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Abstract. In an election, the vote shares by party on a given subdivision of a territory form a vector
with positive components adding up to 1 called a composition. Using a conventional multiple linear re-
gression model to explain this vector by some factors is not adapted for at least two reasons: the existence
of the constraint on the sum of the components and the assumption of statistical independence across
territorial units questionable due to potential spatial autocorrelation. We develop a simultaneous spatial
autoregressive model for compositional data which allows for both spatial correlation and correlations
across equations. We propose an estimation method based on two-stage and three-stage least squares. We
illustrate the method with simulations and with a data set from the 2015 French departmental election.
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1 Introduction

Some data present simultaneously the characteristics of compositional data (vectors with positive com-
ponents conveying relative information) as well as the characteristics of spatial data (presence of spatial
heterogeneity and spatial dependence). For example, land cover data contain information about different
land use shares and the statistical unit is a subdivision of a territory; among the many papers that treat
this type of data (see Leininger et al., 2013; Overmars et al., 2003; Yoshida and Tsutsumi, 2018; Pirza-
manbein et al., 2018). Another instance is in geochemistry where data consist of composition of mineral
deposits into chemical elements at different locations in geographical space, see for example Rubio et al.
(2016) who study sediments in an artic lake or Filzmoser et al. (2010) who examine the Kola moss layer
composition data from the R package StatDA (Filzmoser, 2020). This is also the case in political economy
for electoral data containing the vote shares by party in a multiparty election for a list of administrative
subdivisions of a territory as in Katz and King (1999) or for data about turnout rates as in Borghesi and
Bouchaud (2010). Other examples include the distribution of temperature data at weather stations as in
Salazar et al. (2015), the distribution of benthic macroinvertebrates at sampling stations in the Delaware
Bay in Billheimer et al. (1997).

The challenge for modelling such data is to accomodate at the same time their compositional and
spatial nature. For spatial data with a continuous domain, Pawlowsky and Burger (1992); Pawlowsky-
Glahn and Egozcue (2016); Rubio et al. (2016); Martins et al. (2016) adopt a geostatistical approach. On
the other hand, conditional autoregressive models have been developed for the multivariate regression
framework (MCAR), e.g. Mardia (1988) and Gelfand and Vounatsou (2003). An application of MCAR
to compositional data can be found in Billheimer et al. (1998) where vectors of counts are modelled by
multinomial distributions whose parameters follow a prior Gaussian Markov random field. These hier-
archical Bayesian models need Markov Chain Monte Carlo procedures for fitting. As in our application,
Pirzamanbein et al. (2018) and Leininger et al. (2013) deal with areal data. Pirzamanbein et al. (2018)
combine a Dirichlet distribution with a Gaussian Markov random field prior for the alr transformed vec-
tor of Dirichlet parameters. Leininger et al. (2013) propose a power transformation combined with an
MCAR model in order to address the problem of observed zero proportions. We choose to focus rather
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on a combination of ilr transformations with a spatial econometrics model which has the advantage of a
very easy implementation involving only ordinary least squares steps. The compositional vector being the
dependent variable, we will need spatial econometrics models for multivariate dependent variable as in
Kelejian and Prucha (2004). We develop a simultaneous spatial autoregressive model for compositional
data (CoDa) which allows for both spatial correlation and correlations across equations. We propose an
estimation method based on two-stage (S2SLS) and three-stage (S3SLS) least squares.

In Section 2, we first recall some classical facts adapted to work with CoDa. We then introduce a new
operation which will be necessary later to write our model in a simplex fashion and study its properties.
In Section 3, we recall facts about the definition and estimation of simultaneous autoregressive models
for multivariate output spatial data and combine with the tools of Section 2 to define our model for
spatio-compositional data. Section 4 presents some simulations to evaluate the quality of the S2SLS and
S3SLS methods in the multivariate case. Section 5 presents an application to election results with the
question of the impact of socio-economic variables on parties vote shares with a data set from the 2015
French departmental election. Section 6 concludes.

2 Definitions and notations in compositional data analysis

A D-composition u is a vector of D parts of some whole which carries relative information and therefore
can be represented in the so-called simplex space SD defined by Aitchison (1986):

SD =

{
u = (u1, . . . , uD)T : um > 0,m = 1, ..., D;

D∑
m=1

um = 1

}
,

where T is the transposition operator. For any vector w ∈ R+D, the closure operation is defined by

C(w) =

(
w1∑D

m=1 wm
, · · · , wD∑D

m=1 wm

)
.

Let us recall the usual operations used to define a vector structure on the simplex space.

1. ⊕ is the perturbation operation, corresponding to the addition in RD:

u⊕ v = C(u1v1, . . . , uDvD), u,v ∈ SD

2. � is the power operation, corresponding to the scalar multiplication in RD:

λ� u = C(uλ1 , . . . , uλD), λ is a scalar,u ∈ SD

Moreover, the compositional product of a matrix by a vector denoted by � is defined as follows

B � u = C

(
D∏
m=1

ub1mm , · · · ,
D∏
m=1

ubLm
m

)T

where u ∈ SD, B = (blm) with l = 1, . . . L, m = 1, . . . , D is a L×D matrix.
The simplex SD can also be equipped with the compositional/Aitchison inner product (see Aitchison,

1985; Pawlowsky-Glahn et al., 2015) in order to define distances.
The analysis of compositional data makes use of log-ratio transformations which map the simplex SD

to Rq (where most often q = D − 1) because of their degree 0 homogeneneity (scale invariance). The
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classical ones are the additive log-ratio (alr), the centered log-ratio (clr) and the isometric log-ratio (ilr)
transformations. In this paper, we will mainly use some ilr transformations. Because it is needed to
define the ilr, let us first recall the definition of the clr transformation of a vector u ∈ SD

clr(u) =

(
ln

um
g(u)

)
m=1,...,D

,

where g(u) = D
√
u1 · u2 · · ·uD is the geometric mean of the components. Let VD be a D×(D−1) contrast

matrix (e.g. Pawlowsky-Glahn et al., 2015) associated to a given orthonormal basis (e1, · · · , eD−1) of SD

by
VD = clr(e1, · · · , eD−1),

where clr is understood columnwise. For each such matrix VD, an isometric log-ratio transformation (ilr)
is then defined by:

u∗ = ilr(u) = VT
Dln(u)

where the logarithm of u ∈ SD is understood componentwise. The inverse transformation is given by:

u = ilr−1(u∗) = C(exp(VDu∗)).

Since our data is made of samples of composition vectors, we store them in a n×D matrix Y = (Yil),
i = 1, . . . , n, l = 1, . . . , D. Each row of this matrix, denoted by Yi., is a compositional column vector of
SD. Y.l, l = 1, . . . , D denotes the lth column of Y and we have

Y = [Y1. . . .Yn.]
T = [Y.1 . . .Y.D] (1)

Let us define an extension of the ilr transformation of a matrix Y by

ilr(Y) = ln(Y)VD =

ilr(Y1.)
T

...
ilr(Yn.)

T


Note that ilr(Y) is a n× (D − 1) matrix.

In spatial econometrics models, spatial weight matrices are used to specify the neighborhood structure.
For n spatial locations, the elements wij of the n×nmatrix W are measures of proximity between locations
i and j (see for instance Bivand et al., 2008, for different specifications). These matrices determine a
covariance model for the data vector and play a role similar to the spatial variogram in geostatistics. For
such a matrix and a given data vector Z of size n, the lagged vector WZ contains averages of the values
of the variable Z in neighboring locations when W is row normalized. In our case, we need to apply such
an operation to each column of the data matrix Y and we wish that the application of this process to
each column of Y results in a matrix in the same space as the original one (SD)n. As usual in CoDa,
we use the principle of working in log-ratio coordinates (Mateu-Figueras et al., 2011) and expressing the
results in the simplex. We thus define the following operation.

Definition 1. Let W be a n×n matrix. The operation ·4 is a map from the cartesian product of simplex
spaces (SD)n to itself defined by

W ·4Y = ilr−1(Wilr(Y)) = ilr−1(W ln(Y)VD) (2)

where VD is a D × (D − 1) contrast matrix.
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Note that (W ·4Y) ∈ (SD)n and Wilr(Y) ∈ (R(D−1))n.
This operation satisfies the following properties:

Proposition 1. Let Y be a n × D matrix such that each row, denoted by Yi., i = 1, . . . , n is a
compositional vector in SD. Let W = (Wij), (i, j = 1, . . . , n), a n× n matrix and α ∈ R. We have

1. W ·4(α�Y) = α� (W ·4Y).

2. ilr(W ·4(α�Y)) = αWilr(Y) = α ilr(W ·4Y).

3. (W ·4Y)i. = C
(∏n

j=1 Y
Wij

j1 ;
∏n
j=1 Y

Wij

j2 ; . . . ;
∏n
j=1 Y

Wij

jD

)
, for i = 1, . . . , n, where (W ·4Y)i. denotes

the ith row of W ·4Y.

4. Let Y1,Y2 ∈ (SD)n, then W ·4(Y1 ⊕Y2) = (W ·4Y1)⊕ (W ·4Y2).

The proof of Proposition 1 is in the appendix. Note that property 3. implies that for each individual,
each component of W ·4Y is a weighted geometric mean of its neighboring values, weighted by the
neighborhood weights.

3 Multivariate LAG regression model

The principle of compositional regression models is to use a transformation to send the data from the
simplex to some coordinate space and to postulate a gaussian regression model in the coordinate space
as in Egozcue et al. (2012). The model can then be transferred back to the simplex by the inverse
transformation. In our case, the model in coordinate space must be a multivariate regression model
because we have several response variables. For simplicity, we concentrate on the so-called LAG model
which includes endogenous lagged variables on the right hand side of the model equations. An extension
to a Durbin model would be immediate (LeSage and Pace, 2009). Since our model will be postulated
in the coordinate space we choose to star all variables and parameters in Subsection 3.1. Note that the
model we describe in Subsection 3.1 is not specific to CoDa.

3.1 Model in the log-ratio coordinates space

We consider a sample of size n and assume that we have M endogenous variables, hence M linear
regression equations (M will be D − 1 in Section 3.2). For a n ×M matrix A, we will use the same
notation as in Section 2 with A.l the lth column, and Ai. the ith row of A as a column vector.

Let Y∗ be a n×M matrix of dependent variables and X be a n×K matrix of explanatory variables.
We will allow for using a different set of explanatory variables in each equation. For this reason, we
denote by SY∗

l , SX
l , S

WY∗

l the sets of indices of the variables which appear in the lth equation for
Y∗, X, WY∗ respectively. Accordingly Y∗

SY∗
l

, XSX
l

, Y∗
SWY∗
l

will denote the columns of Y∗, X, WY∗

which appear in the lth equation.
Let ΓΓΓ∗ = (Γ∗ml) and R∗ = (R∗ml), ( m, l = 1, . . . ,M) be M ×M matrices of parameters. R∗ contains

the parameters associated to the lagged endogenous variables on the right hand side of the model equation.
As in the simultaneous equations literature in econometrics, each endogenous variable may also appear
in each model equation so that ΓΓΓ∗ contains the corresponding parameters.

Finally βββ∗ is a K ×M matrix of parameters for the explanatory variables. εεεεεεεεε∗ denotes a n×M error
matrix.

As in Kelejian and Prucha (2004), we consider the following model

Y∗.l =
∑

m∈SY∗
l

Γ∗mlY
∗
.m + XSX

l
βββ∗SX

l
+

∑
m∈SWY∗

l

R∗mlWY∗.m + εεε∗.l (3)
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Note that model (3) is written for each column of Y∗ i.e. for each component of the composition
dependent vector but the M equations are linked by the covariance structure of the errors. Indeed, we
assume that the errors are centered E(εεε∗) = 000M and that E(εεε∗i.εεε

∗
j.) = ΣΣΣ∗ if i = j and 000 if i 6= j where ΣΣΣ∗ is

a (D−1)× (D−1) covariance matrix. This means that individuals are independent but that components
of a given individual have a covariance structure ΣΣΣ∗.

Kelejian and Prucha (2004) suggest and study the properties of a Spatial Two Stage Least Square
(S2SLS) procedure as well as a Spatial Three Stage Least Square (S3SLS) procedure to estimate model (3).
Following their suggestion, we consider H a subset of linearly independent columns of the n× 3K matrix
(X,WX, W2X). Let PH = H(HTH)−1HT denote the projection matrix onto the space generated by
the columns of H. For the lth equation, we group the variables and parameters of the right hand side
into a matrix Zl of variables and a vector δδδ∗l of parameters:

Zl =
[
Y∗
SY∗
l

XSX
l

WY∗
SWY∗
l

]
;δδδ∗l =

[
ΓΓΓ∗T.l β∗Tl R∗T.l

]T
.

The S2SLS estimation method for this model then proceeds as follows for each equation (i.e. each
component) separately:

1. Perform a univariate regression of each column of Z on H and compute the fitted values Z̃l:

Z̃l = PHZl =
[
PHY∗

SY∗
l

XSX
l

PHWY∗
SWY∗
l

]
.

2. Perform a univariate regression of Y∗.l on Z̃l:

δ̃δδ
∗
l = (Z̃Tl Z̃l)

−1Z̃Tl Y∗.l.

At the end of step 2, we can calculate the residuals by

ε̃εε∗.l = Y∗.l − Ŷ∗.l = Y∗.l − Zlδ̃δδ
∗
l ,

and get an estimate of the covariance matrix ΣΣΣ∗ with

Σ̃ΣΣ
∗
ml =

ε̃εε∗T.mε̃εε
∗
.l

n
.

Until now, the covariance structure between equations has not been taken into account and the Three
Stage Least Square (S3SLS) method is supposed to correct for this. To write the expression of the S3SLS
estimator, we need to vectorize Y∗ (by stacking the columns of Y) resulting in y∗ = vec(Y∗) and to
write the explanatory matrices as follows

Z =

Z1 . . . 0

0
. . . 0

0 . . . ZM

 , Z̃ =

PHZ1 . . . 0

0
. . . 0

0 . . . PHZM

 .
We then get a corrected estimator δ̂δδ

∗
of δδδ∗

δ̂δδ
∗

= (Z̃T (Σ̃ΣΣ
∗−1
⊗ In)Z)−1Z̃T (Σ̃ΣΣ

∗−1
⊗ In)y∗ (4)

It is known that if the matrix R∗ is not diagonal, the S2SLS δ̃δδ
∗

and S3SLS δ̂δδ
∗

estimators are identical
(see Greene, 2003, p. 488).

In the application of Section 5, we consider a slightly more general model in which we include com-
positional variables among the explanatory (see for example Filzmoser et al., 2018). The additional
complexity is the same as for a non-spatial model hence for the sake of simplicity we did not consider
this extra layer in this section.
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3.2 Writing the LAG regression model in the simplex space

Starting now with a sample of compositional vectors Y in SD, and given an ilr transformation, we
postulate a model like (3) for the ilr coordinates of Y. Applying the ilr inverse transformation to each
of the equations of model (3) with M = D − 1 and using Proposition 1, we easily get that the system of
equations (3) is equivalent to the system

Yi. = RT � (W ·4Y)i.

K⊕
k=1

Xik � βββk ⊕ΓΓΓT � Yi. ⊕ εεεi. (5)

where R is a D×D matrix of parameters and where the model is now written at the individual level for all
components simultaneously whereas in (3) it was at the component level for all individuals simultaneously.
A more global way of writing the model for the whole matrix Y would be the following

Y = (W ·4Y) � R⊕X� βββ ⊕Y � Γ⊕ εεε, (6)

where for a n×D matrix U whose rows are simplex valued and a D×D matrix B, the product U�B is
an extension of the matrix product understood as the n×D matrix whose rows are the BT �Ui. vectors.

One can write relationships between parameters in coordinate space and parameters in the simplex.
The classical relationship between βββ and βββ∗ remains the same as in non spatial models (see for example
Filzmoser et al., 2018)

βββk = ilr−1(βββ∗k) = C(exp(VDβββ
∗
k)).

Considering RT � (W ·4Y)i. and ΓΓΓT � Yi. as compositional explanatory, the relationships between R
and R∗ and between Γ and Γ∗ are as follows (see Chen et al., 2017)

R = VDR∗VT
D and Γ = VDΓ∗VT

D. (7)

Equations (7) also allow to establish the link between the parameters in coordinate space for two
different ilr transformations. Coming back to the simplex after fitting the model allows to get rid of the
possible arbitrary choice of ilr transformation. These relationships are true for population parameters and
the next question is whether they still hold for the estimated parameters. Indeed the result holds because
the two steps of S2SLS are based on ordinary least squares and we know that this method preserves the
relationship for estimated parameters (see e.g. Nguyen, 2019).

4 Simulation

A simulation study of the performance of the S2SLS and S3SLS methods can be found in Das et al.
(2003) but it is restricted to the case of a single dependent variable. For this reason, we now investigate
by simulation the properties of the estimators βββ∗, R∗ and ΣΣΣ∗ of the S2SLS and S3SLS methods in the
multivariate spatial autoregressive model. We consider the n = 283 cantons of the Occitanie region in
France with a neighborhood structure based on 10 nearest neighbors. All the R code, graphs and tables
are gathered in the supplementary material available online.1

For a number of replications N = 1 000, we simulate three explanatory variables X1,X2 and X3

following the Gaussian distributions N (0, 9), N (0, 6) and N (0, 9) respectively. When simulating the two
dependent variables, we include all explanatory variables X1,X2 and X3 in each of the two equations.

1See http://www.thibault.laurent.free.fr/code/spatial_coda/
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The parameter βββ∗, the covariance matrix ΣΣΣ∗ and the matrix R∗ are respectively assigned the following
values

βββ∗ =


β∗01 β∗02

β∗11 β∗12

β∗21 β∗22

β∗31 β∗32

 =


+3 −3
+2 −3
+1 −2
−1 +3

 ; ΣΣΣ∗d̄ =

[
σ2∗

11 σ∗12

σ∗21 σ2∗
22

]
=

[
0.7 0.09
0.09 0.1

]
; R∗d̄ =

[
R∗11 R∗12

R∗21 R∗22

]
=

[
0.5 0.6
0.4 0.3

]

Alternative diagonal matrices for ΣΣΣ∗ and R∗ are also considered

ΣΣΣ∗d =

[
0.7 0
0 0.1

]
; R∗d =

[
0.5 0
0 0.3

]
.

It is important to note that such a model is defined primarily in the simplex and has different repre-
sentations in coordinate space according to the choice of ilr transformation. Therefore, constraining the
matrix R∗ to be diagonal for a given ilr transformation does not imply that, for the same model in the
simplex, the matrix R∗ would be diagonal with a different choice of ilr.

Note that the results are not too sensitive to the simulation framework except for the estimates of
the error variances when the noise to signal ratio becomes too large. We consider four data generating
processes (DGP) respectively denoted by ΣΣΣ∗

d̄
R∗d̄, ΣΣΣ∗

d̄
R∗d, ΣΣΣ∗dR

∗
d̄ and ΣΣΣ∗dR

∗
d according to the choice of

matrices ΣΣΣ∗ and R∗. For each DGP, we calculate a Monte Carlo performance measure of the estimators
proposed in Section 3 and for the MLE estimators in the diagonal case. The performance is measured by
the relative root mean squared error (RRMSE), which is defined for an estimator θ̂ of a parameter θ by:

RRMSE(θ̂) =
RMSE(θ̂)

|θ|
with RMSE(θ̂) =

√√√√ 1

N

N∑
i=1

(
θ̂(i) − θ

)2

.

Table 1 presents the RRMSE for the S2SLS method, S3SLS and ML methods for all DGPs. We did
not report the relative bias in Table 1 because its value is quite similar to the RRMSE showing that
the bias dominates the error. The percentage of error is generally small with a maximum of 18.16% for
the variance parameters and values less than 2.15% for the other parameters. For all DGPs, the largest
differences between the estimates occur for the estimation of the intercepts and for the estimation of
the R∗ matrix and these differences are small in all cases. We have done more simulations for other
values of ΣΣΣ∗ and R∗. The code is presented in the supplementary material and yields very similar results.
Concerning the βββ and R estimates, only the S2SLS results are reported since S3SLS yields exactly the
same results for the first two DGPs as proved by the theory. Concerning the variance estimates, note
that there is no difference in its computation for the S2SLS and S3SLS. Finally, if we compare the three
estimates in the case of DGP ΣΣΣ∗dR

∗
d, we can see that the results are quite close showing that S2SLS is a

practical alternative to maximum likelihood in the framework of this model.

5 Application to political economics

Vote share data of the 2015 French departmental election of the Occitanie region in France are collected
from the Cartelec website2. Corresponding socio-economic data (for 2014) are downloaded from the
INSEE website3. The number of political parties presenting candidates at that election is higher than 15.
However for simplicity reasons and due to the particular interest in the extreme right party in France,

2https://www.data.gouv.fr/fr/datasets/elections-departementales-2015-resultats-par-bureaux-de-vote/
3https://www.insee.fr/fr/statistiques
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Table 1: The RRMSE (in %) for all DGPs and parameters

Parameters
RRMSE(%)

ΣΣΣ∗d̄R
∗
d̄ ΣΣΣ∗dR

∗
d̄ ΣΣΣ∗d̄R

∗
d ΣΣΣ∗dR

∗
d

S2SLS S2SLS S2SLS S3SLS S2SLS S3SLS MLE

β∗01 1.92 1.91 2.13 2.13 2.15 2.15 2.15
β∗11 0.28 0.27 0.29 0.29 0.29 0.29 0.29
β∗21 0.82 0.81 0.77 0.77 0.83 0.83 0.83
β∗31 0.62 0.63 0.59 0.59 0.60 0.60 0.60
β∗02 0.75 0.70 0.72 0.72 0.72 0.72 0.72
β∗12 0.07 0.07 0.07 0.07 0.07 0.07 0.07
β∗22 0.15 0.15 0.15 0.15 0.15 0.15 0.15
β∗32 0.08 0.08 0.08 0.08 0.08 0.08 0.08
R∗11 1.04 1.07 0.90 0.89 0.92 0.92 0.92
R∗12 0.51 0.50 - - - - -
R∗21 0.52 0.52 - - - - -
R∗22 0.41 0.39 0.39 0.38 0.40 0.40 0.40
σ2∗

11 8.29 8.45 8.39 8.39 8.80 8.80 8.87
σ∗12 18.01 - 18.15 18.16 - - -
σ∗21 18.01 - 18.15 18.16 - - -
σ2∗

22 8.31 8.54 8.21 8.21 8.49 8.49 8.54

we have aggregated them into three main components: Left, Right and Extreme-Right4. The dependent
variable is thus a compositional variable which contains the vote shares of Left, Right and Extreme Right
party. Cantons with at least one missing value on one of the components of the dependent vector have
been eliminated resulting in n = 207 cantons in the final dataset. The loss of information is substantial
and may cause bias. However the main focus of this paper is to illustrate the methodology. We use the
following contrast matrix for D = 3 (see e.g. Pawlowsky-Glahn et al., 2015, p. 40)

V3 =

 2/
√
6 0

−1/
√
6 1/

√
2

−1/
√
6 −1/

√
2

 .
This particular matrix defines the following ilr coordinates

ilr1(x) =
1√
6

(2 log x1 − lnx2 − log x3) =
2√
6

log
x1√
x2x3

ilr2(x) =
1√
2

(log x2 − log x3) =
1√
2

log
x2

x3
.

With this choice, the first ilr coordinate opposes the Left wing to the geometric mean of the Right wing
and the Extreme Right party and the second opposes the Right wing to the Extreme Right party.
Our explanatory variables, presented in Table 2, include both compositional and classical variables. For
the three compositional variables, Diploma, Employment and Age, the log-ratio coordinates have been
calculated using contrast matrices built from sequential binary partitions (see Nguyen, 2019, for details).
The categories of these variables are as follows

• Employment has five levels: AZ (agriculture, fisheries), BE (manufacturing industry, mining indus-
try and others), FZ (construction), GU (business, transport and services) and OQ (public admin-
istration, teaching, human health),

4For more details, see https://fr.wikipedia.org/wiki/Elections départementales francaises de 2015
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Table 2: Data description.

Variable name Description

Vote share Left(L), Right(R), Extreme Right(XR)
Diploma <BAC, BAC, SUP
Employment AZ, BE, FZ, GU, OQ
Age Age 1840, Age 4064, Age 65

unemp Unemployment rate
nbvoter Number of voters
income Proportion of people who pay income tax

• Diploma has three levels: <BAC for people with at most some secondary education, BAC for people
with at least some secondary education and at most a high school diploma, and SUP for people
with a university diploma,

• Age has three levels: Age 1840 for people from 18 to 40 years old, Age 4064 for people from 40 to
64 years old, and Age 65 for elderly.

An additional variable measuring the number of voters in each canton has been included to take into
account a potential size effect.

This data set has been analyzed in Nguyen and Laurent (2019) without taking into account the spatial
structure and at a different spatial scale. We use model (3) in the coordinate space with ΓΓΓ∗ = 0. Indeed,
the reason for including spatially lagged dependent variable in the equations is for taking into account
the spatial dependence and this justifies terms such as

∑
m∈SWY∗

l
R∗mlWY∗.m in model (3). But in our

case, there is no economic reason for introducing terms such as
∑
m∈SY∗

l
Γ∗mlY

∗
.m on the right hand side

of the equations in the coordinate space. There is also no reason for assuming that the R∗ matrix is
diagonal for this particular choice of ilr transformation and therefore, we do not impose this constraint.
One important consequence of this choice is that, as we mentioned before, S2SLS yield the same results
as S3SLS so that we carry out the S2SLS method from Section 3 for estimating the parameters.

First of all, for comparing the independence model to the spatial dependence one, we compute Moran
test statistic of the residuals as well as the LMlag test statistics (separately for each ilr) and these
indicate that the LAG model is preferable. Then looking at the size effect in Table 3, the number of
voters is significant in both spatial and non-spatial model in the 2nd component (indeed there is some
heterogeneity in the distribution of the number of voters at the canton level). The spatial dependence
parameters (elements of the matrix R∗) are significant on the diagonal showing that a spatial dependence
phenomenon is present in this data. The sign and significance of most βββ parameters are very comparable,
except in few cases (the unemployment rate, proportion of people who pay income tax, diploma and age
variables) for which the significance changes from one ilr coordinate to the other. Further interpretations
of the model parameters in the spatial model would go through the impacts computations as in LeSage
and Pace (2009). But one would have to develop this tool in a multivariate framework and this is out
of the scope of the present work. When we will be able to do so, this spatial LAG model will allow to
evaluate spillover effects across cantons.

6 Conclusion

Motivated by an example in political economics, we develop a simultaneous spatial autoregressive model
for compositional data combining the simultaneous systems of spatially interrelated cross sectional equa-
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Table 3: Multivariate independent and spatial regression models with compositional and classical ex-
planatory variables

Independence model Spatial dependence model
Y∗.1 Y∗.2 Y∗.1 Y∗.2

Constant −4.12(1.17)∗∗∗ −4.59(0.58)∗∗∗ −2.98(1.16)∗∗ −2.47(0.6)∗∗∗

diplome ilr1 −1.29(0.5)∗ −0.3(0.25) −0.72(0.46) −0.47(0.24)∗

diplome ilr2 −0.02(0.61) −0.96(0.3)∗∗ +0.07(0.53) −0.58(0.27)∗

employ ilr1 −0.18(0.14) −0.1(0.07) −0.11(0.12) −0.12(0.06)
employ ilr2 +0.5(0.16)∗∗ −0.02(0.08) +0.35(0.15)∗ +0.04(0.08)
employ ilr3 −0.21(0.11) +0(0.06) −0.18(0.1) +0.08(0.05)
employ ilr4 +0.21(0.06)∗∗∗ +0.02(0.03) +0.13(0.05)∗∗ −0.02(0.03)
age ilr1 −1.17(0.38)∗∗ +1.02(0.19)∗∗∗ −0.9(0.4)∗ +0.31(0.21)
age ilr2 +0.5(0.31) −1.27(0.16)∗∗∗ +0.66(0.32)∗ −0.64(0.17)∗∗∗

unemp +0.22(2.36) +8.93(1.18)∗∗∗ −0.88(2.86) +1.82(1.48)
income +4.45(0.91)∗∗∗ +1.28(0.45)∗∗ +3.39(0.82)∗∗∗ +0.71(0.42)
nbvoter +0.04(0.09) +0.22(0.04)∗∗∗ +0.07(0.08) +0.15(0.04)∗∗∗

R∗.1 - - +0.65(0.16)∗∗∗ −0(0.08)
R∗.2 - - +0.18(0.18) +0.63(0.09)∗∗∗

Σ∗.1 +0.21 −0.02 +0.15 −0.03
Σ∗.2 −0.02 +0.05 −0.03 +0.04

Nb. Obs. 207 207 207 207
Moran’s I test 7.98∗∗∗ 5.26∗∗∗ - -
LMlag 55.01∗∗∗ 38.72∗∗∗ - -
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

tions of Kelejian and Prucha (2004) and the compositional regression models (Filzmoser et al., 2018,
e.g.). We propose an implementation using spatial two-stage and three-stage methods which are easy to
implement.

There are several directions we could consider to go further in this framework. We could first of all
consider alternative estimation methods. For example partial least squares procedures for the Spatial
LAG model have been proposed in Wang et al. (2019) but for a single dependent variable. Similarly and
with the same restriction, Spatial regression trees are developed for the LAG model in Wagner and Zeileis
(2019). In a different direction, the aggregation of political parties in three blocks could be reconsidered.
On the one hand, this aggregation avoids the zero problem due to the absence of some parties in some
cantons but on the other hand it results in an information loss: imputation methods could be used to
solve this as in Palarea-Albaladejo and Mart́ın-Fernández (2015). An extension to multivariate spatial
error models (SEM) does not seem too complex but would need an additional step in the S3SLS procedure
as in Kelejian and Prucha (2004). Finally, concerning the interpretation of the parameters of the spatial
model, two possibilities have to be explored further. The first one is the interpretation in coordinate
space. In a spatial model, interpretation of the parameters goes through the computation of impacts but
to our knowledge, this has never been done in the multivariate LAG model. The second one is to obtain
interpretations of the parameters in the simplex as in Morais et al. (2018) which implies being able to
write the reduced form of the model in the simplex space.

10



7 Acknowledgements

We acknowledge funding from the French National Research Agency (ANR) under the Investments for
the Future (Investissements d’Avenir) program, grant ANR-17-EURE-0010

8 Appendix

Proof of Proposition 1. Let Y ∈ SD, W be a n× n matrix, α be a scalar, and let (W ·4Y)i. denotes
the ith row of W ·4Y, i, j = 1, . . . , n, l,m = 1, . . . , D.
1. ilr(W ·4(α�Y)) = ilr(W ·4Yα) = αW lnT (Y)VD = αWilr(Y) = α ilr(W ·4Y).
2. We have

ilr(W ·4(α�Y)) = ilr(W ·4Yα) = αilr(W ·4Y)

then
ilr−1(ilr(W ·4(α�Y))) = ilr−1(αilr(W ·4Y)) = α� (W ·4Y)

Thus,
W ·4(α�Y) = α� (W ·4Y).

3. We have

(W ·4Y)i. = ilr−1(ilr((W ·4Y)i.))

= ilr−1(Wilr(Y))i.

= C(exp(Wilr(Y)VT
D)i.)

where

(Wilr(Y)VT
D)i. =

ln

n∏
j=1

(
Yj1∏D

l=1 Y
1/D
jl

)Wij

; ln

n∏
j=1

(
Yj2∏D

l=1 Y
1/D
jl

)Wij

; . . . ; ln

n∏
j=1

(
YjD∏D

l=1 Y
1/D
jl

)Wij
 .

Thus,

(W ·4Y)i. = C

 n∏
j=1

(
Yj1∏L

l=1 Y
1/D
jl

)Wij

;

n∏
j=1

(
Yj2∏L

l=1 Y
1/D
jl

)Wij

; . . . ;

n∏
j=1

(
YjD∏L

l=1 Y
1/D
jl

)Wij


= C

 n∏
j=1

Y
Wij

j1 ;

n∏
j=1

Y
Wij

j2 ; . . . ;

n∏
j=1

Y
Wij

jD


4. Let Y1,Y2 ∈ (SD)n, and let Y∗1 = ilr(Y1), Y∗2 = ilr(Y2), then

ilr−1(ilr(W ·4(Y1 ⊕Y2))) = ilr−1(W(Y∗1 + Y∗2))

= ilr−1(WY∗1 + WY∗2)

= ilr−1(Wilr(Y1) + Wilr(Y2))

= ilr−1(ilr(W ·4Y1) + ilr(W ·4Y2)))

= ilr−1(ilr(W ·4Y1))) + ilr−1(ilr(W ·4Y2)))

= (W ·4Y1)⊕ (W ·4Y2)

Thus,
W ·4(Y1 ⊕Y2) = (W ·4Y1)⊕ (W ·4Y2)
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