pM , the following first-order conditions obtain:9

λQM + (1 + λ) (pM − θ) Q′
M + νQ′

M = 0 (1.6)

(1 + λ) [(θ − c) − C ′(K)] − ν = 0 (1.7)

−(λ − φ) = 0 (1.8)

φU = 0 (1.9)

ν [QM − K] = 0 (1.10)

From (1.8) and (1.9), we immediately see that the participation constraint is bind-

ing, i.e., U = 0 and, indeed, transfers allow the social planner to totally extract

(finance) the firm’s profit (deficit). Letting ε(QM) designate the price-elasticity of

demand in market M , the first-order conditions (1.6)-(1.10) allow us to state the

following proposition:

Proposition 1.1 When price (or equivalently output) and capacity are both con-

trolled by the social planner, and the latter can use public funds to make transfers

between consumers and the firm, optimal price and capacity are characterized as

follows, according to whether or not there is a marginal-cost gap between the re-

gional and competitive markets.

The no-cost-gap case: When θ − c = 0, no capacity is built (K = 0), regional

7. Indeed, these revenues allow the government to rely less on public funds raised through
taxation at a deadweight loss.

8. Note that as long as the social planner controls monopoly output and transport capacity, he
totally controls price in market M .

9. To minimize notation, the arguments of some of the demand and cost functions will be
dropped in the presentation.
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demand is entirely met by the local monopoly (qm = QM , ν = 0), and the optimal

price satisfies:

pM − θ

pM

(
=

pM − c

pM

)
=

λ

1 + λ

1

ε(QM)
(1.11)

The cost-gap case: When θ− c > 0, one of two following policies (K, pM , ν) arises:

(i) The policy (0 < K < QM , pM > θ, ν = 0) in which the local monopoly meets

part of the market demand and the optimal price and capacity satisfy

pM − θ

pM

(
=

pM − (c + C ′(K))

pM

)
=

λ

1 + λ

1

ε(QM)
(1.12)

(1 + λ)C ′(K) = (1 + λ)(θ − c) (1.13)

(ii) The policy (K = QM , pM > c, ν > 0) in which the local monopoly is shut

down and market demand is entirely met through imports. The markup of

the import activity is given by

pM − (c + C ′(QM))

pM

=
λ

1 + λ

1

ε(QM)
(1.14)

Under policy (i), the condition 0 < (θ−c) < C ′(QM) holds, i.e., the firm’s marginal

cost, θ, is smaller than the marginal cost of imports when the latter meet the entire

market demand, c + C ′(QM). Under policy (ii) the reverse is true.

Note that, thanks to the availability of transfers, the policies described in

Proposition 1.1 are not responsive to the value of the fixed cost, Fm. From equa-

tions (1.11), (1.12), and (1.14) we see that pricing obeys a Ramsey principle ac-

cording to which the price markup is inversely proportional to the price-elasticity

of demand in the regional market.10 When ν = 0, i.e., when the local monopoly is

active, it is indeed optimal to let it apply a markup (see (1.11) and (1.12)) since

10. Note that here the coefficient of proportionality is a function of λ and hence, in contrast to
the standard Ramsey formulas, is exogenous.
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public funds are costly and the social planner can use transfers to capture this

markup. As to capacity, it is set such that the social marginal cost of imports,

(1+λ)[c+C ′(K)], is equal to the social marginal cost of local production, (1+λ)θ,

a relationship that can be seen from (1.13). When ν > 0, i.e., when the firm is

shut down, its fixed cost is financed through transfers and there is still a markup

but now the relevant marginal cost is that of imported gas (see (1.14)).

To get the reader familiar with the resolution approach we adopt in the rest of

the analysis, let us implement it in the context of the control scheme of reference

considered in this section. To study the solution to the system of first-order con-

ditions (1.6)-(1.10), we proceed in two steps. First, we consider the unconstrained

maximization program (maximization of (1.5)) in the capacity-price (K-pM) space,

and then we introduce the firm’s output nonnegativity constraint (1.4).11

An unconstrained welfare maximizing capacity-price pair satisfies the following

first-order conditions12

λQM + (1 + λ) (pM − θ) Q′
M = 0 (1.15)

(1 + λ) [(θ − c) − C ′(K)] = 0 (1.16)

For the social welfare function (1.5), sign[ ∂2W
∂K∂pM

] = 0, which says that the so-

cial marginal valuation of capacity remains unaffected by changes in the regional

market price.13 Hence, in the K-pM space, the first-order condition with respect

to price (1.15) can be represented by a line parallel to the K-axis at the price

level pM = θ − λ
(1+λ)

QM

Q′

M

.14 Similarly, the first-order condition with respect to ca-

pacity (1.16) is a line parallel to the pM -axis at the capacity level K such that

11. Since U = 0, we can ignore the firm’s participation constraint (1.3).

12. The welfare function given in (1.5) will be strictly concave if, for any capacity-price pair,
the condition (1 + λ)C ′′(K) [(1 + 2λ)Q′

M + (1 + λ)(pM − θ)Q′′

M ] < 0 holds. As we assume both
C ′′(K) > 0 for any K ≥ 0 and a concave downward-sloping demand schedule, provided (pM−θ) ≥
0, the former condition is always satisfied. Thus, the optimal price and capacity levels are not
only local but also global interior welfare maximizers.

13. For a general convex firm’s cost function, sign[ ∂2W
∂K∂pM

] = sign[(1+λ)C ′′

mQ′

M ] which is either
negative or zero.

14. Strict concavity of the social welfare function (1.5) insures that this differential equation
defines a unique line for nonnegative prices.
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(θ − c) = C ′(K), i.e., at K = C ′−1((θ − c)).15 The unique solution to the sys-

tem constituted of the two equations (1.15) and (1.16) corresponds then to the

intersection of these two lines.

Next, the nonnegativity set defined by the constraint (1.4) has a boundary

which is decreasing and concave with slope 1
Q′

M

in the K-pM space. If the capacity-

price pair that solves (1.15) and (1.16) yields qm > 0, and this will be the case if

and only if

K = C ′−1((θ − c)) < QM(pM)|
pM=θ−

λQM
(1+λ)Q′

M

, (1.17)

then this pair will also be the solution of the constrained program of the social

planner. In this case, total demand in market M cannot be met exclusively by

imports K at the prevailing price. Otherwise, the solution to the constrained

maximization program will be at the tangency point of a welfare level curve and

the boundary of the nonnegativity set characterized by:16

− (1 + λ) [(θ − c) − C ′(QM)]

λQM + (1 + λ) (pM − θ) Q′
M

=
1

Q′
M

(1.18)

To illustrate the resolution of this three-instrument control scheme, let us con-

sider the case where demand is linear and the technology of capacity building is

quadratic. More specifically, let

QM(pM) = γ − pM , C(K) =
ω

2
K2; γ, ω > 0, γ > c (1.19)

With these functional forms, the first-order condition with respect to price (1.15)

is a horizontal line crossing the pM -axis at pM = θ + λ
(1+2λ)

(γ − θ), whereas that

with respect to capacity (1.16) is a vertical line crossing the K-axis at K = (θ−c)
ω

.

See Figures 1.2a and 1.2b. The shaded areas correspond to the set defined by

the local monopoly output nonnegativity constraint (1.4), which here is the set of

(K, pM) pairs such that K + pM ≤ γ.

15. Note that since C ′ is increasing convex, its inverse exists.

16. Given our demand and capacity building cost assumptions, second-order conditions are
always satisfied.



Chapter 1 Controlling regional monopolies in the natural gas industry 11

0
p

W

M

0
K

W

K

Mp

0KpQ MM
0

p

W

M

0
K

W

K

Mp

Welfare level

curve

0KpQ MM

Figure 1.2a: Interior solution Figure 1.2b: Boundary solution

When (1.17) holds, we obtain the interior solution to (1.6)-(1.10) as the intersection

of the two lines shown in Figure 2a. More specifically, when

0 ≤ (θ − c) <

[
ω(1 + λ)

(1 + 2λ) + ω(1 + λ)

]
(γ − c) (1.20)

the (interior) solution is

K =
(θ − c)

ω
(1.21)

pM = θ +

[
λ

1 + 2λ

]
(γ − θ) (1.22)

When θ − c = 0, this solution with θ replaced by c corresponds to that described

in the no-cost-gap case of Proposition 1.1. When θ − c > 0, it corresponds to

policy (i) of the cost-gap case in the proposition. When (1.17) does not hold, the

boundary solution at the tangency point shown in Figure 2b is obtained. More

specifically, when

[
ω(1 + λ)

(1 + 2λ) + ω(1 + λ)

]
(γ − c) ≤ (θ − c) < (γ − c) (1.23)
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this boundary solution is

K =

[
1 + λ

(1 + 2λ) + ω(1 + λ)

]
(γ − c) (1.24)

pM = c +

[
λ + ω(1 + λ)

(1 + 2λ) + ω(1 + λ)

]
(γ − c) (1.25)

This solution corresponds to policy (ii) of the no-cost-gap case described in Propo-

sition 1.1.

1.4 Controlling the regional monopoly with price

and capacity only

In this section, we assume that the social planner can still set the transport ca-

pacity and the firm’s output level, and hence fully controls price in market M , but

transfers between consumers and the firm are no longer permitted. Social welfare

W is now expressed as

W = {S(QM(pM)) − pMQM(pM)}
+{(1 + λ) [(pM − c)K − C(K)]}
+{(pM − θ) [QM(pM) − K] − Fm} (1.26)

that is, as the sum of the net consumer surplus, the social value of the profits

generated by the K units imported from the competitive market, and the profits

of the firm that now cannot be transferred to consumers. Gathering terms, we

obtain

W = S(QM(pM)) + λpMK

− [θ(QM(pM) − K) + Fm] − (1 + λ) [cK + C(K)] (1.27)

Cross-examining (1.5) and (1.27), we see that as now transfers are not allowed,

the social planner assigns a fiscal value λpMK only to the revenues generated by

the K units shipped from the competitive market Cp into the regional market M .
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The social planner maximizes social welfare given by (1.27) with respect to price

and capacity, under the participation constraint (nonnegativity of profits) that now

does not include transfers, and the firm’s output nonnegativity constraint

Πm = (pM − θ) [QM(pM) − K] − Fm ≥ 0 (1.28)

qm = QM(pM) − K ≥ 0 (1.29)

Given that transfers are not allowed, it makes sense for us to consider only the

policies with pM ≥ θ when the firm is active. When there is a strictly positive

fixed cost, i.e., Fm > 0, the firm will always be active. When there is no fixed

cost, i.e., Fm = 0, cases where the firm is shut down may (and actually do) arise.

In such cases, because the social planner does not face the concern of financing a

fixed cost, the relevant constraint is (1.29). In order then to rule out irrelevant

solutions with a negative margin (pM < θ), we assume that when Fm = 0, the

marginal cost gap is not too high, so that17

0 ≤ (θ − c) ≤ C ′(QM) − λ

1 + λ

QM

Q′
M

(1.30)

Hence, from now on, we focus on the set defined by the participation constraint

(1.28) hereafter referred to as the participation set.

Letting φ denote the Lagrange multiplier associated with the participation

constraint, the system of first-order conditions that characterize the optimal policy

is

λK + (pM − θ) Q′
M + φ [(pM − θ) Q′

M + (QM − K)] = 0 (1.31)

(1 + λ) [(θ − c) − C ′(K)] + (λ − φ) (pM − θ) = 0 (1.32)

φ [(pM − θ) (QM − K) − Fm] = 0 (1.33)

(pM − θ) (QM − K) − Fm ≥ 0 (1.34)

To rule out the possibility of having K < 0 when Fm > 0 we assume that the fixed

17. This constraint on the value of the marginal cost gap is not needed as long as the fixed cost
is arbitrarily far away from zero.
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cost is bounded so that

Fm ≤ −
λQ2

M +
[
(1 + λ)(θ − c)Q′

M +
√

G
]
QM

2(1 + λ)Q′
M

(1.35)

where G ≡ [λQM + (1 + λ)(θ − c)Q′
M ]2 − 4(1 + λ)2(θ − c)QMQ′

M .18

For the purpose of analyzing the solution to (1.31)-(1.34) in the K-pM space,

we first consider the unconstrained maximization program and then introduce the

participation set. An unconstrained welfare maximizer capacity-price pair satisfies

the following first-order conditions:

λK + (pM − θ) Q′
M = 0 (1.36)

(1 + λ) [(θ − c) − C ′(K)] + λ(pM − θ) = 0 (1.37)

Second-order conditions for such an unconstrained local social welfare maximizer

are synthesized by

λQ′
M

λKQ′′
M − Q′

M
2 <

(1 + λ)C ′′(K)

λ
(1.38)

18. This upper-bound is obtained as follows. When Fm > 0, we look for the conditions char-
acterizing a policy of the type (0, pM > θ, φ > 0). Substituting for K = 0 in the system of
first-order conditions (1.31)-(1.33), we see that such a policy is defined by

φ = λ +
(1 + λ)(θ − c)QM

Fm
and φQM +

(1 + φ)FmQ′

M

QM
= 0.

Solving for Fm, yields the right-hand side term of the inequality (1.35). It is easy to see that
any Fm smaller than this term will indeed yield K > 0. Moreover, it can be shown that (1.35)

implies Fm ≤ −Q2
M

Q′

M

, which is a condition that insures that the participation set be nonempty

for nonnegative values of K. The latter condition is derived as follows. For the participation set
to be nonempty for K ≥ 0 it suffices that the largest K that makes the participation constraint
binding be nonnegative. Such a K is found by solving the following program:

max
pM ,K

K

s.t. (pM − θ) [QM (pM ) − K] − Fm = 0

K ≥ 0

It is then easy to show that such a capacity level satisfies
Q′

M Fm+(QM−K)2

Fm
≤ 0. Now, if this

inequality holds for K = 0, it will clearly hold for any K > 0.
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Observe that, for the welfare function (1.27), sign[ ∂2W
∂K∂pM

(= λ)] > 0.19 Hence, un-

der this control scheme without transfers, the social marginal valuation of capacity

increases with the regional market price.

In the K-pM space, provided that Q′′′
M ≤ 0 and C ′′′(K) ≥ 0, the first-order

condition with respect to price of the unconstrained program (1.36) can be repre-

sented by an increasing concave function, with slope
λQ′

M

λKQ′′

M
−Q′

M
2 , which crosses the

pM -axis at pM = θ. Similarly, the first-order condition with respect to capacity

(1.37) can be represented by an increasing convex function, with slope (1+λ)C′′(K)
λ

,

which crosses the pM -axis at pM = θ − (1+λ)(θ−c)
λ

≤ θ. These two functions rep-

resenting (1.36) and (1.37) cross at most twice for any K and at most once for

K > 0.

Two situations might arise according to the value of the cost gap. With no cost

gap (θ − c = 0), (1.36) and (1.37) cross at (0, c). This point is an unconstrained

welfare maximizer if λ2 + (1 + λ)C ′′(0)Q′
M < 0. If λ2 + (1 + λ)C ′′(0)Q′

M > 0, an

unconstrained welfare maximizer with K > 0 (located at a second crossing point)

may exist if Q′
M

[
C ′′(K) − C′(K)

K

]
− λK

Q′

M

Q′′
MC ′′(K) < 0.20

With a cost gap (θ − c > 0) and at K = 0, the increasing concave function

representing (1.36) implies a strictly larger level of price than the one implied by

the increasing convex function representing (1.37). Therefore, such functions are

expected either to cross only once or not at all. It is straightforward to show that

in the case they cross only once, the crossing point, which is a solution to (1.36)-

(1.37), satisfies the second-order conditions (1.38) for the unconstrained welfare

maximization program.

The participation set is a convex set in the K-pM space when both qm ≥ 0 and

19. For a general convex cost function of the regional monopoly, sign[ ∂2W
∂K∂pM

] = sign[λ +

C ′′

mQ′

M ] R 0. Therefore, in general the effect of an increase in the regional market price pM on
the social marginal valuation of capacity depends on the relative magnitude of λ. This shows
the simplification that the specific cost function Cm(θ, qm) = θqm + Fm allows to achieve.

20. In particular, this second crossing point does not exist when (1.36) and (1.37) are represented
by linear functions in the K-pM space.
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pM ≥ θ. Its boundary has a slope m
Πm

given by

m
Πm

=
pM − θ

(QM − K) + (pM − θ)Q′
M

=
Fm

Q′
MFm + (QM − K)2 (1.39)

for Fm ≥ 0.21 If the capacity-price pair that satisfies (1.36)-(1.38) belongs to the

participation set, it will also be a solution to the constrained welfare maximization

program. Otherwise, the constrained welfare maximizer is at a tangency point be-

tween a welfare level curve and the boundary of the participation set, characterized

by:22

m
Πm

∣∣
Fm≥0

= −(1 + λ) [(θ − c) − C ′(K)] + λ(pM − θ)

λK + (pM − θ) Q′
M

(1.40)

where m
Πm

∣∣
Fm=0

= 1
Q′

M

and m
Πm

∣∣
Fm>0

= Fm

Q′

M
Fm+(QM−K)2

, from (1.39).

The next proposition characterizes the alternative optimal pricing and trans-

port capacity policies associated with this control scheme.

Proposition 1.2 When price (or equivalently output) and capacity are both con-

trolled by the social planner but the latter cannot use public funds to make transfers

between consumers and the firm, the optimal price and capacity are characterized

as follows.

The no-cost-gap-no-fixed-cost case: When (θ − c) = 0 and Fm = 0, there are two

exclusive candidate optimal policies (K, pM , φ):

(i) The policy (K = 0, pM = θ = c, φ = 0) which consists in building no capacity,

21. Note that when K = QM and Fm goes to zero, by the L’hôpital rule, the second expression
of mΠm

in (1.39) goes to 1
Q′

M

.

22. The second-order conditions for this boundary solution are synthesized as

[
(1 + λ)(QM − (1 + λ)K)2C ′′(K)

]
Q

′′′

M

− [φ(QM − K) + λK]
[
(2φ2 + 3φ − 2λ)(QM − K) + λ(1 + 2λ)K

]
Q′

M
2

+ [φ(QM − K) + λK]
3
Q′′

M ≤ 0

It is easy to see that this condition is satisfied whenever Fm = 0, as in this case the boundary
solution yields K = QM .
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setting price in the local market at marginal cost, and thus making the local

monopoly just break even.

(ii) The policy (0 < K ≤ QM , pM > θ = c, φ ≥ 0) which prescribes building

capacity and setting price above marginal cost. This policy takes one of the

two following forms:

(a) The policy (0 < K < QM , pM > θ = c, φ = 0) in which the local

monopoly meets part of the market demand and makes positive profits.

The markup of this monopoly takes the form

pM − θ

pM

(
=

pM − c

pM

)
=

λK

QM

1

ε(QM)
(1.41)

The import activity earns a markup given by

pM − (c + C ′(K))

pM

=
λ

1 + λ

K

QM

1

ε(QM)
, (1.42)

and capacity obeys

(1 + λ)C ′(K) = −λ2 K

Q′
M

(1.43)

(b) The policy (K = QM , pM > θ = c, 0 < φ < λ) in which the local

monopoly is shut down and the whole market demand is met through

imports sold with a markup given by

pM − (c + C ′(QM))

pM

=
λ

1 + λ

1

ε(QM)
(1.44)

When λ is low enough or the capacity building cost function is highly convex,

so that the condition (1 + λ)Q′
MC ′′(0) + λ2 < 0 holds, policy (i) is the optimal

policy. When this condition does not hold, e.g., for λ high enough, two situations

might arise. When demand concavity and capacity cost convexity are such that

Q′
M

[
C ′′(K) − C′(K)

K

]
− λK

Q′

M

Q′′
MC ′′(K) < 0, policy (ii-a) is optimal and the social

marginal cost of imports when they exclusively cover market demand, (1 + λ)[c +

C ′(QM)], net of the marginal fiscal revenue of imported gas, λpM , is greater than
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the marginal cost of the firm, θ (in this case θ = c). This condition is summarized

by C ′(QM)+ λ2

1+λ
QM

Q′

M

> 0. Optimality of policy (ii-b) calls for the reverse of at least

one of these conditions.

The no-cost-gap-with-fixed-cost case: When (θ − c) = 0 and Fm > 0, there are two

exclusive candidate optimal policies (K, pM , φ):

(i) The policy (K = 0, pM > θ = c, φ = λ) which consists in building no capacity

and letting the local monopoly earn a markup that makes it just break even:

pM − θ

pM

(
=

pM − c

pM

)
=

φ

1 + φ

1

ε(QM)

(
=

λ

1 + λ

1

ε(QM)

)
(1.45)

(ii) The policy (0 < K < QM , pM > θ = c, φ ≥ 0) which prescribes building

capacity and setting price above marginal cost. This policy takes one of the

two following forms:

(a) The policy (0 < K < QM , pM > θ = c, φ = 0), characterized by (1.41)-

(1.43), in which the local monopoly meets part of the market demand

and makes positive profits.

(b) The policy (0 < K < QM , pM > θ = c, 0 < φ < λ), in which the local

monopoly makes a markup

pM − θ

pM

(
=

pM − c

pM

)
=

[
λK + φ(QM − K)

(1 + φ)QM

]
1

ε(QM)
, (1.46)

to just break even, the import activity earns a markup

pM − (c + C ′(K))

pM

=

[
λK + φ(QM − K)

(1 + λ)QM

]
1

ε(QM)
, (1.47)

and capacity satisfies

(1 + λ)C ′(K) =
J

(QM − K)
, (1.48)

where J ≡ m
Πm

× [λQM(QM − K) + (1 + λ)Q′
MFm] > 0, where m

Πm
is

given by (1.39).
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Under policy (i) the fixed cost Fm is equal to the highest variable profit level the

regional monopoly can earn, (pM − θ)QM (= (pM − c)QM), i.e., Fm = − λ
1+λ

Q2
M

Q′

M

.

When the fixed cost is not that large, i.e., when Fm < − λ
1+λ

Q2
M

Q′

M

, only policies of

type (ii) may arise. Provided that Q′
M

[
C ′′(K) − C′(K)

K

]
− λK

Q′

M

Q′′
MC ′′(K) < 0, under

policy (ii-a) the marginal cost of the regional monopoly, θ (= c), is equal to the

“net” social marginal cost of imports, (1 + λ)[c + C ′(K)] − λpM , and the firm’s

variable profits are larger than the fixed cost, i.e., Fm < −λK (QM−K)
Q′

M

. Under

policy (ii-b) at least one of these conditions is reversed.

The with-cost-gap-no-fixed-cost case: When (θ − c) > 0 and Fm = 0, there are two

exclusive candidate optimal policies (K, pM , φ):

(i) The policy (0 < K < QM , pM > θ, φ = 0) in which the local monopoly meets

part of the market demand and makes positive profits. The pricing rule for

this policy is described by (1.41) and (1.42), and the capacity building rule

by

(1 + λ)C ′(K) = (1 + λ)(θ − c) − λ2 K

Q′
M

(1.49)

(ii) The policy (K = QM , pM ≥ θ, φ > 0) in which the local monopoly is shut

down and hence the whole market demand is met through imports. The

pricing rule for this policy is given by (1.44).

If Q′
M

[
C ′′(K) − C′(K)

K

]
− λK

Q′

M

Q′′
MC ′′(K) < 0, optimality of policy (i) is consistent

with the condition (θ − c) < C ′(QM) + λ2

1+λ
QM

Q′

M

. Under policy (ii) at least one of

these two conditions is violated. The interpretation of these conditions is similar

to that of the conditions obtained in the no-cost-gap-no-fixed-cost case.

The with-cost-gap-with-fixed-cost case: When (θ − c) > 0 and Fm > 0, there are

two exclusive candidate optimal policies (K, pM , φ):

(i) The policy (K = 0, pM > θ, φ > λ) which consists in building no capacity

and letting the local monopoly earn a markup that makes it just break even:

pM − θ

pM

=
φ

1 + φ

1

ε(QM)
(1.50)
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(ii) The policy (0 < K < QM , pM > θ, φ ≥ 0) which prescribes building capac-

ity and setting price above marginal cost. This policy takes one of the two

following forms:

(a) The policy (0 < K < QM , pM > θ, φ = 0), characterized by (1.41),

(1.42), and (1.49).

(b) The policy (0 < K < QM , pM > θ, φ > 0) in which the pricing rule is

characterized by (1.46) and (1.47), and the capacity building rule by

(1 + λ)C ′(K) = (1 + λ)(θ − c) +
J

(QM − K)
, (1.51)

where J is defined as in the policy (ii-b) of the no-cost-gap-with-fixed-

cost case.

Under policy (i) the fixed cost satisfies condition (1.35) with equality. Whenever

(1.35) is satisfied with strict inequality only policies of type (ii) may arise. Policy

(ii-a) corresponds to the case where Q′
M

[
C ′′(K) − C′(K)

K

]
− λK

Q′

M

Q′′
MC ′′(K) < 0 and

Fm < −λK (QM−K)
Q′

M

. Policy (ii-b) corresponds to the case where either of these

inequalities is reversed. These conditions have the same interpretation as those

obtained in the case of no cost gap and positive fixed cost.

From Proposition 1.2, we see that when the solution of the constrained welfare

maximization program allows the monopoly to earn positive profits (see the cases

with φ = 0), the markup it makes is inversely related to the elasticity of demand

and increases with the share of imports in the total consumption of gas in the

regional market. The reason for this latter result is that the social marginal val-

uation of capacity increases with price. As to the markup made on imports, it is

increasing with the share of these imports in total demand but it is less sensitive

to it than the firm’s markup. From the capacity building rule, we see that at the

optimum the social cost of the marginal unit of gas shipped from the competitive

market just (1 + λ)[c + C ′(K)] net of the fiscal revenue of this imported gas unit,

λpM , equals the social cost of having this unit produced by the local monopoly,

θ ≥ c.
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When it is optimal to let the local monopoly active and just break even (qm > 0

and φ > 0), the markup made by the monopoly is again inversely related to the

regional market demand elasticity. However, the proportionality term is the ratio

of the fiscal valuation of the revenues from imports, λpMK, plus the valuation

the planner assigns to the fact that revenues made by the firm help to relax the

participation constraint, φpMqm, to the social valuation of the aggregate revenues

in the regional market in the case where these revenues were exclusively generated

by the firm, (1 + φ)pMQM . The markup from imports has a similar structure but

the denominator of the proportionality term is the social valuation of aggregate

revenues in the case where total demand is met by imports, (1 + λ)pMQM .23

Under these zero-profit cases, optimal capacity makes the “net” social cost

of the marginal unit of gas shipped from the competitive market, (1 + λ)[c +

C ′(K)]−λpM , just equals the social cost of having this unit produced by the local

monopoly, θ, net of the value the planner assigns to the contribution of this unit

to the relaxation of the firm’s participation constraint, φ(pM − θ). Indeed, these

profits can no longer be collected by the planner as he now lacks the instrument

that would allow him to do so.

The extreme case in which no capacity is built (K = 0) arises when either

there is no fixed cost or it is too high. The behavior of price and capacity depends

on whether or not φ = 0 and its characterization is as described in the preceding

paragraphs. The case where the local monopoly is shut down (qm = 0 and φ > 0),

exclusively arises when there is no fixed cost. In this case, the relevant markup is

the one made by the import activity and is identical to that derived for the scheme

that allows the social planner to use transfers (see (1.14)).

Let us again examine the solution that obtains with the specific functional

forms (1.19). In this case, the function representing the first-order condition of

the unconstrained program (1.36) is a line of slope λ, while that representing (1.37)

is a line of slope ω(1+λ)
λ

. From the second-order condition (1.38), the crossing point

between these two lines is an unconstrained welfare maximizer if ω(1+λ)
λ

> λ, and

this is so irrespective of the value of the fixed cost Fm.

23. This interpretation is obtained after multiplying the right-hand side expressions of (1.46)
and (1.47) by pM

pM
.
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Let us now examine the participation set for the relevant region where pM ≥
θ. In the no-fixed-cost case, Fm = 0, the boundary of this set is flat whenever

(pM − θ) = 0 and will have a slope equal to −1 when (pM − θ) > 0, with K = QM

on this negatively-slopped portion of the boundary. Figures 1.3a and 1.3b illustrate

these features. The shaded regions correspond to the participation set defined by

(1.28). The upward-slopping lines represent the first-order conditions (1.36) and

(1.37).
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Figure 1.3a: Interior solution Figure 1.3b: Boundary solution

with ω(1 + λ) − λ2 > 0 with ω(1 + λ) − λ2 < 0

Figure 1.3a sketches the case where the solution to the unconstrained program is

also that of the constrained program. This solution, given by

K =

[
1 + λ

ω(1 + λ) − λ2

]
(θ − c) (1.52)

pM = c +

[
λ + ω(1 + λ)

ω(1 + λ) − λ2

]
(θ − c) , (1.53)

arises when both conditions

ω(1 + λ) − λ2 > 0 (1.54)

0 ≤ (θ − c) <

[
ω(1 + λ) − λ2

(1 + 2λ) + ω(1 + λ)

]
(γ − c) (1.55)
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hold. When θ−c = 0, this solution corresponds to policy (i) of the no-cost-gap-no-

fixed-cost case of Proposition 1.2. When θ − c > 0, it represents policy (i) of the

with-cost-gap-no-fixed-cost case stated in the proposition. Figure 1.3b represents

the boundary solution characterized by (1.40). This solution is given by

K =

[
1 + λ

(1 + 2λ) + ω(1 + λ)

]
(γ − c) (1.56)

pM = c +

[
λ + ω(1 + λ)

(1 + 2λ) + ω(1 + λ)

]
(γ − c) , (1.57)

and arises when (1.54) and (1.55) do not hold, i.e., when24

[
ω(1 + λ) − λ2

(1 + 2λ) + ω(1 + λ)

]
(γ − c) ≤ (θ − c) ≤

[
λ + ω(1 + λ)

(1 + 2λ) + ω(1 + λ)

]
(γ − c) (1.58)

When θ − c = 0, this solution corresponds to policy (ii-b) of the case with no cost

gap and no fixed cost in Proposition 1.2. When θ − c > 0, it illustrates policy (ii)

of the case with cost gap and no fixed cost in the proposition.

When turning to the case where Fm > 0, no closed-form solutions are ob-

tained. Indeed, our analysis gets complicated by the fact that the shape of the

participation set is sensitive to the size of the fixed cost. To understand the na-

ture of this difficulty, it is useful to go back a moment to the case with no fixed

cost and focus on the region defined by the first-order condition with respect to

price (1.31). In both Figures 1.3a and 1.3b, the downward-slopping dashed line

represents the (K, pM) pairs such that [(pM − θ) Q′
M + (QM − K)] = 0. Given the

geometric characterization of the first-order condition with respect to price of the

unconstrained program (1.36), see Figures 1.3a and 1.3b, and provided that φ is

nonnegative, it follows that the (K, pM) pairs which satisfy (1.31) belong to the

shaded regions in Figures 1.4a and 1.4b. For alternative values of the cost-gap

θ − c, we see from (1.32) that the solution of the constrained program lies on the

bold segments shown in these figures.

24. Given that (θ − c) lies on the interval defined by (1.30), this condition is always satisfied
when the reverse of inequality (1.54) holds, namely, when ω(1 + λ) − λ2 < 0.
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Figure 1.4a: Locus of solutions Figure 1.4b: Locus of solutions

with ω(1 + λ) − λ2 > 0 with ω(1 + λ) − λ2 < 0

Now, when we proceed to generalize this argument to the case where Fm > 0,

the bold segments representing the solution to the constrained program in Figures

1.4a and 1.4b become curves, and more importantly, their shapes are sensitive to

the size of the fixed cost. Figures 1.5a and 1.5b show these bold curves for two

different values of Fm with those on the upper parts corresponding to a lower fixed

cost than those on the lower parts. Cross-examining Figures 1.4a-1.4b and 1.5a-

1.5b, we see that when there is no fixed cost, solutions with φ > 0 only happen

in the negatively sloped portion of the boundary of the participation set, while

with fixed cost a solution with φ > 0 may lie on either the positively or negatively

sloped portion of the boundary of the participation set. This “indeterminacy” of

the solution convinces us of the usefulness of simulations for studying the behavior

of the endogenous variables of this scheme, namely, pM , K, and φ. The results of

such simulations are shown in the appendix.
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Figure 1.5a: Locus of solutions Figure 1.5b: Locus of solutions

with ω(1 + λ) − λ2 > 0, Fm > 0 with ω(1 + λ) − λ2 < 0, Fm > 0

1.5 Controlling the regional monopoly with

transport capacity only

We now assume that the social planner lacks an additional instrument of control,

namely, setting the monopoly’s level of output, and hence he can only partially

affect price in market M . Transport capacity is therefore the only instrument left

to him to counter the exercise of local market power by the firm in this market.
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In practice though, we model this case as if the social planner continues to set the

price level, but now this price has to fall within a profit-maximizing-constrained

set of values. Let us be more specific.

For a given volume of gas K imported from the competitive market, the firm

remains a monopoly in its local commodity gas market on the residual demand

QM(pM) − K. Given this demand, the firm sets price so as to maximize its profit

Πm given by

Πm = (pM − θ) [QM(pM) − K] − Fm (1.59)

The first-order condition of this profit-maximization problem is

(pM − θ)Q′
M + QM − K = 0 (1.60)

while the second-order condition that ensures that we are indeed at a maximum

is Ω ≡ (pM − θ)Q′′
M + 2Q′

M < 0.

Given that transfers are not allowed, the form of the social welfare function

for this control scheme is analogous to the one described in the previous section

which we restate here:

W = S(QM(pM)) + λpMK

−θ(QM(pM) − K) − (1 + λ) [cK + C(K)] − Fm (1.61)

The program of the social planner consists in maximizing social welfare given by

(1.61) with respect to pM and K, under the regional monopoly participation con-

straint, Πm ≥ 0, where Πm is given by (1.59), its output nonnegativity constraint,

qm ≥ 0, and its profit-maximization constraint (1.60).25 As in the previous section,

let us focus on policies with pM ≥ θ in which case the firm’s output nonnegativity

constraint can be ignored.26 Letting φ and η designate the Lagrange multipli-

ers associated with the firm’s participation and profit-maximization constraints,

25. Strictly speaking, the second-order condition of the firm’s profit-maximization program
should also be taken as a constraint. The standard way to deal with this issue, is to check ex
post that this second-order condition is satisfied by the solution of the program.

26. Indeed, (pM − θ) ≥ 0 and (1.60) imply qm ≥ 0. Note that in this case there is no need for a
constraint on the size of the marginal cost gap.
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respectively, we obtain the following first-order conditions:27

λK + (pM − θ) Q′
M − ηΩ = 0 (1.62)

(λ − φ) (pM − θ) + (1 + λ) [(θ − c) − C ′(K)] + η = 0 (1.63)

φ [(pM − θ)(QM − K) − Fm] = 0 (1.64)

(pM − θ)(QM − K) − Fm ≥ 0 (1.65)

(pM − θ)Q′
M + QM − K = 0 (1.66)

Turning to the study of the solution to the system (1.62)-(1.66) in the K-pM

space, observe that since social welfare under this control scheme is the same as

that in the previous section, so is the analysis of the unconstrained maximiza-

tion program. When constraints are introduced in the maximization program,

however, an additional one arises here, namely, the profit-maximization constraint

(1.60). Such a constraint is represented in the K-pM space by a decreasing concave

function with slope − Q′

M

(QM−K)Q′′

M
−2Q′

M
2 and intercept point strictly in the interior

of the participation set. Furthermore, this function crosses the boundary of the

participation set at a point where the latter is infinitely sloped.28

Equation (1.62), (1.63), and (1.66) define a tangency point between a welfare

level curve and the function that represents the profit-maximization constraint.

Hence, such a point satisfies

− Q′
M

(QM − K)Q′′
M − 2Q′

M
2 =

(1 + λ) [(θ − c) − C ′(K)] Q′
M − λ(QM − K)

[QM − (1 + λ)K]Q′
M

(1.67)

27. The Lagrange multiplier associated with the profit-maximization constraint (1.60), η, is
interpreted as the social marginal cost of letting the regional monopoly maximize profits. Indeed,
η > 0 implies that a reduction in the optimal price markup made by the firm, results in a higher
level of welfare. However, note that from the cross-partial derivative of the welfare function

(1.61), ∂2W
∂pM ∂K = λ, a reduction in the price markup leads to a decrease in the optimal capacity

level. In particular, when η > 0 a reduction in import capacity is welfare improving.

28. The reader can check that such a crossing point is characterized by the condition

Fm

(QM (pM ) − K)
= − (QM (pM ) − K)

Q′

M

Solving for Fm and substituting into the expression of the slope of the boundary of the partici-
pation set (1.39) yields the slope of this set at the crossing point.
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If such a tangency point satisfies the firm’s participation constraint (1.65) with a

strict inequality, it is an interior solution.29 Note from (1.67) that K = 0 cannot

be a tangency point, and hence not an interior solution. If such a tangency point

violates (1.65), the solution to (1.62)-(1.66) lies at the intersection of the function

representing the profit-maximization constraint and the boundary of the partici-

pation set where, recall, the latter is infinitely sloped.30 The following proposition

summarizes the optimal policies.

Proposition 1.3 When capacity is the only instrument controlled by the social

planner, it is always built and the optimal price and capacity building rules are

characterized as follows.

The no-cost-gap-no-fixed-cost case: When (θ− c) = 0 and Fm = 0 there is a unique

policy (0 < K < QM , pM > θ = c, φ = 0, η 6= 0) at which the local monopoly

meets part of the market demand and makes positive profits. The markup of this

monopoly takes the form

pM − θ

pM

(
=

pM − c

pM

)
=

[
λK − ηΩ

QM

]
1

ε(QM)
=

[
QM − K

QM

]
1

ε(QM)
(1.68)

The import activity earns a markup given by

pM − (c + C ′(K))

pM

=

[
λK − η(Ω − Q′

M)

(1 + λ)QM

]
1

ε(QM)
, (1.69)

and capacity obeys

(1 + λ)C ′(K) = −λ(QM − K)

QM
′ − QM − (1 + λ)K

Ω
(1.70)

where Ω ≡ (pM − θ)Q′′
M + 2Q′

M .

29. Second-order conditions are synthesized as:

−Ω2(1 + λ)C ′′(K) + 2λΩ −
[
(QM − K)(Q′′

M − ηQ′′′

M )

Q′

M

]
+ [Q′

M − 3ηQ′′

M ] < 0

Note that for a downward-sloping linear demand, the former condition holds for any value of η.

30. In this case, second-order conditions are always satisfied. It is worthwhile noting that (1.35)
and (1.67) imply that transport capacity is always built under this scheme. This point will be
further discussed in the next section.
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The no-cost-gap-with-fixed-cost case: When (θ − c) = 0 and Fm > 0, there are two

exclusive candidate optimal policies (K, pM , φ, η):

(i) The policy (0 < K < QM , pM > θ = c, φ = 0, η 6= 0), characterized by

(1.68)-(1.70), in which the local monopoly meets part of the market demand

and makes positive profits.

(ii) The policy (0 < K < QM , pM > θ = c, φ > 0, η 6= 0) under which the markup

of the monopoly satisfies the following average cost pricing condition

pM − θ

pM

(
=

pM − c

pM

)
=

[
QM − K

QM

]
1

ε(QM)
=

√
−QM

′Fm

QM

1

ε(QM)
(1.71)

The markup of the import activity is

pM − (c + C ′(K))

pM

=

[
(1 + φ)[λK − ηΩ] + ηQ′

M

(1 + λ)QM

]
1

ε(QM)
, (1.72)

and capacity is given by

K = QM −
√

−QM
′Fm (1.73)

Under policy (i) the marginal cost of the local monopoly θ (= c) plus the shadow

cost of the firm’s profit maximization constraint, η, equals the “net” social marginal

cost of imports, (1+λ)[c+C ′(K)]−λpM , and the resulting firm’s variable profits are

larger than the fixed cost, i.e., Fm < − (QM−K)2

Q′

M

. Under policy (ii) this condition

holds with equality, i.e., Fm = − (QM−K)2

Q′

M

.

The with-cost-gap-no-fixed-cost case: When (θ− c) > 0 and Fm = 0, one of the two

following policies (K, pM , φ, η) emerges according to the size of the marginal cost

gap:

(i) The policy (0 < K < QM , pM > θ, φ = 0, η 6= 0) in which the local monopoly

meets part of the market demand and makes positive profits. The monopoly

and import activity markups are given by (1.68) and (1.69), whereas optimal
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capacity under this policy satisfies

(1 + λ)C ′(K) = (1 + λ)(θ − c) − λ(QM − K)

QM
′ − QM − (1 + λ)K

Ω
(1.74)

where Ω is as defined above.

(ii) The policy (K = QM , pM = θ, φ > 0, η < 0) in which the local monopoly is

shut down, the whole market demand is met through imports, and the markup

for the import activity is defined as follows

pM − (c + C ′(QM))

pM

=
ηQ′

M

(1 + λ)QM

1

ε(QM)
(1.75)

Under policy (i) the “net” social marginal cost of imports when they exclusively

cover market demand, (1+λ)[c+C ′(QM)]−λpM , is greater than the marginal cost

of the firm θ plus the shadow cost of the firm’s profit maximization constraint, η,

i.e. 0 < (θ − c) < C ′(QM) − 1
2

λ
1+λ

QM

Q′

M

. Under policy (ii) the reverse of this latter

condition is true.

The with-cost-gap-with-fixed-cost case: When (θ − c) > 0 and Fm > 0, there are

two exclusive candidate optimal policies (K, pM , φ, η):

(i) The policy (0 < K < QM , pM > θ, φ = 0, η 6= 0), characterized by (1.68),

(1.69), and (1.74), in which the local monopoly meets part of the market

demand and makes positive profits.

(ii) The policy (0 < K < QM , pM > θ, φ > 0, η 6= 0), characterized by the average

cost pricing rule (1.71), and the capacity building rule given by (1.73).

Under policies (i) and (ii), Fm < − (QM−K)2

Q′

M

and Fm = − (QM−K)2

Q′

M

respectively.

The interpretation of these conditions is similar to the case with no cost gap and

positive fixed cost.

Proposition 1.3 shows that when the solution allows for positive profits by the firm

(φ = 0), the latter earns a markup which is proportional to the share of its output

in the aggregate demand and inversely related to the elasticity of demand. The size
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of this monopoly’s markup is larger (smaller) than that under the control scheme

where the social planner had total control over pricing, described in section 1.4, if

the shadow cost of the firm’s profit maximization constraint η is positive (negative).

Optimal capacity is determined by balancing the net social cost of having an extra

unit imported from the competitive market, (1+λ)[c+C ′(K)]−λpM , against the

cost of having that unit produced locally by the monopoly, θ ≥ c, plus the social

cost of complying with the profit-maximization constraint, η.

When this control scheme yields no profits for the local monopoly at the op-

timum (φ > 0), the firm’s markup is inversely related to the elasticity of demand

but increases with the size of the fixed cost. Since in this particular case capacity

is used by the social planner as a residual instrument to make the firm just break

even, it is decreasing in Fm (see (1.73)). However, the firm may be forced to shut

down (qm = 0 and φ > 0) when there is no fixed cost and the marginal cost gap

(θ − c) is strictly positive. In such a case, the markup of the import activity is

strictly positive and increases with the absolute value of the shadow cost of the

profit maximization constraint.

Let us illustrate the solution under this control scheme using the functional

forms (1.19). In this case, the set defined by the firm’s profit maximization con-

straint (1.60) is a line of slope −1
2

that crosses the boundary of the participation

set at the point where the latter is infinitely sloped, as shown in Figures 1.8a and

1.8b. The shaded regions correspond to the participation set defined by (1.59). The

upward-slopping lines represent the price and capacity first-order conditions of the

unconstrained program, respectively, (1.36) and (1.37). The downward-slopping

dashed line is the set of (K, pM) pairs which satisfy the profit-maximization con-

straint of the local monopoly (1.60).
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Figure 1.6a: Interior solution Figure 1.6b: Boundary solution

Figure 1.6a sketches the case in which the solution lies in the interior of the

participation set. This interior solution is

K =
(1 + 2λ)(γ − c) + (3 + 2λ)(θ − c)

1 + 4λ + 4ω(1 + λ)
(1.76)

pM = θ +
[λ + 2ω(1 + λ)] (γ − c) − (θ − c) [2 + 3λ + 2ω(1 + λ)]

1 + 4λ + 4ω(1 + λ)
, (1.77)

and emerges when the condition

0 ≤ (θ − c) <
(γ − c) [λ + 2ω(1 + λ)] −

√
Fm [1 + 4λ + 4ω(1 + λ)]

2 + 3λ + 2ω(1 + λ)
(1.78)

holds. When θ − c = 0 and Fm = 0. This is the unique solution described

in the no-cost-gap-no-fixed cost case of Proposition 1.3. When θ − c = 0 and

Fm > 0, and when θ − c > 0 and Fm ≥ 0, it represents policies of type (i) in the

proposition. When condition (1.78) does not hold, the solution is on the boundary

of the participation set. Figure 1.6b shows such a boundary solution given by

K = γ − θ − 2
√

Fm (1.79)

pM = θ +
√

Fm (1.80)



Chapter 1 Controlling regional monopolies in the natural gas industry 33

This solution represents the policies of type (ii) in Proposition 1.3.

1.6 Role of control instruments

In the last three sections, we have characterized optimal policies obtained under

three control regimes that are differentiated by the set of control instruments avail-

able to the social planner. More specifically, we have considered the benchmark

case in which the social planner can use transfers, capacity, and price to mitigate

regional market power. Then, we have studied the more realistic cases in which

first, transfers are not allowed, second, neither transfers nor price control are pos-

sible. The purpose of this section is to study in a systematic way the consequences

in terms of network capacity of restrictions in the set of control instruments that

should normally follow an increasingly liberalized industry.

For clarity of exposition, we refer to the schemes described in section 1.3 (con-

trol of price and capacity with transfers), 1.4 (control of price and capacity without

transfers), and 1.5 (control of capacity only) as schemes A, B, and C respectively.

We study the evolution of network capacity as the planner possesses fewer and

fewer instruments to maximize social welfare. Letting KA, KB, KC , and pA
M ,

pB
M , pC

M designate the optimal levels of network capacity and price achieved under

the respective control schemes, we proceed by pairwise comparisons in order to

identify the impact of each individual instrument on transport capacity. These

comparisons allow us to assess the extent to which the various instruments are

substitute or complements in combating regional market power.31

1.6.1 Absence of transfers

When analyzing the impact of a loss of the ability to use transfers between con-

sumers and the firm, the relevant comparison is between schemes A and B. We

31. Each pairwise comparison is illustrated by using specific functional forms and particular
parameter values. This empirical analysis is based on simulations with respect to two parameters
that play an important role, namely, the marginal cost gap and the fixed cost. The background
material for these simulations is presented in the appendix.
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express the first-order conditions of the constrained welfare maximization programs

under these schemes, (1.6), (1.7), and (1.31), (1.32) as follows:

∂WA

∂pM

+ νAQ′
M = 0 (1.81)

∂WA

∂K
− νA = 0 (1.82)

∂WB

∂pM

+ φB ∂Πm

∂pM

= 0 (1.83)

∂WB

∂K
− φB(pM − θ) = 0 (1.84)

Examining the left-hand sides of (1.15), (1.16), and (1.36), (1.37), we see that

∂WB

∂pM

=
∂WA

∂pM

− λ
∂Πm

∂pM

(1.85)

∂WB

∂K
=

∂WA

∂K
+ λ(pM − θ) (1.86)

A casual look at (1.81)-(1.86) suggests that the (endogenous) shadow cost of the

constraint of nonnegativity of the firm’s output, νA, the (endogenous) shadow cost

of its participation constraint, φB, and the (exogenous) social cost of public funds,

λ, are going to influence the relative optimal levels of transport capacity. The

following proposition formalizes this relationship.

Proposition 1.4 Absence of transfers as a control instrument has the following

consequences. When the shadow cost of the participation constraint under scheme

B, φB, is smaller than the social cost of public funds, λ, i.e., (λ − φB) ≥ 0,

society suffers a net marginal cost from letting the firm make positive profits under

this scheme and “excess” capacity (in the large sense) is needed, i.e., KB ≥ KA.

If society enjoys marginal gains from letting the firm make positive profits, i.e.,

(λ − φB) < 0, there is a need for a strict reduction of transport capacity, i.e.,

KB < KA. In the particular case where there is no fixed cost, KB is unambiguously

greater than or equal to KA.

As an illustration of this proposition, Figures 1.7a and 1.7b exhibit the sign

of the capacity differential, (KB − KA), and that of νA and φB, in terms of the
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marginal cost gap, (θ − c), and the fixed cost, Fm, assuming the functional forms

(1.19) and under the parameter values (λ, ω, γ, c) ∈ {(1
3
, 1

2
, 10, 2), (1

3
, 1

15
, 10, 2)}.32
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Figure 1.7a: (KB − KA), νA, Figure 1.7b: (KB − KA), νA,

and φB with ω(1 + λ) − λ2 > 0 and φB with ω(1 + λ) − λ2 < 0

Cross-examining the upper and lower parts of Figures 1.7a and 1.7b, we see

that whenever the solution under scheme B is interior (φB = 0), so is the solution

under A (νA = 0), and KB ≥ KA. Moreover, when the solution under A yields

qm = 0 (νA > 0), the solution under B has the firm just break even (φB > 0), and

KB < KA. Note that, as stated in the proposition, these figures show that the

32. These two sets of parameter values allow us to examine both the case where the polynomial
ω(1 + λ) − λ2 is positive and negative.
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sign of the capacity differential (KB − KA) is the same as that of (λ − φB).

1.6.2 Lack of price control

Suppose now that the social planner initially has two control instruments, price

and capacity, and then looses the ability to set price. In order to analyze the impact

of such a reduction in the set of control instruments, the relevant comparison is

between schemes B and C. Since the welfare functions of these two schemes are

identical and scheme C has an additional constraint (the firm’s profit-maximization

constraint), let us express its first-order conditions (1.62), (1.63), and (1.66) as

∂WB

∂pM

− ηCΩ = 0 (1.87)

∂WB

∂K
− φC(pM − θ) + ηC = 0 (1.88)

∂Πm

∂pM

= 0 (1.89)

These first-order conditions give us reasons to expect that the shadow costs of

the participation constraint under B and C, φB and φC , and that of the profit-

maximization constraint under C, ηC , are going to be influential in the determi-

nation of the relative size of transport capacity. This can be seen in the next

proposition.

Proposition 1.5 When price and capacity are controlled by the social planner and

the latter looses price control, the impact on network capacity is as follows. When

the social marginal cost of letting the firm maximize profits is positive, i.e., when

ηC > 0, the lose of price control by the social planner entails “excess” capacity, i.e.,

KC > KB. When it is beneficial to allow the firm to maximize profits, i.e., when

ηC < 0, the ranking between KC and KB is undetermined. However, when there is

neither a marginal cost gap (θ = c) nor a fixed cost (Fm = 0), ηC > 0 ⇒ KC > KB

and ηC < 0 ⇒ KC < KB.

Figures 1.8a and 1.8b show the sign of the capacity differential, (KC − KB),

and that of φB, φC , and ηC in terms of the marginal cost gap, (θ−c), and the fixed
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cost, Fm, assuming the functional forms given by (1.19) and under the parameter

values used in the previous subsection.
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Figure 1.8a: (KC − KB), φB, φC , Figure 1.8b: (KC − KB), φB, φC

and ηC with ω(1 + λ) − λ2 > 0 and ηC with ω(1 + λ) − λ2 < 0

Comparing the upper and lower parts of Figures 1.8a and 1.8b, we see that

whenever the solution under scheme C yields ηC > 0, the capacity differential is

such that KC−KB > 0. However, a necessary condition for the sign of the shadow

cost of the profit-maximization constraint to reveal a negative sign for the capacity

differential, i.e., sign[KC − KB] = sign[ηC ] when ηC < 0, is that firm’s profits

be strictly positive (φC = 0). Moreover, we see from the lower part of Figure

1.8a that when ηC < 0 the set of interior solutions under B (φB = 0) is included
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in the set of interior solutions under C (φC = 0), and hence no situations under

which simultaneously φB = 0, φC > 0, and ηC < 0 may arise. Finally, with the

functional forms (1.19), condition Q′
M

[
C ′′(K) − C′(K)

K

]
− λK

Q′

M

Q′′
MC ′′(K) < 0 does

not hold and Figure 1.8b confirms the statement in Proposition 1.2 that whenever

ω(1 + λ) − λ2 < 0, the solution under B has φB > 0.33

1.6.3 Absence of transfers and lack of price control

Finally, let us assume that the social planner initially has three control instru-

ments, price, capacity, and transfers, and then he can neither use transfers nor set

price. The effect of such a removal of two control instruments can be analyzed by

comparing schemes A and C. Let us express the first-order conditions associated

with scheme C, (1.62), (1.63), and (1.66) as

∂WA

∂pM

− λ
∂Πm

∂pM

− ηCΩ = 0 (1.90)

∂WA

∂K
+ (λ − φC)(pM − θ) + ηC = 0 (1.91)

We observe from these first-order conditions that the shadow cost of the constraint

of nonnegative firm’s output under A, νA, that of the participation constraint under

C, φC , and that of the profit-maximization constraint under C, ηC , are going

to play an important role in the determination of the relative size of transport

capacity. The next proposition characterizes this role.

Proposition 1.6 When price, capacity and transfers are available to the social

planner as tools to fight market power and he looses the ability to use transfers and

set price, the impact on the capacity of the transport network is as follows. Provided

that after the reduction in the set of control instruments the firm earns strictly

positive profits, when the social marginal cost of letting the firm maximize profits is

positive, i.e., when ηC > 0, the loss of the two control instruments entails “excess”

capacity, i.e., KC > KA. When it is beneficial to allow the firm to maximize

profits, i.e., when ηC < 0, the ranking between KC and KA is undetermined.

33. This condition represents the inequality (1+λ)Q′

MC ′′(0)+λ2 > 0 stated in Proposition 1.2.
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In the particular case where there is no marginal cost gap (θ = c), KC > KA,

independently of the sign of ηC.

Figures 1.9a and 1.9b show the sign of the capacity differential, (KC − KA),

and that of νA, φC , and ηC in terms of the marginal cost gap, (θ−c), and the fixed

cost, Fm, assuming the functional forms given by (1.19) and under the parameter

values used in the previous subsections.
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Figure 1.9a: (KC − KA), νA, φC , Figure 1.9b: (KC − KA), νA, φC

and ηC with ω(1 + λ) − λ2 > 0 and ηC with ω(1 + λ) − λ2 < 0

As stated in Proposition 1.6, we see from Figures 1.9a and 1.9b that when

firm’s profits are not only maximized (ηC 6= 0) but also strictly positive (φC = 0),
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sign[KC − KA] = sign[ηC ] when ηC > 0. Observe from these figures that there

does not exist a case where νA > 0, φC = 0, and ηC > 0. The reason for this is that

if under A the firm is shut down (qm = 0) and if allowing it to maximize profits

under C is socially costly (ηC > 0), then there is no reason for letting it earn

strictly positive profits under this scheme (φC > 0). Finally, comparing the upper

parts of Figures 1.9a and 1.9b, we easily verify that when there is no marginal cost

gap (θ = c), transport capacity is oversized under scheme C, i.e., KC > KA.

1.7 Conclusion

The gas industry throughout the world, in particular in the European Union has

been facing an important question that is shared by most of the public utility sec-

tors. In a context where reforms aimed at opening some segments of the industry

to competition are conducted, how to make sure that monopoly power inherited

from the historical market structure is not going to be exercised by incumbent

firms. The work in this chapter has provided an initial analysis of some policies

that a social planner can use to mitigate regional monopoly power in the gas com-

modity market. We have considered optimal policies implementable through three

control instruments, transfers, price and transport capacity, and we have focused

on the way capacity responds to market power.

As a starting point, we have considered a situation where the social planner,

having complete information, may use transfers between consumers and a regional

monopoly, control the gas commodity price, and set the capacity of a pipeline used

to import competitive gas into the regional market. This is the control scheme

that we have used as a reference regime. We then have examined the effect on

the pipeline capacity of the planner’s loss of ability to use transfers and control

the price. The analysis has allowed us to shed light on the extent to which these

various tools of mitigating regional market power are substitutes or complements.

In particular, we have characterized the conditions under which a reduction in the

set of control instruments available to the social planner results in a transport

network that is “over”- or “under”-sized.

The analysis has also allowed us to investigate the incentives of a social planner
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to develop transport infrastructure in order to fight market power. In addition

to the standard allocative inefficiency due to market power (of a geographically

isolated firm), in our model with complete information the social planner has to

account for a potential productive inefficiency and a possible financing of a fixed

cost. Moreover, our model explicitly accounts for the the fact that public funds

are costly. Clearly then, the incentives of the social planner to build infrastructure

capacity depend on the available control instruments, how relatively inefficient the

regional firm is, whether there is indeed a fixed cost of this firm to be financed,

the cost structure of the capacity building activity, and how costly raising public

funds through taxation is. Putting these factors together and solving the various

tradeoffs involved is, as can be expected, not straightforward and Propositions

1.1-1.3 demonstrate that. Nonetheless, these propositions yield some instructive

qualitative information on the degree to which the social planner should intensify

investments in infrastructure in order to exert competitive pressure on regional

monopolies.

In the benchmark case where the social planner has full control of the regional

firm through transfers, capacity, and price the only relevant factor is how severe

the productive inefficiency might be. If the marginal cost gap is nil, in which case

productive inefficiency is not of concern, there is no need to invest in capacity.

Indeed, since the firm has the “right” marginal cost, the social planner allows it

to meet the entire market demand while pricing at a markup that would finance

a fixed cost, if there is any, and generate revenues that are socially valuable and

transferable to consumers. If the marginal cost gap is substantially large, the social

planner finds it worthwhile to intensively invest in transport capacity to the point

of inducing the shutting down of the regional firm even if a fixed cost needs to

be financed. Finally, if the marginal cost gap is small the social planner finds it

beneficial to put some, but not extreme, competitive pressure on the regional firm

by moderately investing in transport capacity and letting the firm earn a markup

that is recoverable through transfers anyway.

When transfers are no longer available but the social planner still controls

capacity and price, it is optimal not to build capacity in two cases. In the first

case, three conditions are simultaneously met, namely, the marginal cost gap is nil,
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there is no fixed cost to finance, and the capacity building technology and the cost

of public funds λ are such that the fiscal value of imported gas is dominated by

the cost of building transport capacity. The second case is when the fixed cost is

so large that the social planner is merely constrained to let the firm entirely meet

market demand so as to earn enough profits to finance such an extremely large

fixed cost. The decision to induce the shutting down of the regional firm initially

depends on whether or not the financing of a fixed cost is of concern. When

it is not and the marginal cost gap is nil or relatively small, extreme competitive

pressure is exerted only when the fiscal value of imported gas dominates the cost of

building transport capacity. However, if the productive inefficiency is substantial,

no matter what this “net” fiscal value of imports is, the absence of a fixed cost

makes shutting down the regional firm optimal. In all the remaining cases, limited

competition allowing both the firm and the import activity to earn markups is

optimal.

When not only transfers but also pricing are out of the social planner’s control,

competitive pressure through investment in transport capacity, be it arbitrarily

small, is always optimal. The extreme policy that consists in intensively investing

in capacity to the point of inducing the shutting down of the regional firm is

optimal only when the firm’s productive inefficiency is extremely high and there

is no fixed cost to be financed.

Control of monopoly power is to a large extent the subject of regulatory eco-

nomics. The purpose of this chapter was to explore the analysis of the interaction

among regulatory tools under the admittedly strong assumption of complete in-

formation. A necessary extension of our analysis is to introduce asymmetric infor-

mation on the firm’s production technology, and this is undertaken in the second

chapter of the dissertation. Our conjecture is that under incomplete information,

the relationship between instruments of control of market power will be affected

in some important ways.
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Appendix

Proof of Proposition 1.1 As indicated in the discussion of this proposition, the optimal policy

under this control scheme does not depend on the fixed cost Fm. Hence, two cases need to be

considered.

The no-cost-gap case: Substitute θ− c = 0 into (1.7) and use the fact that ν ≥ 0 to obtain K = 0

and ν = 0. Rewrite (1.6) as (1.11).

The cost-gap case: With 0 < (θ − c) < C ′(QM ), (1.7) yields ν = 0 in which case (1.10) yields

0 < K < QM and (1.6) and (1.7) are rewritten as (1.12) and (1.13). When (θ − c) ≥ C ′(QM ),

(1.7) yields ν > 0 in which case (1.10) yields K = QM , and (1.6) combined with (1.7) yield

(1.14). ¥

Proof of Proposition 1.2 Under this control scheme, four cases need to be considered. We

prove them in turn.

The no-cost-gap-no-fixed-cost case:

When θ−c = 0 and Fm = 0, since C ′(0) = 0, the first-order conditions (1.31)-(1.34) give K = 0,

pM = θ (= c), and φ = 0. The relevant second-order conditions, given by (1.38), are satisfied

when (1 + λ)Q′

MC ′′(0) + λ2 < 0. These features characterize policy (i) given in the proposition.

When (1+λ)Q′

MC ′′(0)+λ2 > 0, from the discussion that precedes the proposition in the text, since

the functions representing (1.36) and (1.37) cross at K = 0, they cross at most once at a point

where K > 0. If such a second crossing point exists and belongs to the interior of the participation

set (in which case qm > 0), it is defined by (1 + λ)Q′

MC ′(K) + λ2K = 0, rewritten as (1.43),

which results from (1.36) and (1.37), rewritten as (1.41) and (1.42). Now, to guarantee that it

exists, solving (1.43) for λ2 and substituting into the second-order conditions (1.38) yields the

technical condition Q′

M

[
C ′′(K) − C′(K)

K

]
− λK

Q′

M

Q′′

MC ′′(K) < 0. Finally, to insure that this second

crossing point belongs to the participation set, (1.37) cannot be satisfied when this constraint is

binding (in which case K = QM ), i.e., (1 + λ)[(θ − c) − C ′(QM )] + λ(pM − θ) < 0, rewritten as

(1+λ)[c+C ′(QM )]−λpM > θ. Substituting θ = c and pM from (1.42) yields C ′(QM )+ λ2

1+λ
QM

Q′

M

>

0. This characterizes policy (ii-a).

If the second crossing point with K > 0 does not exist or lies outside the participation set, the

optimization program picks the boundary solution with K = QM , and from (1.40) we obtain

(1.44). This characterizes policy (ii-b).

Figures 1.A1a-1.A1d illustrate these policies for specific functional forms in the K −pM space.34

34. Figures 1.A1a and 1.A1d are based on the functional forms (1.19) and (λ, ω, γ, θ = c) ∈
{( 1

3 , 1
2 , 10, 2), ( 3

2 , 1
2 , 10, 2)}, respectively. Figures 1.A1b and 1.A1c employ the linear demand

in (1.19), the capacity building cost function C(K) = (ω
3 K + σ

2 )K2, and (λ, ω, σ, γ, θ = c) ∈
{( 3

2 , 1
2 , 1

200 , 10, 2), ( 3
2 , 1

15 , 1
200 , 10, 2)}.
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Solutions are marked by a bold point on these figures.
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Figure 1.A1a: Policy (i) Figure 1.A1b: Policy (ii-a)
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Figure 1.A1c: Policy (ii-b) Figure 1.A1d: Policy (ii-b)

The no-cost-gap-with-fixed-cost case:

When θ − c = 0 and Fm > 0, the crossing point of the functions representing (1.36) and (1.37)

at which K = 0 and pM = θ (= c) does not belong to the participation set. However, a policy

that prescribes K = 0 might still be optimal if Fm is high enough to satisfy (1.35) with equality,

i.e., if Fm = − λ
1+λ

Q2
M

Q′

M

. We see from (1.45) that − λ
1+λ

QM

Q′

M

≡ (pM − θ) (= pM − c), and hence

the constraint on the fixed cost can be rewritten as Fm = (pM − θ)QM (= (pM − c)QM ). This

characterizes policy (i).

If Fm < − λ
1+λ

Q2
M

Q′

M

, only policies with K > 0 may arise. Following the reasoning used in the

previous case, if a second crossing point of the functions representing (1.36) and (1.37) exists
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and belongs to the participation set, i.e., using (1.34) and (1.36), if Fm < −λK (QM−K)
Q′

M

, this

interior point, which from (1.37) is characterized by (1 + λ)[c + C ′(K)] − λpM = θ (= c), is

picked up as the solution of the constrained welfare maximization program. This characterizes

policy (ii-a).

If the second crossing point with K > 0 does not exist or lies outside the participation set, the

optimization program picks the boundary solution satisfying (1.31), (1.32), and (1.40). These

conditions are rewritten, respectively, as (1.46), (1.47) and (1.48). This corresponds to policy

(ii-b). Figures 1.A2a-1.A2d illustrate these policies for specific functional forms.35
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Figure 1.A2a: Policy (i) Figure 1.A2b: Policy (ii-a)
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Figure 1.A2c: Policy (ii-b) Figure 1.A2d: Policy (ii-b)

35. Figure 1.A2a has the same underlying functional forms and parameters as Figure 1.A1a
with Fm = 10.24. Figures 1.A2b and 1.A2c employ the same assumptions as Figure 1.A1-b with
Fm = 3 and Fm = 10, respectively. Finally, Figure 1.A2d uses the specification and parameter
values in Figure 1.A1c with Fm = 3.
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The with-cost-gap-no-fixed-cost case:

When θ−c > 0, the functions representing (1.36) and (1.37) do not cross at K = 0, but we know

that they cross at most once at a point where K > 0. Applying the same reasoning as above, if

indeed they cross once it must satisfy λ2K = (1+λ)Q′

M [(θ−c)−C ′(K)], rewritten as (1.49). To

insure that this crossing point belongs to the participation set, (1.37) cannot be satisfied when this

constraint is binding (in which case K = QM ), i.e., (1+λ)[c+C ′(QM )]−λpM > θ. Substituting

pM from (1.42) yields 0 < (θ − c) < C ′(QM ) + λ2

1+λ
QM

Q′

M

. This condition together with (1.41),

(1.42), and (1.49) characterizes policy (i).

Again, if the crossing point with K > 0 does not exist or lies outside the participation set, the

maximization program picks the boundary solution with K = QM , and from (1.40) we obtain

(1.44). This defines policy (ii).

For an illustration of these policies in the K − pM space the reader may see Figures 1.3a and

1.3b in section 1.4.

The with-cost-gap-with-fixed-cost case:

By now the reader should realize that the proof of this case clearly combines steps from those of

the no-cost-gap-with-fixed-cost and the with-cost-gap-no-fixed-cost case, and hence is omitted. ¥

Proof of Proposition 1.3 Before considering the four cases, let us recall from our discussion

that precedes the proposition in the text that K = 0 is never a solution to the constrained welfare

maximization program.

The no-cost-gap-no-fixed-cost case:

When θ − c = 0 and Fm = 0, clearly the system of first-order conditions (1.62)-(1.66) does not

admit a solution with K = QM . Indeed, direct substitution of K = QM into (1.66) leads to the

violation of (1.62). Therefore, in this case the only solution entails 0 < K < QM and satisfies

(1.62), (1.63), and (1.66), rewritten as (1.68), (1.69), and (1.70). Figures 1.A3a and 1.A3b

show the unique solution under this policy for two different sets of parameter values.36

36. Figure 1.A3a and A3b draw on the same assumptions of Figure 1.A1a and 1.A1d respectively.
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Figure 1.A3a: Policy (i) Figure 1.A3b: Policy (i)

The no-cost-gap-with-fixed-cost case:

When θ − c = 0 and Fm > 0, the capacity-price pair that maximizes the firm’s profit, defined

by (1.66), belongs to the participation set if (1.65) holds with a strict inequality, i.e., if the

fixed cost belongs to the interval 0 < Fm < − (Qm−K)2

Q′

M

. Since by definition an interior solution

satisfies (1.67), which stems from (1.62), (1.63), and (1.66), pricing and capacity building obey

(1.68)-(1.70) obtained in the previous case. Finally, given that φ = 0, (1.63) can be rewritten as

(1 + λ)[c + C ′(K)] − λpM = θ + η. This characterizes policy (i).

If the tangency point between a welfare level curve and the function representing the profit-

maximization constraint, defined by (1.67), does not belong to the participation set, transport

capacity is used by the planner as a residual instrument to make the local monopoly just break

even. From the discussion in the text that precedes the statement of Proposition 1.3, we know that

the social planner will choose a point where the boundary of the participation set has an infinite

slope. From (1.39), we see that such a point satisfies Q′

MFm + (QM − K)2 = 0, rewritten as

(1.73). Rewriting the first-order condition with respect to price (1.62), and plugging the condition

Q′

MFm + (QM − K)2 = 0 into it, yields (1.71). Finally, (1.62) and (1.63) yield (1.72). This

defines policy (ii).

The nature of these policies is illustrated in the K − pM space for particular functional forms

and parameter values in Figures 1.6a and 1.6b in section 1.5. The reader should abstract that in

this case the functions representing the first order conditions (1.36) and (1.37) cross at (0, c) as

there is no cost gap.

The with-cost-gap-no-fixed-cost case:

To insure that the solution to (1.67) belongs to the interior of participation set, provided φ = 0,
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(1.63) cannot be satisfied when the participation constraint is binding (in which case K = QM ),

i.e., (1+λ)[c+C ′(QM )]−λpM > θ+η. Replacing pM and η for their values obtained from direct

substitution of K = QM into (1.62) and (1.66) yields the condition 0 < (θ − c) < C ′(QM ) −
1
2

λ
1+λ

QM

Q′

M

. This characterizes policy (i). Otherwise, the solution is K = QM , pM = θ and η < 0,

under which rewriting (1.62) and (1.63) yields (1.75). This defines policy (ii).

Figures 1.A4a and 1.A4b illustrate these two policies.37
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Figure 1.A4a: Policy (i) Figure 1.A4b: Policy (ii)

More specifically, Figure 1.A4b shows the case where the marginal cost gap hits the upper bound

given by (1.30). In such a case the solution under the scheme where both price and capacity

are available to the planner to control market power yields pM = θ and qm = 0. For such an

extreme value for the marginal cost gap, the solution to (1.67) is such that qm < 0 and hence

the optimization program picks up the point at which the profit-maximization constraint and the

boundary of the participation set cross each other, which for Fm = 0 is defined by pM = θ and

K = QM .

The with-cost-gap-with-fixed-cost case:

The proof of this last case just cross-uses the arguments that prove the no-cost-gap-with-fixed-cost

and the with-cost-gap-no-fixed-cost cases. It is therefore omitted. However, the policies obtained

in this case are illustrated in the K − pM space, for particular functional forms and parameter

values, in Figures 1.6a and 1.6b of section 1.5. ¥

37. Figures 1.A4a and 1.A4b employ the functional forms (1.19) with parameter values
(λ, ω, γ, θ, c) ∈ {( 1

3 , 1
2 , 10, 3, 2), ( 3

2 , 1
2 , 10, 5.43, 2)}.
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Proof of Proposition 1.4 As C ′(K) ≥ 0 and looking at (1.7) and (1.32), we have

sign[KB − KA] = sign[(1 + λ)[C ′(KB) − C ′(KA)]]

= sign[(λ − φB)(pB
M − θ) + νA]

(1.A1)

Given that νA ≥ 0, it follows from (1.A1) that if (λ − φB) ≥ 0, sign[KB − KA] ≥ 0. When

(λ − φB) < 0, we need to show that sign[KB − KA] < 0. We do so, by analyzing the optimal

capacity level only in the case where sign[KB −KA] might be ambiguous, i.e., when both φB and

νA are strictly positive.

If φB > 0 and νA > 0, from (1.81)-(1.84), ∂W A

∂pA
M

> 0, ∂W A

∂KA > 0, and ∂W B

∂KB > 0.38 Under B, the

solution lies on the boundary of the participation set and is characterized by (1.40), rewritten

as − ∂W B/∂K
∂W B/∂pM

= (pM−θ)
∂ΠB

m/∂pM
. Using (1.85) and (1.86), we obtain − ∂W B/∂K

∂W B/∂pM
= − ∂W A/∂K

∂W A/∂pM
=

(pM−θ)
∂ΠB

m/∂pM
. This says that at the point where the boundary of the participation set is tangent to a

welfare level curve in B, the former is also tangent to a welfare level curve in A. Since νA > 0,

the solution under A has KA = QM characterized by (1.18). Figures 1.A5a and 1.A5b illustrate

this feature for both cases where Fm > 0 and Fm = 0.39
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Figure 1.A5a: Solutions with Figure 1.A5b: Solutions with

νA > 0, φB > 0, and Fm > 0 νA > 0, φB > 0, and Fm = 0

We know from section 1.4 that the participation set is included in the nonnegativity set for pM ≥ θ

(see Figure 1.A5a). Hence, any boundary solution under scheme B yields a level of capacity no

greater than that under A, i.e., KB ≤ KA. Note that in the particular case where Fm = 0 (see

Figure 1.A5b), the participation and nonnegativity sets coincide for pM ≥ θ and the solution

38. To simplify notation, from now on we define ∂W i

∂pi
M

≡ ∂W i

∂pM
|pM=pi

M
and ∂W i

∂Ki =≡ ∂W i

∂K |K=Ki for

i ∈ {A, B, C}.
39. These figures employ the functional forms (1.19) with parameter values (λ, ω, γ, θ, c) =
(1/3, 1/2, 10, 5, 2). The size of the fixed cost is Fm = 3 and Fm = 0, respectively.
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under B is characterized by (1.40) which is identical to (1.18), and hence KB = KA. The above

argument allows us to conclude that when Fm = 0, KB ≥ KA. ¥

Proof of Proposition 1.5 Direct comparison of the first-order conditions with respect to capacity

under schemes B and C, (1.32) and (1.63), yields

sign[KC − KB ] = sign[(1 + λ)[C ′(KC) − C ′(KB)]]

= sign[(λ − φC)(pC
M − θ) − (λ − φB)(pB

M − θ) + ηC ]
(1.A2)

We proceed to analyze the behavior of (1.A2) for the possible realizations of φB, φC , and ηC ,

assuming first that the latter is positive and then negative.

If ηC > 0 and φC = 0, we see from (1.87) and (1.88) that the constrained solution of C, which

lies inside the participation set, satisfies ∂W B

∂pC
M

< 0, ∂W B

∂KC < 0, and ∂Πm

∂pC
M

= 0.40 Two cases might

arise according to whether or not φB is zero. First, when the solution to the constrained program

under B is interior, φB = 0, ∂W B

∂pB
M

= ∂W B

∂KB = 0. It is straightforward to see that KC > KB and

pC
M > pB

M . See Figure 1.A3a. Second, when the solution to the constrained welfare maximization

program under B yields φB > 0, we see from (1.84) that ∂W B

∂KB > 0. Given that ηC > 0, this

solution satisfies ∂W B

∂pB
M

< 0.41 Putting these properties together, we see from (1.83) that ∂Πm

∂pB
M

> 0,

saying that at this boundary solution under B, firm’s marginal revenue is lower than its marginal

cost. It then directly follows that pC
M > pB

M and KC > KB.

If ηC > 0 and φC > 0, we know from section 1.5 that the solution of the constrained program

under C is at the point where the boundary of the participation set is infinitely sloped, which

has the largest K of all the points in the participation set. From (1.87)-(1.89), the constrained

solution of C satisfies ∂W B

∂pC
M

< 0 and ∂Πm

∂pC
M

= 0. Again, two cases are to be considered. First, if

the solution under scheme B yields φB = 0, since it lies in the interior of the participation set,

it automatically implies a lower level of capacity than that under C, i.e., KC > KB. Second,

if the solution of B yields φB > 0, we see from (1.84) that ∂W B

∂KB > 0. From ηC > 0, it should

be the case that ∂W B

∂pB
M

< 0. Using the latter inequality in (1.83) we obtain ∂Πm

∂pB
M

> 0, and hence

pC
M > pB

M and KC > KB. See Figure 1.6b.

40. It is worthwhile noting that the existence of this type of solution depends of the fact that

there exists a K > 0 satisfying the condition Q′

M

[
C ′′(K) − C′(K)

K

]
− λK

Q′

M

Q′′

MC ′′(K) < 0. When

the former condition is not satisfied, no solution with ηC > 0 and φC = 0 exists.

41. If we assume that the boundary solution of B lies on the region with ∂W B

∂pB
M

> 0, the tangency

between a welfare level curve and the boundary of the participation set lies in their negatively
sloped regions. By definition, when the boundary of the participation set is negatively sloped,
it lies to the right of the function representing the profit-maximization constraint. Then, the

solution to the constrained program in C should be characterized by ∂W B

∂pC
M

> 0. But, this

contradicts ηC > 0.
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To sum up, so far we have that when ηC > 0, KC > KB and pC
M > pB

M . Let us now consider

the cases where the Lagrange multiplier of the profit-maximization constraint ηC is negative.

When ηC < 0 and φC = 0, we see from (1.87)-(1.89) that the constrained solution of C satisfies
∂W B

∂pC
M

> 0, partialW B

∂KC > 0, and ∂Πm

∂pC
M

= 0. Two cases arise depending on the sign of φB. First,

when φB = 0, we directly see that KC < KB and pC
M < pB

M . Second, when φB > 0, the

boundary solution satisfies ∂W B

∂pB
M

> 0, ∂W B

∂KB > 0, and ∂Πm

∂pB
M

< 0. In this case, (∂W B

∂KC − ∂W B

∂KB ) =

−ηC −φB(pB
M − θ) ≷ 0, and hence the capacity comparison is ambiguous. It is worth noting that

while the capacity ranking is ambiguous, that of pricing is not. Indeed, since ∂Πm

∂pB
M

< 0, we obtain

pC
M < pB

M .

When ηC < 0 and φC > 0, we see from (1.87)-(1.89) that the constrained solution of C satisfies
∂W B

∂pC
M

> 0, ∂W B

∂KC > 0, and ∂Πm

∂pC
M

= 0. The only case to be analyzed then is when φB > 0.42

Under this case, since ηC < 0, we have ∂W B

∂pB
M

> 0, ∂W B

∂KB > 0, and ∂Πm

∂pB
M

< 0. In this case,

(∂W B

∂KC − ∂W B

∂KB ) = −ηC − φB(pB
M − θ) + φC(pC

M − θ) ≷ 0, and again the capacity comparison is

ambiguous. Note that from ∂Πm/∂pB
M < 0, we obtain pC

M < pB
M .

Summarizing, we see that when ηC < 0, pC
M < pB

M , but the capacity ranking remains unde-

termined. However, this indeterminacy is waived when θ = c and Fm = 0. Indeed, we see

from Propositions 1.2 and 1.3 that in this case (λ − φB) > 0, and φC = 0, respectively. Thus,

sign[KC − KB ] = sign[ηC ]. For an illustration, see Figures 1.A3a and 1.A3b. ¥

Proof of Proposition 1.6 A cross-examination of the first-order conditions with respect to

capacity under schemes A and C, (1.7) and (1.63), shows that

sign[KC − KA] = sign[(1 + λ)[C ′(KC) − C ′(KA)]]

= sign[(λ − φC)(pC
M − θ) + ηC + νA]

(1.A3)

We proceed to analyze the behavior of (1.A3) for the possible realizations of νA, φC , and ηC ,

assuming first that the latter is positive and then negative. If ηC > 0 and φC = 0, from (1.91)

we get that the solution under C satisfies ∂W A

∂KC = −λ(pC
M − θ) − ηC < 0. The only case that is

relevant to examine is when νA = 0.43 In this case, ∂W A

∂KA = 0 and then it is easy to see that

KC > KA.

If ηC > 0 and φC > 0, two cases might arise according to whether or not νA = 0. When νA = 0,

we see from (1.91) that the solution under C satisfies ∂W A

∂KC = −(λ− φC)(pC
M − θ)− ηC ≷ 0, and

hence the capacity comparison is undetermined. When νA > 0, the solution under A satisfies

KA = QM and we directly conclude that KC ≤ KA.

42. Indeed, the largest K attained by the participation set is strictly lower than that obtained

from the condition ∂W B

∂pB
M

= ∂W B

∂KB = 0 which defines an interior solution under B.

43. Indeed, if νA > 0, we see from (1.82) and (1.91) that ηC = −νA − λ(pA
M − θ). Since φC = 0,

it should be the case that under A, pA
M > θ and hence ηC < 0, a contradiction.
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Summarizing, we have obtained that sign[KC − KA] = sign[ηC ] when ηC > 0 but only in

the case where φC = 0. Let us now consider the case where the Lagrange multiplier of the

profit-maximization constraint ηC is negative. If ηC < 0 and φC ≥ 0, the capacity ranking is

undetermined since the solution under C satisfies ∂W A

∂KC = −(λ − φC)(pC
M − θ) − ηC ≷ 0.

Finally, if θ = c and Fm = 0, we see from Propositions 1.1 and 1.3 that KA = 0 and KC > 0,

respectively. See Figures 1.A3a and A3b. Thus, independently of the sign of ηC , KA < KC . ¥

Simulation results This section of the appendix presents the simulation material underlying

Figures 7a-9b. These simulations yield the optimal levels of the endogenous variables achieved

by schemes A, B, and C assuming that QM (pM ) = γ − pM , C(K) = ω
2 K2, γ > c > 0, ω > 0,

{λ, ω, γ, c} = {1/3, 1/2, 10, 2} leading to ω(1 + λ) − λ2 > 0, {λ, ω, γ, c} = {1/3, 1/15, 10, 2}
leading to ω(1 + λ) − λ2 < 0, and (θ − c) and Fm varying continuously in the intervals [0,3.9]

and [0,7] respectively.

The information is displayed in Figures 1.A6a and 1.A6b (scheme A), 1.A7a and 1.A7b (scheme

B), and 1.A8a and 1.A8b (scheme C) below. Each figure first shows the capacity (price) levels

achieved under the corresponding control scheme for alternative values of the marginal cost gap

and fixed cost in a 3D plot. Then, it exhibits a contour plot that represents the alternative

combinations of (θ− c) and Fm that yield the same level of capacity (price). The regions between

these contour lines are shaded and colored with gray levels running from black to white with

increasing capacity (price).
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Chapter 2

Regulation of regional monopolies

in natural gas markets

2.1 Introduction

This chapter explores the issue of how the regulator’s objective of mitigating mar-

ket power, typically emphasized in policy reforms of the natural gas industry,

should affect the capacity of transport networks.1 With the advent of liberaliza-

tion, large investments have been devoted to building pipelines in anticipation of

high demand, on the one hand, but also as safeguards against the possible emer-

gence of regional monopolies, on the other hand.2 The goal of this chapter is to

investigate this second role of transport capacity of pipelines, i.e., network capac-

ity as an instrument to mitigate the welfare consequences of monopoly power that

can be exercised in regional gas commodity markets.3

Following an approach initiated by Cremer et al. (2003) for the case of perfect

competition and Cremer and Laffont (2002) and Chapter 1 of this dissertation for

1. Such reforms have for example been conducted over the last two decades, first in the US and
the UK and more recently in the EU. See Cremer et al. (2003) for an overview of these reforms.

2. This last point has been made clear by Borenstein et al. (2000) for the case of the electricity
industry.

3. Such “local monopolies” can indeed be expected to appear in the EU at least in the early
stages of the liberalization process that has been initiated in the late 90s.

56
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the case of imperfect competition under complete information, we develop a model

of the regulator-firm relationship under incomplete information that allows us to

highlight this issue. We assume that the regulator disposes of two potential means

of affecting the working of a regional monopoly market besides building a pipeline

link of a given capacity between this market and a competitive market providing an

alternative source of gas: operating transfers between the firm and consumers and

regulating the firm’s price. We derive and analyze the optimal policies assuming

different sets of available regulatory instruments. By focusing on the capacity

variable, we then investigate how information and incentive issues affect pipeline

capacity. Finally, when neither transfers nor price control are possible, we explore

the effect on capacity of the regulator’s ability to commit to investments in the

transport network.

This chapter is organized as follows. The next section presents the simple net-

work configuration considered and the two basic information structures assumed;

one, used as a benchmark, in which the regulator has some uncertainty about

the firm’s marginal cost at the time he sets the level of transport capacity, and

another in which he faces adverse selection due to the fact that marginal cost is

privately known by the firm. The next two sections are structured in a similar

fashion but with two different assumptions about the availability of regulatory

instruments: the optimal regulatory regimes under uncertainty and asymmetric

information are derived and then compared. In section 2.3, the regulator can use

transfers and price to reduce monopoly rents while in section 2.4 transfers are not

allowed. Section 2.5 considers a decentralized environment in which the firm is al-

lowed to maximize its profits and the regulator can only engage in investments in

transport capacity. We then explore the role of commitment to these investments

by the regulator. Section 2.6 summarizes the main policy implications suggested

by this work. Formal proofs are given in the appendix.
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2.2 Basic market configuration and information

structures

Consider a regional natural gas commodity market, market M , covered by a firm,

firm m, producing with a technology Cm(qm) = θ̃qm + Fm, where qm is output, θ̃

is marginal cost, and Fm is fixed cost.4 Gas is also supplied at marginal cost c

in a competitive market, market Cp, which is geographically distinct from market

M but could be linked to it through a pipeline of capacity K built at cost C(K),

where C(·) is increasing convex with C ′(0) = 0 and C ′′(0) > 0. We assume that

θ̃ ∈ {c, θ} where θ and c are known and θ > c so that the regional monopoly’s

marginal cost is at least as large as that in the competitive market. Gas produced

under competitive conditions in market Cp and shipped into the regional market

M should counter the exercise of monopoly power by the firm (see Figure 2.1).

s s

Cp

c

M

Cm(θ̃, qm) = θ̃qm + Fm

θ̃ ∈ {c, θ}, θ > c

K, C(K)

✲

Figure 2.1: Market configuration

We indeed take the view that the fundamental reason for society to invest in

a transport line linking these two markets is to allow imports of gas from market

Cp into market M that would bring consumers the benefits of competition.5 Let

us note that those benefits should be balanced against, among other things, the

firm’s fixed cost which needs to be recovered. Letting QM(·) represent demand in

market M assumed to be linear with Q′
M(·) < 0 and Q′′

M(·) = 0, if a volume of

gas corresponding to the pipeline full capacity K is shipped from the competitive

market into the regional market, the firm remains a monopoly on the residual

demand QM(pM) − K where pM is market price.

4. The financing of the fixed cost Fm is always accounted for in the policies considered in this
chapter. However, as will be made more precise later, we assume that it is bounded.

5. We focus on consumption in market M where market power is an issue.
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Control of monopoly power is exercised by a regulator facing adverse selec-

tion.6 More specifically, we assume that the regional monopoly privately knows

the value of its marginal cost θ̃ whereas the regulator has only some prior beliefs

that it takes on the values θ and c with probabilities α and (1 − α) respectively.

We further assume that regulation can be potentially implemented by means of

three instruments: transfers between consumers and the firm, pricing of the gas

commodity, and investment in transport capacity. We begin with the case where

these three instruments are available to the regulator and then restrict the set of

regulatory instruments by first removing transfers and then price.

Given that asymmetric information is a maintained hypothesis, we use as a

situation of reference regulation with uncertainty only. Under this benchmark, the

regulator first chooses the capacity of the pipeline. Then, nature draws θ̃ which

is discovered by both the regulator and the firm. Finally, the regulator sets the

levels of the remaining regulatory instruments. However, when determining the

transport capacity level, the regulator is uncertain about the value of the firm’s

marginal cost θ̃. This timing of events is exhibited in Figure 2.2 below.

✲

Choice of K Choice of
price and transfer

(if available)

Time

Discovery of θ̃
by both the regulator

and the firm

Figure 2.2: Sequence of events under uncertainty (benchmark)

To obtain the optimal policies corresponding to the various regulatory schemes

under uncertainty one should be solving backward. First, at the price-(transfer-

if available) setting stage the regulator maximizes ex-post social welfare under

the ex-post constraints associated with the regulatory scheme for a given level of

capacity. This yields the optimal price (and transfer) and the Lagrange multipliers

associated with these constraints as functions of firm’s type and network capacity.

Second, at the capacity-setting stage, the regulator maximizes ex-ante welfare

6. The case of monopoly power control under complete information has been considered in
Chapter 1.
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under the ex-post constraints, accounting for optimal price (and transfer) and

Lagrange multipliers functions obtained in the first stage. Since capacity is always

controlled by the regulator, the solution of this sequential constrained welfare

maximization program is the same as that obtained by maximizing ex-ante welfare

with respect to the available regulatory instruments, under the ex-post constraints

associated with the regulatory scheme.

The way we introduce asymmetric information follows the standard approach

of the new regulatory economics. The timing of events is shown in Figure 2.3

below. The important point here is that, at the time of setting price and transfers

(if available), the regulator has to offer an incentive compatible contract to the

firm. In the same vein as in the case of the regulatory schemes under uncertainty,

the optimal regulatory policies under asymmetric information are obtained by

maximizing ex-ante social welfare under the complete set of ex-post constraints

which now should include those guaranteeing incentive compatibility.7

Time

Choice of K Acceptation or
refusal by the firm

Choice of
price-transfer

or price contract

Discovery of θ̃
by the firm

✲

Execution
of contract

Figure 2.3: Sequence of events under asymmetric information

One of our objectives is to analyze, within a normative framework, the impact

of asymmetric information on the size of the transport network. For a given con-

trol scheme and hence for a fixed set of available control instruments, we wish to

characterize both the uncertainty (benchmark) and the asymmetric information

regulatory mechanisms and compare the achieved optimal levels of pipeline capac-

ity. This is what is carried out in the next two sections on the basis of an analysis

of control schemes A and B with respectively {K, pM , T} and {K, pM} as the sets

of available control instruments. This analysis highlights the effect of accounting

for the firm’s incentives on the transport network size when the regulator sets price

besides capacity, i.e., controls firm’s output, and can potentially use transfers.

7. See Laffont and Martimort (2002).
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When the regulator can only control capacity, as is the case in scheme C,

incentive compatibility constraints are implicit in both the uncertainty and the

asymmetric information versions of this scheme which makes their comparison

vacuous.8 While regulation under schemes A and B is modeled under the standard

assumption used in regulatory economics that the whole contractual bargaining

power is put on the regulator’s side, under regulation with scheme C there is no

contractual relationship between the regulator and the firm. But, under C and

assuming the timing of events in Figure 2.2, the regulator still has the ability

to internalize the effect of firm’s profit-maximization behavior on social welfare.

Section 2.5 offers an exploration free of incentives issues of the effect of this ability

on transport capacity.

2.3 Firm’s incentives and transport capacity un-

der scheme A

In this section we consider control scheme A in which, in addition to controlling

transport capacity, K, and gas commodity price, pM , the regulator can use public

funds raised through taxes to make monetary transfers between consumers and the

firm. Since taxation generates a deadweight loss, transferring T monetary units to

the firm, costs taxpayers (1 + λ)T where λ is the social cost of public funds. We

let S(·) be the gross surplus of consumers in market M and U(θ̃) the utility of the

firm of type θ̃ given by

U(θ̃) = (pM(θ̃) − θ̃)[QM(pM(θ̃)) − K] − Fm + T (θ̃) (2.1)

Ex post social welfare is given by

W (θ̃) =
{

S(QM(pM(θ̃))) + λpM(θ̃)QM(pM(θ̃))
}

−
{

(1 + λ)
[
θ̃(QM(pM(θ̃)) − K) + cK + C(K) + Fm

]}
− λU(θ̃) (2.2)

8. That within scheme C incentive constraints are accounted for both under uncertainty and
asymmetric information can be readily seen from the timings of events described in Figures 2.2
and 2.3.
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This expression shows that social welfare is equal to the social value of total supply

of gas (gross consumer surplus plus fiscal value of revenues from gas supply), minus

the social cost of gas supply, minus the social opportunity cost of the firm’s rent.9

The firm’s participation and output nonnegativity constraints that will be ac-

counted for in the upcoming regulatory programs are given by

U(θ̃) ≥ 0 (2.3)

qm(θ̃) = QM(pM(θ̃)) − K ≥ 0 (2.4)

With control scheme A, given the timings described in Figures 2.2 and 2.3, optimal

regulation under uncertainty and asymmetric information both entail maximizing

ex ante social welfare

E[W (θ̃)] = αW (θ) + (1 − α)W (c) (2.5)

with respect to pM(θ), pM(c), U(θ), U(c), and K, and taking into account the

ex-post constraints10

U(θ) ≥ 0 (φ) (2.6)

U(c) ≥ 0 (φ) (2.7)

qm(θ) ≥ 0 (ν) (2.8)

qm(c) ≥ 0 (ν) (2.9)

where the corresponding Lagrange multipliers are shown in parentheses. Hereafter,

we use the definitions pM ≡ pM(θ), p
M

≡ pM(c), U ≡ U(θ), U = U(c), qm ≡
qm(θ), q

m
≡ qm(c), QM ≡ QM(pM(θ)), Q

M
≡ QM(pM(c)), and Q′

M ≡ Q′
M(pM(θ))

(= Q′
M(pM(c)).

9. For more details on the derivation of this expression of social welfare and its components’
economic interpretation, refer to Chapter 1 (section 1.3).

10. In fact, under asymmetric information, incentive compatibility constraints need to be added.
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2.3.1 Scheme A under uncertainty

Under control scheme A with uncertainty, the regulatory program merely consists

in maximizing (2.5) with respect to pM(θ), pM(c), U(θ), U(c), and K, subject to

the constraints (2.6)-(2.9). The corresponding first-order conditions are given by

αλQM + [α(1 + λ)(pM − θ) + ν]Q′
M = 0 (2.10)

(1 − α)λQ
M

+ [(1 − α)(1 + λ)(p
M

− c) + ν]Q′
M = 0 (2.11)

(1 + λ) [α(θ − c) − C ′(K)] − (ν + ν) = 0 (2.12)

−(αλ − φ) = −((1 − α)λ − φ) = 0 (2.13)

φU = φU = 0 (2.14)

ν qm = 0 (2.15)

ν q
m

= 0 (2.16)

From (2.14) it is straightforward to see that the participation constraint is binding

for both types of firm, i.e., U = U = 0. Some further interesting properties implied

by this system of first-order conditions are stated in the lemma that follows.

Lemma 2.1 Under control scheme A with uncertainty, optimal prices and shadow

costs of the firm’s output nonnegativity constraints satisfy p
M

≤ pM and ν ≤ ν.

Out of the four possible combinations of active and inactive firm’s output

nonnegativity constraints, (ν = 0, ν = 0), (ν > 0, ν = 0), (ν > 0, ν > 0), and

(ν = 0, ν > 0), this lemma rules out the latter combination as a solution. It can be

shown that a solution with ν > 0 and ν > 0 cannot arise.11 Hence, one can ignore

the nonnegativity constraint (2.9) and write that ν = 0, i.e., the more efficient

firm is active, in which case, from the proof of the lemma, we obtain p
M

< pM .

Letting ε(QM) ≡ −Q′
MpM/QM , ε(Q

M
) ≡ −Q′

Mp
M

/Q
M

, and rewriting the first-

order conditions (2.10)-(2.16) yields the following proposition that describe the

solutions with the two remaining combinations (ν = 0, ν = 0) and (ν > 0, ν = 0):

11. If ν > 0 and ν > 0, we obtain qm = q
m

= 0. Solve the first-order conditions (2.10) and (2.11)

for ν and ν and substitute into (2.12) to obtain that λQM + (1 + λ)[pM − c − C ′(QM )]Q′

M = 0.
However, ν > 0 implies λQM +(1+λ)(pM − c)Q′

M ≥ 0. Hence, since C ′(·) ≥ 0, we have QM ≤ 0
which contradicts K > 0.
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Proposition 2.1 When capacity, price, and transfers are the regulatory instru-

ments, and there is uncertainty about the marginal cost of the regional monopoly at

the time of setting transport capacity, there are two types of policies (K, pM , p
M

, φ,

φ, ν).

(A1u) The policy (0 < K < QM < Q
M

, pM > θ, p
M

> c, φ = αλ, φ = (1 − α)λ, ν =

0) summarized by

pM − θ

pM

=
λ

1 + λ

1

ε(QM)
(2.17)

p
M

− c

p
M

=
λ

1 + λ

1

ε(Q
M

)
(2.18)

(1 + λ)C ′(K) = α(1 + λ)(θ − c) (2.19)

(A2u) The policy (0 < K = QM < Q
M

, pM > c, p
M

> c, φ = αλ, φ = (1 − α)λ, ν >

0) summarized by

pM − θ

pM

=
λ

1 + λ

1

ε(QM)
− ν

α(1 + λ)pM

, (2.20)

(2.18), and

(1 + λ)C ′(QM) = α(1 + λ)(θ − c) − ν (2.21)

Policies (A1u) and (A2u) are exclusive in that under policy (A1u) the condition

0 < (θ − c) < C′(QM )
α

holds while under policy (A2u) the reverse is true.

Proposition 2.1 says that under policy (A1u) even if the local monopoly does

not have the “right” marginal cost, it meets part of the market demand. Capacity

is such that the social marginal cost of imports (1 + λ)[c + C ′(K)] is equal to the

expected social marginal cost of the firm (1 +λ)[αθ + (1−α)c]. This policy arises

when the latter is smaller than the social marginal cost of imports at the level that

makes the less efficient firm inactive, (1 + λ)[c + C ′(QM)]. Under policy (A2u) the

less efficient firm is shut down and the social marginal cost of imports is equal to
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the expected social marginal cost of the firm net of the shadow cost of the θ-type

firm’s output nonnegativity constraint ν.12 To illustrate this proposition, let us

consider the case where demand is linear and the capacity building technology is

quadratic:

QM(pM) = γ − pM , C(K) =
ω

2
K2; γ, ω > 0, γ > θ > c (2.22)

Then, by Proposition 2.1, if

0 ≤ (θ − c) <

[
ω(1 + λ)

ω(1 + λ) + α(1 + 2λ)

]
(γ − c) (2.23)

holds, a policy of the type (A1u) emerges as the optimal policy. Such a policy is

described by qm > 0 (ν = 0) and

K =
α(θ − c)

ω
(2.24)

pM = θ +

[
λ

1 + 2λ

]
(γ − θ) (2.25)

p
M

= c +

[
λ

1 + 2λ

]
(γ − c) (2.26)

When condition (2.23) does not hold, namely, when

[
ω(1 + λ)

ω(1 + λ) + α(1 + 2λ)

]
(γ − c) ≤ (θ − c) < (γ − c) (2.27)

a policy of type (A2u) is optimal with qm = 0 (ν > 0) and

K =

[
α(1 + λ)

ω(1 + λ) + α(1 + 2λ)

]
(γ − c) (2.28)

pM = c +

[
αλ + ω(1 + λ)

ω(1 + λ) + α(1 + 2λ)

]
(γ − c) (2.29)

p
M

= c +

[
λ

1 + 2λ

]
(γ − c) (2.30)

12. From (2.20), we see that ν can be interpreted as the social marginal valuation of the expected
price reduction required to guarantee that the θ-type firm is at worst shut down ν = α(1 +

λ)
[(

θ − λQM

(1+λ)Q′

M

)
− pM

]
.
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2.3.2 Scheme A under asymmetric information

Under asymmetric information on the value of the firm’s marginal cost θ̃, after

building transport capacity the regulator has to offer feasible contracts to the

regional firm. Such contracts need to satisfy, in addition to the firm’s participation

and output nonnegativity constraints (2.6)-(2.9), the firm’s incentive compatibility

constraints which can be written as:

U ≥ U − (θ − c)q
m

(µ) (2.31)

U ≥ U + (θ − c)qm (µ) (2.32)

where the corresponding Lagrange multipliers are shown in parentheses.13 Adding

up (2.31) and (2.32) yields q
m
≥ qm which implies p

M
≤ pM .14 As a consequence,

the Lagrange multiplier associated with the c-type firm’s output nonnegativity

constraint (2.9), ν, is equal to zero.15 Moreover, because a firm of the more

efficient type can always mimic one of the less efficient type at a lower level of

cost, as can be seen from (2.32), the participation constraint of the former (2.7)

can also be ignored.

Maximizing expected social welfare given by (2.5) subject to the remaining

constraints yields the following first-order conditions:

αλQM + [α(1 + λ)(pM − θ) + ν − µ(θ − c)]Q′
M = 0 (2.33)

(1 − α)λQ
M

+ [(1 − α)(1 + λ)(p
M

− c) + µ(θ − c)]Q′
M = 0 (2.34)

(1 + λ) [α(θ − c) − C ′(K)] − ν − (µ − µ)(θ − c) = 0 (2.35)

−[αλ − φ − (µ − µ)] = 0 (2.36)

13. These expressions of the firm’s incentive compatibility constraints are derived by using the
definition of the firm’s utility (2.1) and a standard add-and-substract technique.

14. This is the standard result in regulatory economics that price is nondecreasing in the efficiency
parameter θ̃ (Baron, 1989, Laffont and Tirole, 1993).

15. To see why this is true note that since q
m

≥ qm, clearly the more efficient firm cannot be
shut down while the less efficient one is left active, i.e., ν = 0 ⇒ ν = 0. When the nonnegativity
constraints (2.8) and (2.9) are both binding, i.e., both firms are shut down (ν, ν > 0), the
incentive constraints (2.31) and (2.32) are trivially satisfied and we are back to the case with
uncertainty analyzed in the previous subsection. But then in this case, we have already shown
(see footnote 11) that such a solution cannot arise.
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−[(1 − α)λ + (µ − µ)] = 0 (2.37)

µ[U − U + (θ − c)q
m

] = µ[U − U − (θ − c)qm] = 0 (2.38)

φU = 0 (2.39)

ν qm = 0 (2.40)

From (2.36) and (2.37), we see that the participation constraint of the less efficient

firm (of type (θ)) is binding, i.e., φ = λ > 0 and hence U = 0. It is then

straightforward to see that the incentive compatibility constraint for the c-type

firm is binding, i.e., U = (θ − c)qm.16 This property, together with the fact that

feasible prices satisfy p
M

≤ pM , implies that the incentive compatibility of the

θ-type firm (2.31) holds with strict inequality, and hence µ = 0. The following

proposition summarizes these results.

Proposition 2.2 When capacity, price, and transfers are the regulatory instru-

ments and there is asymmetric information on the firm’s marginal cost, there are

two types of optimal policies (K, pM , p
M

, φ, ν, µ).

(A1ai) The policy (0 < K < QM < Q
M

, pM > θ, p
M

> c, φ = λ, ν = 0, µ = (1−α)λ)

characterized by

pM − θ

pM

=
λ

1 + λ

[
1

ε(QM)
+

(1 − α)

α

(θ − c)

pM

]
(2.41)

p
M

− c

p
M

=
λ

1 + λ

1

ε(Q
M

)
(2.42)

(1 + λ)C ′(K) = (α + λ)(θ − c) (2.43)

(A2ai) The policy (0 < K < QM < Q
M

, pM > θ, p
M

> c, φ = λ, ν > 0, µ = (1−α)λ)

defined by

pM − θ

pM

=
λ

1 + λ

[
1

ε(QM)
+

(1 − α)

α

(θ − c)

pM

]
− ν

α(1 + λ)pM

, (2.44)

16. This is consistent with the fact that rents are socially costly (see (2.2)).
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(2.42), and

(1 + λ)C ′(QM) = (α + λ)(θ − c) − ν (2.45)

Under policy (A1ai) the condition 0 < (θ − c) < C′(QM )
α+λ

holds while under policy

(A2ai) the reverse is true.

Under policy (A1ai), even if it is of the less efficient type, the firm meets

part of the market demand and the social marginal cost of imports is equal to the

expected social marginal cost of the firm, plus the expected social opportunity cost

of distorting the pricing rule of the less efficient firm for the purpose of decreasing

the informational rent of the more efficient firm, αλ
[

(1−α)
α

(θ − c)
]
. This type of

policy arises when the expected social marginal cost of the regional firm plus the

expected social opportunity cost of the distortion on pricing is smaller than the

social marginal cost of imports at the level where the less efficient firm is shut

down. Under policy (A2ai) the less efficient firm is shut down and the social

marginal cost of imports, (1+λ)[c+C ′(QM)], equals the expected social marginal

cost of the firm, (1 + λ)[αθ + (1 − α)c], plus the social opportunity cost of the c-

type firm’s informational rent, minus the shadow cost of the θ-type firm’s output

nonnegativity constraint ν.

Using the functional forms given in (2.22), the solution to the system of first-

order conditions (2.33)-(2.40) is of two types depending on the size of (θ − c).

When the condition

0 ≤ (θ − c) <
α(1 + λ)

(α + λ)

[
ω(1 + λ)

ω(1 + λ) + α(1 + 2λ)

]
(γ − c) (2.46)

holds, the optimal policy is of type (A1ai) and qm > 0 (ν = 0),

K =
(α + λ)(θ − c)

ω(1 + λ)
(2.47)

pM = θ +
λ [(1 − 2α)(θ − c) + α(γ − c)]

α(1 + 2λ)
(2.48)

p
M

= c +

[
λ

1 + 2λ

]
(γ − c) (2.49)
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If condition (2.46) does not hold, i.e.,

α(1 + λ)

(α + λ)

[
ω(1 + λ)

ω(1 + λ) + α(1 + 2λ)

]
(γ − c) ≤ (θ − c) < (γ − c) (2.50)

a policy of type (A2ai), described by (2.28)-(2.30) with qm = 0 (ν > 0) arises.

2.3.3 Incentives and capacity investments

under scheme A

By comparing the capacity levels achieved under control scheme A with uncertainty

(KA
u ) and asymmetric information (KA

ai), we are now able to assess the impact,

on investment in transport capacity, of the firm’s incentives when the latter has

private information on its marginal cost.17 Since C ′(·) is increasing, from (2.12)

and (2.35), we obtain

sign[KA
ai − KA

u ] = sign[(1 + λ)[C ′(KA
ai) − C ′(KA

u )]]

= sign[(1 − α)λ(θ − c) − (νA
ai − νA

u )] (2.51)

and then, the following proposition synthesizes our findings.

Proposition 2.3 When capacity, price, and transfers are available as regulatory

instruments, accounting for incentives of the firm calls for “excess” capacity in the

weak sense, namely, KA
ai ≥ KA

u .

We now verify this proposition using the functional forms given in (2.22). A

first step is to directly compare the capacity levels given in (2.24), (2.28), and

(2.47). This is straightforward and left to the reader. However, since the intervals

defining the parameter space for each policy are not always compatible, we com-

plete the verification with numerical simulations. Because control scheme A is not

responsive to the fixed cost, we ran simulations with Fm = 0 and focused on the

relationship between the capacity gap (KA
ai − KA

u ) and the endogenous variables

νA
ai and νA

u in the {α, (θ − c)}-space. We used the following grids of parameters:

17. We account for the firm’s incentives through the incentive compatibility constraints (2.31)
and (2.32).
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• Case 1: {γ, c, ω, λ} = {10, 2, 0.50, 0.33}, (θ − c) ∈ [0, 4.94], and α ∈ [0, 1]

• Case 2: {γ, c, ω, λ} = {10, 2, 0.52, 0.85}, (θ − c) ∈ [0, 4.94], and α ∈ [0, 1]

• Case 3: {γ, c, ω, λ} = {10, 2, 0.17, 0.25}, (θ − c) ∈ [0, 2.24], and α ∈ [0, 1]

Figure 2.4 (a-b) exhibits the results of the simulated values of (KA
ai − KA

u ), νA
ai,

and νA
u .
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Figure 2.4a shows in white and gray the regions where respectively (KA
ai−KA

u ) >

0 and (KA
ai − KA

u ) = 0. Figure 2.4b exhibits the curves formed by the (α, (θ − c))

pairs such that νA
ai = 0 and νA

u = 0. A cross-examination of these figures shows

that whenever νA
ai = 0, νA

u = 0, KA
ai > KA

u , as stated in the proof of Proposition

2.3 given in the appendix. When both νA
ai and νA

u are strictly positive, i.e., when

the θ-type firm is shut down under both uncertainty and asymmetric information,

KA
ai = KA

u . Finally, we see that when νA
ai > 0 and νA

u = 0, i.e., when the θ-type firm

is shut down under asymmetric information but remains active under uncertainty,

KA
ai > KA

u .

2.4 Firm’s incentives and transport capacity un-

der scheme B

Let us now consider regulatory scheme B in which the regulator can still set

transport capacity and commodity gas price but transfers between consumers and

the firm are no longer permitted. In this case, the θ̃-type firm’s utility is merely

its profits Π(θ̃) given by:

Πm(θ̃) = (pM(θ̃) − θ̃)[QM(pM(θ̃)) − K] − Fm (2.52)

Ex post social welfare is expressed as

W (θ̃) = {S(QM(pM(θ̃))) − pM(θ̃)QM(pM(θ̃))}
+{(1 + λ)

[
(pM(θ̃) − c)K − C(K)

]
}

+{(pM(θ̃) − θ̃)
[
QM(pM(θ̃)) − K

]
− Fm} (2.53)

This social welfare is the sum of the net consumer surplus, the social value of the

profits generated by the K units imported from the competitive market, and the

profits of the firm that now cannot be taxed as transfers are not allowed. Gathering
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terms, we obtain18

W (θ̃) =
{

S(QM(pM(θ̃))) + λpM(θ̃)K
}

−
{

θ̃(QM(pM(θ̃)) − K) + (1 + λ) [cK + C(K)] + Fm

}
(2.54)

As to the firm’s participation and output nonnegativity constraints, they are

respectively given by

Πm(θ̃) ≥ 0 (2.55)

qm(θ̃) = QM(pM(θ̃)) − K ≥ 0 (2.56)

With control scheme B optimal regulation under uncertainty and asymmetric in-

formation both call for maximizing ex ante social welfare

E[W (θ̃)] = αW (θ) + (1 − α)W (c) (2.57)

with respect to pM , p
M

, and K under the ex-post participation and output non-

negativity constraints

Πm = (pM − θ)qm − Fm ≥ 0 (φ) (2.58)

Πm = (p
M

− c)q
m
− Fm ≥ 0 (φ) (2.59)

qm = QM − K ≥ 0 (ν) (2.60)

q
m

= Q
M

− K ≥ 0 (ν) (2.61)

where the corresponding Lagrange multipliers are shown in parentheses. A prop-

erty of the set defined by the above constraints that turns out to be very useful

for analyzing the regulator’s optimization program is described in the lemma that

follows.

Lemma 2.2 The constraint set defined by (2.58)-(2.61) is convex and satisfies the

nondegenerate constraint qualification (NDCQ) condition. In order to satisfy the

18. Note that since transfers are not allowed, the regulator assigns a fiscal value λpM (θ̃)K only to
the revenues generated by the K units shipped from the competitive market Cp into the regional
market M .
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linear independence constraint qualification (LICQ) condition, when there is no

fixed cost, the participation constraints (2.58) and (2.59) should be ignored when

either (2.60) or (2.61) is satisfied with equality, in which case (2.58) and (2.59)

become liminal constraints, i.e., they are active with φ = φ = 0. When there is

fixed cost, the LICQ condition is always satisfied since the firm is always active,

i.e., ν = ν = 0.

Lemma 2.2 basically shows that the constraint set faced by the regulator is

well behaved and helps to clarify the interpretation of the optimal values of the

Lagrange multipliers (the φ’s and the ν’s). Whenever a ν is strictly positive,

i.e., the firm is shut down, the interpretation of the φ somewhat looses its full

significance. For example, take the case of the less efficient firm. If Fm > 0, it can

be shown by contradiction from (2.58) that the firm is always active, i.e., ν = 0.

Hence, for this firm to be inactive, i.e., for ν > 0, it must be the case that Fm = 0.

But then, the participation constraint (2.58) can be neglected. Technically, this is

taken care of by setting φ = 0 in the slack complementarity condition, φ Π = 0,

associated with the firm’s participation constraint, which would suggest that the

firm is making positive profits.

2.4.1 Scheme B under uncertainty

Under control scheme B with uncertainty, the regulator maximizes (2.57) with

respect to pM , p
M

, and K, subject to the constraints (2.58)-(2.61). The corre-

sponding first-order conditions are given by

α[λK + (pM − θ)Q′
M ] + φ[(pM − θ)Q′

M + qm] + νQ′
M = 0 (2.62)

(1 − α)[λK + (p
M

− c)Q′
M ] + φ[(p

M
− c)Q′

M + q
m

] + νQ′
M = 0 (2.63)

(1 + λ) [α(θ − c) − C ′(K)] + (αλ − φ)(pM − θ)

+((1 − α)λ − φ)(p
M

− c) − ν − ν = 0 (2.64)

φ[(pM − θ)qm − Fm] = 0 (2.65)

φ[(p
M

− c)q
m
− Fm] = 0 (2.66)

ν qm = ν q
m

= 0 (2.67)



Chapter 2 Regulation of regional monopolies in natural gas markets 74

Some properties implied by (2.62)-(2.67) are indicated in the next lemma.

Lemma 2.3 Under control scheme B with uncertainty, provided second-order con-

ditions are satisfied, at the optimum we have p
M

≤ pM , Πm ≥ Πm, φ ≤ φ, and

ν ≤ ν.

Lemma 2.2 reduces the number of possible combinations of active and inactive

constraints (2.58)-(2.61), at a candidate solution to the regulator’s optimization

program, to seven. Lemma 2.3 further reduces this number to five at the optimum.

Indeed, this lemma rules out solutions with either (φ = 0, φ = 0, ν = 0, ν > 0) or

(φ = 0, φ > 0, ν = 0, ν = 0). The next proposition characterizes the five remaining

solutions.

Proposition 2.4 When only capacity and price are controlled by the regulator,

and the latter has uncertainty about the regional firm’s marginal cost when setting

capacity, the optimal policy (K, pM , p
M

, φ, φ, ν, ν) is of one of the following types.

(B1u) The policy (0 < K < QM < Q
M

, pM > θ, p
M

> c, φ = 0, φ = 0, ν = 0, ν = 0)

characterized by the following conditions:

pM − θ

pM

=
λK

QM

1

ε(QM)
(2.68)

p
M

− c

p
M

=
λK

Q
M

1

ε(Q
M

)
(2.69)

(1 + λ)C ′(K) = α(1 + λ)(θ − c) + λ[α(pM − θ) + (1 − α)(p
M

− c)] (2.70)

(B2u) The policy (0 < K < QM < Q
M

, pM ≥ θ, p
M

> c, φ > 0, φ = 0, ν = 0, ν = 0)

described by

pM − θ

pM

=

[
αλK + φ qm

(α + φ)QM

]
1

ε(QM)
=

Fm

pMqm

, (2.71)

(2.69), and

(1 + λ)C ′(K) = α(1 + λ)(θ − c) + λ

[
α

Fm

qm

+ (1 − α)(p
M

− c)

]
− φ

Fm

qm

(2.72)
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(B3u) The policy (0 < K = QM < Q
M

, pM > c, p
M

> c, φ = 0, φ = 0, ν > 0, ν = 0)

described by

pM − θ

pM

=
λ

ε(QM)
− ν

αpM

, (2.73)

(2.69), and

(1 + λ)C ′(QM) = α(1 + λ)(θ − c) + λ[α(pM − θ) + (1 − α)(p
M

− c)] − ν (2.74)

(B4u) The policy (0 < K < QM < Q
M

, pM > θ, p
M

> c, φ > 0, φ > 0, ν = 0, ν = 0)

characterized by (2.71),

p
M

− c

p
M

=

[
(1 − α)λK + φq

m

(1 − α + φ)Q
M

]
1

ε(Q
M

)
=

Fm

p
M

q
m

, (2.75)

and

(1 + λ)C ′(K) = α(1 + λ)(θ − c)

+λ

[
α

Fm

qm

+ (1 − α)
Fm

q
m

]
−

(
φ

Fm

qm

+ φ
Fm

q
m

)
(2.76)

(B5u) The policy (0 < K = QM = Q
M

, pM = p
M

> c, φ = 0, φ = 0, ν > 0, ν > 0)

described by (2.73),

p
M

− c

p
M

=
λ

ε(Q
M

)
− ν

(1 − α)p
M

, (2.77)

and

(1 + λ)C ′(QM) = (α + λ)(θ − c) + λ(pM − θ) − (ν + ν) (2.78)

When there is no fixed cost (Fm = 0), only policies (B1u), (B3u), and (B5u) may

arise and they are exclusive. Policy (B5u) arises when λ2K+(1+λ)Q′
MC ′(K) > 0.

When λ2K +(1+λ)Q′
MC ′(K) ≤ 0, λ2 +(1+λ)Q′

MC ′′(K) < 0, and 0 < α(θ−c) <

C ′(QM) + λ2QM

(1+λ)Q′

M

, policy (B1u) arises, while when λ2K + (1 + λ)Q′
MC ′(K) ≤ 0,
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λ2 +(1+λ)Q′
MC ′′(K) < α(1+λ)2 and α(θ− c) ≥ C ′(QM)+ λ2QM

(1+λ)Q′

M

, policy (B3u)

arises.

When there is a fixed cost (Fm > 0), only policies (B1u), (B2u), and (B4u) may

arise and they are exclusive. If λ2K+(1+λ)Q′
MC ′(K) ≤ 0, λ2+(1+λ)Q′

MC ′′(K) <

0, 0 < α(θ− c) < C ′(K)+ λ2K
Q′

M

−αλ(
λKqm+Q′

MFm

qmQ′

M

), and λKqm +Q′
MFm > 0, policy

(B1u) arises. When C ′(K) + λ2K
Q′

M

− αλ(
λKqm+Q′

MFm

qmQ′

M

) ≤ α(θ − c) < C ′(K) −
λFm

1+λ
[
qm+α(q

m
−qm)

qmq
m

], policy (B2u) arises.19 Finally, when α(θ − c) ≥ C ′(K) −
λFm

1+λ
[
qm+α(q

m
−qm)

qmq
m

], policy (B4u) is optimal and second-order conditions are always

satisfied.

Proposition 2.4 shows that under policy (B1u) even the relatively less efficient

firm is active and capacity is such that the social marginal cost of imports, (1 +

λ)[c+C ′(K)], net of the expected marginal fiscal revenue of imported gas, λ[αpM +

(1 − α)p
M

], is equal to the expected marginal cost of the firm, αθ + (1 − α)c.

Under policy (B2u) the less efficient firm just breaks even and capacity is

such that the social marginal cost of imports net of the expected marginal fiscal

revenue of imported gas is equal to the expected marginal cost of the firm net of

the social value of the contribution of the marginal unit of the less efficient firm

to the relaxation of its participation constraint, φFm

qm
.

Under policy (B3u), the less efficient firm is shut down and capacity is such

that the social marginal cost of imports (at the level that makes the less efficient

firm inactive) net of the expected marginal fiscal revenue of imported gas, is equal

to the expected marginal cost of the firm net of the shadow cost of the θ-type

firm’s output nonnegativity constraint ν.20

Under policy (B4u), the firm, independently of its type, just breaks even and ca-

pacity is such that the social marginal cost of imports net of the expected marginal

19. Second-order conditions for this policy are summarized by α2λ2(α2K+(qm+λK((1−α)qm−
K(λ−α(2+λ)))))− 2α2λφqm(qm − (2+λ)K)+αφ

2
qm(3qm +2λK)+2φ

3
qm

2 −α2(1+λ)(qm −
λK)2Q′

MC ′′(K) > 0.

20. From (2.73), we see that ν = α
[(

θ − λQM

Q′

M

)
− pM

]
> 0, and hence it can be interpreted

as the marginal valuation of the expected price reduction required to guarantee that the less
efficient firm is at worse shut down.
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fiscal revenue of imported gas, is equal to the expected marginal cost of the firm,

net of the aggregate ex-post social value of the contribution of the marginal unit

of the firm to the relaxation of its participation constraint, φFm

qm
+ φFm

q
m

.

Finally, under policy (B5u) the firm, independently of its type, is shut down

and capacity is such that the social marginal cost of imports net of the expected

marginal fiscal revenue of imported gas, is equal to the expected marginal cost of

the firm net of the aggregate ex-post shadow cost of the firm’s output nonnegativity

constraint, ν + ν.21 Note that when there is no cost of public funds, i.e., λ = 0,

policy (B5u) is never optimal.

To illustrate this control scheme, let us assume that Fm = 0 and use the

functional forms given by (2.22). Note that in this particular case the sign of both

expressions λ2K +(1+λ)Q′
MC ′(K) and λ2 +(1+λ)Q′

MC ′′(K), used as criteria for

selecting an optimal policy, is the same as the sign of −Ψ, where Ψ ≡ ω(1+λ)−λ2.

Solving (2.62)-(2.67) yields the following policies. If Ψ ≥ 0, and the condition

0 ≤ (θ − c) <

[
Ψ

Ψ + α(1 + λ)2

]
(γ − c) (2.79)

holds, policy (B1u) arises with qm > 0 (ν = 0), and

K =

[
α(1 + λ)

Ψ

]
(θ − c) (2.80)

pM = θ +

[
αλ(1 + λ)

Ψ

]
(θ − c) (2.81)

p
M

= c +

[
αλ(1 + λ)

Ψ

]
(θ − c) (2.82)

If Ψ ≥ 0 but condition (2.79) does not hold, i.e.,

[
Ψ

Ψ + α(1 + λ)2

]
(γ − c) ≤ (θ − c) < (γ − c) (2.83)

21. We have (ν + ν) =
[(

αθ + (1 − α)c − λQM

Q′

M

)
− pM

]
> 0, and hence it can be interpreted

as the marginal valuation of the expected price reduction required to guarantee that the firm,
independently of its type, is at worse shut down.
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we obtain policy (B3u) with qm = 0 (ν > 0), and

K =

[
α(1 + λ)

Ψ + α(1 + λ)2

]
(γ − c) (2.84)

pM = c +

[
Ψ + αλ(1 + λ)

Ψ + α(1 + λ)2

]
(γ − c) (2.85)

p
M

= c +

[
αλ(1 + λ)

Ψ + α(1 + λ)2

]
(γ − c) (2.86)

Finally, if Ψ < 0 we obtain policy (B5u) which is characterized by qm = 0 (ν > 0),

q
m

= 0 (ν > 0), and

K =

[
1 + λ

Ψ + (1 + λ)2

]
(γ − c) (2.87)

pM = p
M

= c +

[
Ψ + λ(1 + λ)

Ψ + (1 + λ)2

]
(γ − c) (2.88)

2.4.2 Scheme B under asymmetric information

Control scheme B under asymmetric information entails maximizing expected so-

cial welfare given by (2.57) under the participation and firm’s output nonnegativity

constraints given by (2.58)-(2.61), and the incentive compatibility constraints, with

Lagrange multipliers shown in parentheses,

(pM − θ)qm ≥ (p
M

− θ)q
m

(µ) (2.89)

(p
M

− c)q
m
≥ (pM − c)qm (µ) (2.90)

directly derived from the expression of the profit function (2.52). From (2.58) and

(2.90), we obtain that the participation constraint of the c-type firm (2.59) can be

ignored (φ = 0). Furthermore, adding up (2.89) and (2.90) yields that price is a

nondecreasing function of firm’s type, p
M

≤ pM .

For the purpose of solving this regulatory program, it is important, for the

problem to be concave, that the constraint set defined by (2.58)-(2.61) and (2.89)-

(2.90) be convex, which it turns out not to be. To circumvent this difficulty, we

assume that pricing policies are restricted to type-contingent prices. The next
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lemma shows that, indeed, such a restriction takes care of this problem.

Lemma 2.4 When p
M

< pM , the constraint set defined by (2.58)-(2.61) and

(2.89)-(2.90) is convex and “qualified,” i.e., it satisfies the NDCQ and LICQ con-

ditions. Moreover, if, at the optimum, λ2 + (1 + λ)Q′
MC ′′(K) < 0, the expected

welfare function given in (2.57) is locally concave.

In an optimization problem, non-convexity of the constraint set generally leads to

multiple solutions. In our case (see the proof of Lemma 2.4) multiplicity arises in

the form of the existence of two solutions, one of which reflects bunching in prices,

i.e., pM = p
M

. Hence, in essence, Lemma 2.4 allows us to rule out bunching.

The first-order conditions are then

α[λK + (pM − θ)Q′
M ] + (φ + µ − µ)[(pM − θ)Q′

M + qm]

−µ(θ − c)Q′
M + νQ′

M = 0 (2.91)

(1 − α)[λK + (p
M

− c)Q′
M ] − (µ − µ)[(p

M
− c)Q′

M + q
m

]

+µ(θ − c)Q′
M = 0 (2.92)

(1 + λ) [α(θ − c) − C ′(K)] + (αλ − φ)(pM − θ)

+(1 − α)λ(p
M

− c) − (µ − µ)(pM − p
M

) − ν = 0 (2.93)

φ[(pM − θ)qm − Fm] = 0 (2.94)

ν qm = 0 (2.95)

µ[(pM − θ)qm − (p
M

− θ)q
m

] = 0 (2.96)

µ[(p
M

− c)q
m
− (pM − c)qm] = 0 (2.97)

From now on, we make use of the assumption p
M

< pM which eliminates bunching

solutions (p
M

= pM , with either µ = µ = 0 or µ, µ > 0) and clearly solutions with

ν > 0. The incentive compatibility constraints (2.89) and (2.90) further eliminate

solutions with φ > 0. The next proposition characterizes the remaining eight

possible solutions.

Proposition 2.5 When only capacity and price are the regulatory instruments

and there is asymmetric information, there are eight types of optimal policies
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(K, pM , p
M

, φ, ν, µ, µ) designated by (B1ai)-(B8ai). Three of them, namely, (B1ai)-

(B3ai), are identical to policies (B1u)-(B3u) obtained under uncertainty (see Propo-

sition 2.4).22 The remaining ones are described as follows:

(B4ai) The policy (0 < K < QM < Q
M

, pM > θ, p
M

> c, φ = 0, ν = 0, µ = 0, µ > 0)

described by

pM − θ

pM

=

[
αλK − µ qm

(α − µ)QM

]
1

ε(QM)
+

µ(θ − c)

(α − µ)pM

(2.98)

p
M

− c

p
M

=

[
(1 − α)λK + µ q

m

(1 − α + µ)Q
M

]
1

ε(Q
M

)
(2.99)

(1 + λ)C ′(K) = [α(1 + λ) + µ](θ − c) + µ[(pM − θ) − (p
M

− c)]

+λ[α(pM − θ) + (1 − α)(p
M

− c)] (2.100)

(B5ai) The policy (0 < K < QM < Q
M

, pM > θ, p
M

> c, φ > 0, ν = 0, µ = 0, µ > 0)

described by

pM − θ

pM

=

[
αλK − (µ − φ)qm

(α + φ − µ)QM

]
1

ε(QM)
+

µ(θ − c)

(α − µ)pM

=
Fm

pMqm

(2.101)

(2.99), and

(1 + λ)C ′(K) = [α(1 + λ) + µ](θ − c) + µ

[
Fm

qm

− (p
M

− c)

]

+λ

[
α

Fm

qm

+ (1 − α)(p
M

− c)

]
− φ

Fm

qm

(2.102)

(B6ai) The policy (0 < K < QM < Q
M

, pM > θ, p
M

> c, φ = 0, ν = 0, µ > 0, µ = 0)

22. This is due to the fact that when the incentive compatibility constraints (2.89) and (2.90)
are not active (µ = µ = 0), we are back to the case under uncertainty.
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described by

pM − θ

pM

=

[
αλK + µ qm

(α + µ)QM

]
1

ε(QM)
(2.103)

p
M

− c

p
M

=

[
(1 − α)λK − µ q

m

(1 − α − µ)Q
M

]
1

ε(Q
M

)
+

µ(θ − c)

(1 − α − µ)p
M

(2.104)

(1 + λ)C ′(K) = [α(1 + λ) − µ](θ − c) − µ[(pM − θ) − (p
M

− c)]

+λ[α(pM − θ) + (1 − α)(p
M

− c)] (2.105)

(B7ai) The policy (0 < K < QM < Q
M

, pM > θ, p
M

> c, φ > 0, ν = 0, µ > 0, µ = 0)

described by

pM − θ

pM

=

[
αλK + (φ + µ)qm

(α + φ + µ)QM

]
1

ε(QM)
=

Fm

pMqm

(2.106)

(2.104), and

(1 + λ)C ′(K) = [α(1 + λ) − µ](θ − c) − µ

[
Fm

qm

− (p
M

− c)

]

+λ

[
α

Fm

qm

+ (1 − α)(p
M

− c)

]
− φ

Fm

qm

(2.107)

(B8ai) The policy (0 < K = QM < Q
M

, pM > θ, p
M

= θ, φ = 0, ν > 0, µ > 0, µ = 0)

described by

pM − θ

pM

=

[
αλ

(α + µ)

]
1

ε(QM)
− ν

(α + µ)pM

, (2.108)

p
M

= θ, and

(1 + λ)C ′(QM) = (α + λ)(θ − c) + (αλ − µ)(pM − θ) − ν (2.109)

When there is no fixed cost (Fm = 0), only policies (B1ai), (B3ai), (B4ai), (B6ai),

and (B8ai) may arise as optimal policies and these policies are exclusive. When

there is a fixed cost (Fm > 0), only policies (B1ai), (B2ai), (B4ai), (B5ai), (B6ai),
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and (B7ai) may arise as optimal policies and these policies are exclusive.23 From

Lemma 2.4, when λ2 +(1+λ)Q′
MC ′′(K) < 0 second-order conditions of all policies

are satisfied.

Under policy (B4ai), even the θ-type firm is active and the social marginal

cost of imports, (1 + λ)[c + C ′(K)], net of the expected marginal fiscal revenue

of imported gas, λ[αpM + (1 − α)p
M

], is equal to the expected marginal cost of

the firm, αθ + (1 − α)c, plus the social marginal cost associated with the price

distortion of both the θ- and c-type firms required to minimize the informational

rent of the c-type firm, µ(pM − p
M

) > 0.

Under policy (B5ai), the less efficient firm just breaks even and capacity is

such that the social marginal cost of imports net of the expected marginal fiscal

revenue of imported gas, is equal to the expected marginal cost of the firm plus the

social marginal cost associated with the price distortion necessary to minimize the

informational rent of the more efficient firm, net of the ex-post social value of the

contribution of the marginal unit of the firm to the relaxation of its participation

constraint, φFm

qm
.

Under policy (B6ai), even the less efficient firm is active and the social marginal

cost of imports net of the expected marginal fiscal revenue of imported gas, is equal

to the expected marginal cost of the firm net of the social marginal cost associated

with the price distortion of both the θ- and c-type firms required to minimize the

informational rent of the less efficient firm, µ(pM − p
M

) > 0.

Under policy (B7ai), the θ-type firm just breaks even and capacity is such that

the social marginal cost of imports net of the expected marginal fiscal revenue

of imported gas, is equal to the expected marginal cost of the firm, net of the

social marginal cost associated with the price distortion necessary to minimize the

informational rent of the less efficient firm and of the ex-post social value of the

contribution of the marginal unit of the firm to the relaxation of its participation

constraint, φFm

qm
.

23. The conditions under which these policies may arise cannot be obtained in the general case
as φ, µ, and µ affect the system of first-order conditions in a nonlinear way. However, such
conditions will be derived for the particular functional forms given in (2.22).
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Under policy (B8ai), the less efficient firm is shut down and capacity is such

that the social marginal cost of imports (at the level they make the less efficient

firm inactive) net of the expected marginal fiscal revenue of imported gas, is equal

to the expected marginal cost of the firm plus the social marginal cost associated

with the price distortions necessary to minimize the informational rent of the less

efficient firm, net of the shadow cost of the θ-type firm’s output nonnegativity

constraint ν.

Let us illustrate this control scheme assuming that Fm = 0 and using the

functional forms given by (2.22). Again, as in the case under uncertainty, the

sign of λ2 + (1 + λ)Q′
MC ′′(K) (see Lemma 2.4) is the same as that of −Ψ, where

Ψ ≡ ω(1 + λ) − λ2. Solving (2.91)-(2.97) under the restriction that p
M

< pM ,

yields the following policies:24

When Ψ ≥ αλ(1+λ) the following group of policies might arise. Policy (B4ai)

arises when

(1 − 2α)

α

[
Ψ

2Ψ + (α + λ)(1 + 2λ)

]
(γ − c) < (θ − c) ≤
[

Ψ

Ψ + α(1 + λ)(1 + 2λ)

]
(γ − c) (2.110)

with

K =
α [(1 − α)(1 + 2λ)(γ − c) − [λ − α(1 + 2λ)](θ − c)]

Ψ + α(1 − α)(1 + 2λ)2
(2.111)

pM = θ + (1 − α)

[
Ψ + αλ(1 + 2λ)

Ψ + α(1 − α)(1 + 2λ)2

]
(γ − c)

−
[
(1 − α)[Ψ + α(1 + 2λ)2] − αλ(1 + λ)

Ψ + α(1 − α)(1 + 2λ)2

]
(θ − c) (2.112)

p
M

= c + α

[
Ψ + (1 − α)λ(1 + 2λ)

Ψ + α(1 − α)(1 + 2λ)2

]
(γ − c)

−α

[
Ψ + α(1 + 2λ) + λ2

Ψ + α(1 − α)(1 + 2λ)2

]
(θ − c) (2.113)

24. Details about the derivation of these policies are given in the appendix.
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Policy (B1ai), identical to (B1u), described by (2.80)-(2.82), arises when

[
Ψ

Ψ + α(1 + λ)(1 + 2λ)

]
(γ − c) < (θ − c) ≤

[
Ψ

Ψ + α(1 + λ)2

]
(γ − c) (2.114)

Policy (B3ai), identical to (B3u), described by (2.84)-(2.86), arises when

[
Ψ

Ψ + α(1 + λ)2

]
(γ − c) < (θ − c) < (γ − c) (2.115)

When 0 < Ψ < αλ(1 + λ) the following group of policies might arise. Policy

(B4ai) arises when condition (2.110) holds. Policy (B1ai), identical to (B1u),

described by (2.80)-(2.82), arises when

[
Ψ

Ψ + α(1 + λ)(1 + 2λ)

]
(γ − c) < (θ − c) ≤

[
Ψ

α(1 + λ)(1 + 2λ)

]
(γ − c) (2.116)

Policy (B6ai) arises when

[
Ψ

α(1 + λ)(1 + 2λ)

]
(γ − c) < (θ − c) ≤

[
α[Ψ + (1 − α)λ(1 + 2λ)]

Ψ + α(1 − α)λ(1 + 2λ) + α(1 + λ)2

]
(γ − c) (2.117)

with

K =
α[(1 − α)(1 + 2λ)(γ − c) + (1 + λ)(θ − c)]

Ψ + α(1 − α)(1 + 2λ)2
(2.118)

pM = θ + (1 − α)

[
Ψ + αλ(1 + 2λ)

Ψ + α(1 − α)(1 + 2λ)2

]
(γ − c)

−α(1 + λ)

[
(1 − α) + (1 − 2α)λ

Ψ + α(1 − α)(1 + 2λ)2

]
(θ − c) (2.119)

p
M

= c + α

[
(1 − α)λ(1 + 2λ) + Ψ

Ψ + α(1 − α)(1 + 2λ)2

]
(γ − c)

+α(1 + λ)

[
λ − α(1 + 2λ)

Ψ + α(1 − α)(1 + 2λ)2

]
(θ − c) (2.120)
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Policy (B8ai) arises when

[
α[Ψ + (1 − α)λ(1 + 2λ)]

Ψ + α(1 − α)λ(1 + 2λ) + α(1 + λ)2

]
(γ − c) < (θ − c) ≤

[
αλ(1 + λ)

Ψ + α(1 + λ)2

]
(γ − c) (2.121)

with

K =
α(1 + λ)(γ − c) + (1 − α)λ(θ − c)

Ψ + λ2 + α(1 + 2λ)
(2.122)

pM = c +
[Ψ + (α + λ)λ](γ − c) − (1 − α)λ(θ − c)

Ψ + λ2 + α(1 + 2λ)
(2.123)

p
M

= θ (2.124)

Finally, policy (B3ai), identical to (B3u), described by (2.84)-(2.86), arises when

[
αλ(1 + λ)

Ψ + α(1 + λ)2

]
(γ − c) < (θ − c) < (γ − c) (2.125)

2.4.3 Incentives and capacity investments

under scheme B

In order to compare the capacity levels achieved by control scheme B under un-

certainty (KB
u ) and asymmetric information (KB

ai), it will prove useful to provide

alternative expressions, allowed by our linear demand assumption, for the incen-

tive constraints (2.89) and (2.90). Indeed, linearity of demand implies (qm−q
m

) =

(pM − p
M

)Q′
M . Hence, the incentives constraints can be rewritten as

(p
M

− θ)Q′
M + qm ≥ 0

(pM − θ)Q′
M + q

m
≥ 0

}
(µ) (2.126)

(p
M

− c)Q′
M + qm ≤ 0

(pM − c)Q′
M + q

m
≤ 0

}
(µ) (2.127)

where (2.126) provides two alternative ways to express (2.89) while (2.127) provides

two alternative ways to express (2.90).
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Since C ′(K) is an increasing function, looking at (2.64) and (2.93) yields that

when there is no fixed cost,

sign[KB
ai − KB

u ] = sign[(1 + λ)[C ′(KB
ai) − C ′(KB

u )]]

= sign[αλ(pB
M,ai − pB

M,u) + (1 − α)λ(pB

M,ai
− pB

M,u
)

−(µB − µB)(pB
M,ai − pB

M,ai
) − (νB

ai − νB
u )] (2.128)

and when there is a fixed cost,

sign[KB
ai − KB

u ] = sign[(1 + λ)[C ′(KB
ai) − C ′(KB

u )]]

= sign[αλ(pB
M,ai − pB

M,u) + (1 − α)λ(pB

M,ai
− pB

M,u
)

+φ
B

u (pB
M,u − θ) + φB

u
(pB

M,u
− c)

−(µB − µB)(pB
M,ai − pB

M,ai
) − φ

B

ai(p
B
M,ai − θ)] (2.129)

Analyzing these signs allows us to state the following proposition:

Proposition 2.6 When only capacity and price control are available as regulatory

instruments, accounting for incentives has the following effect on capacity:

Independently of the existence of a fixed cost, if the regulator does not minimize

the informational rents of both types of firms, µB = µB = 0, there is no effect of

incentives on capacity, i.e., KB
ai = KB

u .

If there is no fixed cost (Fm = 0) and the regulator is constrained to minimize the

informational rent of the more (less) efficient firm, µB > 0 (µB > 0), excess (less)

transport capacity in the strict sense should arise, i.e., KB
ai > KB

u (KB
ai < KB

u ).

If there is a fixed cost (Fm > 0), three cases need to be considered.

When the regulator minimizes the informational rent of the more efficient

firm, µB > 0, excess transport capacity in the strict sense should arise, i.e.,

KB
ai > KB

u .

When the regulator minimizes the informational rent of the less efficient firm,

µB > 0, but lets it earn strictly positive profits, φ
B

ai = 0, less capacity in the

strict sense should arise, i.e., KB
ai < KB

u .
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When the regulator minimizes the informational rent of the less efficient firm,

µB > 0, but the latter just breaks-even, φ
B

ai > 0, µB > 0 does not allow us to

rank KB
ai and KB

u .

Let us now illustrate this proposition using the functional forms (2.22). When

Fm = 0, we simulate the optimal values of (KB
ai −KB

u ), µB, µB, νB
ai, and νB

u in the

{α, (θ − c)}-space for the parameter grids in Cases 1-3, given in the illustration of

Proposition 2.3. When Fm > 0, we simulate the optimal values of (KB
ai −KB

u ), µB,

µB, φ
B

ai, φ
B

u , and φB

u
in the {Fm, (θ − c)}-space for the following parameter grids:

• Case 1+: {γ, c, ω, λ, α} = {10, 2, 0.50, 0.33, 0.43}, (θ − c) ∈ [0, 4.94], and

Fm ∈ [0, 2.24]

• Case 2+: {γ, c, ω, λ, α} = {10, 2, 0.52, 0.85, 0.43}, (θ − c) ∈ [0, 2.24], and

Fm ∈ [0, 5.14]

• Case 3+: {γ, c, ω, λ, α} = {10, 2, 0.17, 0.25, 0.68}, (θ − c) ∈ [0, 2.24], and

Fm ∈ [0, 2.24]

Figure 2.5 (a-b) summarizes the results of the simulated values of (KB
ai −KB

u ),

µB, µB, νB
ai, and νB

u for Cases 1, 2 and 3, respectively from the top to the bottom.

Figure 2.5a shows in white, gray and black the regions where respectively (KB
ai −

KB
u ) > 0, (KB

ai−KB
u ) = 0, and (KB

ai−KB
u ) < 0. The dashed regions in these figures

represent the (α, (θ− c)) pairs for which a solution under asymmetric information

with p
M

< pM cannot arise. Figure 2.5b exhibits the curves formed by the (α, (θ−
c)) pairs such that νB

ai = 0, νB
u = 0, µB = 0, and µB = 0.
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Figure 2.5a: KB
ai − KB

u Figure 2.5b: µB and µB

For the parameter grid of Case 1, we have Ψ ≡ ω(1 + λ) − λ2 > αλ(1 + λ)

for any α ∈ [0, 1], and hence no solution with µB > 0 arises. Cross-examining

Figures 2.5a and 2.5b, we see that whenever µB > 0, irrespective of whether or

not νB
ai and νB

u are positive, KB
ai > KB

u , as stated in the proposition. For Case 2,

Ψ ≡ ω(1 + λ) − λ2 > αλ(1 + λ) for any α ∈ [0, 0.16], and hence solutions with

µB > 0 exclusively arise for α ∈ (0.16, 1]. We observe that whenever µB > 0
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(µB > 0), independently of νB
ai and νB

u being equal to zero or positive, KB
ai > KB

u

(KB
ai < KB

u ). For Case 3, Ψ ≡ ω(1 + λ) − λ2 > αλ(1 + λ) for any α ∈ [0, 0.50],

and hence solutions with µB > 0 exclusive arise for α ∈ (0.50, 1]. Cross-examining

Figures 2.5a and 2.5b, leads to similar conclusions as in Case 2.

Figure 2.6 (a-b) summarizes the results of the simulated values of (KB
ai −KB

u ),

µB, µB, φ
B

ai, φ
B

u , and φB

u
for Cases 1+-3+. Figure 2.6b exhibits the curves formed

by the (α, (θ − c)) pairs such that φ
B

ai = 0, φ
B

u = 0, φB

u
= 0, µB = 0, and µB = 0.
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For Case 1+, Ψ ≡ ω(1 + λ) − λ2 > αλ(1 + λ) for any α ∈ [0, 1], and hence no

solution with µB > 0 arises. From Figures 2.6a and 2.6b, we see that whenever

µB > 0, irrespective of whether or not φ
B

ai, φ
B

u , and φB

u
are equal to zero, KB

ai > KB
u .

For Case 2+, Ψ ≡ ω(1 + λ) − λ2 > αλ(1 + λ) for any α ∈ [0, 0.16], and hence

solutions with µB > 0 exclusively arise for α ∈ (0.16, 1]. Since under Case 2+,

α = 0.43, solutions with µB > 0 are possible. Cross-examining Figures 2.6a

and 2.6b, we see that µB > 0, irrespective of whether the remaining Lagrange

multipliers are positive or equal to zero, KB
ai > KB

u . Moreover, when µB > 0

and φ
B

ai = 0, sign[KB
ai − KB

u ] = −sign[µB] < 0, implying KB
ai < KB

u . However,

when φ
B

ai > 0, this relationship does not hold as can be seen from the white region

in Figure 2.6a which shows cases with µB > 0 and KB
ai > KB

u . This illustrates

the result stated at the end of Proposition 2.6. Case 3+ demonstrates similar

properties as those obtained under Case 2+.25

2.5 Timing of decisions and transport capacity

under scheme C

In this section, we analyze regulatory scheme C in which the regulator can only

set transport capacity. In contrast to the previously analyzed schemes A and

B, in C the regulator can only partially affect market price by affecting firm’s

residual demand. Apart from this, the firm maximizes its profit and hence under

this scheme, although we introduce uncertainty, there are no incentive issues to be

addressed.

One way to analyze control scheme C is to follow the timing depicted in Figure

2.2. Such a mechanism would give the regulator the ability to internalize the

impact of the firm’s profit-maximizing behavior since capacity is determined prior

to the setting of price by the firm.26 Alternatively, one could assume that the

25. For Ψ ≡ ω(1 + λ) − λ2 > αλ(1 + λ) for any α ∈ [0, 0.50], and hence solutions with µB > 0
exclusively arise for α ∈ (0.50, 1]. Since under Case 3+, α = 0.68, it is possible to get solutions
with µB > 0.

26. In practice though, we model this case as if the regulator sets the price level within the firm’s
profit-maximizing range.
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regulator looses this ability, and hence that decisions on capacity and price are

simultaneous. Analyzing these two mechanisms allows us to explore the effect

of the timing of decisions on transport capacity by comparing the optimal levels

achieved.

For a given volume of gas K imported from the competitive market, the θ̃-

type firm remains a monopoly in its local commodity gas market on the residual

demand QM(pM(θ̃))−K. Given this demand, the firm sets price so as to maximize

its profit Πm(θ̃) given by

Πm(θ̃) = (pM(θ̃) − θ̃)[QM(pM(θ̃)) − K] − Fm (2.130)

subject to its output nonnegativity constraint27

qm(θ̃) = QM(pM(θ̃)) − K ≥ 0 (ν(θ̃)) (2.131)

where the Lagrange multiplier shown in parentheses is such that ν ≡ ν(θ) and

ν ≡ ν(c). The first-order conditions of this profit-maximization problem are28

[pM(θ̃) − θ̃ + ν(θ̃)]Q′
M + qm(θ̃) = 0 (2.132)

ν(θ̃) qm(θ̃) = 0 (2.133)

Under this control scheme C, ex post social welfare is the same as that under

B given by (2.53). However, when it comes to solving the regulator’s optimization

program, the fact that the firm’s objective function is only defined for firm nonneg-

ative output, should be accounted for. This is done by adding the firm’s slackness

complementarity term, ν(θ̃) qm(θ̃), in the regulator’s objective function. Hence,

in practice, the regulator’s program consists in maximizing “adjusted” expected

27. The fact that this output nonnegativity constraint is decentralized to the firm does not
affect at all both interior solutions (with and without fixed cost) and boundary solutions (with
fixed cost). Moreover, this assumption allows us to work on an economically meaningful firm’s
reaction function.

28. Since we assume a linear demand function, second-order conditions are always satisfied when
qm(θ̃) ≥ 0.
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social welfare given by

E[W (θ̃) + ν(θ̃)qm(θ̃)] = α[W (θ) + ν qm] + (1 − α)[W (c) + ν q
m

] (2.134)

with respect to pM , p
M

, and K under the ex-post participation and output non-

negativity constraints

Πm + ν qm = (pM − θ + ν)qm − Fm ≥ 0 (φ) (2.135)

Πm + ν q
m

= (p
M

− c + ν)q
m
− Fm ≥ 0 (φ) (2.136)

ν qm = 0 (2.137)

ν q
m

= 0 (2.138)

2.5.1 Regulation with uncertainty

and sequential decisions

When the regulator first sets transport capacity and then the firm determines

price, the former’s optimization program should account for the latter’s profit-

maximizing behavior. Thus, the regulator maximizes (2.134) subject to the con-

straints (2.135)-(2.138), and

(pM − θ + ν)Q′
M + qm = 0 (η) (2.139)

(p
M

− c + ν)Q′
M + q

m
= 0 (η) (2.140)

with Lagrange multipliers shown in parentheses. An important property of the

constraint set is stated in the next lemma.

Lemma 2.5 The constraint set defined by (2.135)-(2.138) and (2.139)-(2.140) is

convex ans satisfies the NDCQ and LICQ constraint qualification conditions.

The first-order conditions of the regulator’s optimization program are given by

α[λK + (pM − θ + ν)Q′
M ] − 2ηQ′

M = 0 (2.141)

(1 − α)[λK + (p
M

− c + ν)Q′
M ] − 2ηQ′

M = 0 (2.142)
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(1 + λ) [α(θ − c) − C ′(K)] + (η + η) − (αν + (1 − α)ν)

+(αλ − φ)(pM − θ) + ((1 − α)λ − φ)(p
M

− c) = 0 (2.143)

φ[(pM − θ)qm − Fm] = 0 (2.144)

φ[(p
M

− c)q
m
− Fm] = 0 (2.145)

ν qm = ν q
m

= 0 (2.146)

(pM − θ)Q′
M + qm + νQ′

M = 0 (2.147)

(p
M

− c)Q′
M + q

m
+ νQ′

M = 0 (2.148)

The next lemma states some useful implications of (2.141)-(2.148).

Lemma 2.6 Under control scheme C with uncertainty and sequential decisions,

at the optimum, we have p
M

≤ pM , Πm ≥ Πm, φ ≤ φ, ν ≤ ν, and η > η.

From Lemma 2.6, we directly see that solutions with either (φ = 0, φ = 0, ν =

0, ν > 0) or (φ = 0, φ > 0, ν = 0, ν = 0) are ruled out. Moreover, it can be shown

that solutions with either (φ = 0, φ = 0, ν > 0, ν > 0) or (φ > 0, φ > 0, ν = 0, ν =

0) cannot arise.29 The following proposition characterizes the remaining solutions.

Proposition 2.7 When only capacity is controlled by the regulator who sets it un-

der uncertainty prior to the firm’s price decision, the optimal policy (K, pM , p
M

, φ,

ν, η, η) is of one of the following three types:

(C1u) The policy (0 < K < QM < Q
M

, pM > θ, p
M

> c, φ = 0, ν = 0, η 6= 0, η 6= 0)

described by

pM − θ

pM

=
λK

QM

1

ε(QM)
+

2η

αpM

=
qm

QM

1

ε(QM)
(2.149)

29. To show that (φ = 0, φ = 0, ν > 0, ν > 0) is not a solution, start from ν > 0 and
ν > 0 which implies qm = q

m
= 0 and pM = p

M
. Solving (2.147) and (2.148) for ν and ν,

respectively, one obtains that ν = −(pM − θ) and ν = −(pM − c). Thus, ν, ν > 0 implies
pM < c. Now, solving (2.141) and (2.142) for η and η and substituting into (2.143) yields
λK − [(1 − α)(θ − c) − (3 + 2λ)(pM − c)]Q′

M = 0 which implies K < 0, an impossibility. To
see why (φ > 0, φ > 0, ν = 0, ν = 0) is not a solution, assume φ > 0 and φ > 0 which implies

F = (pM − θ)qm = (p
M

− c)q
m

. From (2.147) and (2.148) one obtains FQ′

M = −q2
m = −q2

m
.

Hence, qm = q
m

, i.e., pM = p
M

which violates θ > c.
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p
M

− c

p
M

=
λK

Q
M

1

ε(Q
M

)
+

2η

(1 − α)p
M

=
q

m

Q
M

1

ε(Q
M

)
(2.150)

(1 + λ)C ′(K) = α(1 + λ)(θ − c) + η + η

+λ[α(pM − θ) + (1 − α)(p
M

− c)] (2.151)

(C2u) The policy (0 < K < QM < Q
M

, pM > θ, p
M

> c, φ > 0, ν = 0, η 6= 0, η 6= 0)

characterized by (2.149), (2.150), and

(1 + λ)C ′(K) = α(1 + λ)(θ − c) + η + η − φ
Fm

qm

+λ[α
Fm

qm

+ (1 − α)(p
M

− c)] (2.152)

(C3u) The policy (0 < K = QM < Q
M

, pM < θ, p
M

> c, φ = 0, ν > 0, η 6= 0, η 6= 0)

defined by

pM − θ

pM

=
λ

ε(QM)
+

2η − αν

αpM

= − ν

pM

(2.153)

(2.150), and

(1 + λ)C ′(QM) = α(1 + λ)(θ − c) + η + η − αν

+λ[α(pM − θ) + (1 − α)(p
M

− c)] (2.154)

When there is no fixed cost, Fm = 0, only policies (C1u) and (C3u) may arise, and

policy (C1u) is optimal when 0 < α(θ − c) < C ′(QM) − 1
2

λ
1+λ

QM

Q′

M

+
(1−α)(1+2λ)q

m

2(1+λ)Q′

M

,

while policy (C3u) is when the reverse inequality holds.

When there is a fixed cost, Fm > 0, only policies (C1u), (C2u) may arise, and policy

(C1u) is optimal when 0 < α(θ−c) < C ′(K)− 1
2

λ
1+λ

K
Q′

M

+
(1−α)(1+2λ)q

m

2(1+λ)Q′

M

− α(1+2λ)Fm

2(1+λ)qm
.

When this condition does not hold, policy (C2u) is optimal.

Proposition 2.7 shows that under policy (C1u) even the θ-type firm is active

and capacity is such that the social marginal cost of imports, (1 + λ)[c + C ′(K)],

net of the expected marginal fiscal revenue of imported gas, λ[αpM +(1−α)p
M

], is
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equal to the expected marginal cost of the firm, αθ + (1− α)c, plus the aggregate

shadow cost of both types of firms’ ex post profit-maximization constraints, η + η.

Under policy (C2u) the less efficient firm breaks even and capacity is such that

the social marginal cost of imports net of the expected marginal fiscal revenue

of imported gas equals the expected marginal cost of the firm plus the aggregate

shadow cost of both types of firms’ ex post profit-maximization constraints, minus

the social value of the contribution of the marginal unit of the firm to the relaxation

of its participation constraint, φFm

qm
.

Under policy (C3u), the less efficient firm is shut down and capacity is such

that the social marginal cost of imports (at the level that makes the less efficient

firm inactive) net of the expected marginal fiscal revenue of imported gas, is equal

to the expected marginal cost of the firm plus the aggregate shadow cost of both

types of firms’ ex post profit-maximization constraints, net of the expected shadow

cost of the θ-type firm’s output nonnegativity constraint αν.

Assuming the functional forms (2.22) and solving (2.141)-(2.148) yields the

following policies. If the condition

0 ≤ (θ − c) < 2

[
λ + 2ω(1 + λ)

1 + 4λ + 4ω(1 + λ) + α(3 + 2λ)

]
(γ − c)

−2

[
1 + 4λ + 4ω(1 + λ)

1 + 4λ + 4ω(1 + λ) + α(3 + 2λ)

]√
Fm (2.155)

holds, (C1u) is optimal with

K =
(1 + 2λ)(γ − c) + α(3 + 2λ)(θ − c)

1 + 4λ + 4ω(1 + λ)
(2.156)

pM =
(θ + c)

2
+

[
λ + 2ω(1 + λ)

1 + 4λ + 4ω(1 + λ)

]
(γ − c)

−α

2

[
3 + 2λ

1 + 4λ + 4ω(1 + λ)

]
(θ − c) (2.157)

p
M

= c +

[
λ + 2ω(1 + λ)

1 + 4λ + 4ω(1 + λ)

]
(γ − c)

−α

2

[
3 + 2λ

1 + 4λ + 4ω(1 + λ)

]
(θ − c) (2.158)
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When condition (2.155) does not hold, we obtain two cases. If Fm > 0, policy

(C2u) is optimal with

K = γ − θ − 2
√

Fm (2.159)

pM = θ +
√

Fm (2.160)

p
M

=
(θ + c)

2
+

√
Fm (2.161)

If Fm = 0, policy (C3u) is optimal with

K =

[
1 + 2λ + α(3 + 2λ)

1 + 4λ + 4ω(1 + λ) + α(3 + 2λ)

]
(γ − c) (2.162)

pM = c + 2

[
λ + 2ω(1 + λ)

1 + 4λ + 4ω(1 + λ) + α(3 + 2λ)

]
(γ − c) (2.163)

p
M

= c +

[
λ + 2ω(1 + λ)

1 + 4λ + 4ω(1 + λ) + α(3 + 2λ)

]
(γ − c) (2.164)

2.5.2 Regulation with uncertainty and

simultaneous decisions

When the regulator sets transport capacity at the time the firm determines price,

the former maximizes (2.134) with respect to K, subject to the constraints (2.135)-

(2.138), while the latter maximizes its profit with respect to price subject to its

output nonnegativity constraint. The first-order conditions characterizing this

regulator-firm relationship are given by

(1 + λ) [α(θ − c) − C ′(K)] − (αν + (1 − α)ν)

+(αλ − φ)(pM − θ) + ((1 − α)λ − φ)(p
M

− c) = 0 (2.165)

φ[(pM − θ)qm − Fm] = 0 (2.166)

φ[(p
M

− c)q
m
− Fm] = 0 (2.167)

(pM − θ + ν)Q′
M + qm = 0 (2.168)

(p
M

− c + ν)Q′
M + q

m
= 0 (2.169)

ν qm = ν q
m

= 0 (2.170)
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The solutions of these first-order conditions are characterized in the next proposi-

tion.

Proposition 2.8 When only capacity is controlled by the regulator who sets it

under uncertainty at the same time the firm determines price, the optimal policy

(K, pM , p
M

, φ, ν) is of one of the following three types:

(Ĉ1u) The policy (0 < K < QM < Q
M

, pM > θ, p
M

> c, φ = 0, ν = 0) described by

pM − θ

pM

=
qm

QM

1

ε(QM)
(2.171)

p
M

− c

p
M

=
q

m

Q
M

1

ε(Q
M

)
(2.172)

(1 + λ)C ′(K) = α(1 + λ)(θ − c) + λ[α(pM − θ) + (1 − α)(p
M

− c)] (2.173)

(Ĉ2u) The policy (0 < K < QM < Q
M

, pM > θ, p
M

> c, φ > 0, ν = 0) characterized

by (2.171), (2.172), and

(1 + λ)C ′(K) = α(1 + λ)(θ − c) − φ
Fm

qm

+ λ[α
Fm

qm

+ (1 − α)(p
M

− c)] (2.174)

(Ĉ3u) The policy (0 < K = QM < Q
M

, pM < θ, p
M

> c, φ = 0, ν > 0) defined by

pM − θ

pM

= − ν

pM

(2.175)

(2.172) and

(1 + λ)C ′(QM) = α(1 + λ)(θ − c) − αν

+λ[α(pM − θ) + (1 − α)(p
M

− c)] (2.176)

When there is no fixed cost, Fm = 0, only policies (Ĉ1u) and (Ĉ3u) may arise,

and when 0 < α(θ − c) < C ′(QM) +
(1−α)λq

m

(1+λ)Q′

M

(Ĉ1u) is optimal, while policy (Ĉ3u)

is when the reverse inequality holds.
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When there is a fixed cost, Fm > 0, only policies (Ĉ1u) and (Ĉ2u) may arise, and

policy (Ĉ1u) is optimal when 0 < α(θ − c) < C ′(K) +
(1−α)λq

m

(1+λ)Q′

M

− αλ
1+λ

Fm

qm
. When

this condition does not hold, policy (Ĉ2u) is optimal.

Proposition 2.8 shows that under policy (Ĉ1u) even the θ-type firm is active

and capacity is such that the social marginal cost of imports, (1 + λ)[c + C ′(K)],

net of the expected marginal fiscal revenue of imported gas (evaluated at profit-

maximizing prices), λ[αpM + (1−α)p
M

], is equal to the expected marginal cost of

the firm, αθ + (1 − α)c.

Under policy (Ĉ2u) the less efficient firm breaks even and capacity is such that

the social marginal cost of imports net of the expected marginal fiscal revenue of

imported gas is equal to the expected marginal cost of the firm net of the social

value of the contribution of the marginal unit of the firm to the relaxation of its

participation constraint, φFm

qm
.

Under policy (Ĉ3u), the less efficient firm is shut down and capacity is such

that the social marginal cost of imports (at the level that makes the less efficient

firm inactive) net of the expected marginal fiscal revenue of imported gas, is equal

to the expected marginal cost of the firm, net of the expected shadow cost of the

θ-type firm’s output nonnegativity constraint αν.

With functional forms (2.22), the solution to (2.165)-(2.170) yields the following

policies. When the condition

0 ≤ (θ − c) < 2

[
ω(1 + λ)(γ − c) − [λ + 2ω(1 + λ)]

√
Fm

λ + 2ω(1 + λ) + α(2 + λ)

]
(2.177)

holds, policy (Ĉ1u) is optimal with

K =
λ(γ − c) + α(2 + λ)(θ − c)

λ + 2ω(1 + λ)
(2.178)

pM =
(θ + c)

2
+

1

2

[
2ω(1 + λ)(γ − c) − α(2 + λ)(θ − c)

λ + 2ω(1 + λ)

]
(2.179)

p
M

= c +
1

2

[
2ω(1 + λ)(γ − c) − α(2 + λ)(θ − c)

λ + 2ω(1 + λ)

]
(2.180)
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When condition (2.177) does not hold and Fm > 0, (2.165)-(2.170) yield a policy

(Ĉ2u) identical to (C2u) described by (2.159)-(2.161). When condition (2.177)

does not hold and Fm = 0, policy (Ĉ3u) with

K =

[
λ + α(2 + λ)

λ + 2ω(1 + λ) + α(2 + λ)

]
(γ − c) (2.181)

pM = c + 2

[
ω(1 + λ)

λ + 2ω(1 + λ) + α(2 + λ)

]
(γ − c) (2.182)

p
M

= c +

[
ω(1 + λ)

λ + 2ω(1 + λ) + α(2 + λ)

]
(γ − c) (2.183)

is optimal.

2.5.3 Capacity effect of timing of decisions

under scheme C

The comparison of the capacity levels achieved under control scheme C under

uncertainty with sequential (KC
u ) and simultaneous (KC

û ) decisions, allows us to

assess the impact of timing on transport capacity. From (2.134), we have ∂E[W C ]
∂K

=

(1 +λ)[α(θ− c)−C ′(K)] + αλ(pM − θ) + (1−α)λ(p
M
− c) and ∂2E[W C ]

∂K2 < 0. From

the first-order conditions (2.143) and (2.165), we obtain

sign[KC
û − KC

u ] = −sign

[(
∂E[WC ]

∂Kû

− ανC
u

)
−

(
∂E[WC ]

∂Ku

− ανC
û

)]

= −sign[(ηC + ηC)] (2.184)

when there is no fixed cost. When there is a fixed cost, we obtain

sign[KC
û − KC

u ] = −sign

[
∂E[WC ]

∂Kû

− ∂E[WC ]

∂Ku

]

= −sign[(ηC + ηC) − φ
C

u (pC
M,u − θ) + φ

C

û (pC
M,û − θ)] (2.185)

These relationships allow us to state the proposition that follows.

Proposition 2.9 When only capacity is available as a regulatory instrument, tim-

ing of decisions has the following effect on transport capacity:
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When there is no fixed cost (Fm = 0) and the aggregate shadow cost of both types

of firms’ ex post profit-maximization constraints is positive (negative), i.e., when

(ηC + ηC) > 0 ((ηC + ηC) < 0), sequentiality of decisions calls for excess (less)

capacity relative to simultaneity in the strict sense, i.e., KC
u > KC

û (KC
u < KC

û ).

When there is a fixed cost (Fm > 0), there are three cases:

When the less efficient firm earns positive profits when decisions are both

sequential and simultaneous, φ
C

u = φ
C

û = 0, the same conclusions as in the

case where Fm = 0 can be drawn.

When the less efficient firm just breaks even when decisions are both se-

quential and simultaneous, φ
C

u , φ
C

û > 0, timing of decisions has no effect on

transport capacity, i.e., KC
u = KC

û .

When the less efficient firm just break even when decisions are either sequen-

tial or simultaneous, (φ
C

u > 0, φ
C

û = 0) or (φ
C

u = 0, φ
C

û > 0), (ηC + ηC) does

not allow us to rank KC
û and KC

u .

We now verify this proposition using the functional forms given in (2.22). Com-

paring the capacity levels given in (2.156), (2.159), (2.162), (2.178), and (2.181)

provides a preliminary verification. However, since the intervals defining the pa-

rameter space for each policy are not always compatible, we run some simulations.

When Fm = 0, we simulate the optimal values of (KC
û − KC

u ), (ηC + ηC), νC
û , and

νC
u in the {α, (θ − c)}-space for the parameter values presented in Cases 1-3 given

in the verification of Proposition 2.3. When Fm > 0, we simulate the optimal

values of (KC
û − KC

u ), (ηC + ηC), φ
C

û , and φ
C

u in the {Fm, (θ − c)}-space for the

grids of parameters in Case 1+-3+ presented in the verification of Proposition 2.6.

Figure 2.7 (a-b) summarizes the results of the simulated values of (KC
û −KC

u ),

(ηC +ηC), νC
û , and νC

u for Cases 1, 2 and 3, respectively from the top to the bottom.

Figure 2.7a shows in white and black the regions where respectively (KC
û −KC

u ) > 0

and (KC
û − KC

u ) < 0. Figure 2.7b exhibits the curves formed by the (α, (θ − c))

pairs such that (ηC + ηC) = 0, νC
û = 0, and νC

u = 0.
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Figure 2.7a: KC
û − KC

u Figure 2.7b: ηC , ηC

Cross-examining Figures 2.7a and 2.7b, we see that whenever (ηC + ηC) > 0,

irrespective of whether or not νC
û and νC

u are positive KC
u > KC

û . Conversely,

when (ηC + ηC) < 0, KC
u < KC

û as stated in the proposition.

Figure 2.8 (a-b) summarizes the results of the simulated values of (KC
û −KC

u ),

(ηC + ηC), φ
C

û , and φ
C

u for Cases 1+, 2+ and 3+, respectively from the top to the
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bottom. Figure 2.8a shows in white, gray, and black the regions where respectively

(KC
û − KC

u ) > 0, (KC
û − KC

u ) = 0 and (KC
û − KC

u ) < 0. Figure 2.8b exhibits the

curves formed by the (α, (θ − c)) pairs such that (ηC + ηC) = 0, φ
C

û = 0, and

φ
C

u = 0.

0 0.5 1 1.5 2

0

1

2

3

4

5

m
F

c

0 0.5 1 1.5 2

2

2.5

3

3.5

4

4.5

5

mF

c

0

0
CC

C

û
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u Figure 2.8b: ηC , ηC

Cross-examining Figures 2.8a and 2.8b, we see that when φ
C

u = φ
C

û = 0, the sign

of ηC + ηC ranks the capacity gap (KC
û − KC

u ) in the same way that in the case

where there is no fixed cost. Moreover, when both φ
C

u , φ
C

û > 0, we observe that it is
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always the case that KC
u = KC

û . Finally, we see that when either (φ
C

u > 0, φ
C

û = 0)

or (φ
C

u = 0, φ
C

û > 0), the sign of (ηC + ηC) does not provide enough information

to measure the effect of timing of decisions on transport capacity, as stated at the

end of Proposition 2.9.

2.6 Conclusion

The analysis in this chapter has attempted to contribute to the literature on reg-

ulation of network industries along three dimensions. First, we derived and high-

lighted the economic properties of various policies based on standard regulatory

instruments, namely, pricing and taxation, but most importantly on a less conven-

tional means of market intervention, namely, investing in network capacity. As far

as this first contribution is concerned, although informative, the results obtained

are generally not surprising. Second, we investigated the impact on network in-

vestments of accounting for incentives in a context where private information gives

the regulated firm the opportunity to earn rents. The results there suggest that

this impact is not unambiguous. Finally, we explored the effect on the size of in-

vestments in transport capacity of the ability of the regulator to commit to these

investments. Here again, the results support an under-investment effect, no effect,

and an over-investment effect.

When the less informed regulator can use transfers and control price, a rel-

atively over-sized transport network can be justified on normative grounds and

by the need to give the informed firm proper production incentives. Indeed, by

putting downward pressure on the less efficient firm’s output, an important de-

terminant of the more efficient firm’s informational rent, which is the only one of

concern since that of the less efficient is nil, expansion of capacity helps reducing

this rent.

When transfers are not allowed, it turns out that the regulator can be concerned

about the informational rent of either the more efficient firm or the less efficient

one. We identify various cases. If incentive constraints are not binding, i.e., the

firm behaves truthfully, capacity is neutral. When the regulator is concerned about

the informational rent of the more efficient firm, capacity expansion is beneficial
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independently of whether or not there is a fixed cost. When it is the less efficient

firm’s rent that negatively affects social welfare, cases where capacity reduction is

desirable might arise.

When the regulator further looses pricing as a regulatory instrument, the so-

cial cost/benefit of the firm’s profit-maximizing behavior plays a role.30 We then

examine how the regulator’s ability to commit to investments in capacity affects

transport network sizing. When the firm’s profit-maximizing behavior is socially

costly (beneficial) commitment induces capacity expansion (reduction). When

there is a fixed cost and the firm breaks even, the loss of the regulator’s ability to

commit does not affect capacity.

30. We thank C. Waddams for having suggested to us that some degree of facility-based local
competition in the incumbent’s market (regional market M in the framework of this chapter)
would probably have to compensate for the loss of the two regulatory instruments.
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Appendix

Proof of Lemma 2.1 Consider the ex-post program under scheme A where the regulator seeks

to control market power exercised by a θ̃-type firm through the maximization of the social welfare

function (2.2) with respect to pM (θ̃) and U(θ̃), for a given level of already installed transport

capacity K, under the constraints (2.3) and (2.4). Differentiating with respect to θ̃ the associated

system of first-order conditions yields that when ν(θ̃) = 0, dpM (θ̃)

dθ̃
= 1+λ

1+2λ > 0 and clearly

dν(θ̃)

dθ̃
= 0. When ν(θ̃) > 0, we have dpM (θ̃)

dθ̃
= 0 and dν(θ̃)

dθ̃
= (1 + λ) > 0. ¥

Proof of Proposition 2.1 From (2.14), we obtain that the participation constraint of the firm

is always binding independently of the firm’s type, i.e., φ = αλ > 0 and φ = (1 − α)λ > 0.

Concerning policy (A1u), the condition 0 < α(θ − c) < C ′(QM ) yields ν = 0. Substitute into

(2.10) and use the fact that ε(QM ) ≡ −Q′

MpM/QM to obtain (2.17). Rewrite (2.11) using the

fact that ε(Q
M

) ≡ −Q′

Mp
M

/Q
M

to obtain (2.18). Next, substitute ν = 0 into (2.12) to get

(2.19).

For policy (A2u), when α(θ − c) > C ′(QM ), the first-order condition (2.12) calls for ν > 0.

Substitute this result into (2.10) to obtain (2.20). Since ν > 0 does not appear in (2.11), rewriting

the later still yields (2.18). Finally, (2.12) with ν > 0 yields (2.21). ¥

Proof of Proposition 2.2 In the discussion following the system of first-order conditions (2.33)-

(2.40), we obtain that in scheme A under asymmetric information φ = λ > 0 and µ = 0.

Substituting into (2.37) yields µ = (1 − α)λ.

Concerning policy (A1ai), the condition 0 < (α + λ)(θ − c) < C ′(QM ) yields ν = 0. Substitute

µ = (1 − α)λ > 0 and ν = 0 into (2.33)-(2.35) to get (2.41)-(2.43).

For policy (A2ai), when (α+λ)(θ−c) > C ′(QM ), the first-order condition (2.35) calls for ν > 0.

Substitute µ = (1 − α)λ > 0 and ν > 0 into (2.33)-(2.35) to get (2.44)-(2.45). ¥

Proof or Proposition 2.3 We know from Propositions 2.1 and 2.2 that policy (A1u) arises

when 0 < (θ − c) <
C′(Q

A

M )
α whereas policy (A1ai) happens when 0 < (θ − c) <

C′(Q
A

M )
α+λ . It is

direct then to see that whenever (A1ai) is optimal under asymmetric information, so is (A1u)

under uncertainty. Thus, from (2.51) we obtain that asymmetric information induces “excess”

capacity (in the strong sense), i.e., KA
ai > KA

u under policy (A1ai). When policy (A2ai) arises,

the benchmark scheme does not necessarily imply shutting down the less efficient firm. When

this firm is active under uncertainty, it is easy to see that KA
u < Q

A

M,ai. When this firm is

inactive under uncertainty, no “excess” capacity arises. In fact, the two policies are identical

and hence KA
u = KA

ai. To see this, solve (2.21) for ν and substitute into (2.20) to obtain
pM−(c+

C′(QM )

α
)

pM
= λ

1+λ
1

ε(QM )
. Moreover, solve (2.45) for ν and plug into (2.44) to find the
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same markup expression. Furthermore, since (2.18) and (2.42) are identical, we conclude that

price and transport capacity under policies (A2u) and (A2ai) are the same and consequently

(νA
ai − νA

u ) = (1 − α)λ(θ − c) > 0. ¥

Proof of Lemma 2.2 To find the conditions which characterize convexity of the set associated

to the constraints (2.58)-(2.61), a first step is to separately study the properties of the surface

levels defined by each constraint when satisfied with equality in the {pM , p
M

, K}-space.

When the participation constraint of the less efficient firm (2.58) is binding, it is represented by

the level set Π
⋆

m(pM , p
M

, K) = (pM − θ)qm − Fm = 0, with gradient vector ∇Π
⋆

m(·) = ((pM −
θ)Q′

M + qm, 0,−(pM − θ)). Two cases need to be considered depending on whether or not there

is a fixed cost. When Fm > 0, the θ-type firm’s output nonnegativity constraint (2.60) must hold

with strict inequality, qm > 0, and consequently pM > θ. Since in this case ∇Π
⋆

m(·) 6= 0, Π
⋆

m(·)
is a regular surface in ℜ3, and from

∂Π
⋆

m(·)
∂K 6= 0, the level surface Π

⋆

m(·) can be considered as

the graph of a function, K⋆
Πm

, of K in terms of pM and p
M

in ℜ3. In such a case we have that
∂K⋆

Πm

∂pM
= F

(pM−θ)2 +Q′

M and
∂K⋆

Πm

∂p
M

= 0. The leading principal minors characterizing the Hessian

of the function K⋆
Πm

are {− 2Fm

(pM−θ)3 , 0}. Consequently, since (pM − θ) > 0, when Fm > 0 the

level surface Π
⋆

m(·) is concave, i.e., the set below Π
⋆

m(·) is convex.

When Fm = 0, the level set Π
⋆

m(·) is not regular everywhere. Indeed, when both pM = θ and

K = QM (qm = 0) the level set Π
⋆

m(·) is degenerate as ∇Π
⋆

m(θ, p
M

, QM ) = 0. However, two

regular surfaces can be identified. First, when pM 6= θ, the surface Π
⋆

m(pM 6= θ, p
M

, K =

QM ) is regular. In this particular case, the K⋆
Πm

function has
∂K⋆

Πm

∂pM
= Q′

M ,
∂K⋆

Πm

∂p
M

= 0, and

Hessian’s leading minors {0, 0}, which define Π
⋆

m(·) as a plane with gradient ∇Π
⋆

m(·) = ((pM −
θ)Q′

M , 0,−(pM − θ)) < 0. Second, when pM = θ, and since constraint (2.60) holds, qm > 0, the

level set Π
⋆

m(θ, p
M

, K < QM ) is regular and is represented by a plane with gradient ∇Π
⋆

m(·) =

(qm, 0, 0), perpendicular to the pM -axis. It is direct to see that these regular surfaces of Π
⋆

m(·)
define a convex set when pM ≥ θ.31

Concerning the θ-type firm’s output nonnegativity constraint (2.60), it can be binding only when

31. A property of standard convex sets says that every two points of a convex set are visible to
each other, i.e., the straight segment joining these points is contained in the set. Since Π

⋆

m(·)
belongs to the set associated to the participation constraint of the less efficient firm (2.58),

such set will be convex if any point lying to the straight line connecting two points in Π
⋆

m(·),
yields positive profits for the θ-type firm. Let us study first the straight line lying the points
(pM,1 = θ − ǫ, p

M
, K1 = QM,1) and (pM,2 = θ, p

M
, K2 < QM,2 < QM,1). It is direct to see that

Πm(δpM,1 + (1 − δ)pM,2, pM
, δK1 + (1 − δ)K2) = −δ(1 − δ)ǫqm,2 < 0, which is a contradiction.

Let us now check the case where (pM,1 = θ + ǫ, p
M

, K1 = QM,1) and (pM,2 = θ, p
M

, K2 < QM,2).

In this latter case the profit associated to any combination of connecting points is Πm(·) =
δ(1 − δ)ǫqm,2 > 0, which is consistent with our convexity argument. Therefore, when Fm = 0

the level set Π
⋆

m(·) supports a convex set only in cases where pM ≥ θ.
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Fm = 0. In such a case, it is represented by the level set q⋆
m(pM , p

M
, K) = QM − K = 0,

with gradient vector ∇q⋆
m(·) = (Q′

M , 0,−1) 6= 0. Thus, the level surface q⋆
m(·) is regular and

defines a convex set.32 Note that when pM 6= θ and Fm = 0, ∇Π
⋆

m(·) = (pM − θ) · ∇q⋆
m(·), and

hence when there is no fixed cost and both (2.58) and (2.60) are effective, the gradients of these

constraints are not linearly independent, i.e., the Linear Independence Constraint Qualification

(LICQ) condition is violated. In order to avoid this, (2.58) is considered as a liminal constraint,

i.e., an active inequality with a Lagrange multiplier equal to zero. See Horsley and Wrobel (2003)

for more details.

Similar to the analysis performed for the participation constraint of the θ-type firm, when that of

the c-type firm, i.e., (2.59), is binding, it is represented by the level set Π⋆
m(pM , p

M
, K) = (p

M
−

c)q
m
−Fm = 0, with gradient vector ∇Π⋆

m(·) = (0, (p
M
−c)Q′

M +qm,−(p
M

−c)), and it defines a

convex set. Concerning the c-type firm’s output nonnegativity constraint (2.61), it is represented

by the level set q⋆
m

(pM , p
M

, K) = Q
M

− K = 0, with gradient vector ∇q⋆
m

(·) = (0, Q′

M ,−1) 6= 0,

defining a convex set.33 Therefore, since the intersection of convex sets is convex, the set defined

by (2.58)-(2.61) is convex.

When there is no fixed cost, Fm = 0, and both nonnegativity constraints (2.60) and (2.61) are

effective they are represented by the level set q⋆
m

(pM , p
M

, K) = Q
M

− QM = 0 with gradient

vector ∇q⋆
m

(·) = (−Q′

M , Q′

M , 0) 6= 0, and then the surface level is a plane perpendicular to the

pM -axis which coincides with the 45◦ line between the pM - and p
M

-axes. It is then direct to see

that the Jacobian Jq⋆
m,q⋆

m
= (∇q⋆

m,∇q⋆
m

) is full rank (the maximum possible number of effective

constraints), and hence the Non Degenerate Constraint Qualification (NDCQ) is satisfied.

When Fm > 0 and both participation constraints (2.58) and (2.59) are binding, they are rep-

resented by the level set Π
⋆

m(pM , p
M

, K) = (p
M

− c)q
m

− (pM − θ)qm = 0 with gradient vector

∇Π
⋆

m(·) = (−(pM − θ)Q′

M − qm, (p
M

− c)Q′

M + q
m

, (pM − p
M

)− (θ− c)) 6= 0. Since the Jacobian

JΠ
⋆

m,Π⋆
m

= (∇Π
⋆

m,∇Π⋆
m) is full rank, the (NDCQ) is again satisfied. ¥

Proof of Lemma 2.3 Consider the ex-post program under scheme B where the regulator seeks

to control market power exercised by a θ̃-type firm by the maximization, with respect to pM (θ̃),

of the social welfare function (2.54), for a given level of already installed transport capacity

K, under the constraints (2.55) and (2.56). Differentiating the associated system of first-order

conditions with respect to θ̃ yields that when the firm is active and makes positive profits, i.e.,

when ν(θ̃) = φ(θ̃) = 0, dpM (θ̃)

dθ̃
= 1, dΠm(θ̃)

dθ̃
= [(pM (θ̃) − θ̃)Q′

M + qm(θ̃)]dpM (θ̃)

dθ̃
− qm(θ̃) <

0, and clearly dν(θ̃)

dθ̃
= dφ(θ̃)

dθ̃
= 0. In this case, second-order conditions are summarized by

λ2 + (1 + λ)Q′

MC ′′(K) < 0.

32. q⋆
m(·) can be considered as the graph of a function, K⋆

qm
, of K in terms of pM and p

M
in ℜ3

with
∂K⋆

qm

∂pM
= Q′

M and
∂K⋆

qm

∂p
M

= 0, and Hessian’s leading minors {0, 0}.

33. The participation constraint (2.59) is liminal when Fm = 0.
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When the firm is active and just breaks even, ν(θ̃) = 0 and φ(θ̃) > 0, we obtain dpM (θ̃)

dθ̃
=

qm(θ̃)

(pM (θ̃)−θ̃)Q′

M
+qm(θ̃)

≷ 0, dΠm(θ̃)

dθ̃
= 0, dν(θ̃)

dθ̃
= 0, and dφ(θ̃)

dθ̃
=

[(1+φ̃)(pM (θ̃)−θ̃)Q′

M−φ̃qm(θ̃)]Q′

M

[(pM (θ̃)−θ̃)Q′

M
+qm(θ̃)]2

> 0.

Finally, when the firm is shut down, ν(θ̃) > 0, the participation constraint is trivially satisfied

(Fm = 0) and hence dpM (θ̃)

dθ̃
= dΠm(θ̃)

dθ̃
= dφ(θ̃)

dθ̃
= 0, and dν(θ̃)

dθ̃
= 1. ¥

Proof of Proposition 2.4 From the discussion of Lemma 2.3 in the text we know that only five

combinations of Lagrange multipliers are possible.

Concerning policy (B1u), replace φ = φ = ν = ν = 0 in the system of first-order conditions

(2.62)-(2.67) to get (2.68)-(2.70). Next, solve (2.62) and (2.63), respectively, for pM and p
M

and substitute into (2.64) to obtain λ2K + (1 + λ)Q′

MC ′(K) − α(1 + λ)Q′

M (θ − c) = 0. For

this equality to hold, it is required that λ2K + (1 + λ)Q′

MC ′(K) < 0. Moreover, second-order

conditions associated with this policy are summarized by λ2 + (1 + λ)Q′

MC ′′(K) < 0.34

When there is no fixed cost, Fm = 0, to insure that this policy yields qm > 0, (2.70) should be

satisfied with strict inequality when evaluated at qm = 0, i.e., (1 + λ)C ′(QM ) > α(1 + λ)(θ −
c) + λ[α(pM − θ) + (1 − α)(p

M
− c)]. Replacing pM and p

M
in (2.62) and (2.63), evaluated at

qm = 0, yields 0 < α(θ−c) < C ′(QM )+ λ2QM

(1+λ)Q′

M

. When there is a fixed cost to finance, Fm > 0,

we need to guarantee that this solution belongs to the set defined by the participation constraints

(2.58) and (2.59). From Lemma 2.3 we restrict ourselves to cases under which policy (B1u)

satisfies Πm > Πm and then we only need to check the participation constraint of the θ-type

firm. First, it is necessary that (2.70) be satisfied with strict inequality when (pM − θ) = Fm

qm
,

i.e., (1 + λ)C ′(K) > α(1 + λ)(θ − c) + λ[αFm

qm
+ (1 − α)(p

M
− c)], which can be rewritten as

0 < α(θ− c) < C ′(K)+ λ2K
Q′

M

−αλ(
λKqm+Q′

M Fm

qmQ′

M

). Second, the pricing rule associated with (B1u)

should satisfy (2.58), i.e., λKqm + Q′

MFm > 0.

To obtain policy (B2u), replace ν = ν = φ = 0 and Fm > 0 in the system of first-order conditions

(2.62)-(2.67) to get (2.71), (2.69), and (2.72). Since Fm > 0, it is necessary that (2.72) be

satisfied with strict inequality when (p
M
−c) = Fm

q
m

, i.e., (1+λ)C ′(K) > α(1+λ)(θ−c)+λ[αFm

qm
+

(1 − α)Fm

q
m

], which can be rewritten as α(θ − c) < C ′(K) − λFm

1+λ [
qm+α(q

m
−qm)

qmq
m

]. Second-order

conditions for this policy are summarized by α2λ2(α2K+(qm+λK((1−α)qm−K(λ−α(2+λ)))))−
2α2λφqm(qm − (2+λ)K)+αφ

2
qm(3qm +2λK)+2φ

3
qm

2 −α2(1+λ)(qm −λK)2Q′

MC ′′(K) > 0.

To obtain policy (B3u), replace φ = φ = ν = 0 and Fm = 0 in the system of first-order conditions

(2.62)-(2.67) to get (2.73), (2.69), and (2.74). Next, solve (2.62) and (2.63), respectively, for pM

and p
M

and substitute into (2.64) to obtain λ2K+(1+λ)Q′

MC ′(K)+(1+λ)Q′

M [ν−α(θ−c)] = 0.

We now prove that [ν − α(θ − c)] < 0. Since ν > 0 and ν = 0, from Lemma 2.3 we know that

q
m

> qm = 0 and hence p
M

< pM . From (2.62), ν = α(−(pM − θ)− λK
Q′

M

) > 0, and from (2.63),

34. Note that when C′(K)
K − C ′′(K) ≤ 0, when λ2K + (1 + λ)Q′

MC ′(K) < 0 holds, second-order
conditions are always satisfied.
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− λK
Q′

M

= (p
M

− c), which results in ν−α(θ− c) = −α(pM −p
M

) < 0. Consequently, policy (B3u)

arises when Fm = 0 and λ2K + (1 + λ)Q′

MC ′(K) < 0. Second-order conditions associated with

this policy are summarized by λ2 + (1 + λ)Q′

MC ′′(K) < α(1 + λ)2.35

To obtain policy (B4u) , replace ν = ν = 0 in the system of first-order conditions (2.62)-(2.67)

to get (2.71), (2.75), and (2.76). Second-order conditions for this policy are always satisfied.

Finally, to obtain policy (B5u), replace φ = φ = 0 in the system of first-order conditions (2.62)-

(2.67) to get (2.73), (2.77), and (2.78). Next, solve (2.62) and (2.63), respectively, for pM and

p
M

and plug into (2.64) to obtain λ2K + (1 + λ)Q′

MC ′(K) + (1 + λ)Q′

M [(ν + ν)−α(θ − c)] = 0.

We next prove that [(ν + ν) − α(θ − c)] > 0. Since ν > 0 and ν > 0, from Lemma 2.3 we

know that p
M

= pM . From (2.62), ν > 0 necessitates − λK
Q′

M

> (pM − θ), and from (2.63),

ν > 0 calls for − λK
Q′

M

> (pM − c). Therefore, when pM − c + λK
Q′

M

< 0, both ν and ν are strictly

positive. Now, solve (2.62) and (2.63), respectively, for ν and ν and obtain (ν + ν)−α(θ − c) =

−[pM − c + λK
Q′

M

] > 0. Thus, for (B5u) to arise as the optimal policy, it is necessary that Fm = 0

and λ2K + (1 + λ)Q′

MC ′(K) > 0. Second-order conditions for this policy are always satisfied. ¥

Proof of Lemma 2.4 From Lemma 2.2, the constraint set defined by (2.58)-(2.61) is convex.

It then remains to analyze the properties of the sets defined by the incentive constraints (2.89)

and (2.90).

The incentive constraint of the less efficient firm (2.89) satisfied with equality is represented by

the level set Υ
⋆
(pM , p

M
, K) = (pM − θ)qm − (p

M
− θ)q

m
= 0, with gradient vector ∇Υ

⋆
(·) =

((pM − θ)Q′

M + qm,−(p
M

− θ)Q′

M − q
m

,−(pM − p
M

)). Since adding up the incentive constraints

(2.89) and (2.90) yields p
M

≤ pM , two cases should be analyzed depending on whether or not this

inequality holds in the strict sense. When p
M

< pM and (2.89) is satisfied with equality, it can

be easily verified that (2.90) holds with strict inequality. Moreover, linearity of demand implies

(qm−q
m

) = (pM−p
M

)Q′

M , which allows to rewrite Υ
⋆
(·) as Υ

⋆
(pM , p

M
, K) = (pM−θ)Q′

M+q
m

=

0. Hence, we obtain that ∇Υ
⋆
(·) < 0, and since ∂Υ

⋆
(·)

∂K < 0, Υ
⋆
(·) can be considered as the graph

of a function K⋆
Υ
, of K, in terms of pM and p

M
with

∂K⋆

Υ

∂pM
=

∂K⋆

Υ

∂p
M

= Q′

M .36 Consequently,

when p
M

< pM the level surface Υ
⋆
(·) is a plane with ∇Υ

⋆
(·) < 0 and hence the set below it is

convex. When p
M

= pM , the level set Υ
⋆
(·) cannot be represented through the K⋆

Υ
function since

∂Υ
⋆
(·)

∂K = 0. However, since in this case the gradient vector is ∇Υ
⋆
(pM , pM , K) = ∂ΠM

∂pM
·(1,−1, 0),

35. Note that this inequality is less stringent than the one summarizing second-order conditions

of policy (B1u). Furthermore, when C′(K)
K −C ′′(K) ≤ −α(1+λ)

Q′

M

, second-order conditions of policy

(B3u) are always satisfied.

36. For a general demand function
∂K⋆

Υ

∂pM
=

(pM−p
M

)(pM−θ)Q
′

M−(qm−q
m

)(p
M

−θ)

(pM−p
M

)2 R 0 and
∂K⋆

Υ

∂p
M

=

− (pM−p
M

)(p
M

−θ)Q′

M
−(qm−q

m
)(pM−θ)

(pM−p
M

)2 R 0. The assumption of linearity of market demand helps

not only to simplify these expressions but also to sign them.
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the surface level is a plane perpendicular to the pM -axis which coincides with the 45◦-line between

the pM - and p
M

-axes.37

Let us now check that Υ
⋆
(·) defines a convex set when both incentive constraints (2.89) and (2.90)

hold, hence when p
M

≤ pM . To see this, we verify if the points (pM,1 = pM , p
M,1

= pM , K1 =

K < QM,1 = Q
M,1

= QM ) and (pM,2 = pM , p
M,2

= pM − ǫ, K2 = K < QM = QM < Q
M,2

),

each belonging to one of the two regular surfaces defined for the level set Υ
⋆
(·), are “visible” to

each other. For the set defined by Υ
⋆
(·) to be convex, it must be the case that any point which lies

on the connection between these two points should satisfy the incentive constraint (2.89). With

linear demand, q
m2

= q
m,1

− ǫQ′

M . Hence, (δpM,1 + (1 − δ)pM,2 − θ)(δqm,1 + (1 − δ)qm,2) −
(δp

M,1
+ (1− δ)p

M,2
− θ)(δq

m,1
+ (1− δ)q

m,2
) = δ(1− δ)ǫ2Q′

M < 0, which violates (2.89). Thus,

to guarantee convexity of the set defined by the level set Υ
⋆
(·), p

M
< pM should be imposed.

Similarly, when the incentive constraint of the more efficient firm, (2.90), is binding, it is rep-

resented by the level set Υ⋆(pM , p
M

, K) = (p
M

− c)q
m

− (pM − c)qm = 0 with gradient vector

∇Υ⋆(·) = (−(pM −c)Q′

M −qm, (p
M
−c)Q′

M +q
m

, (pM −p
M

)). When (p
M
−c)q

m
−(pM −c)qm = 0

holds, so does (pM − c)Q′

M + q
m

= 0 and hence ∇Υ⋆(·) > 0. Therefore, when p
M

< pM the level

surface Υ⋆(·) is a plane and the set above it is convex.38 Again, as shown for the level set Υ
⋆
(·),

to insure convexity of the set defined by Υ⋆(·), p
M

< pM should be imposed.

Summing up, when Fm > 0 the relevant level sets defining the constraint set of the regulator’s

optimization program under asymmetric information are Π
⋆

m(·), Υ
⋆
(·), and Υ⋆(·). Since the

intersection of convex sets is convex, the constraint set defined by (2.58)-(2.61) and (2.89)-(2.90)

is convex only when p
M

< pM . When Fm = 0 the relevant level sets defining this constraint set

are q⋆
m(·), Υ

⋆
(·), and Υ⋆(·). Again, since the intersection of convex sets is convex, we should

still impose the restriction p
M

< pM in order to obtain convexity.

Before proceeding in the proof, let us illustrate our results in the case where Fm = 0, QM (pM (θ̃)) =

10 − pM (θ̃), θ = 4, and c = 2. When p
M

< pM , Figure 2.A1a shows that the set defined by

(2.58)-(2.61) and (2.89)-(2.90) is convex in the {pM , p
M

, K}-space. When p
M

= pM , the in-

centive constraints (2.89)-(2.90) are trivially satisfied, and hence the relevant constraint set is

defined by (2.58)-(2.61). In this case, Figure 2.A1b shows that the constraint set is also convex

(see the trapezoidal region defined by bold lines).

37. Note that the level set Υ
⋆
(·), given that p

M
= pM , is degenerate when ∂ΠM

∂pM
= 0, i.e., when

profits of the less efficient firm are maximized.

38. When p
M

= pM , we have Υ⋆(pM , pM , K) = Υ
⋆
(pM , pM , K) and ∇Υ⋆(pM , pM , K) =

−∇Υ
⋆
(pM , pM , K). Hence, in this case, the two incentive constraints are trivially satisfied.
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Figure 2.A1a: Constraint set Figure 2.A1b: Constraint set

with p
M

< pM with p
M

= pM

However, in the general case where p
M

≤ pM , the constraint set found by superposing the con-

straint sets in Figures 2.A1a and 2.A1b is not convex, as shown in Figure 2.A2.
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Figure 2.A2: Constraint set with p
M

≤ pM

Let us now verify the regularity of the constraint set under asymmetric information. When Fm =

0 and both (2.60) and (2.89) are binding, they are represented by the level set Υ
⋆
(pM , p

M
, K) =

−(p
M

− θ)q
m

= 0 with gradient vector ∇Υ
⋆
(·) = ((p

M
− θ)Q′

M ,−(p
M

− θ)− q
m

, 0) with p
M

= θ,

i.e., ∇Υ
⋆
(·) = (0,−q

m
, 0) 6= 0 since q

m
> 0. In such a case, the Jacobian JΥ

⋆
,q⋆

m
is full rank.

When Fm > 0, and both (2.58) and (2.89) are binding, they are represented by the level set

Υ
⋆⋆

(pM , p
M

, K) = F − (p
M

− θ)q
m

= 0 with gradient vector ∇Υ
⋆⋆

(·) = (0,−(p
M

− θ)Q′

M −
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q
m

, (p
M

− θ)) with p
M

= θ + Fm

q
m

. Then, the Jacobian JΥ
⋆
,Π

⋆

m
is again full rank.39

Finally, concerning the local concavity of the welfare function (2.57), we know that ∂2
E[W ]

∂p2
M

=

αQ′

M < 0, ∂2
E[W ]

∂K∂pM
= αλ > 0, ∂2

E[W ]
∂pM ∂p

M

= 0, ∂2
E[W ]

∂K∂p
M

= (1 − α)λ > 0, ∂2
E[W ]

∂p2
M

= (1 − α)Q′

M < 0,

and ∂2
E[W ]

∂K2 = −(1 + λ)C ′′(K) < 0. The leading principal minors of the Hessian of the welfare

function (2.57) are {αQ′

M , α(1−α)Q′

M
2
,−(1−α)Q′

M [λ2 + (1 + λ)Q′

MC ′′(K)]}. Local concavity

of the welfare function requires that the last minor be negative, i.e., the condition stated in the

lemma. ¥

Proof of Proposition 2.5 Let us then start assuming that the incentive constraints (2.89) and

(2.90) are satisfied with strict inequality. In such a case, we come back to the regulator’s opti-

mization program under uncertainty. We should now check which of the five policies (B1u)-(B5u)

can arise under asymmetric information. When Fm = 0, since under asymmetric information

p
M

< pM , only policies (B1u) and (B3u) can arise, renamed as (B1ai) and (B3ai). When

Fm > 0, since the less efficient firm cannot be shut down (qm > 0), from the incentive constraint

(2.90), rewritten as Πm ≥ Πm + (θ − c)qm, we obtain Πm > Πm. Therefore, from Proposition

2.4 only policy (B2u) can arise, renamed here as (B2ai).

When the incentive constraint (2.90) is binding, (µ > 0, µ = 0), and there is no fixed cost, only

the case where ν = 0 may arise. Indeed, replace for ν > 0 into set of constraints (2.58)-(2.61) and

(2.89)-(2.90) to obtain p
M

= c. Substituting this into (2.92) yields (1−α)λK + µq
m

= 0. Since

q
m

> 0, this equality requires µ < 0, which is a contradiction. Then, replacing for φ = ν = µ = 0,

and µ > 0 into (2.91)-(2.93), yields (2.98)-(2.100) which characterize policy (B4ai).

When there is a fixed cost, in addition to policy (B4ai), there is the possibility to make the less

efficient firm just break even, φ > 0. Replacing ν = µ = 0, φ > 0 µ > 0 into (2.91)-(2.93), yields

(2.101), (2.99), and (2.102) which describe policy (B5ai).

Let us now study the case where the incentive constraint (2.89) is binding, (µ = 0, µ > 0) three

cases might arise. First substitute for ν = φ = µ = 0 into (2.91)-(2.93), to obtain (2.103)-(2.105)

which describe policy (B6ai).

When there is fixed cost, Fm > 0, and replacing for ν = µ = 0 into (2.91)-(2.93), yields (2.106),

(2.104), and (2.107) characterizing policy (B7ai). When there is no fixed cost, Fm = 0, and

replacing for φ = µ = 0 into the constraint set (2.58)-(2.60) and (2.89)-(2.90) yields p
M

= θ.

Moreover, replacing for φ = µ = 0 into (2.91)-(2.93), we get (2.108) and (2.109) describing

policy (B8ai). ¥

Derivation of optimal regulatory policies under asymmetric information assuming

39. A similar approach can be applied in the two remaining cases, i.e., when both (2.60) and
(2.90) are binding, and when both (2.58) and (2.90) are tight.
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(2.22) Solving the system of first-order conditions (2.91)-(2.97) when we assume Fm = 0 (φ =

φ = ν = 0) with the functional forms (2.22), yields the following solutions:

Solution 1: described by ν = 0, pM = θ + α(θ−c)λ(1+λ)
ω+λ(−λ+ω) , p

M
= c + α(θ−c)λ(1+λ)

ω+λ(−λ+ω) , K = α(θ−c)(1+λ)
ω+λ(−λ+ω) ,

µ = 0, and µ = 0. Second-order conditions are satisfied provided Ψ ≡ ω(1 + λ) − λ2 > 0. In

such a case, it is clear to see that p
M

> c, pM > θ, K > 0. For qm > 0, it is required that

Ψ(γ − c) > [Ψ + α(1 + λ)2](θ − c). Moreover, this solution makes both incentive constraints

(2.89) and (2.90) inactive. Hence, we need to check for which values of (θ − c) they are jointly

satisfied. As to (2.89) it requires that Ψ(γ − c) > α(1 + λ)(1 + 2λ)(θ − c). For (2.90), it is

necessary that Ψ(γ − c) < [Ψ + α(1 + λ)(1 + 2λ)](θ − c). It can be seen that this last condition is

compatible with those establishing that the incentive constraint (2.89) holds and qm > 0. Now,

we should check which of these conditions is the more stringent one. After some calculations,

we obtain that when the condition Ψ ≥ αλ(1 + λ) holds, the final interval for this solution is

[ Ψ
Ψ+α(1+λ)(1+2λ) ](γ − c) ≤ (θ− c) < [ Ψ

Ψ+α(1+λ)2 ](γ − c). Otherwise, when 0 < Ψ < αλ(1+λ), the

final interval for this solution is [ Ψ
Ψ+α(1+λ)(1+2λ) ](γ − c) < (θ − c) < [ Ψ

α(1+λ)(1+2λ) ](γ − c). This

solution constitutes policy (B1ai).

Solution 2: described by ν = 0, pM = p
M

= c + α(θ − c) + α(θ−c)λ(1+λ)
ω+λ(−λ+ω) , K = α(θ−c)(1+λ)

ω+λ(−λ+ω) , µ = 0,

and µ = (−1+α)α(θ−c)(λ2
−(1+λ)ω)

((γ−c)+(θ−c))(λ2
−(1+λ)ω)+α(θ−c)(1+3λ+2(1+λ)ω) . In this case, second-order conditions,

pM = p
M

> c, and K > 0 necessitate Ψ > 0. For pM ≥ θ it is necessary that Ψ ≤ αλ(1+λ)
(1−α) .

qm requires Ψ(γ − c) > α[Ψ + (1 + λ)2](θ − c). This solution makes both incentive constraints

(2.89) and (2.90) binding. To get this result, however, only µ > 0 which calls for Ψ(γ − c) <

[α(1 + λ)(1 + 2λ) − (1 − 2α)Ψ](θ − c). Hence, the defining interval for this solution, provided

Ψ ≤ αλ(1+λ)
(1−α) holds, is given by [ Ψ

[α(1+λ)(1+2λ)−(1−2α)Ψ] ](γ − c) ≤ (θ − c) < [ Ψ
α[Ψ+(1+λ)2] ](γ − c).

However, from Lemma 2.4 this solution is neglected.

Solution 3: described by ν = 0, pM = p
M

= c + α(θ − c) + α(θ−c)λ(1+λ)
ω+λ(−λ+ω) , K = α(θ−c)(1+λ)

ω+λ(−λ+ω) ,

µ = 0, and µ = − (−1+α)α(θ−c)(λ2
−(1+λ)ω)

(γ−c)(λ2
−(1+λ)ω)+α(θ−c)(1+3λ+2(1+λ)ω) . In this case, second-order conditions,

pM = p
M

> c, and K > 0 necessitate Ψ > 0. For pM ≥ θ, Ψ ≤ αλ(1+λ)
(1−α) , and for qm,

Ψ(γ − c) > α[Ψ + (1 + λ)2](θ − c). This solution makes both incentive constraints (2.89) and

(2.90) binding. To get this result, however, only µ > 0 which calls for Ψ(γ − c) > α[(1 + λ)(1 +

2λ) + 2Ψ](θ − c). Therefore, the defining interval for this solution, provided Ψ ≤ αλ(1+λ)
(1−α) holds,

is given by 0 ≤ (θ − c) < [ Ψ
α[(1+λ)(1+2λ)+2Ψ] ](γ − c). However, from Lemma 2.4 this solution is

neglected.

Solution 4: described by ν = 0, K = α((−1+α)(γ−c)(1+2λ)+(θ−c)(λ−α(1+2λ)))

λ2
−α(1+2λ)2+(α+2αλ)2−(1+λ)ω

, µ = 0,

pM = λ((γ−c)λ+α2((γ−c)+2(γ−c)λ)−α((γ−c)+(θ−c)+3(γ−c)λ))

λ2
−α(1+2λ)2+(α+2αλ)2−(1+λ)ω

+ ((−1+α)(γ−c)−α(θ−c))(1+λ)ω+c(λ2
−α(1+2λ)2+(α+2αλ)2−(1+λ)ω)

λ2
−α(1+2λ)2+(α+2αλ)2−(1+λ)ω

,

p
M

= c(−1+α)(α(1+λ)(1+2λ)+ω+λ(−λ+ω))

λ2
−α(1+2λ)2+(α+2αλ)2−(1+λ)ω

+ α(α(1+2λ)((θ−c)+(c+(γ−c))λ)−(1+λ)(−(θ−c)ω+(c+(γ−c))(λ+ω)))

λ2
−α(1+2λ)2+(α+2αλ)2−(1+λ)ω

, and

µ = (−1+α)α(α(θ−c)(1+λ)(1+2λ)+((γ−c)−(θ−c))(λ2
−(1+λ)ω))

αλ((θ−c)+2(γ−c)λ)+α2((θ−c)+2(θ−c)λ)+2α(−(γ−c)+(θ−c))(1+λ)ω+(γ−c)(ω+λ(−λ+ω)) .
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Second-order conditions are satisfied when Ψ + α(1 − α)(1 + 2λ)2 > 0, which is always true

since from Lemma 2.4, we restrict ourselves to cases where Ψ > 0. To obtain that qm > 0 the

condition [(1 − α)λ(1 + 2λ) + Ψ](γ − c) > [Ψ + α(1 + 2λ) + λ2](θ − c) should hold. For q
m

> 0,

−(1−α)[αλ(1 + 2λ) + Ψ](γ − c) < α[Ψ + λ(1 + λ)](θ − c). As to the incentive constraint (2.89),

it is satisfied provided that (1 − 2α)Ψ(γ − c) + α[(α + λ)(1 + 2λ) + 2Ψ](θ − c) > 0. Note that

the denominator of µ is positive whenever the incentive constraint is (2.89) satisfied. Therefore,

µ > 0 requires Ψ(γ − c) > [α(1 + λ)(1 + 2λ) + Ψ](θ − c). Solving the former inequality in Ψ we

obtain Ψ∗ > α(1+λ)(1+2λ)(θ−c)
(γ−θ) > 0, and then this solution requires Ψ > 0.40 Now we have to

check which of the constraints determining that qm > 0 and µ > 0 is more stringent. After some

calculations, we get that the most stringent constraint is that establishing µ > 0. This solution

illustrates policy (B4ai).

Solution 5: described by ν = 0, K = α(−(θ−c)(1+λ)+(−1+α)(γ−c)(1+2λ))

λ2
−α(1+2λ)2+(α+2αλ)2−(1+λ)ω

, µ = 0,

pM = λ(α((−1+α)(γ−c)+(−2+α)(θ−c))+(−1+α)(−1+2α)((γ−c)+(θ−c))λ)

λ2
−α(1+2λ)2+(α+2αλ)2−(1+λ)ω

+ ((−1+α)(γ−c)−(θ−c))(1+λ)ω+c(λ2
−α(1+2λ)2+(α+2αλ)2−(1+λ)ω)

λ2
−α(1+2λ)2+(α+2αλ)2−(1+λ)ω

,

p
M

= c(−1+α)(α(1+λ)(1+2λ)+ω+λ(−λ+ω))

λ2
−α(1+2λ)2+(α+2αλ)2−(1+λ)ω

+α(α(1+2λ)((θ−c)+(c+(γ−c)+(θ−c))λ)−(1+λ)((c+(γ−c)+(θ−c))λ+(c+(γ−c))ω))

λ2
−α(1+2λ)2+(α+2αλ)2−(1+λ)ω

, and

µ = − (−1+α)α(α(θ−c)(1+λ)(1+2λ)+(γ−c)(λ2
−(1+λ)ω))

α2((θ−c)+2(θ−c)λ)+αλ((θ−c)+2((γ−c)+(θ−c))λ)−2α(γ−c)(1+λ)ω+((γ−c)+(θ−c))(ω+λ(−λ+ω)) . Sec-

ond order conditions are satisfied when Ψ + α(1 − α)(1 + 2λ)2 > 0, which is always true. For

qm > 0, α[(1−α)λ(1+2λ)+Ψ](γ−c) > [Ψ+α(1−α)λ(1+2λ)+α(1+λ)2](θ−c). Concerning the

incentive constraint (2.90), it is satisfied when (1−2α)Ψ(γ−c)+[Ψ+α(α+λ)(1+2λ)](θ−c) > 0.

When both qm > 0 and (2.90) hold, p
m

> c. Furthermore, for µ > 0, both (1 − 2α)Ψ(γ − c) +

[Ψ + α(α + λ)(1 + 2λ)](θ − c) > 0 and Ψ(γ − c) < α(1 + λ)(1 + 2λ)(θ − c) should hold.41. After

some calculations we obtain that when Ψ < αλ(1 + λ), the incentive constraint (2.90) is always

satisfied and hence the defining interval of this solution is given by those establishing that qm > 0

and µ > 0. This solution represents policy (B6ai).

Solution 6: described by ν = −(γ − c) + α(θ − c) + (γ−c)(1+λ)2

1+ω+λ(2+ω) , pM = p
M

= c + (γ−c)(λ+ω+λω)
1+ω+λ(2+ω) ,

µ = (−1+α)(γ−c)(λ2
−(1+λ)ω)

(γ−c)(λ+ω+λω)−(θ−c)(1+ω+λ(2+ω)) , K = (γ−c)(1+λ)
1+ω+λ(2+ω) , and µ = 0. Second-order conditions

are always satisfied. This solution is characterized by qm = q
m

= 0, and makes both incentive

constraints (2.89) and (2.90) binding by setting µ > 0 and µ = 0. Shutting down is obtained

by setting ν > 0, which calls for 0 < Ψ < αλ(1+λ)
(1−α) and Ψ

α (γ − c) < [Ψ + (1 + λ)2](θ − c) <

[Ψ + λ(1 + λ)](γ − c). However, from Lemma 2.4 this solution is neglected.

Solution 7: described by ν = −(γ − c) + α(θ − c) + (γ−c)(1+λ)2

1+ω+λ(2+ω) , pM = p
M

= c + (γ−c)(λ+ω+λω)
1+ω+λ(2+ω) ,

µ = − (−1+α)(λ2
−(1+λ)ω)

λ+ω+λω , K = (γ−c)(1+λ)
1+ω+λ(2+ω) , and µ = 0. Second-order conditions are always

satisfied. This solution is characterized by qm = q
m

= 0, and makes both incentive constraints

40. Given that Ψ > 0, q
m

> 0 and (2.89) are always satisfied.

41. Note that the former inequality provides an upper bound for Ψ which allows for the possibility
of Ψ ≶ 0. However, from Lemma 2.4, we restrict to cases with Ψ > 0
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(2.89) and (2.90) binding by setting µ = 0 and µ > 0, which requires that Ψ < 0. Since, from

Lemma 2.4 we must restrict to cases where Ψ > 0 and p
M

< pM , this solution is ignored.

Solution 8: described by pM = c + −(θ−c)λ+α((γ−c)+(θ−c))λ+(γ−c)(1+λ)ω
α+2αλ+ω+λω , p

M
= θ, µ = 0,

ν = α2((γ−c)−(θ−c))λ(1+2λ)+(θ−c)(ω+λ(−λ+ω))+α((θ−c)(1+3λ(1+λ))−(γ−c)(1+λ)(λ+ω))
α+2αλ+ω+λω ,

µ = − (−1+α)(α(1+λ)((θ−c)−(γ−c)λ+(θ−c)λ)+(θ−c)(ω+λ(−λ+ω)))
(θ−c)λ+α((θ−c)−(γ−c)λ+(θ−c)λ)+(−(γ−c)+(θ−c))(1+λ)ω , K = (θ−c)λ+α((γ−c)+(γ−c)λ−(θ−c)λ)

α+2αλ+ω+λω .

Second order conditions are always satisfied. This solution is characterized by p
M

> c and qm =

0. For the incentive constraint (2.90) to hold, [Ψ+λ(α+λ)](γ− c) > [Ψ+(1+λ)(α+λ)](θ− c).

Provided that this latter condition holds, for µ > 0, αλ(1 + λ)(γ − c) > [Ψ + α(1 + λ)2](θ − c).

Furthermore, ν > 0 calls for α[(1 − α)λ(1 + 2λ) + Ψ](γ − c) < [Ψ + α(1 − α)λ(1 + 2λ) + α(1 +

λ)2](θ − c). After some calculations, we obtain that when Ψ < αλ(1 + λ), the conditions which

define the optimality of this solution are those guaranteeing that ν > 0 and µ > 0. This solution

illustrates policy (B8ai).

Solution 9: described by ν = α(α(θ−c)(1+λ)2+((γ−c)−(θ−c))(λ2
−(1+λ)ω))

α(1+λ)2+ω+λ(−λ+ω)
, pM = c + (γ − c) −

α(γ−c)(1+λ)

α(1+λ)2+ω+λ(−λ+ω)
, p

M
= c + α(γ−c)λ(1+λ)

α(1+λ)2+ω+λ(−λ+ω)
, µ = 0, K = α(γ−c)(1+λ)

α(1+λ)2+ω+λ(−λ+ω)
, and µ = 0.

Second-order conditions are satisfied when Ψ + α(1 + λ)2 > 0, which is always true in our

case. This solution is characterized by qm = 0. For the incentive constraint (2.89) to hold,

αλ(1 + λ)(γ − c) < [α(1 + λ)2 + Ψ](θ − c). Provided that this latter condition holds, for ν > 0,

it is required that Ψ(γ − c) < [α(1 + λ)2 + Ψ](θ − c). Concluding, two cases might arise: If

Ψ ≥ αλ(1 + λ), this solution is chosen when [ Ψ
Ψ+α(1+λ)2 ](γ − c) < (θ − c) < (γ − c). If

0 < Ψ < αλ(1 + λ), this solution is chosen when [ αλ(1+λ)
Ψ+α(1+λ)2 ](γ − c) < (θ − c) < (γ − c).

This solution illustrates policy (B3ai). ¥

Proof of Proposition 2.6 The first-order conditions of the regulator’s optimization program

under uncertainty, (2.62)-(2.64), can be expressed as42

∂E[WB ]

∂pM

+ φ
B

u

∂Π
B

m

∂pM

+ νB
u Q′

M = 0 (2.A1)

∂E[WB ]

∂p
M

+ φB

u

∂ΠB
m

∂p
M

+ νB
u Q′

M = 0 (2.A2)

∂E[WB ]

∂K
− φ

B

u (pB
M − θ) − φB

u
(p

M
− c) − νB

u = 0 (2.A3)

Those of the regulator’s optimization program under asymmetric information, (2.91)-(2.93), can

be written as

∂E[WB ]

∂pM

+ (φ
B

ai + µB − µB)
∂Π

B

m

∂pM

− µB(θ − c)Q′

M + νB
aiQ

′

M = 0 (2.A4)

42. Note that following Lemma 2.4 we should exclude the case where both νB
u > 0 and νB

u > 0,
and hence νB

u = 0.
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∂E[WB ]

∂p
M

− (µB − µB)
∂ΠB

m

∂p
M

+ µB(θ − c)Q′

M = 0 (2.A5)

∂E[WB ]

∂K
− φ

B

ai(p
B
M − θ) − (µB − µB)(pB

M − pB
M

) − νB
ai = 0 (2.A6)

We know from Propositions 2.4 and 2.5 that when there is no fixed cost, φ
B

u = φB

u
= 0 and

φB

ai
= 0. When there is a positive fixed cost, these propositions yield that νB

u = 0 and νB
ai = 0.

Moreover, from the definition of the firm’s profit function (2.52) and the expected welfare function

(2.57), ∂2Πm

∂p2
M

,
∂2Πm

∂p2
M

< 0 and ∂2
E[W B ]
∂p2

M

, ∂2
E[W B ]
∂p2

M

, ∂2
E[W B ]
∂K2 < 0. Let us now separately study two

cases according to whether or not there is a fixed cost.

The no-fixed-cost case. When Fm = 0, we see from (2.128) that the effect of accounting for

incentives is closely related to the behavior of µB, µB, νB
ai, and νB

u . As a consequence of Lemma

2.4 only three cases should be discussed. First, we study the case where µB = µB = 0. Second,

we consider the effect of accounting for incentives when the regulator is constrained to minimize

the information rent of the more efficient type, i.e., it makes the incentive constraint of the c-type

firm binding, µB > 0. Finally, we analyze the role of incentives when the regulator targets on

the information rent of the less efficient firm by setting µB > 0.

It is direct to see that when the incentive constraints (2.89) and (2.90) are satisfied with strict in-

equality, i.e., µB = µB = 0, the outcome of the regulatory scheme under asymmetric information

coincides with that under uncertainty and hence KB
ai = KB

u .

When µB = 0 and µB > 0, the only possibility is to have νB
ai = 0.43 Since µB > 0, constraint

(2.90), rewritten as (2.127), implies that ( ∂Πm

∂pM,ai
+(θ−c)Q′

M ) < 0. Then, from (2.A4) we obtain

∂E[W ]
∂pM,ai

< 0, while from (2.A1) ∂E[W ]
∂pM,u

≥ 0, which implies that pB
M,ai > pB

M,u. Similarly, (2.127)

satisfied with equality yields
∂Πm

∂p
M,ai

> 0. Then, from (2.A5) we obtain ∂E[W ]
∂p

M,ai

< 0, while from

(2.A2), ∂E[W ]
∂p

M,u

= 0 which implies that pB
M,ai

> pB
M,u

. Plugging all these results into (2.128) yields

that when Fm = 0 and µB > 0, KB
ai > KB

u

When µB > 0 and µB = 0, constraint (2.89), rewritten as (2.126), implies ∂Πm

∂pM,ai
< 0 and

(
∂Πm

∂p
M,ai

− (θ − c)Q′

M ) > 0. Now, two cases should be analyzed depending of whether or not the

less efficient firm is shut down under asymmetric information.

When νB
ai = 0 we obtain [ ∂E[W ]

∂pM,ai
− (∂E[W ]

∂pM,u
+ νB

u Q′

M )] = −µB ∂Πm

∂pM,ai
> 0 and then it is

direct to see that pB
M,ai < pB

M,u. From (2.A5) we obtain ∂E[W ]
∂p

M,ai

> 0, while from (2.A2),

∂E[W ]
∂p

M,u

= 0 which implies that pB
M,ai

< pB
M,u

. Now, from conditions (2.A3) and (2.A6) we

obtain sign[KB
ai −KB

u ] = −sign[∂E[W B ]
∂Kai

− (∂E[W B ]
∂Ku

− νB
u )] = −sign[µ(pB

M,ai − pB
M,ai

)] < 0,

i.e., KB
ai < KB

u .44

43. See the proof of Proposition 2.5 in the Appendix.

44. If the regulator is allowed to set µB > 0 without shutting down the firm, νB
ai = 0, when it
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When νB
ai > 0 we again obtain that pB

M,ai < pB
M,u and pB

M,ai
< pB

M,u
. Two subcases should

be analyzed depending of the value of νB
u . When νB

u = 0, it is direct to see from (2.128)

that when µB > 0, νB
ai > 0, and νB

u = 0, KB
ai < KB

u . When νB
u > 0, sign[KB

ai − KB
u ] =

−sign[(∂E[W B ]
∂Kai

−νB
ai))− (∂E[W B ]

∂Ku
−νB

u )] = −sign[µ(pB
M,ai −pB

M,ai
)] < 0, i.e., KB

ai < KB
u

45

The with-fixed-cost case. When Fm > 0, we see from (2.A1)-(2.A6), and (2.129) that the

effect of accounting for incentives is closely related to the behavior of µB, µB, φ
B

ai, φ
B

u , and φB

u
.

Again, three cases should be studied. First, we study the case where µB = µB = 0. Second,

we consider the case where µB = 0 and µB > 0. Next, we analyze the role of incentives when

µB > 0 and µB = 0.

As in the no-fixed-cost case, we see that when µB = µB = 0, KB
ai = KB

u .

When µB = 0 and µB > 0, constraint (2.90), rewritten as (2.127), implies that ( ∂Πm

∂pM,ai
+ (θ −

c)Q′

M ) < 0 and
∂Πm

∂p
M,ai

> 0. Two cases should be studied depending of whether or not φ
B

ai = 0.

When φ
B

ai = 0, from (2.A1) and (2.A4) we obtain that ∂E[W ]
∂pM,ai

< 0, and [ ∂E[W ]
∂pM,ai

− (∂E[W ]
∂pM,u

+

φ
B

u
∂Πm

∂pM,u
)] = µB( ∂Πm

∂pM,ai
+(θ−c)Q′

M ) < 0, and hence pB
M,ai > pB

M,u. Similarly, from (2.A2)

and (2.A5) we obtain that ∂E[W ]
∂p

M,ai

< 0, and [ ∂E[W ]
∂p

M,ai

−(∂E[W ]
∂p

M,u

+φB

u

∂Πm

∂p
M,u

)] = −µB ∂Πm

∂p
M,ai

< 0,

and hence pB
M,ai

> pB
M,u

. Plugging all these results into (2.129) yields that when Fm > 0,

µB > 0, and φ
B

ai = 0, disregarding of whether or not φ
B

u and/or φB

u
are equal to zero,

KB
ai > KB

u .

When φ
B

ai > 0, we see that when the regulator is allowed to set µB > 0 and still makes

the less efficient firm just break even, φ
B

ai > 0, while would have only been necessary to

let it earn zero profits under uncertainty, i.e., φ
B

u , φB

u
> 0, clearly µB(pB

M,ai − pB
M,ai

) >

φ
B

ai(p
B
M,ai−θ)−φ

B

u (pB
M,u−θ)−φB

u
(pB

M,u
−c). Plugging all these results into (2.129) yields

that when Fm > 0, µB > 0, and φ
B

ai > 0, KB
ai > KB

u .

When µB > 0 and µB = 0, constraint (2.89), rewritten as (2.126), implies ∂Πm

∂pM,ai
< 0 and

(
∂Πm

∂p
M,ai

− (θ − c)Q′

M ) > 0. Now, two cases should be analyzed depending of whether or not the

less efficient firm is constrained to break even under asymmetric information.

would have been necessary to do so in the case where incentives are not taken into account, i.e.,
qm,u = 0, it should be the case that µB(pB

M,ai − pB
M,ai

) > νB
u . Plugging this into (2.128) yields

that when Fm = 0, µB > 0, and νB
ai = 0, KB

ai < KB
u

45. Indeed, consistency between (2.A3) and (2.A6) necessitates that −(νB
ai − νB

u ) < µB(pB
M,ai −

pB
M,ai

) < νB
u . Plugging this result into (2.128) yields that when Fm = 0, µB > 0, νB

ai > 0,

KB
ai < KB

u .
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When φ
B

ai = 0, from (2.A1) and (2.A4) we obtain that ∂E[W ]
∂pM,ai

> 0, and [ ∂E[W ]
∂pM,ai

− (∂E[W ]
∂pM,u

+

φ
B

u
∂Πm

∂pM,u
)] = −µB ∂Πm

∂pM,ai
> 0, and hence pB

M,ai < pB
M,u. Similarly, from (2.A2) and (2.A5)

we obtain that ∂E[W ]
∂p

M,ai

> 0, and [ ∂E[W ]
∂p

M,ai

−(∂E[W ]
∂p

M,u

+φB

u

∂Πm

∂p
M,u

)] = µB(
∂Πm

∂p
M,ai

−(θ−c)Q′

M ) > 0,

and hence pB
M,ai

< pB
M,u

. Now, from conditions (2.A3) and (2.A6) we see that when the

regulator is allowed to set µB > 0 without making binding the participation constraint of

the less efficient firm, φ
B

ai = 0, while it would have been necessary to do so in the case

where incentives are not taken into account, i.e., φ
B

u > 0, it clear that µB(pB
M,ai−pB

M,ai
) >

φ
B

u (pB
M,u − θ)+φB

u
(pB

M,u
− c). Hence, substituting into (2.128) implies that when Fm > 0,

µB > 0, and φ
B

ai = 0, KB
ai < KB

u .

When φ
B

ai > 0 we again obtain that pB
M,ai < pB

M,u and pB
M,ai

< pB
M,u

. Two subcases should

be analyzed depending of the value of φ
B

u and/or φB

u
. When φ

B

u = φB

u
= 0, it is direct

to see from (2.129) that KB
ai < KB

u . When either φ
B

u > 0 or both φ
B

u > 0 and φB

u
> 0,

µB > 0 does not unambiguously imply the sign of (KB
ai − KB

u ). ¥

Proof of Lemma 2.5 Let us first summarize the main implications of Lemma 2.2. This lemma

states that the set defined by the participation and output nonnegativity constraints of both the

θ- and c-type firms is convex and constraint qualified, i.e., the NDCQ and LICQ conditions

are satisfied. Moreover, this lemma yields that whenever there is no fixed cost, Fm = 0, the

firms’ participation constraints should be considered as liminal constraints, i.e, constraints that

whenever active their Lagrange multiplier is still equal to zero. Conversely, when there is a fixed

cost, Fm > 0, the firm’s nonnegativity constraints should be ignored. A straight applications of

the results in Lemma 2.2 allows us to study now the properties of the constraint set associated

with (2.135)-(2.138).

First, when there is no fixed cost, the participation constraints are liminal constraints and hence

(2.135) and (2.136) can be ignored. In this case the constraint set is defined by (2.137) and

(2.138). We study two cases according to whether or not ν and ν are equal to zero. When ν = 0

(ν = 0), the constraint (2.137) ((2.138)) is trivially satisfied. When ν > 0, the constraint (2.137)

is represented in the {pM , p
M

, K}-space by the level set ν q⋆
m(pM , p

M
, K) = ν(QM − K) = 0

which is a linear combination of the level set q⋆
m(·), defined in the proof of Lemma 2.2, which

represents the θ-type firm’s output nonnegativity constraint (2.60) when being binding. Thus,

since the constraint (2.137) is a linear combination of (2.60), the convexity property still holds.

Second, when there is fixed cost, the firms’ nonnegativity constraints are always satisfied with

strict inequality, i.e., ν = ν = 0. In such a case the participation constraints (2.135)-(2.136) are

identical to (2.58)-(2.59), and hence convex and qualified.

It then remains to show that the constraint set C associated with the regulator’s optimization-

aanalyze the properties of the sets defined by the profit-maximization constraints (2.139) and

(2.140). When the less efficient firm is active, qm > 0, its profit-maximization constraint
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(2.139) is represented by the level set Ω
⋆

m(pM , p
M

, K) = (pM − θ)Q′

M + qm = 0, with gradi-

ent vector ∇Ω
⋆

m(·) = (2Q′

M , 0,−1) ≤ 0. Thus, the level surface Ω
⋆

m(·) is regular plane and

defines a convex set.46 When the θ-type firm is shut down, its profit maximization constraint

consists in the intersection of the level set q⋆
m(·) with gradient ∇q⋆

m(·) = (Q′

M , 0,−1) and the

one defined by the less efficient firm’s profit-maximization constraint when it is shut down, i.e.,

Ω
◦

m(pM , p
M

, K) = (pM − θ + ν)Q′

M = 0 with gradient ∇Ω
◦

m(·) = (Q′

M , 0, 0). In such a case, the

set defined by the less efficient firm’s profit-maximization constraint is still convex and regular,

i.e., meets the NDCQ and LICQ conditions.

Similarly, when the more efficient firm is active, its profit-maximization constraint (2.140) is

represented by the level set Ω⋆
m(pM , p

M
, K) = (p

M
− c)Q′

M + q
m

= 0, with gradient vector

∇Ω⋆
m(·) = (0, 2Q′

M ,−1) ≤ 0. Thus, the level surface Ω
⋆

m(·) is also a regular plane and defines

a convex set. When it is shut down, the more efficient firm’s profit maximization constraint

consists in the intersection of the level set q⋆
m

(·) and the one defined by Ω◦

m(pM , p
M

, K) =

(p
M
−c+ν)Q′

M = 0. Again, the set associated to the c-type firm’s profit-maximization constraint

is convex and qualified.

Finally, since the intersection of convex sets is convex, it is direct to see than the set defined by

the constraints (2.135)-(2.138) and (2.139)-(2.140) is convex and qualified. ¥

Proof of Lemma 2.6 Consider the ex-post program under scheme C where the regulator seeks to

control market power exercised by a θ̃-type firm trough the maximization of the social welfare func-

tion (2.54) with respect to pM (θ̃), given a level of capacity K under the participation constraint

of the θ̃-type firm, and the first-order conditions of its profit maximization program (2.132) and

(2.133). Differentiate the associated system of first-order conditions with respect to θ̃ yields that

when the firm is active and makes positive profits, i.e., when ν(θ̃) = φ(θ̃) = 0, dpM (θ̃)

dθ̃
= 1

2 > 0,

dΠm(θ̃)

dθ̃
= (pM (θ̃)− θ̃)Q′

M − qm(θ̃)
2 < 0, dη(θ̃)

dθ̃
= − 1

4 < 0, and clearly dν(θ̃)

dθ̃
= dφ(θ̃)

dθ̃
= 0. When the

firm is active and just breaks even, ν(θ̃) = 0 and φ(θ̃) > 0, we obtain dpM (θ̃)

dθ̃
= 12, dΠm(θ̃)

dθ̃
= 0,

dφ(θ̃)

dθ̃
→ ∞, and dη(θ̃)

dθ̃
→ − 1

4 < 0. Finally, when the firm is shut down, ν(θ̃) > 0, the participa-

tion constraint is trivially satisfied (Fm = 0) and hence ignored, φ(θ̃) = 0. In such a situation

we obtain dpM (θ̃)

dθ̃
= dΠm(θ̃)

dθ̃
= dφ(θ̃)

dθ̃
= dη(θ̃)

dθ̃
= 0 and dν(θ̃)

dθ̃
= 1. ¥

Proof of Proposition 2.7 From Lemma 2.6 and the discussion that follows its statement we

conclude that solutions with (φ = 0, φ = 0, ν = 0, ν > 0), (φ = 0, φ > 0, ν = 0, ν = 0),

(φ = 0, φ = 0, ν > 0, ν > 0), and (φ > 0, φ > 0, ν = 0, ν = 0) cannot arise. Thus, only

three combinations of Lagrange multipliers associated to the regulator’s optimization program are

possible.

46. Ω
⋆

m(·) can be considered as the graph of a function ,K⋆
qm

, of K in terms of pM and p
M

in

ℜ3 with
∂K⋆

Ωm

∂pM
= 2Q′

M and
∂K⋆

Ωm

∂p
M

= 0, and Hessian’s leading minors {0, 0}.
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Concerning policy (C1u), replace for φ = φ = ν = ν = 0 in the system of first order conditions

(2.141)-(2.148) to get (2.149)-(2.151). Next, solve (2.141) and (2.142), respectively, for η and

η and substitute into (2.143). Similarly, solve (2.147) and (2.148), respectively, for pM and p
M

.

Now, substitute these values into (2.143) and obtain λK−(1+2λ)[αqm+(1−α)q
m

]+2(1+λ)[α(θ−
c)−C ′(K)]Q′

M = 0. When there is no fixed cost, Fm = 0, the left-hand side of the latter inequality

should be strictly positive, when evaluated K = QM (qm = 0). This results in the condition

0 < α(θ− c) < C ′(QM )− 1
2

λ
1+λ

QM

Q′

M

+
(1−α)(1+2λ)q

m

2(1+λ)Q′

M

. When there is a positive fixed cost, Fm > 0,

the left-hand side of the condition λK−(1+2λ)[αqm+(1−α)q
m

]+2(1+λ)[α(θ−c)−C ′(K)]Q′

M = 0

should be strictly positive, when evaluated q2
m = −FmQ′

M , which yields condition 0 < α(θ − c) <

C ′(K) − 1
2

λ
1+λ

K
Q′

M

+
(1−α)(1+2λ)q

m

2(1+λ)Q′

M

− α(1+2λ)Fm

2(1+λ)qm
.47

To obtain policy (C2u), replace for ν = ν = φ = 0 and Fm > 0 in the system of first order

conditions (2.141)-(2.148) to get (2.149), (2.150), and (2.152). Second-order conditions for this

policy are always satisfied.

To obtain policy (C3u), replace for φ = φ = ν = 0 and Fm = 0 in the system of first order

conditions (2.141)-(2.148) to obtain (2.153), (2.150), and (2.154). Second-order conditions for

this policy are always satisfied. ¥

Proof of Proposition 2.8 A straight application of the proof of Lemma 2.6 to the first-order

conditions (2.165)-(2.170) yields that when the firm is active and makes positive profits, i.e.,

when ν(θ̃) = φ(θ̃) = 0, dpM (θ̃)

dθ̃
= 1

2 > 0, dΠm(θ̃)

dθ̃
= (pM (θ̃)− θ̃)Q′

M − qm(θ̃)
2 < 0 and clearly dν(θ̃)

dθ̃
=

dφ(θ̃)

dθ̃
= 0. When the firm is active and just breaks even, we obtain dpM (θ̃)

dθ̃
= 12, dΠm(θ̃)

dθ̃
= 0, and

dφ(θ̃)

dθ̃
→ ∞. Finally, when the firm is shut down, ν(θ̃) > 0, dpM (θ̃)

dθ̃
= dΠm(θ̃)

dθ̃
= dφ(θ̃)

dθ̃
= 0 and

dν(θ̃)

dθ̃
= 1. Thus, we can conclude that under control scheme C with uncertainty and simultaneous

decisions, at the optimum, we have p
M

≤ pM , Πm ≥ Πm, φ ≤ φ, ν ≤ ν, and η > η.

We see that solutions with (φ = 0, φ = 0, ν = 0, ν > 0) and (φ = 0, φ > 0, ν = 0, ν = 0) are ruled

out for the type of regulator-firm relationship established by the system of first-order conditions

(2.165)-(2.170). Moreover, applying the same strategy that in the discussion that follows the

statement of Lemma 2.6 we are able to obtain that solutions with either (φ = 0, φ = 0, ν >

0, ν > 0) or (φ > 0, φ > 0, ν = 0, ν = 0) cannot arise. Consequently, onle three combinations of

Lagrange multipliers are possible according to whether or not they are equal to zero.

Concerning policy (Ĉ1u), replace for φ = φ = ν = ν = 0 in the system of first order conditions

(2.165)-(2.170) to get (2.171)-(2.173). Next, solve (2.168) and (2.169), respectively, for pM and

p
M

. Now, substitute these values into (2.165) and obtain that when Fm = 0, this policy arises

when 0 < α(θ − c) < C ′(QM ) +
(1−α)λq

m

(1+λ)Q′

M

, and when Fm > 0, is emerges when 0 < α(θ − c) <

47. Second-order conditions are always satisfied for policy (C1u).
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C ′(K) +
(1−α)λq

m

(1+λ)Q′

M

− αλ
1+λ

Fm

qm
.48

To obtain policy (Ĉ2u), replace for ν = ν = φ = 0 and Fm > 0 in the system of first order

conditions (2.165)-(2.170) to get (2.171), (2.172), and (2.174). Second-order conditions for this

policy are always satisfied.

As to policy (Ĉ3u), replace for φ = φ = ν = 0 and Fm = 0 in (2.165)-(2.170) to obtain (2.175),

(2.172), and (2.176). Second-order conditions for this policy are always satisfied. ¥

Proof of Proposition 2.9 We separately study the case where there is no fixed cost, and that

where there is one.

The no-fixed-cost case. When Fm = 0, direct observation of (2.184) yields that sign[KC
û −

KC
u ] = −sign[ηC + ηC ].49

The with-fixed-cost case. When Fm > 0, we see from (2.185) that the effect of timing of

decision is closely related to the behavior of ηC , ηC , φ
C

u , and φ
C

û . When the firm earns strictly

positive profits in both a sequential or a simultaneous decision scheme, φ
C

u = φ
C

û = 0, sign[KC
û −

KC
u ] = −sign[ηC + ηC ].

When the less efficient firm just breaks even in both the sequential and the simultaneous case, i.e.,

when φ
C

u > 0 and φ
C

û > 0, we know from the proof of Lemma 2.2 that the level set Π
⋆

m(pM , p
M

, K)

is associated to the participation constraint of the θ-type firm, with gradient vector ∇Π
⋆

m(·) =

((pM − θ)Q′

M + qm, 0,−(pM − θ)). Note that when the profit-maximization constraint of this

firm is effective, ∇Π
⋆

m(·) = (0, 0,− Fm

qm,u
) and hence the function K⋆

Πm
, of K in terms of pM

and p
M

in ℜ3 meets its maximum. When decisions are taken simultaneously, given the nature

of this optimization program we arrive to the same point obtained when decision are sequential.

Consequently, when φ
C

u > 0 and φ
C

û > 0, {pC
M,u, pC

M,u
, KC

u }={pC
M,û, pC

M,û
, KC

û }.

In the remaining cases, i.e., when either (φ
C

u > 0, φ
C

û = 0) or (φ
C

u = 0, φ
C

û > 0), gap Kû −
Ku cannot be unambiguously defined from the sign of the sum of shadow costs of the profit

maximization constraints, ηC + ηC . ¥

48. Second-order conditions are always satisfied for policy (Ĉ1u).

49. From Lemma 2.6, ηC > ηC . Therefore, whenever η > 0, η > 0, and then KC
û < KC

u .

Conversely, whenever ηC < 0, ηC < 0, and then KC
û > KC

u .



Chapter 3

Transport capacity and

competition in gas markets

3.1 Introduction

Traditionally, regulation and competition have been viewed as substitutes for im-

proving the efficiency of markets. Regulation has been typically applied to in-

dustries where competition is not sustainable; the so called natural monopolies.

This was, and still is to some extent, the case of public utilities for decades, most

notably the telecommunications, electricity and natural gas industries. More re-

cently, however, following major changes in technology and industry structure,

these two mechanisms have come to complement each other. These industries

have moved from what essentially was a vertically integrated structure subject to

heavy regulation to one in which the natural monopoly portion is separated from

segments deemed ready for competition. In gas, transport remains largely under

a regulated monopoly while commodity supply is progressively open to competi-

tion.1 This chapter attempts to assess the relative merits of policies that combine

upstream regulation with alternative approaches to downstream competition.

While a great number of papers has analyzed the way upstream transport

1. The experience of the UK gas industry provides a good illustration of this interaction between
regulation and competition (Waddams Price, 1997).
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networks affect the working of downstream markets (De Vany and Walls, 1994,

Doane and Spulber, 1994 in gas, Borenstein et al., 2000, Léautier, 2001 in electric-

ity, among others), to the best of our knowledge, the major part of this literature

has taken as given the capacity of the transport network and the charge applied for

its use.2 Both of these factors are considered as endogenous in this chapter. In the

next section, we develop a model of an upstream firm providing a marketer with

transport capacity at a regulated price. The regulator sets the transport charge

taking as given competition in output between an incumbent and the marketer

in a downstream gas commodity market. The outcome of the downstream firms’

interaction is synthesized by generic equilibrium output responses to changes in

the transport charge.3 Section 3.3 applies this general setting to specific forms

of market conduct with a varying degree of competition. Section 3.4 performs a

comparative analysis of the various regulatory policies considered, in particular,

an attempt to assess their relative welfare performance is made. The last sec-

tion summarizes the main lessons to be drawn from the analysis and gives some

directions for further research. The appendix gives technical proofs.

3.2 Transport regulation: general setting

Consider a regional natural gas commodity market, market B, in which an incum-

bent firm, firm I, produces gas with a technology described by a cost function

CI(qI) where qI is output. We assume that the institutional framework allows a

marketer M to import gas from an alternative market, market A, at a constant

unit commodity price c and a regulated transport charge pK paid to a transporter

T that builds a pipeline of capacity K linking the two markets at cost CT (K)+FT .4

Consumption takes place in market B according to inverse demand p(·) assumed

2. We should also mention Breton and Zaccour, 2001 who analyze competition in the downstream
market using the Cournot and Stackelberg models.

3. In this chapter, we abstract away from information problems.

4. The incumbent’s cost function is assumed to be increasing, strictly convex, and twice contin-
uously differentiable with C

′′′

I = 0. The transporter’s cost function is increasing convex.
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to be linear. Figure 3.1 pictures this simple industry structure.5

s s

A

c

B

I : CI(qI), p(·)
M : c, pK , p(·)

T : CT (K), FT , pK

◮

Figure 3.1: Industry configuration

We assume that the transporter is regulated. More specifically, the regulator

determines the transport charge pK subject to equilibrium behavior in the down-

stream gas commodity market B. Our main objective then is to investigate the

relationship between the transport charge pK (and the associated social welfare)

and firms’ conduct in this market.

Let us analyze the regulator’s problem of setting the price of transport capacity

pK . Total supply in the downstream gas commodity market Q, composed of qI

units produced locally by the incumbent and K units imported by the marketer,

brings consumers a net surplus CS given by

CS = S(qI + K) − p(qI + K)[qI + K] (3.1)

where S(·) represents gross consumer surplus. The profit function of the upstream

firm T , the transporter, is given by6

ΠT = pKK − CT (K) − FT (3.2)

5. Although this framework shares some features with that typically used to study access to an
essential facility such as the local loop in telecommunications, two important aspects specific to
the case of natural gas considered here are worth mentioning. First, the essential facility (the
pipeline) is used only by the entrant (the marketer). Second, the incumbent supplier of the final
good (natural gas) is completed separated from the owner of the essential facility (the capacity
builder).

6. The cost structure of this upstream firm reflects the fact that natural gas transportation is
highly capital-intensive and typically considered as a natural monopoly.
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In the downstream market, firms I and M compete in output and their profit

functions are respectively given by7

ΠI = p(qI + K)qI − CI(qI) (3.3)

ΠM = [p(qI + K) − pK − c]K (3.4)

Since capacity is an input for the marketer, equilibrium levels of output (and hence

price) in this downstream market are going to depend on the level of the transport

charge set by the regulator. This is formalized by writing downstream levels of

output as functions qI(pK) and K(pK), where the specific forms of these functions

will be determined by the precise nature of the interaction between firms. So, as

far as timing, first the regulator sets pK , second the transporter builds K, and

third the marketer uses K to compete with the incumbent.

Using (3.1)-(3.4), the utilitarian social welfare function W is given by8

W (pK) = S(qI(pK) + K(pK)) − CI(qI(pK)) − cK(pK) − CT (K(pK)) − FT (3.5)

The regulator’s program consists in maximizing (3.5) under the participation con-

straint of the transporter9

ΠT (pK) = pKK(pK) − C(K(pK)) − FT ≥ 0 (3.6)

Letting φT designate the Lagrange multiplier associated with (3.6) and using the

fact that ∂S(·)
∂qI

= ∂S(·)
∂K

= p(·), we obtain the following first-order conditions:

(p − C ′
I)

dqI

dpK

+ (p − c − C ′
T )

dK

dpK

+ φT

[
K + (pK − C ′

T )
dK

dpK

]
= 0 (3.7)

φT [pKK − CT (K) − FT ] = 0 (3.8)

7. We assume that in equilibrium both firms are active.

8. This social welfare is merely the unweighted sum of net consumer surplus and firms’ profits.

9. We assume that the set defined by this participation constraint is convex which insures that
the regulatory program is concave. A sufficient condition is concavity of the profit function (3.2),

obtained if 2 dK
dpK

+ (pK − C ′

T )d2K
dp2

K

− C ′′

T ( dK
dpK

)2 ≤ 0.
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When the transporter’s participation constraint is not binding, (φT = 0), second-

order conditions, necessary and sufficient for a unique local maximum, require

(p − c − C ′
T )

d2K

dp2
K

+ (p − C ′
I)

d2qI

dp2
K

+(p′ − C ′′
T )

(
dK

dpK

)2

+ (p′ − C ′′
I )

(
dqI

dpK

)2

< 0 (3.9)

When it is binding (φT > 0), second-order conditions are always satisfied. Rewrit-

ing the first-order conditions (3.7)-(3.8), we obtain:

Proposition 3.1 For a given equilibrium in the downstream market described by

the six-tuple (K(pK), qI(pK), dK
dpK

, dqI

dpK
, d2K

dpK
, d2qI

dpK
), at the optimum, transport charge,

outputs, price and shadow cost of the transporter’s participation constraint satisfy

the following condition:

(1 + φT )(pK − C ′
T )

dK(pK)

dpK

+ φT K(pK) =

−
(

(p − pK − c)
dK(pK)

dpK

+ (p − C ′
I)

dqI(pK)

dpK

)
(3.10)

When the transporter’s participation constraint is binding, φT > 0, we obtain

standard average-cost transport pricing pK = CT (·)+FT

K(·)
satisfying (3.10). When this

constraint is not binding, φT = 0, we obtain that transport charge is distorted away

from marginal cost with a bounded distortion, pK − C ′
T (·) ≤ (p − C ′

I)(−dqI/dpK

dK/dpK
).

The interpretation of this distortion becomes easier if one assumes that | dK
dpK

| >

| dqI

dpK
|, in which case an interior solution satisfies C ′

I < c + C ′
T , i.e., the cost of a

marginal unit produced by the incumbent is less than the net cost of a marginal

imported unit, (c + pK) − (pK − C ′
T ).10

The equation stated in Proposition 3.1 shows at the left-hand side the social

marginal effect in the upstream market of an increase in the transport charge.

10. The condition | dK
dpK

| > | dqI

dpK
| holds in all of our formal representations of downstream

competition.
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More precisely, this is the impact on both the marginal and infra marginal units of

capacity built by the regulated transporter. At the right-hand side, it shows the

effect of this increase in pK on the downstream market, namely, on the marginal

profitability of both the marketer and the incumbent. At the optimum, these two

effects should be balanced. Clearly, their respective magnitude will depend on the

specific nature of the downstream firms’ interaction. The next section considers

capacity pricing policies under various assumptions about this interaction.

3.3 Transport regulation and downstream com-

petition

We consider four scenarios of downstream firms’ behavior with a decreasing de-

gree of competition, namely, no competition between firms I and M , Stackelberg

competition, Cournot competition, and the case in which the incumbent faces a

competitive fringe represented by firm M .

3.3.1 No downstream competition

In this section, we consider the polar case where there is no competition in the

downstream market, i.e., the incumbent and the marketer behave as if they were

a single entity.11 These firms maximize then joint profits given by

ΠI + ΠM = p(qI + K)(qI + K) − CI(qI) − (pK + c)K (3.11)

For a given transport charge pK , solving the joint profit-maximization problem

yields the following first-order conditions:12

[p(qI + K) − pK − c] + (qI + K)p′ = 0 (3.12)

11. Alternatively, one can think of the marketer as being an affiliate of the incumbent, but,
although the firms maximize joint profits, they have to comply with some strict accounting
separation rule.

12. The second-order condition is 2p′C ′′

I < 0, which is true given our linear demand and convex
cost function.
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[p(qI + K) − C ′
I ] + (qI + K)p′ = 0 (3.13)

The profit-maximizing levels of output (Km(pK), qm
I (pK)) in this market are

found by solving the system of first-order conditions (3.12)-(3.13).13 How these

outputs respond to changes in the transport charge pK set by the regulator can be

seen from the formulas provided in the next lemma.

Lemma 3.1 The no downstream competition profit-maximizing outputs

(Km(pK), qm
I (pK)), satisfy:

dKm

dpK

=
1

2p′
− 1

C ′′
I

dqm
I

dpK

=
1

C ′′
I

d2Km

dp2
K

=
C

′′′

I

C ′′
I

(
dqm

I

dpK

)2

d2qm
I

dp2
K

= −C
′′′

I

C ′′
I

(
dqm

I

dpK

)2

(3.14)

An increase in the transport charge leads to a decrease in transport capacity and

an increase in incumbent’s output. However, the reduction in transport capacity

dominates the increase in incumbent’s volume, and the net effect is a reduction

of total output and hence an increase in market price. Substituting dKm

dpK
and

dqm
I

dpK

from this lemma into Proposition 3.1 allows us to characterize the optimum when

there is no competition in the downstream gas commodity market.14

Proposition 3.2 Assuming no competition in the downstream market, at the op-

timum, transport charge, outputs, price and shadow cost of the transporter’s par-

13. Note that (3.12) and (3.13) imply pK = C ′

I − c. Existence and uniqueness of the maximum
of the joint profit function for K, qI > 0 is guaranteed in our industry configuration by the strict
convexity of the incumbent’s cost function.

14. The regulator’s maximization program is well behaved since the participation constraint of
the transporter when there is no downstream competition defines a convex set. Indeed, replacing
the results shown in Lemma 3.1 into the condition guaranteeing the concavity of the transporter’s
profit function (see footnote 9) yields that it is always true since we assume C

′′′

I = 0.
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ticipation constraint satisfy the following conditions:

−(1 + φm
T )(pm

K − C
′m
T )(2p′ − C

′′m
I )

2p′C
′′m
I

+ φm
T Km =

(
(pm − pm

K − c)(2p′ − C
′′m
I ) − 2(ps − C

′m
I )p′

2p′C
′′m
I

)
(3.15)

[pm − pm
K − c] + (qm

I + Km)p′ = 0 (3.16)
[
pm − C

′m
I

]
+ (qm

I + Km)p′ = 0 (3.17)

When the transporter’s participation constraint is binding, we obtain standard

average-cost transport pricing pm
K = CT (·)+FT

Km satisfying (3.15)-(3.17). When this

constraint is not binding, φm
T = 0, we obtain that pm

K < C
′m
T (·) +

2(pm−C
′m
I )p′

(2p′−C
′′m
I

)
and

C
′m
I < c + C

′m
T .15 The detailed argument behind the existence of this bound is

presented at the end of the proof of Proposition 3.2 in the appendix.16 Let us now

study transport capacity policies when downstream competition prevails.

3.3.2 Stackelberg downstream competition

In this section, we assume that competition in the downstream market is à la

Stackelberg where the incumbent and the marketer are respectively the leader

and the follower. For a given transport charge pK , solving the marketer’s profit-

maximization problem yields the following first-order condition:17

[p(qI + K) − pK − c] + Kp′ = 0 (3.18)

15. From Lemma 3.1, |dKm

dpK
| > |dqm

I

dpK
|, which as discussed in section 3.2, implies C

′m
I < c +

C
′m
T . Given this condition, second-order conditions are always satisfied. Indeed, when φT = 0,

replacing the results obtained in this lemma into condition (3.9), yields −C ′′

T C ′′

I
3
+ p′C ′′

I
2
[4C ′′

T +

C ′′

I ] − 4p′
2
C ′′

I [C ′′

T + C ′′

I ] − 4p′
2
C

′′′

I [c + C ′

T − C ′

I ] < 0, which is true.

16. This is done for all of the other propositions corresponding to the competitive scenarios
considered in this chapter.

17. The second-order condition is 2p′ < 0, which is true given our linear demand. It is well
known that log-concavity of demand and convexity of the cost function of the incumbent imply
that the best response function of the marketer is monotone and decreasing with slope belonging
to the interval (-1,0). In our case, since demand is linear this slope is equal to − 1

2 .
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This first-order condition is solved for K to yield the marketer’s reaction function.

The latter is substituted into the incumbent’s profit function which is then maxi-

mized with respect to qI . The first-order condition of this maximization problem

is

[p − C ′
I ] +

qIp
′

2
= 0 (3.19)

The equilibrium (Ks(pK), qs
I(pK)) of this Stackelberg game is obtained as the

solution to the system of first-order conditions (3.18) and (3.19).18 Some formu-

las that allow us to see how these equilibrium outputs vary with the regulated

transport charge pK are presented in the next Lemma.

Lemma 3.2 The Stackelberg equilibrium (with the incumbent as a leader) in the

downstream market, (KsI (pK), qsI

I (pK)), satisfies:

dKsI

dpK

=
1

2

[
1

p′
+

1

2(p′ − C ′′
I )

]

dqsI

I

dpK

= − 1

2(p′ − C ′′
I )

d2KsI

dp2
K

= − C
′′′

I

2(p′ − C ′′
I )

(
dqsI

I

dpK

)2

d2qsI

I

dp2
K

=
C

′′′

I

(p′ − C ′′
I )

(
dqsI

I

dpK

)2

(3.20)

Lemma 3.2 shows that under Stackelberg competition, an increase in the transport

charge leads to a decrease in transport capacity and an increase in incumbent’s

output. However, the reduction in transport capacity more than offsets the increase

in incumbent’s volume, yielding a reduction of total output and hence an increase

in market price. Substituting dKsI

dpK
and

dq
sI
I

dpK
from this lemma into Proposition

3.1 allows us to characterize the optimum when there is downstream Stackelberg

competition with the incumbent as a leader.

Proposition 3.3 Assuming downstream Stackelberg competition with the incum-

bent as a leader, at the optimum, transport charge, outputs, price and shadow cost

18. Existence and uniqueness of this equilibrium is guaranteed by our assumptions on demand
and incumbent’s cost function. It corresponds to the tangency point between the marketer’s
reaction function and a level curve of the incumbent’s profit function in the positive quadrant.
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of the transporter’s participation constraint satisfy the following conditions:

(1 + φsI

T )(ps
K − C

′sI

T )(3p′ − 2C
′′sI

I )

4p′(p′ − C
′′sI

I )
+ φsI

T Ks =

−
(

(psI − psI

K − c)(3p′ − 2C
′′sI

I ) − 2(ps − C
′sI

I )p′

4p′(p′ − C
′′sI

I )

)
(3.21)

[psI − psI

K − c] + KsIp′ = 0 (3.22)

[psI − C
′sI

I ] +
qsI

I p′

2
= 0 (3.23)

When the transporter’s participation constraint is binding, we obtain standard

average-cost transport pricing psI

K = CT (·)+FT

KsI
satisfying (3.21)-(3.23). When this

constraint is not binding, we obtain that psI

K < C
′sI

T (·) +
2(psI−C

′sI
I

)p′

(3p′−2C
′′sI
I

)
and C

′sI

I <

c + C
′sI

T .

The case with the marketer as a leader is treated as follows. The Stackelberg

equilibrium (KsM (pK), qSM

I (pK)) is obtained by solving the first-order conditions

[p(qI + K) − C ′
I ] + qIp

′ = 0 (3.24)

[p(qI + K) − pK − c] + K

(
1 − p′

2p′ − C ′′
I

)
p′ = 0 (3.25)

The next lemma provides useful information on the relationship between this equi-

librium and the transport charge.

Lemma 3.2’ The Stackelberg equilibrium (with the marketer as a leader) in the

downstream market, (KsM (pK), qsM

I (pK)), satisfies:

dKsM

dpK

=
1

2

[
1

p′
+

1

(p′ − C ′′
I )

]

dqsM

I

dpK

= − 1

2(p′ − C ′′
I )

d2KsM

dp2
K

= 0

d2qsM

I

dp2
K

= 0

(3.26)

Cross-examining Lemmas 3.2 and 3.2’, we see that when leadership is transferred
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to the marketer, the slope of the incumbent’s equilibrium output function remains

unchanged. This is because the transport charge has only a second-order effect on

the incumbent’s profits which is zero given our assumption of linear demand. As

to the marketer, because the transport charge has a first-order effect on its profits,

switching from the role of a follower to that of a leader, it sees the slope of its

equilibrium output (capacity) function increased in absolute value.

Lemma 3.2’ shows that an increase in transport charge has opposite effects

on capacity and incumbent’s output but the net effect on aggregate output is

negative. Substituting dKsM

dpK
and

dq
sM
I

dpK
from this lemma into Proposition 3.1 allows

us to characterize the optimum when there is downstream Stackelberg competition

with the marketer as a leader.

Proposition 3.3’ Assuming downstream Stackelberg competition with the mar-

keter as a leader, at the optimum, transport charge, outputs, price and shadow

cost of the transporter’s participation constraint satisfy the following conditions:

(1 + φsM

T )(psM

K − C
′sM

T )(2p′ − C
′′sM

I )

2p′(p′ − C
′′sM

I )
+ φsM

T KsM =

−
(

(psM − psM

K − c)(2p′ − C
′′sM

I ) − (psM − C
′sM

I )p′

4p′(p′ − C
′′sM

I )

)
(3.27)

[psM − psM

K − c] + KsM

(
1 − p′

2p′ − C
′′sM

I

)
p′ = 0 (3.28)

[psM − C
′sM

I ] + qsM

I p′ = 0 (3.29)

When the transporter’s participation constraint is binding, we obtain standard

average-cost transport pricing psM

K = CT (·)+FT

KsM
satisfying (3.27)-(3.29). When this

constraint is not binding, we obtain that psM

K < C
′sM

T (·)+
(psM −C

′sM
I

)p′

(2p′−C
′′sM
I

)
and C

′sM

I <

c + C
′sM

T .
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3.3.3 Cournot downstream competition

In this section, we assume that competition in the downstream market is à la

Cournot. For a given transport charge pK , the marketer and the incumbent simul-

taneously maximize own profits yielding the following first-order conditions:19

[p(qI + K) − pK − c] + Kp′ = 0 (3.30)

[p(qI + K) − C ′
I ] + qIp

′ = 0 (3.31)

Solving these first-order conditions yields the Cournot equilibrium (Kc(pK), qc
I(pK))

and the next lemma provides useful information on the relationship between this

equilibrium and the transport charge.20

Lemma 3.3 The Cournot equilibrium (Kc(pK), qc
I(pK)) in the downstream mar-

ket, satisfies:

dKc

dpK

=
1

2

[
1

p′
+

1

3p′ − 2C ′′
I

]

dqc
I

dpK

= − 1

3p′ − 2C ′′
I

d2Kc

dp2
K

= − C
′′′

I

3p′ − 2C ′′
I

(
dqc

I

dpK

)2

d2qc
I

dp2
K

=
2C

′′′

I

3p′ − 2C ′′
I

(
dqc

I

dpK

)2

(3.32)

Assuming Cournot competition, an increase in the transport charge leads to a

decrease in transport capacity and an increase in incumbent’s output with a net

negative effect on aggregate output.21 Substituting dKc

dpK
and

dqc
I

dpK
from this lemma

19. The second-order conditions for the marketer’s and incumbent’s problem are respectively
2p′ < 0 and 2p′ − C ′′

I < 0, which are always satisfied under our demand and cost assumptions.

20. Existence and uniqueness of this equilibrium is guaranteed by our assumptions on demand
and incumbent’s cost function. It corresponds to the crossing point of the firm’s reaction functions
derived from (3.30) and (3.31).

21. This corresponds to the general result in IO saying that with strategic substitutes and a
unique Cournot equilibrium, a firm’s output decreases with its marginal cost and increases with
its competitor’s (Tirole, 1988, p. 220). In this chapter, we find that this result also holds for
the other forms of imperfect competition considered. Moreover, we find that an increase in one
firm’s marginal cost decreases industry output.
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into Proposition 3.1 allows us to characterize the optimum when there is down-

stream Cournot competition.

Proposition 3.4 With Cournot competition in the downstream market, at the

optimum, transport charge, outputs, price and shadow cost of the transporter’s

participation constraint satisfy the following conditions:

(1 + φc
T )(pc

K − C
′c
T )(2p′ − C

′′c
I )

p′(3p′ − 2C
′′c
I )

+ φc
T Kc =

−
(

(pc − pc
K − c)(2p′ − C

′′c
I ) − (pc − C

′c
I )p′

p′(3p′ − 2C
′′c
I )

)
(3.33)

[pc − pc
K − c] + Kcp′ = 0 (3.34)

[pc − C
′c
I ] + qc

Ip
′ = 0 (3.35)

When the transporter’s participation constraint is binding, we obtain standard

average-cost transport pricing pc
K = CT (·)+FT

Kc satisfying (3.33)-(3.35). When this

constraint is not binding, we obtain that pc
K < C

′c
T (·)+

(pc−C
′c
I )p′

(2p′−C
′′c
I

)
and C

′c
I < c+C

′c
T .

3.3.4 Downstream competitive fringe

Now, assume that the incumbent faces a competitive fringe of gas traders repre-

sented by the marketer M . For a given transport charge pK , this competitive fringe

maximizes profits taking market price as given by ordering from the transporter

capacity K such that its marginal cost is equal to market price:

p(qI + K) − pK − c = 0 (3.36)

The incumbent maximizes own profits over the residual demand and hence sets its

marginal revenue equal to its marginal cost:

[p(qI + K) − C ′
I ] + qIp

′ = 0 (3.37)
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The market equilibrium (Kf (pK), qf
I (pK)) is obtained by solving (3.30) and (3.31)

and useful information on this equilibrium are provided in the next Lemma.

Lemma 3.4 The equilibrium (Kf (pK), qf
I (pK)) obtained when the incumbent faces

a competitive fringe in the downstream market satisfies:

dKf

dpK

=
1

p′
+

1

p′ − C ′′
I

dqf
I

dpK

= − 1

p′ − C ′′
I

d2Kf

dp2
K

= − C
′′′

I

p′ − C ′′
I

(
dqf

I

dpK

)2

d2qf
I

dp2
K

=
C

′′′

I

(p′ − C ′′
I )

(
dqf

I

dpK

)2

(3.38)

Again, we see from this lemma that an increase in transport charge has opposite

effects on capacity and incumbent’s output but the net effect on aggregate output

is negative. Substituting dKf

dpK
and

dqf
I

dpK
from this lemma into Proposition 3.1 allows

us to characterize the optimum when there is a competitive fringe of gas traders

in the downstream market.

Proposition 3.5 when the incumbent faces a competitive fringe, at the optimum,

transport charge, outputs, price and shadow cost of the transporter’s participation

constraint satisfy the following conditions:

(1 + φf
T )(pf

K − C
′f
T )(2p′ − C

′′f
I )

p′(p′ − C
′′f
I )

+ φf
T Kf =

−
(

(pf − pf
K − c)(2p′ − C

′′f
I ) − (pf − C

′f
I )p′

p′(p′ − C
′′f
I )

)
(3.39)

pf − pf
K − c = 0 (3.40)

[pf − C
′f
I ] + qf

I p′ = 0 (3.41)

When the transporter’s participation constraint is binding, we obtain standard

average-cost transport pricing pf
K = CT (·)+FT

Kf satisfying (3.39)-(3.41). When this

constraint is not binding, we obtain that pf
K = C

′f
T (·)+ (pf−C

′f
I

)p′

(2p′−C
′′f
I

)
and C

′f
I < c+C

′f
T .
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3.4 Comparative analysis

So far, we have characterized individual transport charge policies associated with

various assumptions about the competitive behavior of firms in the downstream

market. Our purpose now is to attempt to compare these policies. While the

complete analytical comparison of these second-best policies is beyond the scope of

this chapter, this is however possible with specific functional forms and simulations.

Let us then assume that

p(qI + K) = γ − (qI + K), CI(qI) =
θ

2
q2
I , CT (K) = ωK + FT (3.42)

A straight application of Lemmas 1-5 allows us to derive the slopes of the equi-

librium output functions under the corresponding assumptions about downstream

competition. The results are shown in Table 3.1 where the indices m, sI , sM , c,

and f refer to the five forms of competition considered is subsections 3.3.1-3.3.4

respectively.

Table 3.1: Slopes of equilibrium output functions

Market

Assumption

dK

dpK

dqI

dpK

dQ

dpK

m −2+θ
2θ

1
θ

−1
2

sI − 3+2θ
4(1+θ)

1
2(1+θ)

− 1+2θ
4(1+θ)

sM − 2+θ
2(1+θ)

1
2(1+θ)

−1
2

c − 2+θ
3+2θ

1
3+2θ

- 1+θ
3+2θ

f −2+θ
1+θ

1
1+θ

-1

These slopes convey information on the downstream firms’ output responses
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to changes in pK . The magnitude of these responses are ranked as follows: For

0 < θ < 1, we have

∣∣∣∣
dKc

dpK

∣∣∣∣ <

∣∣∣∣
dKsI

dpK

∣∣∣∣ <

∣∣∣∣
dKsM

dpK

∣∣∣∣ <

∣∣∣∣
dKf

dpK

∣∣∣∣ <

∣∣∣∣
dKm

dpK

∣∣∣∣ (3.43)

and for θ > 1, we have

∣∣∣∣
dKc

dpK

∣∣∣∣ <

∣∣∣∣
dKsI

dpK

∣∣∣∣ <

∣∣∣∣
dKsM

dpK

∣∣∣∣ <

∣∣∣∣
dKm

dpK

∣∣∣∣ <

∣∣∣∣
dKf

dpK

∣∣∣∣ (3.44)

Whereas for any θ, we obtain

∣∣∣∣
dqc

I

dpK

∣∣∣∣ <

∣∣∣∣
dqsI

I

dpK

∣∣∣∣ =

∣∣∣∣
dqsM

I

dpK

∣∣∣∣ <

∣∣∣∣∣
dqf

I

dpK

∣∣∣∣∣ <

∣∣∣∣
dqm

I

dpK

∣∣∣∣ (3.45)

∣∣∣∣
dQsI

dpK

∣∣∣∣ <

∣∣∣∣
dQc

dpK

∣∣∣∣ <

∣∣∣∣
dQsM

dpK

∣∣∣∣ =

∣∣∣∣
dQm

dpK

∣∣∣∣ <

∣∣∣∣
dQf

dpK

∣∣∣∣ (3.46)

With the functional forms described in (3.42), we see from Table 3.1 that the

equilibrium output functions are linear in the transport charge. The equilibrium

capacity functions are negatively sloped across the five forms of competition con-

sidered while those of the incumbent’s output are positively sloped. However, as

stated in section 3.3, the net effect on aggregate output is always negative, i.e., an

increase in pK will be accompanied by an unambiguous increase in gas commodity

price.

From (3.43) and (3.44) we see that irrespective of the degree of convexity of

the incumbent’s cost function, θ, when competition prevails, i.e., under market

assumptions sI , c, sM , and f , the response of equilibrium capacity to an increase

in pK are unambiguously ranked as |dKc

dpK
| < |dKsI

dpK
| < |dKsM

dpK
| < |dKf

dpK
|. This says that

the more rigorous the level of competition is in the downstream market, the more

responsive capacity is to changes in pK .22 As mentioned above, since this (negative)

capacity effect dominates the (positive) effect on the incumbent’s output, aggregate

output decreases. From (3.46), we see that under market assumptions m (no

22. We view Stackelberg leadership by the marketer as representing more rigorous competition
than Stackelberg leadership by the incumbent.
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competition) and sM (marketer as a Stackelberg leader), an increase in pK leads

to decreases in aggregate output of the same magnitude. This is related to the fact

that pK has a direct effect on the marketer’s profits (it directly affects its marginal

cost) and our demand and cost assumptions.23

While these slopes of the equilibrium outputs are instructive by themselves,

recall from the theory presented in the previous sections that they feed the reg-

ulator’s decision. More specifically, these slopes need to be substituted into the

conditions that characterize the optimal capacity pricing rules derived in Propo-

sitions 2-5. Let us state next these rules for each of the five forms of downstream

competition in turn.

pm
K − ω =

(
φm

T

1 + φm
T

)
2θKm

(2 + θ)
−

(
1

1 + φm
T

)
θQm

(2 + θ)
(3.47)

psI

K − ω =

(
φsI

T

1 + φsI

T

)
4(1 + θ)KsI

(3 + 2θ)
+

(
1

1 + φsI

T

)
[qsI

I − (3 + 2θ)KsI ]

(3 + 2θ)
(3.48)

psM

K − ω =

(
φsM

T

1 + φsM

T

)
2(1 + θ)KsM

2 + θ
+

(
1

1 + φsM

T

)
[qsM

I − (1 + θ)KsM ]

(2 + θ)
(3.49)

pc
K − ω =

(
φc

T

1 + φc
T

)
(3 + 2θ)Kc

(2 + θ)
+

(
1

1 + φc
T

)
[qc

I − (2 + θ)Kc]

(2 + θ)
(3.50)

pf
K − ω =

(
φf

T

1 + φf
T

)
(1 + θ)Kf

(2 + θ)
+

(
1

1 + φf
T

)
qf
I

(2 + θ)
(3.51)

In order to compare the performance of these five policies we ran simulations

with the following parameters values: γ = 1, θ = 0.67, c normalized to zero, ω and

FT continuously varying in [0, 0.13] and [0, 0.012] respectively. Figures 3.2(a-b),

3.3, 3.4(a-b), and 3.5(a-b) exhibit the regions with different ranking of K, qI , pK ,

ΠI , ΠM , CS, ΠI +ΠM , and W , and the corresponding regions in the {FT , ω}-space.

The region with dashed lines contours represents the (FT , ω) pairs for which there

does not exist a real root to the regulator’s maximization program when there is

no competition in the downstream market.

23. The indirect effect corresponds to the impact of pK on equilibrium output levels and the
subsequent effect on profits.
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Figure 3.3: Ranking of pK in regions 1-15

Figures 3.2a and 3.2b show the ranking of optimal capacity and incumbent’s

output, respectively, in the {FT , ω}-space. We see that when the downstream

market is competitive, the more rigorous the level of competition, the higher (the

lower) the capacity (the incumbent’s output). The capacity levels without down-

stream competition cannot be unambiguously ranked relative to those achieved
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with downstream competition. As to the incumbent’s output, an unambiguous

ranking is obtained when we restrict ourselves to market assumptions f , m, and c.

In such a case, going from either no competition or Cournot competition to a com-

petitive fringe market structure lowers the incumbent’s output. However, moving

from no competition to Cournot competition increases incumbent’s output.

Figure 3.3 shows that if there is competition in the downstream market but

it is not excessive (this excludes market assumptions m and f), the transport

charge decreases as the marketer plays a more important role in the downstream

market, psI

K > pc
K > psM

K . This result is consistent with the unambiguous ordering

KsI < Kc < KsM of marketer’s output. When the two excluded market structures

are put back as possible options, the optimal transport charges achieved cannot

be unambiguously ranked between them and relative to market assumptions sI ,

c, and sM .24 Despite this somewhat unstable behavior of the optimal transport

charge and corresponding output levels across the various assumptions about the

downstream market structure, it turns out that the ordering of social welfare and

its components, i.e., consumer surplus and firms’ profits, is much less surprising

as we now show.
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Figure 3.4a: Ranking of ΠI Figure 3.4b: Ranking of ΠM

24. One would have expected that as competition becomes more agressive, the optimal transport
charge would be lower. Our simulations do not, however, support this conjecture. Even more
surprising is the result that pf

K and pm
K cannot be unambiguously ordered.
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Figure 3.4a shows that when there is competition, the incumbent is always

better off under a Stackelberg market structure in which it is the leader than under

Cournot competition, Stackelberg competition with the marketer as a leader, or

a competitive fringe market structure, its least preferred option (Πf
I < ΠsM

I <

Πc
I < ΠsI

I ). Between excessive competition and no competition at all, the choice

is obvious since Πf
I < Πm

I is always true. As to the marketer, Figure 3.4b shows

that when the marketer is not merely a price taker and it is independent from the

incumbent (this excludes f and m), its profits become larger as one moves from

sI to c to sM . When a merger with the incumbent is a possibility, the marketer

prefers it to a situation where it is an independent follower (Πm
M > ΠsI

M).
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Figure 3.5a: Ranking of CS Figure 3.5b: Ranking of W

Figures 3.5a and 3.5b confirm the basic economic principle that more compe-

tition should benefit consumers and society as a whole (CSm < CSc < CSsI <

CSsM < CSf and (Wm < W c < W sI < W sM < W f ), although we find in our

simulations a small region where, because the capacity building technology is char-

acterized by high fixed cost and very low marginal cost, society is better off under

Cournot competition than under Stackelberg leadership of the incumbent. In fact,

given that the welfare levels achieved are available, we now examine the prefer-

ences of the agents over the different scenarios.25 Table 3.2 shows the outcome of

25. Note that the transporter is indifferent among scenarios as regulation always bind its partic-
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pairwise contests based on these welfare levels. Each cell of this table shows the

choice of the agent indicated in the column in the contest indicated in the row.26

Table 3.2: Pairwise contests
Contest Consumers Incumbent Marketer Society

m vs. sI sI m, sI m sI

m vs. sM sM m, sM m, sM sM

m vs. c c m, c m, c c

m vs. f f m m f

sI vs. sM sM sI sM sM

sI vs. c sI sI c sI , c

sI vs. f f sI sI f

sM vs. c sM c sM sM

sM vs. f f sM sM f

c vs. f f c c f

Three implications of this table are worth mentioning.27 First, it appears that

having the marketer as a follower is a “poor” policy. Second, a close examination

of the regions of the parameter space indicates that there is no room for a Pareto-

improvement, i.e., a move that will make all agents better off. Third, there is a

conflict between consumers (and society) and the downstream firms in the choice

between no or some competition (m, sI , c, sM) and strong competition (f). Indeed,

downstream firms will always oppose an extreme strengthening of competition in

the downstream market.

ipation constraint.

26. A cell showing two choices corresponds to a case where the agent’s welfare ordering is not
unambiguous.

27. The reader should realize that before drawing conclusions from this table, compatibility
among the regions of the parameter space over which the choice(s) is (are) made should be
checked.
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3.5 Conclusion

This chapter has considered the relationship between the regulated portion of the

gas industry (transport) and the segment that has been subject to liberalization

(commodity supply). We model the role of pricing of transport capacity in the de-

termination of the equilibrium in the commodity market served by an incumbent

and a marketer . We first characterize the optimal capacity pricing rule assuming a

“generic” form of downstream competition. We find that the regulator should bal-

ance the impact of the transport charge between the marginal and infra marginal

units of capacity built by the transporter (upstream), on the one hand, and the

marginal profitability of the marketer and the incumbent (downstream), on the

other hand. We then proceed to specify this policy under alternative assumptions

about the behavior of firms in the downstream market. In order to compare these

second-best policies we rely on simulations.

While the simulations confirm the general wisdom that more competition is

preferred to less from the consumers and the social welfare points of view, they

also show some less expected results about the ordering of key policy variables,

such as the capacity of pipelines and its price, across different competitive scenarios

that reveal some redistribution conflicts. In particular, a reform that will support

high entry in the gas trading segment, although socially desirable, is found to

be opposed by both the existing marketer and the incumbent. The comparative

analysis has also shown the important role played by the transporter’s technology

which here is assumed to be perfectly known by the regulator. Hence, there is

clearly room for an extension of this work that relaxes the assumption of complete

information about the capacity building technology.28 Another extension that

is feasible under the framework developed in this chapter is to analyze the role

of measures of gas-release that occupy a large part of the current debate in the

industry. Both of these extensions are in our future research agenda.

28. Chapter 2 of this dissertation has explored the impact on transport capacity of asymmetric
information on technology of gas commodity supply when the downstream market is a monopoly.
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Appendix

Proof of Proposition 3.1 Condition (3.1) in the proposition is just the first-order condition

(3.7) rewritten in such a way that at the left-hand side we obtain the terms that show the impact

of pK on the profitability of the transporter, and at the right-hand side the terms that show the

impact on the incumbent and the marketer. ¥

Proof of Lemma 3.1 Differentiate the first-order conditions (3.12) and (3.13) with respect to

pK to obtain dK(·)
dpK

= 1
2p′

− dqI

dpK
, dqI(·)

dpK
= ( 2p′

C′′

I
−2p′

) dK
dpK

, and d2K(·)
dp2

K

= −d2qI

dp2
K

= Ωm[2d2K
dp2

K

p′ −
2( dqI

dpK
)2C

′′′

I ], where Ωm ≡ [(2p′ − C ′′

I )]−1. Then solve the system of equations composed of the

first-order derivatives to obtain dKm

dpK
= 1

2p′
− 1

C′′

I

< 0 and
dqm

I

dpK
= 1

C′′

I

> 0 which are rewritten as

shown in the first column of (3.14). Solve the system of equations composed of the second-order

derivatives to obtain d2Km

dp2
K

=
C

′′′

I

C
′′

I

(
dqm

I

dpK
)2 and d2Km

dp2
K

= −C
′′′

I

C
′′

I

(
dqm

I

dpK
)2 which are rewritten as shown

in the second column of (3.14). ¥

Proof of Proposition 3.2 First, substitute the results (3.14) from Lemma 3.1 into condition

(3.10) from Proposition 3.1, to obtain (3.15). Next, rewrite the first-order conditions (3.12) and

(3.13) evaluated at the optimum. This yields (3.16) and (3.17).

When φm
T > 0, the capacity pricing rule described by (3.15) is equivalent to standard average-cost

pricing. When φm
T = 0, from (3.15) we obtain that pm

K = C
′m
T (·) + (pm − pm

K − c) +
2(pm

−C
′m
I )p′

(2p′
−C

′′m
I

)
.

From (3.16) we obtain (pm − pm
K − c) > 0 which implies pm

K < C
′m
T (·) +

2(pm
−C

′m
I )p′

(2p′
−C

′′m
I

)
and C

′m
I <

c + C
′m
T . ¥

Proof of Lemma 3.2 The slopes and the convexity of the incumbent’s and marketer’s equilibrium

outputs, Ks and qs
I , under Stackelberg competition are obtained in a similar way to those under

the assumption of no downstream competition. Differentiate the first-order condition (3.18) with

respect to pK to obtain dK(·)
dpK

= 1
2 ( 1

p′
− dqI

dpK
) and d2K(·)

dp2
K

= − 1
2

d2qI

dp2
K

. Similarly, differentiate

(3.19) to get dqI(·)
dpK

= ( 2p′

2C′′

I
−3p′

) dK
dpK

and d2qI(·)
dp2

K

= −Ωs
1[2

d2K
dp2

K

p′ − 2( dqI

dpK
)2C

′′′

I ], where ΩsI

1 ≡
[(3p′ − 2C ′′

I )]−1. Solve the system of equations given by the first-order derivatives to obtain
dKsI

dpK
= 1

2p′
+ 1

4(p′
−C′′

I
) < 0 and

dq
sI
I

dpK
= − 1

2(p′
−C′′

I
) > 0 which are rewritten as shown in the

first column of (3.20). Next, solve the system of second-order derivatives and obtain d2KsI

dp2
K

=

−Ω
sI
2

2 [ dqI

dpK
C

′′′

I ] dqI

dpK
and

d2q
sI
I

dp2
K

= ΩsI

2 [ dqI

dpK
C

′′′

I ] dqI

dpK
, where ΩsI

2 ≡ [(p′ −C ′′

I )]−1, which are rewritten

as shown in the second column of (3.20). ¥

Proof of Proposition 3.3 First, substitute the results (3.20) from Lemma 3.2 into condition
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(3.10) from Proposition 3.1, to obtain (3.21). Next, rewrite the first-order conditions (3.18) and

(3.19) evaluated at the optimum. This gives (3.22) and (3.23).

When φsI

T > 0, the capacity pricing rule described by (3.21) is equivalent to standard average-cost

pricing. When φsI

T = 0, from (3.21) we obtain that psI

K = C
′sI

T (·)+ (psI −psI

K − c)+
2(psI −C

′sI
I

)p′

(3p′
−2C

′′sI
I

)
.

From (3.22) we get (psI − psI

K − c) > 0 which implies psI

K < C
′sI

T (·) +
2(psI −C

′sI
I

)p′

(3p′
−2C

′′sI
I

)
and C

′sI

I <

c + C
′sI

T . ¥

Proof of Lemma 3.2’ Differentiate the first-order conditions (3.24) and (3.25) with respect

to pK , which since C
′′′

I = 0 imply dqI(·)
dpK

= ( p′

C′′

I
−2p′

) dK
dpK

, dK(·)
dpK

=
2p′

−C′′

I

p′(2C′′

I
−3p′) [p

′ dqm

dpK
− 1], and

d2K(·)
dp2

K

= d2qI

dp2
K

= 0. Solve the system of first-order derivatives to get dKsM

dpK
= 1

2p′
+ 1

2(p′
−C′′

I
) < 0

and
dq

sM
I

dpK
= − 1

2(p′
−C′′

I
) > 0 which are rewritten as shown in the first column of (3.26). ¥

Proof of Proposition 3.3’ Substituting the results (3.26) from Lemma 3.2’ into condition

(3.10) from Proposition 3.1, we obtain (3.27). Next, rewrite the first-order conditions (3.24) and

(3.25) evaluated at the optimum,. This yields (3.28) and (3.29). The rest of the proof is omitted

as it closely follows the proof of Proposition 3.3. ¥

Proof of Lemma 3.3 Differentiate the first-order condition (3.30) with respect to pK to obtain
dK(·)
dpK

= 1
2 ( 1

p′
− dqI

dpK
) and d2K(·)

dp2
K

= − 1
2

d2qI

dp2
K

(see the proof of Lemma 3.2). Next, differentiate

(3.31) with respect to pK to get dqI(·)
dpK

= ( p′

C′′

I
−2p′

) dK
dpK

and d2qI(·)
dp2

K

= −Ωc
1[

d2K
dp2

K

p′ − ( dqI

dpK
)2C

′′′

I ],

where Ωc
1 ≡ [(2p′ − C ′′

I )]−1. Solve the system of first-order derivatives to get dKc

dpK
= 1

2p′
+

1
(3p′

−2C′′

I
) < 0 and

dqc
I

dpK
= − 1

(3p′
−2C′′

I
) > 0 which are rewritten as shown in the first column

of (3.32). Solve the system of second-order derivatives to obtain d2Kc

dp2
K

= −Ωc
2[

dqI

dpK
C

′′′

I ] dqI

dpK
and

d2qc
I

dp2
K

= 2Ωc
2[

dqI

dpK
C

′′′

I ] dqI

dpK
, where Ωc

2 ≡ [(3p′−2C ′′

I )]−1, which are rewritten as shown in the second

column of (3.32). ¥

Proof of Proposition 3.4 Substitute the results (3.32) from Lemma 3.3 into condition (3.10)

from Proposition 3.1, to obtain (3.33). Next, rewrite the first-order conditions (3.30) and (3.31)

evaluated at the optimum. This yields (3.34) and (3.35).

When φc
T > 0, the capacity pricing rule described by (3.33) is equivalent to standard average-cost

pricing. When φc
T = 0, from (3.33) we obtain that pc

K = C
′c
T (·) + (pc − pc

K − c) +
(pc

−C
′c
I )p′

(2p′
−C

′′c
I

)
.

From condition (3.34) we get (pc − pc
K − c) > 0 which implies pc

K < C
′c
T (·) +

(pc
−C

′c
I )p′

(2p′
−C

′′c
I

)
and

C
′c
I < c + C

′c
T . ¥

Proof of Lemma 3.4 Differentiate the first-order condition (3.36) with respect to pK to get
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dK(·)
dpK

= ( 1
p′

− dqI

dpK
) and d2K(·)

dp2
K

= −d2qI

dp2
K

. Next, from the proof of Lemma 3.3 we know the values

of dqI(·)
dpK

and d2qI(·)
dp2

K

. Solve the system of first-order derivatives to obtain dKf

dpK
= 1

p′
+ 1

(p′
−C′′

I
) < 0

and
dqf

I

dpK
= − 1

(p′
−C′′

I
) > 0 which are rewritten as shown in in the first column of (3.38). Next,

solve the system of second-order derivatives to get d2Kf

dp2
K

= −d2qf
I

dp2
K

= −Ωf
2 [ dqI

dpK
C

′′′

I ] dqI

dpK
, where

Ωf
2 ≡ [(p′ − C ′′

I )]−1 which are rewritten as shown in in the second column of (3.38). ¥

Proof of Proposition 3.5 Substitute the results (3.38) from Lemma 3.4 into condition (3.10)

from Proposition 3.1, to obtain (3.39). Next, rewrite the first-order conditions (3.36) and (3.37)

evaluated at the optimum. This yields (3.40) and (3.41).

When φf
T > 0, the capacity pricing rule described by (3.39) is equivalent to standard average-cost

pricing. When φf
T = 0, from (3.39) we get pf

K = C
′f
T (·) + (pf − pf

K − c) +
(pf

−C
′f
I

)p′

(2p′
−C

′′f
I

)
. From

condition (3.40), we obtain (pf − pf
K − c) = 0 which implies pf

K = C
′f
T (·) +

(pf
−C

′f
I

)p′

(2p′
−C

′′f
I

)
and

C
′f
I < c + C

′f
T . ¥
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