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Abstract

Despite the importance of expectiles in fields such as econometrics, risk manage-
ment, and extreme value theory, expectile regression unfortunately so far remains
limited to single-output problems. To improve on this, we define hyperplane-valued
multivariate expectiles that show strong advantages over their point-valued competi-
tors. Our expectiles are directional in nature and provide centrality regions when all
directions are considered. These regions define a new statistical depth, the halfspace
expectile depth, that is an L2 version of the celebrated (L1) Tukey halfspace depth. We
study thoroughly the proposed expectiles, the expectile depth, and the corresponding
regions. When compared to their L1 counterparts, these concepts enjoy distinctive
properties that will be of primary interest to practitioners. In particular, expectile
depth is maximized at the mean vector, is smoother than the halfspace depth, and
exhibits surprising monotonicity properties that are key for computational purposes.
Finally, the proposed multivariate expectiles allow us to define multiple-output ex-
pectile regression methods, that, in risk-oriented applications in particular, dominate
their analogs based on standard quantiles.
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1 Introduction

Whenever one wants to assess the impact of a vector of covariates X on a scalar response Y ,

mean regression, in its various forms (linear, nonlinear, or nonparametric), remains by far

the most popular method. Mean regression, however, only captures the conditional mean

µ(x) := E[Y |X = x] = arg min
y∈R

E
[
(Y − y)2 − Y 2|X = x

]
of the response, hence fails to describe thoroughly the conditional distribution of Y given X.

This was the main motivation to introduce the Newey and Powell (1987) expectile regression,

that considers the conditional expectiles

eα(x) := arg min
y∈R

E
[
ρα(Y − y)− ρα(Y )|X = x

]
, α ∈ (0, 1), (1)

where ρα(t) := {(1 − α)I[t < 0] + αI[t > 0]}t2 is an asymmetric quadratic loss function

(throughout, I[A] stands for the indicator function of A). Like the quantile regression

from Koenker and Basset (1978), that is obtained by substituting the absolute function |t|

for the quandratic one t2 in ρα(t), expectile regression fully characterizes the conditional

distribution of the response, but it nicely includes the conditional mean µ(x) as a particular

case. Sample conditional expectiles, unlike their quantile counterparts, are sensitive to

extreme observations, which may actually be an asset in some applications; in financial

risk management, for instance, quantiles are often criticized as too liberal or optimistic

(due to their insensitivity to extreme losses) and expectiles are therefore favoured in any

prudent and reactive risk analysis (Daouia et al., 2018).

Expectile regression shows other advantages over quantile regression, of which we men-

tion only a few here. First, inference on quantiles requires estimating nonparametrically

the conditional density of the response at the considered quantiles, which is notoriously

difficult. In contrast, inference on expectiles can be performed without resorting to any
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smoothing, bootstrap or Bayesian technique, which makes it easy, e.g., to test for ho-

moscedasticity or for conditional symmetry in linear regression models (Newey and Powell,

1987). Second, since expectile regression encompasses classical mean regression, it is closer

to the least squares notion of explained variance and, in parametric cases, expectile re-

gression coefficients can be interpreted with respect to variance heteroscedasticity. This is

of particular relevance in complex regression specifications including nonlinear, random or

spatial effects (Sobotka and Kneib, 2012). Third, expectile smoothing techniques, based on

kernel smoothing (Yao and Tong, 1996) or penalized splines (Schnabel and Eilers, 2009),

show better smoothness and stability than their quantile counterparts and also make expec-

tile crossings far more rare than quantile crossings; see Schnabel and Eilers (2009), Eilers

(2013) and Schulze Waltrup et al. (2015). These points explain why expectiles recently

regained much interest in econometrics; see, e.g., Kuan et al. (2009), De Rossi and Harvey

(2009), and Embrechts and Hofert (2014).

Despite these nice properties, expectile regression still suffers from an important draw-

back, namely its limitation to single-output problems. In contrast, many works developed

multiple-output quantile regression methods. We refer, e.g., to Chakraborty (2003), Cheng

and De Gooijer (2007), Hallin et al. (2010), Cousin and Di Bernardino (2013), Waldmann

and Kneib (2015), Hallin et al. (2015), Carlier et al. (2016, 2017), and Chavas (2018), with

applications in particular in the analysis of growth trajectories; see, e.g., Wei (2008) or

McKeague et al. (2011). This is in line with the fact that defining a satisfactory concept of

multivariate quantile is a classical problem that has attracted much attention in the liter-

ature (we refer to Serfling (2002) and to the references therein), whereas the literature on

multivariate expectiles is much sparser. Some early efforts to define multivariate expectiles

can be found in Koltchinski (1997), Breckling et al. (2001) and Kokic et al. (2002), that all

define more generally multivariate versions of the M-quantiles from Breckling and Cham-
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bers (1988); a first concept of multivariate M-quantile was actually already discussed in

Breckling and Chambers (1988) itself. Recently, there has been a renewed interest in defin-

ing multivariate expectiles; see, e.g., Cousin and Di Bernardino (2014), Maume-Deschamps

et al. (2017a,b), and Herrmann et al. (2018). Multivariate risk handling in finance and

actuarial sciences is mostly behind this growing interest.

This paper introduces a concept of multivariate expectiles that enjoys many desirable

properties, particularly in terms of affine equivariance (while this equivariance property is

a standard requirement in the companion problem of defining multivariate quantiles, the

available concepts of multivariate expectiles are at best orthogonal-equivariant). Like their

competitors, our multivariate expectiles are directional quantities, but they are hyperplane-

valued rather than point-valued. Despite this different nature, they still generate centrality

regions when all directions are considered. While this has not been discussed in the mul-

tivariate expectile literature, this defines an expectile concept of statistical depth. The

resulting halfspace expectile depth is the L2 version of the Tukey (1975) halfspace depth

and satisfies the desirable properties of depth from Zuo and Serfling (2000). Remarkably,

this new depth can alternatively be obtained by replacing, in the halfspace depth, standard

quantile outlyingness with expectile outlyingness. This is a key result that allows us to

study expectile depth. This new depth offers many properties that, in comparison with

halfspace depth, should be most appealing to practitioners. In particular, it is maximized

at the mean vector, it is smooth, and it shows a surprising monotonicity that is key for

its computation. Finally, our multivariate expectiles allow us to define multiple-output ex-

pectile regression methods, that, in risk-oriented applications in particular, will dominate

their analogs based on standard quantiles.

The outline of the paper is as follows. In Section 2, we briefly review the concept of

univariate expectile. In Section 3, we introduce our concept of multivariate expectiles and
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compare the resulting expectile regions with those associated with alternative expectile

concepts. In Section 4, we define the expectile depth and investigate its properties. In

Section 5, we treat several real data examples, which gives us the opportunity to show that

the proposed concept allows performing multiple-output expectile regression. Supplemen-

tary materials provide the following further contributions: for the sake of completeness, we

describe there some of the main competing multivariate expectile concepts (Section S.1).

We compute expectile depth and expectile depth regions in several multivariate examples

(Section S.2). We state asymptotic results for the proposed expectile depth (Section S.3).

We illustrate on simulated data the proposed multiple-output expectile regression meth-

ods and show that these dominate the corresponding quantile-based methods in terms of

crossings (Section S.4). We discuss the relation between multivariate expectiles and risk

measures, and we show that our expectiles satisfy the coherency axioms of multivariate

risk measures (Section S.5). Finally, we prove all results of the paper (Section S.6).

2 Univariate expectiles and expectile depth

The expectiles from Newey and Powell (1987) arise as the solution of an asymmetric least

squares problem. More precisely, an order-α expectile of P (a probability measure over R

with finite first moment) is

eα(P ) = arg min
z∈R

E
[
ρα(Z − z)− ρα(Z)

]
, (2)

where ρα is the asymmetric quadratic loss function in (1) and where the random variable Z

has distribution P . The mean µ(P ) = E[Z] is obtained for α = 1/2, and the interex-

pectile intervals [eα(P ), e1−α(P )] (with α < 1/2) form a family of nested regions that all

contain the mean. Other functionals of interest can be built, such as the “interpexpectile
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range” σ(P ) := e3/4(P ) − e1/4(P ), which is a scale measure. Since the minimizer in (2)

may be non-unique, we will rather define the order-α expectile of P as

eα(P ) := inf{z ∈ R : G(z) ≥ α}, with G(z) :=
E[|Z − z|I[Z ≤ z]]

E[|Z − z|]
, (3)

which is indeed a particular minimizer; see the theorem in Jones (1994) or its generalization

in Theorem S.4, that also state that G is a (continuous) cumulative distribution function.

For later purposes, it is important to note that the larger G(z)(≤ 1/2) (resp., 1−G(z)(≤

1/2)), the less z is outlying below (resp., above) the central location µ(P ). Therefore,

D(z, P ) := min(G(z), 1−G(z)) measures the centrality—as opposed to outlyingness—of z

with respect to P . In other words, D(z, P ) defines a measure of statistical depth over R;

see Zuo and Serfling (2000). To the best of our knowledge, this expectile depth has not

been considered in the literature. The corresponding depth regions Rα(P ) := {z ∈ R :

D(z, P ) ≥ α} coincide with the interexpectile intervals [eα(P ), e1−α(P )] considered above.

The deepest point is the mean µ(P ), as it is for the only other L2-flavoured depth in the

literature, namely the zonoid depth from Koshevoy and Mosler (1997).

It is useful to compare with the corresponding L1 quantities that are obtained by substi-

tuting |t| for t2 in the asymmetric L2 loss ρα above. This leads to the usual quantiles qα(P )

and to the underlying distribution function G(z) = P[Z ≤ z] for which the resulting

depth D(z, P ) := min(G(z), 1−G(z − 0)) is the celebrated Tukey (1975) halfspace depth;

throughout, P refers to the probability space (Ω,A,P) on which all random variables and

random vectors are defined, and f(z − 0) stands for the limit of f(y) as y converges to z

from below. The depth regions are therefore the interquantile intervals [qα(P ), q1−α(P )]

(with α < 1/2) that all contain the deepest point q1/2(P ), the usual median. Obviously,

the correspondance between univariate expectiles and expectile depth is as strong as the

well-known one between usual quantiles and halfspace depth.
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Now, far from restricting to R, the halfspace depth was introduced as a device to order

multivariate data points in Rd and actually finds most of its applications there, such as, for

instance, in the context of supervised classification; see, e.g., Li et al., 2012, and the many

papers that built on this work. It is therefore desirable to extend expectile depth to Rd and

to introduce a concept of multivariate expectiles bearing a connection with multivariate

expectile depth that is as strong as in the univariate case. This is one of the objectives of

this paper. We start by introducing the proposed multivariate expectiles.

3 Our multivariate expectiles

The first multivariate expectiles were defined in Breckling and Chambers (1988) as spe-

cial cases of more general multivariate M-quantiles (the quantile and expectile particu-

lar cases were investigated in Chaudhuri (1996) and Herrmann et al. (2018), where the

quantiles/expectiles are called “geometric”). Since then, several concepts of multivariate

expectiles have been proposed. For the sake of completeness, we describe the multivariate

expectiles above, as well as those resulting from Breckling et al. (2001) and Kokic et al.

(2002), in Section S.1 of the supplement. For now, it is only important to mention that,

possibly after an unimportant reparametrization, all aforementioned multivariate expec-

tiles can be written as functionals P 7→ eα,u(P ) that take values in Rd and are indexed by

a scalar order α ∈ (0, 1) and a direction u ∈ Sd−1 := {z ∈ Rd : ‖z‖2 := z′z = 1}; here, P is

a probability measure over Rd. Typically, eα,u(P ) does not depend on u for α = 1/2, and

the resulting common location is the center of P .

In the univariate case, it is often important to know whether some test statistic takes

a value below or above a given quantile, that is used as a critical value; in the multivariate

case, point-valued quantiles cannot be used as critical values with vector-valued test statis-
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tics, which suggests favouring hyperplane-valued multivariate quantiles. Since expectiles

are also quantiles (of the transformation G of the original distribution; see (3)), this pro-

vides a motivation to propose multivariate expectiles that, unlike their competitors above,

are hyperplane-valued rather than point-valued. To define the new multivariate expectiles,

we introduce the collection Pd of probability measures P over Rd that have finite first mo-

ments and that do not attribute probability one to any hyperplane of Rd. We then adopt

the following definition.

Definition 1. Fix P ∈ Pd and let Z be a random d-vector with distribution P . For

any u ∈ Sd−1, denote as Pu the distribution of u′Z. Then, for any α ∈ (0, 1) and u ∈ Sd−1,

the order-α expectile of P in direction u is the hyperplane

πα,u(P ) =
{

z ∈ Rd : u′z = eα(Pu)
}
,

where eα(Pu) is the order-α expectile of Pu; see (3). The upper-halfspace Hα,u(P ) =
{
z ∈

Rd : u′z ≥ eα(Pu)
}

will then be called order-α expectile halfspace of P in direction u.

These expectile hyperplanes πα,u are linked in a straightforward way to the direction u,

as they are simply orthogonal to u. In contrast, the point-valued competitors mentioned

above typically depend on u in an intricate way, and in particular eα,u(P ) usually does

not belong to the halfline with direction u originating from the corresponding center (see

above). Note that the “intercepts” of our hyperplanes are the univariate expectiles eα(Pu)

of the projection u′Z of Z onto u, hence also allow for a direct interpretation.

Unlike their competitors, our multivariate expectiles are equivariant under affine trans-

formations. We have the following result.

Theorem 1. Fix P ∈ Pd. Let A be an invertible d× d matrix and b be a d-vector. Then,

for any α ∈ (0, 1) and u ∈ Sd−1,

πα,uA
(PA,b) = Aπα,u(P ) + b and Hα,uA

(PA,b) = AHα,u(P ) + b,
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where uA := (A−1)′u/‖(A−1)′u‖ and where PA,b is the distribution of AZ + b when Z is

a random d-vector with distribution P .

At first sight, a possible advantage of point-valued expectiles eα,u(P ) is that they nat-

urally generate contours and regions. More precisely, they allow considering, for any α ∈

(0, 1
2
], the order-α expectile contour {eα,u(P ) : u ∈ Sd−1}, the interior part of which is then

the corresponding order-α expectile region. Our hyperplane-valued expectiles, however,

also provide centrality regions, hence corresponding contours.

Definition 2. Fix P ∈ Pd. For any α ∈ (0, 1
2
], the order-α expectile region of P is

Rα(P ) =
⋂

u∈Sd−1 Hα,u(P ) and the corresponding order-α contour is the boundary ∂Rα(P )

of Rα(P ).

Substituting the quantiles qα(Pu) for the expectiles eα(Pu) in Definition 1 would provide

the quantile hyperplanes/halfspaces from Paindaveine and Šiman (2011), which, through

the construction in Definition 2, would provide the halfspace Tukey (1975) depth regions

(see Theorem 2 in Kong and Mizera, 2012). The proposed regions can therefore be regarded

as expectile analogs of the Tukey quantile ones. In line with this, the quantile regions in the

univariate case d = 1 are the interquantile intervals [qα(P ), q1−α(P )], whereas the regions

from Definition 2 for d = 1 reduce to the interexpectile intervals [eα(P ), e1−α(P )].

Since expectiles are monotone non-decreasing functions of their order α, the regionsRα(P )

are nested (the larger α, the smaller the region). The proposed regions enjoy many nice

properties compared to their competitors resulting from point-valued expectiles, as we

show on the basis of Theorem 2 below. To state the result, we define the C-support of P

as C(P ) := {z ∈ Rd : P[u′Z ≤ u′z] > 0 for any u ∈ Sd−1}, where the random d-vector Z

has distribution P . Clearly, C(P ) can be thought of as the convex hull of P ’s support.
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Theorem 2. Fix P ∈ Pd. Then, for any α ∈ (0, 1
2
], the region Rα(P ) is a convex and

compact subset of C(P ). Moreover, Rα(PA,b) = ARα(P ) + b for any invertible d × d

matrix A and d-vector b.

No competing expectile regions combine these properties. For instance, the expectile

regions from Herrmann et al. (2018) may extend far beyond the convex hull of the support,

just like the original M-quantile regions from Breckling and Chambers (1988); see below.

This was actually the motivation for the alternative proposals in Breckling et al. (2001)

and Kokic et al. (2002). The regions introduced in these two papers, however, may fail

to be convex, which is unnatural. More generally, none of the competing expectile regions

are affine-equivariant. This may result in quite pathological behaviors. In the quantile

case, for instance, Theorem 2.2 from Girard and Stupfler (2017) implies that, if P is

elliptically symmetric with density f , then, for small α, the geometric quantile contours

from Chaudhuri (1996) are “orthogonal” to the principal component structure of P , in the

sense that these contours are furthest (resp., closest) to the symmetry center of P in the last

(resp., first) principal direction. Our empirical results below show that geometric expectile

regions suffer the same pathological behaviour. In contrast, the affine-equivariance result

in Theorem 2 ensures that the shape of our expectile regions will match the principal

component structure of P .

We illustrate this on the “cigar-shaped” data example from Breckling et al. (2001) and

Kokic et al. (2002), for which P = Pn is the empirical probability measure associated

with n = 200 bivariate observations whose x-values form a uniform grid in [−1, 1] and

whose y-values are randomly drawn from the normal distribution with mean 0 and vari-

ance .01. Figure 1 draws, for several orders α, the various expectile contours mentioned in

the previous paragraph (our contours ∂Rα(Pn) were computed by replacing the intersec-

tion in Definition 2 by an intersection over 500 equispaced directions u in S1; all competing
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contours require a similar discretization). For the sake of comparison, we also show the

corresponding quantile contours. Clearly, the geometric expectiles from Herrmann et al.

(2018) (as well as their quantile counterparts from Chaudhuri, 1996) extend much beyond

the convex hull of the data points. Extreme geometric expectiles also show the aforemen-

tioned pathological behavior relative to the principal component structure of P . Finally,

the outer expectile (and quantile) regions from Breckling et al. (2001) and Kokic et al.

(2002) are non-convex in most cases. In line with Theorem 2, our expectile regions and

contours do not exhibit these deficiencies.

4 Halfspace expectile depth

The expectile regions Rα(P ) are centrality regions, in the sense that they group locations z

according to their centrality with respect to P . This leads to the following expectile-

flavoured concept of statistical depth.

Definition 3. Fix P ∈ Pd. Then, the halfspace expectile depth (HED) of z with respect

to P is HED(z, P ) = sup{α ∈ (0, 1
2
] : z ∈ Rα(P )} (where we define sup ∅ as zero).

In this section, we investigate the properties of this new depth and we show its advan-

tages over its quantile counterpart, namely the Tukey (1975) halfspace depth.

4.1 Basic properties and links with other depths

For any depth, the corresponding depth regions, that collect locations with depth larger

than or equal to α, are of particular interest and reveal interesting features of the underlying

distribution (Section 5.2 will illustrate this in a regression framework). The following result
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Figure 1: (Top:) the geometric expectile contours from Herrmann et al. (2018) (left) and

geometric quantile contours from Chaudhuri (1996) (right), for the cigar-shaped data de-

scribed in Section 3 and for α = .00001, .0005, .005, and .25 (for the smallest α, the quan-

tile contour is outside the plot). (Bottom left:) the expectile contours from Breckling et al.

(2001) (blue), the (δ = 10)-version of the Kokic et al. (2002) expectile contours (orange),

and the proposed expectile contours (green), for the same data and for α = 1/n = .005

and .25; we use the same value of δ as in Kokic et al. (2002). (Bottom right:) the quantile

versions of the contours in the bottom left panel. In each panel, the (n = 200) data points

are shown in grey.
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shows that halfspace expectile depth regions coincide with the centrality regions introduced

in the previous section.

Theorem 3. Fix P ∈ Pd. Then, for any α ∈ (0, 1
2
], the halfspace expectile depth region

{z ∈ Rd : HED(z, P ) ≥ α} coincides with Rα(P ).

This result has several interesting consequences. First, it confirms that the halfspace

expectile depth can be regarded as the expectile version of the halfspace depth (which of

course justifies the terminology): substituting quantiles for expectiles in Definition 3, that

is, substituting the quantiles qα(Pu) for the expectiles eα(Pu) in the halfspaces Hα,u(P )

leading to the regions Rα(P ) there, would indeed provide the halfspace depth, since we

showed in Section 3 that the quantile version of the centrality regions Rα(P ) are the

halfspace depth regions. Another consequence of Theorem 3 is that the HED is, like the

halfspace depth, quasi-concave (this follows from the convexity of the regions Rα(P )). A

further property the HED shares with the halfspace depth is that it is a statistical depth

function in the sense of Zuo and Serfling (2000). We indeed have the following result.

Theorem 4. For any P ∈ Pd, HED(z, P ) satisfies the following properties: (i) (affine

invariance:) for any invertible d × d matrix A and d-vector b, HED(Az + b, PA,b) =

HED(z, P ), where PA,b was defined in Theorem 1; (ii) (maximality at the center:) if P

is centrally symmetric about θθθ (i.e., P [θθθ + B] = P [θθθ − B] for any d-Borel set B), then

HED(θθθ, P ) ≥ HED(z, P ) for any d-vector z; (iii) (monotonicity along rays:) if θθθ has

maximum HED with respect to P , then, for any u ∈ Sd−1, r 7→ HED(θθθ+ru, P ) is monotone

non-increasing in r(≥ 0); (iv) (vanishing at infinity:) as ‖z‖ → ∞, HED(z, P )→ 0.

Other expectile depths could be defined from competing expectile regions by using the

construction in Definition 3, but all of them would fail to meet one of the most classical

requirements for depth, namely affine invariance (Theorem 4(i)). While it is not related
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to expectiles, it is natural to also consider here the zonoid depth from Koshevoy and

Mosler (1997), since it is maximized at the mean vector, hence is usually regarded as a

depth of an L2-nature. To get some insight on how the HED compares with the halfspace

and zonoid depths, we consider the univariate example for which P is uniform over the

interval I = [0, 1] and the one for which it is uniform over the pair {0, 1}, which leads to

HED(z, P ) =
min(z2, (1− z)2)

z2 + (1− z)2
I[z ∈ I] and HED(z, P ) = min(z, 1− z)I[z ∈ I], (4)

respectively; we refer to Koshevoy and Mosler (1997) for the corresponding expressions

of the halfspace and zonoid depths. Figure 2, that plots these three depths for both P ,

suggests that the HED is smoother than the halfspace and zonoid depths and that it

avoids ties in the support of the distribution (unlike the halfspace depth). This will be

supported by our results in Section 4.2 below. Also, the zonoid depth regions for the

uniform distribution over [0, 1] are the interquantile intervals [qα(P ), q1−α(P )] = [α
2
, 1− α

2
],

which is not so natural for a depth that has an L2 flavour (recall that the HED regions,

irrespective of P , are rather the, L2 in nature, interexpectile intervals [eα(P ), e1−α(P )]).

Multivariate examples will be considered in the supplementary materials (Section S.2).

The discussion below Theorem 3 shows that the HED bears strong links with the half-

space depth. As we now explain, however, the HED also shows key distinctive properties

that should be most appealing to practitioners.

4.2 Distinctive properties

For halfspace depth, which is an L1-concept, the deepest location is not always unique and

the usual unique representative of the set of deepest locations, namely the Tukey median,

is a multivariate extension of the univariate median. Also, the depth of the Tukey median

may depend on P , which is inconvenient in practice (see below). The, L2 in nature, HED
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Figure 2: Plots, as functions of z, of the zonoid depth ZD(z, P ) (blue), of the halfspace

depth HD(z, P ) (orange) and of the halfspace expectile depth HED(z, P ) (green), when P

is the uniform distribution over the interval [0, 1] (left) and the uniform distribution over

the pair {0, 1} (right). For both P , all depth functions take value zero outside [0, 1].
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is much different in these respects.

Theorem 5. For any P ∈ Pd, the expectile depth HED(z, P ) is uniquely maximized at

z = µµµ(P ) := E[Z] (where Z is a random d-vector with distribution P ) and the corresponding

maximum depth is HED(µµµ(P ), P ) = 1/2.

HED regions therefore always provide nested regions around the mean vector µµµ(P ),

which should be appealing to practitioners. Also, the fact that the corresponding maximal

depth is always 1/2 will allow practitioners to better interpret what it means that another

location would have HED equal to, say, 1/4: this would be, irrespective of the distribution,

half as deep as the deepest location. In comparison, there is no way to evaluate the

“relative” depth of a location with halfspace depth 1/4 without evaluating the depth of

the Tukey median, which, at least in moderate to high dimensions, is notoriously difficult.

Moreover, since the maximal HED is 1/2 for any P , a natural affine-invariant test for H0 :

µµµ(P ) = µµµ0, where µµµ0 ∈ Rd is fixed, rejects H0 for large values of Tn := (1/2)−HED(µµµ0, Pn),

where Pn is the empirical probability measure associated with the sample Z1, . . . ,Zn at

hand. Due to the relation between the HED and the mean vector, this can be regarded as

a nonparametric version of the Hotelling test.

We turn to another distinctive aspect of HED. As any statistical depth function, half-

space depth decreases monotonically when one moves away from a deepest location along

any ray; see Theorem 4(iii). This monotonicity may fail to be strict, though (in the sample

case, for instance, the halfspace depth is piecewise constant, hence is not strictly decreas-

ing). In contrast, as Figure 2 already hinted, HED always offers a strict decrease (until, of

course, the depth value zero is reached, if it is). We have the following result.

Theorem 6. Fix P ∈ Pd and u ∈ Sd−1. Then, letting ru(P ) = sup{r > 0 : µµµ(P ) + ru ∈

C(P )}(∈ (0,+∞]), the function r 7→ HED(µµµ(P ) + ru, P ) is monotone strictly decreasing
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in [0, ru(P )] and HED(µµµ(P ) + ru, P ) = 0 for r ≥ ru(P ).

A direct corollary is that if Z1, . . . ,Zn are randomly sampled from a distribution P

admitting a density, then the sample depths HED(Zi, Pn) will be pairwise different with

probability one. This is precious in applications where ties in the depth values are to be

avoided, such as, e.g., in supervised classification. For instance, the max-depth classifiers

from Ghosh and Chaudhuri (2005) (see also Li et al., 2012) classify z as arising from P1

rather than P2 if z is deeper with respect to P1 than it is with respect to P2, but obviously

ties will lead to an unpleasant randomization.

The halfspace depth may also fail to be a continuous function of z; in particular, conti-

nuity will not hold in the sample case, due to the piecewise constant nature of the halfspace

depth. In contrast, the HED is smooth even in the sample case, which should be appealing

to practitioners who find it unpleasant that most depth values are not achieved at any z

or that a small change in z has a strong impact on the corresponding depth.

Theorem 7. Fix P ∈ Pd. Then, (i) z 7→ HED(z, P ) is uniformly continuous over Rd;

(ii) for d = 1, z 7→ HED(z, P ) is left- and right-differentiable over R; (iii) for d ≥ 2,

if P is smooth in a neighbourhood N of z0 (meaning that for any z ∈ N , any hyperplane

containing z has P -probability zero), then z 7→ HED(z, P ) admits directional derivatives

at z0 in all directions.

Figure 2 illustrates left- and right-differentiability of the HED, but it also reveals that,

even inside the support of P , plain differentiability may fail (it does at z = 1/2). The figure

also shows that both the halfspace and zonoid depths may fail to be even continuous, hence

are much less smooth than HED. Far from being a technical detail, smoothness of the HED

will be an important asset for computational purposes. We discuss this in the next section,

where we also present a last distinctive, actually most unexpected, property of the HED.
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4.3 An alternative expression and computational aspects

Turning to computational aspects, the sample expectile regions Rα(Pn) can be computed –

or more precisely arbitrarily well approximated – by replacing the intersection in Def-

inition 2 with an intersection over finitely many directions u`, ` = 1, . . . , L, with L

large (a regular grid of directions can be used or, somewhat in the spirit of Cuesta-

Albertos and Nieto-Reyes (2008), random directions can be generated). Many applica-

tions, however, do not require computing depth regions but rather the depth of a given

location z only. An important example is supervised classification through the max-depth

approach; see Ghosh and Chaudhuri (2005) or Li et al. (2012). Obviously, the expres-

sion HED(z, P ) = sup{α ∈ (0, 1
2
] : z ∈ Rα(P )} allows one to compute the HED of z

from the corresponding regions, but it is extremely costly to have to compute many depth

regions to evaluate the depth of a single z only. This is an important motivation for the

following result, which provides another expression for the HED.

Theorem 8. For any z ∈ Rd and P ∈ Pd,

HED(z, P ) = min
u∈Sd−1

Ge
z(u), with Ge

z(u) :=
E[|u′(Z− z)|I[u′Z ≤ u′z]]

E[|u′(Z− z)|]
, (5)

where Z has distribution P .

This result allows us to interpret the depth HED(z, P ) as the most severe expectile

outlyingness of u′z with respect to the distribution of u′Z, in the same way

HD(z, P ) = inf
u∈Sd−1

Gq
z(u), with Gq

z(u) := P[u′Z ≤ u′z], (6)

defines the halfspace depth HD(z, P ) as the most severe quantile outlyingness of u′z with

respect to the distribution of u′Z; see Section 2 for the interpretation of these (expectile and

quantile) scalar outlyingness measures in terms of G functions. This provides an intuitive
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interpretation of HED(z, P ) in terms of depth and it also gives another insight on why the

HED can be seen as the expectile variant of the halfspace depth.

Incidentally, Theorem 5 also states that a minimal direction u always exists in (5), which

directly follows from the continuity of Ge
z(·) (see Lemma S.2) and the compactness of Sd−1.

In contrast, a minimal direction does not always exist in (6). For instance, if z = (1, 0)′ ∈ R2

and P = 1
2
P1 + 1

2
P2, where P1 is the bivariate standard normal distribution and P2 is the

Dirac distribution at (1, 1)′, then no minimal direction exist in (6) (whereas u0 = (−1, 0)′

is a minimal direction in (5)). This is another aspect for which the HED is easier to deal

with than the halfspace depth.

Coming back to computational aspects, we now comment on how hard it is to eval-

uate HED(z, P ) and HD(z, P ) on the basis of (5) and (6), respectively. A key point is

that (6) does not allow one to compute halfspace depth through standard algorithms such

as Newton-Raphson-type methods. The reason is twofold: first, such iterative methods

might converge to one of the many local minima of Gq
z(·); see the right panel of Figure 3.

Second, Gq
z(·) is a piecewise constant, hence non-smooth, function in the sample case. In

contrast, a further, most unexpected, distinctive property of the HED opens the door to a

Newton-Raphson computation of this depth. More specifically, the following result ensures

that the function Ge
z(·) that is to be minimized to compute the HED is not only smooth

(see the proof of Theorem 7) but also never provides local-but-not-global minimizers.

Theorem 9. Fix P ∈ Pd and z ∈ Rd such that HED(z, P ) > 0. Assume that P [Π\{z}] = 0

for any hyperplane Π containing z. Let u0 be an arbitrary minimizer of Ge
z(·) on Sd−1.

Let ut, t ∈ [0, π], be a geodesic path on Sd−1 from u0 to uπ = −u0. Then, there exist ta, tb

with 0 ≤ ta ≤ tb ≤ π such that t 7→ Ge
z(ut) is constant over [0, ta], admits a strictly positive

derivative at any t ∈ (ta, tb) (hence is strictly increasing over [ta, tb]), and is constant

over [tb, π].
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In Figure 3, we consider the case for which z =
(
3
4
, 3
4

)′
and P (∈ P2) has independent

Exp(1) marginals, and we plot the resulting functions φ 7→ Gq
z((cosφ, sinφ)′) and φ 7→

Ge
z((cosφ, sinφ)′) over [0, 2π]. Clearly, this illustrates the unexpected monotonicity prop-

erty in Theorem 9 but also shows that the result may fail for halfspace depth. Jointly

with the fact that, in the sample case, t 7→ Ge
z(ut) will be left- and right-differentiable,

Theorem 9 opens the door to fast computation of HED, also in high dimensions, through

Newton-Raphson-type methods. An algorithm evaluating HED in this way will be devel-

oped in a later work focusing on computational aspects.

5 Real data examples

In this section, we investigate how responsive the proposed expectile regions R
(n)
α are to

financial risk exposure linked with unforeseen catastrophic events, such as the 2007–2008

financial crisis or the COVID-19 pandemic. Like their benchmark quantile analogs, these

centrality regions trim joint returns with extreme losses as well as those with extreme

profits. In terms of riskiness, the required capital reserve against multivariate risk should

cover any loss associated with joint returns inside R
(n)
α , with a suitable security level α. We

will consider both unconditional regions (Section 5.1) and conditional ones (Section 5.2).

5.1 The non-regression setting

We first consider returns of several investment banks before and during the 2007-2008 finan-

cial crisis. We start with a “pre-crisis” dataset collecting daily returns for Morgan Stanley

(Z1) and Lehman Brothers (Z2) from May 3rd, 1994, to June 29th, 2007 (n = 3,315 trading

days). The top left panel of Figure 4 shows the benchmark quantile contour of extreme

order α = .0003(= 1/n) and the expectile contours of order α ∈ {.000005, .00005, .0001}.
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Figure 3: Plots of the HED objective function φ 7→ Ge
z((cosφ, sinφ)′) in (5) (left) and

HD objective function φ 7→ Gq
z((cosφ, sinφ)′) in (6) (right), with z =

(
3
4
, 3
4

)′
and P the

probability measure over R2 whose marginals are independent exponentials with mean one.

Global minimizers providing the respective depths are marked in green, whereas local-but-

not-global minimizers preventing the use of Newton-Raphson-type methods are marked in

red. The shaded area shows the range considered in Theorem 9.
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The most pessimistic of these trimming regions is the quantile one, which coincides with

the convex hull of the data and expects the worst before crisis. However, the maxim “ex-

pect the worst, and you won’t be disappointed” fails during the crisis: the top right panel of

Figure 4, that provides these centrality regions (with the same orders α) computed from

returns ranging from May 3rd, 1994, to Lehman Brothers’ bankruptcy on September 15th,

2008, clearly reveals that expectile contours are much more alert to Lehman Brothers’ huge

losses than the a priori more pessimistic quantile contour. We repeated the same exercise

for Lehman Brothers (Z1) and Bear Stearns (Z2), with the same pre-crisis period and with

a full time period ending on Bear Stearns’ collapse on May 30th, 2008. The results, that

are displayed in the bottom panels of Figure 4, show that expectile contours here dominate

the most pessimistic quantile contour not only in terms of responsiveness to Bear Stearns’

catastrophic losses but also in terms of reactivity to the few substantial profits.

5.2 The regression setting

To complement the “static” analysis conducted in Section 5.1, it is natural to try and

estimate regression expectile regions, conditional on time. Denoting as Px the condi-

tional distribution of the d-variate response vector Y given time X = x, our interest

then lies in the conditional expectile regions Rα,x = Rα(Px), α ∈ (0, 1
2
], that are obtained

by intersecting the expectile halfspaces Hα,u,x = Hα,u(Px) over u ∈ Sd−1 (obviously, all

previous theorems extend to the conditional setting when substituting Px for P ). If a

sample (X1,Y1), . . . , (Xn,Yn) is available, then one may estimate Rα,x by the region R
(n)
α,x

obtained by intersecting over u ∈ Sd−1 the sample halfspaces H
(n)
α,u,x =

{
y ∈ Rd : u′y ≥

e
(n)
α,u,x

}
, where e

(n)
α,u,x is the estimate of eα(Pu′Y|[X=x]) resulting from a single-output (linear

or nonparametric) regression using the responses u′Y1, . . . ,u
′Yn and covariates X1, . . . , Xn.

This conditional approach trivially extends to arbitrary p-variate covariate vectors X, and,
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Figure 4: (Top:) Joint daily returns on Morgan Stanley (Z1) and Lehman Brothers (Z2),

for the pre-crisis period (left) and the full time period (right); returns before (resp., during)

the crisis are shown in grey (resp., red). The quantile contour associated with α = .0003 is

plotted in solid blue and the expectile contours for α ∈ {.000005, .00005, .0001} in dashed

orange. (Bottom:) the same results for Lehman Brothers (Z1) and Bear Stearns (Z2).
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of course, multiple-output quantile regression can be performed in the same way.

We illustrate this by considering the joint decline of Morgan Stanley and Goldman

Sachs during the financial crisis. Our aim is to describe the unexpected joint extremal

variation in these banks’ equities (Y1, Y2, respectively) conditional on trading days (X)

from July 2, 2007, to September 19, 2008 (both investment banks converted themselves to

bank holding companies on September 21st, 2008). The resulting marginal returns Yi1 and

Yi2, i = 1, . . . , n = 309, are plotted in the top panel of Figure 5. The figure also provides

the (tail) regression expectile contours R
(n)
α,x with order α = .0005, for several dates x se-

lected as the 50%, 55%, . . . , 95% empirical quantiles of X. For the sake of comparison, the

corresponding conditional quantile contours, at order α = .0008, are also provided. Both

α-values were chosen so that the earliest expectile and quantile contours (those associated

with February 11, 2008) are roughly of the same size. To make the comparison as fair as

possible, expectile and quantile contours were obtained by performing the same type of

single-output (nonparametric) regression, namely those based on the same boosting princi-

ple using additive approaches from Sobotka and Kneib (2012) and Fenske et al. (2011) (we

thus used the functions expectreg.boost and quant.boost from the R package expectreg).

The dynamics of the joint returns’ evolution, which can hardly be visualized from the

marginal time series displayed in the top panel of Figure 5, are nicely described by the re-

sulting regression expectile and quantile contours. Both types of contours are qualitatively

similar, indicating particularly that the joint returns were sensitive to the evolution of the

systemic crisis: the contours indeed tend to spread out with time due to the high volatil-

ity and severity of infrequent returns, which is particularly seen for the last four contours

(note that these seem to be more sensitive to severe losses than to high profits). Clearly,

however, expectile contours much better flag these interesting features than quantile con-

tours, and they produce more insightful fits of conditional location and spread of relevant
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Figure 5: (Top:) daily returns of Morgan Stanley (Y1) and Goldman Sachs (Y2) from July 2,

2007, to September 19, 2008. (Bottom left:) the corresponding bivariate returns (gray),

along with the resulting nonparametric regression expectile contours of order α = .0005,

conditional on trading days (X), at 10 dates x selected as the 50% (light green), 55% (darker

green), . . ., 95% (orange) empirical quantiles of X. (Bottom right:) the corresponding

results for regression quantiles of order α = .0008; see Section 5.2 for details.
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data points. Multivariate expectiles may accordingly serve as an efficient instrument for

detecting systemically risky firms.

As a final example, we analyze stock market index S&P500 (Y1) and Brent oil prices

(Y2), conditional on trading days (X), during the global spread of COVID-19 from De-

cember 31, 2019, to May 18, 2020 (n = 94 trading days). Figure 6 provides marginal and

bivariate returns, along with nonparametric regression expectile and quantile contours, at

the extreme order α = .0001 in both cases, for dates x selected as the 5%, 10%, . . ., 95%

empirical quantiles of X. The results show that regression expectile contours are much

smaller than their quantile analogs in the early stage of the pandemic, which corresponds

to the dark blue contours, but that these contours are more sensitive to the day-on-day

growth of the pandemic. Expectile contours capture more accurately both the location and

spread of the data, and they better display the turbulent events experienced by financial

and oil markets due to the twin shocks of the coronavirus pandemic and the Saudi-Russia

oil price conflict: the initial expansion of these contours in blue (from January 7 to March 3)

reflects the increasing fears over the spread of coronavirus. The following two contours in

red (March, 9 and 16) successfully translate the panic seen in both financial and oil mar-

kets due (i) to the oil price war that started on March 8 and (ii) to the pandemic that

went worldwide pandemic on March 11. Later (from March 23 to April 21), the expectile

contours (in green) become less extreme in the Y1-direction as the stock market index re-

covers somewhat progressively, while they continue expanding in the Y2-direction as the oil

prices remains down until reaching the historic crash on April 21. The decline of the final

contours in all directions from dark to light gold marks the joint rebound of both oil prices

and stock market index. Most clearly, these subtle joint dynamics much better show in

expectile contours than in quantile ones.
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Figure 6: (Top:) daily S&P500 returns (Y1) and oil returns (Y2) from December 31, 2019,

to May 18, 2020. (Bottom left:) the corresponding bivariate returns (gray), along with the

resulting nonparametric regression expectile contours of order α = .0001, conditional on

trading days (X), at 19 dates x selected as the 5% (dark blue), 10% (lighter blue), . . ., 95%

(gold) empirical quantiles of X. (Bottom right:) the corresponding results for regression

quantiles, still of order α = .0001; see Section 5.2 for details.
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Supplement: We provide the following further contributions in the supplementary ma-

terials: for the sake of completeness, we describe there some of the main competing

multivariate expectile concepts (Section S.1). We compute expectile depth and expec-

tile depth regions in several multivariate examples (Section S.2). We state asymptotic

results for the proposed expectile depth (Section S.3). We illustrate on simulated data

the proposed multiple-output expectile regression methods and show that these dom-

inate the corresponding quantile-based methods in terms of crossings (Section S.4).

We discuss the relation between multivariate expectiles and risk measures, and we

show that our expectiles satisfy the coherency axioms of multivariate risk measures

(Section S.5). Finally, we prove all results of the paper (Section S.6).
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