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Abstract

The development of non-dispatchable renewable sources of energy requires more flexible

reliable thermal equipment to match residual demand. We analyze the advantages of

delaying production decisions to benefit from more precise information on states of the

world, at the expense of higher production costs in a two-period framework where two

technologies with different flexibility characteristics are available. We determine first-

best production levels ex ante and ex post, that is, when demand is still random and

is known with certainty respectively. We then show that, under perfect competition,

first best can be implemented indifferently either by means of ex post state-contingent

markets or by means of a day-ahead market followed by adjustment markets. By

contrast, when the industry is imperfectly competitive, the two market designs are not

equivalent.
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1 Introduction

1.1 Flexibility in electricity production

In most industries, production processes are at their highest productivity when

they are steady, that is, when inputs and outputs are almost invariant in time.

By contrast, starting a production process involves warming up periods, changing

speed requires ramping up and down costly procedures, and stopping cannot be

instantaneous without damages. These unsteady periods are costly but they

generally do not occur very often because both the inputs and the outputs can

be stored. Then the flexibility of the production process, that is, its capacity to

become efficient at different speed levels within a short lag, is not critical. This

is not true in the electricity industry because energy storage is not feasible at

large scale and any gap between production and demand (the latter being weakly

responsive to scarcity signals) provokes costly damages. Moreover, the need for

reliable flexible production is increasing with the development of non-dispatchable

renewable sources. With operating costs close to zero, electricity made from solar

and wind energy is given priority in the merit order for dispatching, but this

energy depends on states of nature. Therefore, it is not fully reliable and must

be backed by energy from hydro or thermal plants ready to produce in real time

above or below the planned level, to compensate for variations in the observed

output of green energy.

Overall, the electricity industry is characterized by constant changes in the

level of required production, with the consequence that flexibility of reliable equip-

ment is a highly valuable quality for the whole system. Since the opening up to

market mechanisms, most countries have accommodated flexibility requirements

by designing a two-layer system for energy transactions:

• most transactions1 are settled in a day-ahead framework where each of the
24 hours of the next day is a market. Typically, there is a deadline (say

12:00) for the submission of demand and supply bids for power that will

be delivered the following day. A computer system (a surrogate for the

Walras auctioneer) calculates the hourly prices that balance supply and

demand. Later (say at 1.00 pm) these equilibrium prices are made public

and operations are settled. The next day, power is provided hour for hour

according to the agreed contracts.

• in balancing markets, buyers and sellers can trade power close to real time
to re-balance demand and supply if something wrong has occurred since the

corresponding day-ahead clearing. Balancing markets typically are contin-

uous markets where prices are set based on a pay-as-bid basis, instead of

the unique hourly price of the day-ahead system.

1We mean ”most transactions in the wholesale markets”. Actually, the largest portion of

electricity transactions is fixed by contract.
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Clearly, participating in balancing trade requires more flexible equipment than

participating in day-ahead.

1.2 Flexibility degrees

In the electricity industry, recent interest in flexibility problems is due to the

challenging development of non-dispatchable renewable energy, mainly solar and

wind (see e.g. Bertsch et al., 2012). Flexibility means the ability of a system ”to

accommodate increasing levels of uncertainty while maintaining satisfactory levels

of performance at minimal additional cost for any timescale” (Silva, 2010). On

practical grounds, most of the analysts consider two groups of technologies among

conventional thermal sources, depending on whether or not the output of a source

can be ramped up or down at short notice. In this binary classification, there is a

clear separation between inflexible nuclear and coal-fired plants on the one hand,

and flexible natural gas turbines on the other hand (see for example Eisenack,

2015; Kök et al. 2016)2. The output from inflexible technologies must be planned

before knowing the real state of demand and production from renewables. The

adjustment is made ex post by dispatching the flexible gas turbines in real time.

It results that the historically dominant inflexible technologies are now challenged

by the pair ”renewables + flexible turbines” and face the risk of being pushed

out of the energy mix.

Actually, nuclear and coal-fired plants are not as inflexible as stated in the

quoted papers. Lykidi and Gourdel (2015) for example recognize the flexibility of

nuclear plants at least in so far as they accommodate the seasonal component of

demand. But seasonal flexibility is just one part of the flexibility problem. Data

published on line clearly show that all thermal plants have as some hourly flexibil-

ity, less than hydroelectric installations, but sufficient to deserve some attention.3

In particular, existing thermal power plants can provide more flexibility than is

often assumed. Coal fired power plants are already providing large operational

flexibility: ”they are adjusting their output on a 15-minute basis (intraday mar-

ket) and even on a 5-minute basis (balancing market) to variation in renewable

generation and demand” (Pescia 2017).

However, it remains true that for real-time adjustment, in particular for bal-

ancing the variability of wind, most systems rely mainly on gas-fired power tur-

bines on top of demand response, pump storage and energy trade with neighboring

countries. Some researchers also insist on the need for improving the real-time

market design to be sure that thermal plants needed to back up renewables will

survive the massive entry of non-dispatchable sources (Ma et al., 2013; Finon,

2As stated in PJM (2017) ”Inflexible units are those with declining average costs that are

unable to economically produce power within a certain range, or that require an economic mini-

mum output. Inflexible units can be of all fuel types, including coal, nuclear and large gas units,

which are inflexible based on either their technology or the way they purchase natural gas.”
3See for example the charts proposed by http://www.rte-france.com/en/eco2mix/eco2mix-

mix-energetique-en for the French system.
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2015; Bertsch et al., 2016). Finally, note that European regulators (ACER and

CEER, 2017) want to favor a so-called ”holistic approach” to support market

flexibility. They would like the whole electric system to be involved, including all

consumers, who should have the opportunity to participate in all relevant markets

and other arrangements for valuing flexibility, in particular through aggregation

by independent operators. The regulators quote changes in how energy is con-

sumed, e.g. electric vehicles, combined with electricity storage, home automation

and progress in Information and Communication Technologies ICT), which may

facilitate the provision of flexibility from new sources. From this view, flexibility

platforms are to be operated close to consumers, with a pivotal role devoted to

distribution system operators.

We rather favour an analytical approach to study the potential flexibility of

large plants that already participate in wholesale markets. We mainly have in

mind generators using gas, coal, water from reservoirs, or nuclear energy. We

assume that every type of production plant has some flexibility potential and we

analyze how to combine several installations in an efficient way. We mainly focus

on first best and perfect competition outcomes. However, we also address the

question of flexibility under imperfect competition.

1.3 Outline of the paper

In section 2 we first recall that most economic models of investment and opera-

tion of the electric industry emphasize the production capacity constraint. They

therefore consider production plants as fully upward inflexible and fully down-

ward flexible. We then explain how the timing dimension of flexibility can be

modeled in a two-period framework where information on the state of the world

improves as time passes by, but production costs increase when production de-

cisions must become effective within a short lag. In section 3 we determine the

first-best allocation of production in this two-period setting and we show that,

under perfect competition, it can be implemented by either a day-ahead market,

followed by a state-dependent adjustment market, or only ex post markets. In

section 4, we illustrate the trade-off between information gain and adjustment

cost by using a multilinear cost function and a quadratic surplus function. We

then consider a duopoly model of competition in quantities (section 5) and show

that, contrary to perfect competition, market design matters. We conclude in

section 6.

2 Tools for the analysis of flexibility

As noted in subsection 2.1, in standard economic analysis of electricity produc-

tion there is little room for upward flexibility at the level of individual equipment.

The overall system is made flexible by stacking heterogeneous technologies char-

acterized by their installation and operation costs. In this approach, time appears
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Figure 1: Partially flexible equipment

in the form of use duration, a key determinant for the choice of equipment. Actu-

ally, time should also be taken into account in terms of the lag between decision

and execution, in particular when information on the state of demand and inter-

mittent renewable output become more precise. We emphasize this in subsection

2.2 to underline the importance of information in the decision process.

2.1 Quantity and price adjustments

2.1.1 Production limitations

Isolated plant The standard modeling of electricity production is based on

the hypothesis that, after installing capacity  at unit cost , energy  can be
produced at unit cost , as long as it remains below capacity. The cost function is
then () = + ,  ≤  This means that production is totally inflexible
beyond  and perfectly downward flexible. To model downward inflexibility,

one can add a constraint  ≥  with  between 0 and 1. If  = 0, the

plant is fully downward flexible; if  = 1, it can work only at level . As
shown in Figure 1, this elementary approach explains some essential features of

electricity production. We have represented different levels of marginal surplus,

that is, the derivative of the consumer’s surplus ( ) from the consumption of
 when nature is in state . We assume that, in each state  the function  is
a continuously differentiable concave function of , increasing up to a saturation

point and then decreasing The resulting marginal surplus 
0
( )


= ( )

is decreasing in  and becomes negative when consumption is large.
Figure 1 depicts the optimal (and competitive-equilibrium) short-run dis-

5



patching of a given capacity  when , then marginal surplus (= demand)

0( ) takes different values.
) For medium values of demand (in the neighborhood of 3), production is

flexible so that market balancing is done by quantity adjustment. The competitive

price is just equal to the unit operation cost .
) For high values of demand (in the neighborhood of 4), production is

inflexible. Market balancing results from price increases above the unit operation

cost (or, if prices cannot increase, from demand rationing). The margin 
0
( )−

  0 contributes to the payment of capacity cost .
) For low values of demand (in the neighborhood of 2), production is in-

flexible. Market balancing results from price decreases below the unit opera-

tion cost (or, if prices cannot decrease, from supply rationing). The margin loss


0
( )−   0 impairs the recovery of capacity cost .
) For very low values of demand (in the neighborhood of 1), production

is also downward inflexible. Market balancing results in negative prices, i.e. the

producer is ready to pay consumers to get rid of excess production.

The combination of ) and ) is the basis of the so-called peak-load pricing
theory: the costs of inflexible capacity must be billed to consumers only in states

of nature where the capacity constraint is binding (Boiteux, 1949). The recog-

nition of cases ) and ) is more recent in the economic literature on energy
markets. It is mainly motivated by the development of solar and wind energy

that lowers residual demand to thermal producers and some states of nature. (see

e.g. Nicolosi, 2010)

Merit order Overall, the inflexibility of individual plants is alleviated by stack-

ing heterogeneous plants that differ in terms of installation and production costs.

Let  denote the cost of producing 1MWh and  the yearly cost of installing
and maintaining 1MW with technology . Then providing 1MW of power dur-

ing  hours costs  +  per year It results that the choice between two types
of equipment, say 1 and 2 with 2  1 and 2  1, depends on the expected
working duration:

2 + 2 ≷ 1 + 1 ⇐⇒  ≷ 1 − 2
2 − 1

For base demand, all along the 8760 hours of the year (minus the periods of

maintenance), the least-cost choice is technology 1, the one with high capacity

cost 1 and low operation cost 1. Technology 2 will be preferred for low duration
demand. Given the demand levels expected throughout the year, one can order

demands starting from the highest requested capacity to obtain the so-called

load-duration curve, a curve that shows how long demand will be below a given

capacity level. Then one can adapt investment in 1 and 2 to meet these

demand requirements. After the installation is done, capacity costs are sunk.

Then, only operation cost matters. It results that, when demand is low (  1),

only plant 1 is dispatched since 1  2. When   1 being constrained by
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the upward inflexibility of equipment 1, the dispatcher calls type 2 plants to

complement the supply from 1 Then, as long as 1    1 +2 demand
can be supplied by the full capacity of plant 1 and the flexible production −1

from plant 2 at the operating cost 2. This is the merit order, that is, the staircase
supply function that gives some flexibility to the entire electric system.4 In the

same vein, the interconnections provide some flexibility since the dispatcher can

rely on heterogeneous technologies located in adjacent regions (Bistline, 2017).

Ramping rates The above reference cases contrast capacity and production.

Actually, inflexibility is also a matter of variation in production in a given pe-

riod of time. Denoting by  the quantity produced at date , the producer is
constrained by

−∆ ≤ + −  ≤ ∆

where ∆ and ∆ are the maximum variations in production that are sustainable

between dates  and  +  upwards and downwards respectively. Production is
dynamically constrained to remain within a tunnel, the size of which increases

with time lapse .

Flexibility costs All the cases where inflexibility is characterized by physical

constraints, like the ones considered in the former subsections, represent engi-

neers’ concerns. This does not mean that this modeling does not include a refer-

ence to cost. Actually, the cost dimension appears as the dual variable associated

to each physical constraint when the dispatching program is launched. However,

it remains true that on pure engineering grounds, costs do not matter very much.

Physical performance is the main concern.5

By contrast, in the following sections, we consider explicit differences in cost

levels depending on the time lapse separating decision and operation, namely the

difference in costs when production must be planned before the state of (residual)

demand is known and when decision can be delayed until the revelation time of

demand level.

2.2 Ex ante and ex post decisions

Changing the level of production can be done at different speeds, then at different

costs. From now on we focus on the cost feature of flexibility. We do not use

a continuous time model where the adaptation duration would be endogenous.

Instead we rely on a two period model where production can be dispatched among

4See for example the Aggregated Curves in the Market Results at

https://www.apxgroup.com//.
5Similarly, there is no reference to cost minimization in the following quotation of the Eu-

ropean energy regulators: ”Flexibility can be defined as the ability of the electricity system to

respond to fluctuations of supply and demand while, at the same time, maintaining system

reliability” (ACER and CEER, 2017).
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the periods at different costs. The two periods are distinct by the information

on the surplus function, then on demand. In period 1 (ex ante), demand is still

random. In period 2 (ex post), the decision maker has perfect information on the

surplus function. We keep the notation ( ) to represent the surplus derived
from the consumption of  when the state of nature is  and 

0
( ) for marginal

utility, that is, the derivative of ( ) with respect to its first argument.
We begin by assuming that the cost function is the same in the two periods.

This is a critical assumption that we relax later.

2.2.1 Gains from delaying decisions

Let () be the cost of producing  ≥ 0, whatever the period. This is an

increasing, convex and continuously differentiable function. The surplus function

( ) has the same property as before. Additionally, we assume 0(0 )   0(0)
for all , so that production is always profitable. The random variable  is
distributed according to a continuous density  on a compact interval [ ].

• If  is to be chosen before knowing the realized value of , the problem to

solve is

Max
≥0

 [( )− ()]  (1)

The ex ante solution is then the value b that solves  (0( )) =  0() hence
the expected performance  =  [(b )− (b)] 
• If the decision maker can wait until the state of nature is revealed, the
problem is, in each state  :

Max
≥0

( )− () (2)

The ex post solution is the function  () that solves 0( ) =  0() hence an
expected performance  =  [( ()  )− ( ())] 

Since the expectation of a supremum is at least the supremum of the expec-

tations, we have that

   (3)

The intuition is that ex post the decision maker has more accurate information

on the state of demand (or technology, or regulation, etc.) than ex ante. He/she

will therefore make a more appropriate decision for the circumstances, and the

performance will consequently be better.6 Whenever it is possible, the producer

isolated from strategic considerations is better off by delaying decisions until the

very last minute.7

6Sandmo (1971) and Leland (1972) were the first authors to provide an analytical treatment

of the advantages for firms of delaying decisions.
7The gains from flexibility are emphasized by Goutte and Vassilopoulos (2017). They dis-

tinguish between the ”immediacy” value as the urgency of the delivery increases (this value is
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Figure 2: Costs of planned and adjusted production

2.2.2 Costs from delaying decisions

Actually the cost for doing so is different from the cost incurred when planning in

advance. This is the essence of flexibility: taking advantage of better information

at the expense of higher production costs. If we assume that the production

necessary to satisfy demand  can be partly planned ex ante (denoted by ) and
partly produced ex post (denoted by ), we can write the cost function as ( )
with  +  =  and ( 0)  (0 ) ∀ In Figure 2 we have plotted a curve
( 0) representing the low cost of producing ”at regular speed” and a curve

( b ) representing the cost of adding to or removing from b the adjustment 
In this more realistic framework, the decision maker solves:

Max




µ
max


(+  )− ( )

¶
 (4)

Ex post, knowing  and , the entrepreneur determines ( ) like in (2), ex-
cept that a volume  is already available. Ex ante, anticipating this adjustment,
he decides upon  like in (1) We then face a trade-off between the informational
advantages of a delayed decision and the extra costs due to unplanned adjust-

ment. As shown in the following, it results that with   0 and  6= 0, the

performance is generically higher than if either  = 0 or  = 0.

revealed during the intraday process and is closely linked to risk) from the ”flexibility” as a

resource can capture variations of shorter granularity (more related to asset optimization and

already priced a day ahead).
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3 Optimal planning and optimal adjustment

In this section, we analyze the trade-off between information gain and adjustment

cost in a general framework. We successively determine the first-best allocation

and the competition allocation under two market designs: first when there are

both day-ahead and adjustment markets, then when there are only adjustment

markets.

3.1 First best

We assume a non-specified surplus function (+ ) continuously differentiable
concave in each state  and a non-specified cost function ( ) continuously
differentiable convex. The problem to solve is (4)  We solve it backwards.

• Maximizing the net surplus in state , the first order condition is


0
(+  ) = 

0
( ) (5)

with  0



= ( )  0. From (5) we obtain the optimal adjustment

( ). Differentiating the condition, we have that

( )


=

” − ”


”
 − ”

where ”

= 2( )2  0 and ”




= 2( )2  0 Then the

denominator is positive. If the cross second derivative ”
 is nil or positive (or

negative but small in absolute value) then 


 0 Indeed, when  necessitates

an upward (downward) adjustment, the adjustment will be small (large) if  has
been fixed at a large value.

• Ex-ante, the problem to solve is

max


 ( ( ); )

where  ( ; ) = (+  )− ( ).

Given the anticipated ex post adjustments (5), the first order condition that

determines the optimal planned output ∗ and the resulting optimal adjustment
in each state of nature (∗ ) is



h

0
(∗ + (∗ ) )− 

0
(

∗ (∗ ))
i
= 0 (6)

where 
0
and 

0
 denote partial derivatives wrt .
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3.2 Perfect competition

We now analyze how first best can be implemented by market mechanisms. In

this section, we consider competitive markets were all agents are price-takers.

Consumers are supposed to be price reactive, either directly or through retailers

and energy service providers.

3.2.1 Day-ahead and adjustment markets

The standard organization for electricity trade in liberalized economies is a set

of two successive markets: ) a day-ahead market where competitive producers
and consumers trade quantity  at price  , followed by ) a balancing market
(given state of nature ) where they trade quantity  at price .

• In the adjustment market determined by , the supply function is the solu-
tion to max −( ) and demand is the solution to max (+ )−
. From the first order conditions 

0
(+ )− = 0 and  0

( )− = 0,
we have the inverse demand function ( )


= 

0
(+  ) and the in-

verse supply function ()

= 

0
( ) respectively.

Matching demand and supply,

( ) = () =⇒ 
0
(+  ) = 

0
( ) (7)

we obtain the equilibrium quantity ( ) and price ( )

• In the day-ahead market, demand is the solution to
max


 [ (+  ( )  )− ( ) ( )]−  (8)

where ( ) ≡ 0 since consumers are price-takers and  0
(+ ( )  )−

 ( ) = 0 by the anticipated behavior on the adjustment market. Conse-
quently, from the first order condition we obtain the inverse demand func-

tion

 ()

= 

³

0
(+  ( )  )

´
 (9)

Producers solve

max


+  [( ) ( )−  (  ( ))] (10)

 Again, ( ) ≡ 0 since they are price-takers and 
0
( )−  ( ) = 0

by the ex post adjustment. Consequently, the inverse supply funtion is

 ()

= 

³


0
 (  ( )))

´
 (11)

The result is the day-ahead equilibrium  () =  () =⇒ 

¡

0
(+  ( )  )

¢
=



¡


0
 (  ( )))

¢
 which is the same relationship as (6).

We then conclude the following:
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Proposition 3.1. A market framework made up of a day-ahead competitive mar-

ket followed by a competitive adjustment market contingent to the observed state

of nature allows one to decentralize first best.

Note that this requires that consumers, or the intermediaries who represent

them, be allowed to sell contracted energy on the adjustment market. For low

values of , the adjustment  can be negative, so that the actual consumption
+  is lower than the planned consumption . Then the market mechanism is
efficient only if flexibility also comes from demand response.8

3.2.2 No day-ahead energy market

In all countries where the two-stage architecture we have just analyzed has been

set up, most energy is traded in the day-ahead market.9 What if there were only

ex post (state contingent) markets,10 i.e. if all quantities, whether planned or

adjusted, were sold at the same contingent price?

Ex-post, consumers solve max ( ) − . Then the demand function in

state  is (+ )

= 

0
(+ ) Producers solve max ×(+)− ( ),

from which we derive the supply function (+ )

= 

0
( ). At equilibrium,

( + ) = ( + ) =⇒ 
0
( ) = 

0
(+  ) (12)

determines the quantity and price equilibrium  ( ),  ( ) 
At the ex ante stage there is no trade. Only competitive producers have to

determine the output  to maximize their expected profit

max


 [( )(+  ( ))−  (  ( ))]

with ( ) ≡ 0 since they are price takers. From the first order condition
and using the ex post adjustment condition, the ex ante production plan is the

solution to



h
( )− 

0
(  ( ))

i
= 0 (13)

Now, observe that at ex post equilibrium in state , we have 
0
(+ ( )  ) =

( ) Combining this with (13)  we obtain the same condition as (6) 
We then conclude the following:

Proposition 3.2. Under perfect competition, first best can be reached with ex

post state-contingent markets and no day-ahead market. Even though producers

are only partially flexible, the day-ahead market is not necessary.

8On demand response, see Crampes and Léautier (2012).
9Actually, the largest fraction is traded through bilateral contracts. Here, we refer only to

energy traded in a pool.
10We do not consider the case where only day-ahead trade is organized and there is no

exchange for ex post adjustement. That would entail energy outage or energy waste depending

on the ex post demand value.
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We can explain this result as follows. When there is a day-ahead market, the

demand function used for planned production (9) is based on the expectation of

ex post prices. Then in the only-expost market scenario firms sell zero kWh ex

ante but determine their output targeting the expectation of ex post prices while

when day-ahead trade is possible, producers do sell their ex ante production at

a price equal to the expectation of ex post prices. Consequently, their expected

profits are the same in the two scenarios, which entails that they take the same

decisions. This also explains why, in the two-market scenario, consumers buy on

the day-ahead market whereas they could wait until the state of nature is revealed.

Since they can resell excess contracted quantity (a crucial hypothesis), with an ex

ante equilibrium price equal to the expectation of the ex post equilibrium prices

they are indifferent between buying ex ante or ex post. The equality between the

ex ante price and the expectation of ex post prices plays the role of a no-arbitrage

condition.

With an ex post market for each state of nature, the day-ahead market is

redundant to implement first best. Then, why do day-ahead markets exist in

energy exchanges such as epexspot?11 Several reasons can be mentionned: for

example the lack of ex post markets in actual design, last-minute transaction

costs, the time required to match demand and supply in uniform-price auctions,

the time to check that the dispatching is feasible given the grid constraints, and

the lack of demand-response. Maybe more important is agents’ risk aversion. In

our model, both the producer and the consumer are risk neutral. That is obvious

for the producer as it maximizes its expected profit. The consumer maximizes

their expected net surplus which is measured in monetary terms. With such a

quasi-linearity structure, the model fails to bring out the reluctance of agents to

risky outcomes, then the attractiveness of day-ahead transactions.

4 Linear specification

To illustrate the flexibility problem, we use a multilinear cost function and a

quadratic surplus function. After a presentation of the notations and properties

of the model, in subsection 4.2 we determine the optimal dispatching and in

subsection 4.3 we consider the specific case of a uniform distribution of the de-

mand parameter. Finally, in subsection 4.4 we address the case of heterogeneous

technologies.

11See https://www.epexspot.com/en/
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4.1 Cost and surplus

4.1.1 Cost function

Assume that the total cost for producing +  ≥ 0 is given by:

( ) =

½
+  if  ≥ 0

 if  ≤ 0 

where  ≥ 0 is to be chosen ex ante and the decision on  can be delayed.12 The
parameters satisfy  ≥   0 This is a particular case of the curves in Figure 2,
with a linear cost of planned production, ( 0) =  a linear cost of adjusted

production ( b ) =  b +  on the right of b and an horizontal line on the
left of b. Note that in this simplified modeling the adjustment cost has the same
shape whatever the value of the planned production since 2 ≡ 0
The above cost function means that all planned costs are sunk: there is no

gain from decreasing production below the planned volume. This modeling is

similar to that of Dixit (1980). However the Dixit’s model is an approach of entry

deterrence by an incumbent firm that invests in sunk capacity before producing

and selling on a deterministic market.

The asymmetry between costly upward and free downward adjustments is a

useful simplifying hypothesis when the objective is just to illustrate the general

results of the former sections. Actually, thermal plants can save at least on

fuel and emission permits when producing below the planned level. In this first

approach, we want to emphasize the cost of increasing production in the very short

term since the main fear of private and public decision-makers in the electricity

industry remains the risk of black-outs. As noted in subsection 2.1, downward

inflexibility is becoming a new concern because of the development of non-reliable

renewables.

The cost function ( ) is convex in . If  ≥ 0, we have ( )− (+
 0) = (− ) ≥ 0, which is the extra cost for producing +  after planning
only . Similarly if  ≤ 0, we have ( ) − ( +  0) = − ≥ 0, which is
the extra cost for producing + after planning , instead of producing directly
+  ≤  in the first stage.

4.1.2 Maximum and minimum net surplus

Assume that the gross surplus from consuming  in state  is given by :

( ) = ( − 

2
)

12Because we focus on short-term and very short-term decisions, we discard the capacity

constraints and costs. These costs are partially financed through capacity mechanisms. For an

analysis of the complex relationship between markets for energy, availability and flexibility on

the one hand, and capacity mechanisms on the other hand, see Höschle et al. (2017).
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where  is distributed according to the c.d.f.  () with a continuous density
() on the interval [ ], where we assume  ≥  (so that, for each  ≥ ,
0(0 ) =  ≥  ≥  =  0

(0 )).
If it was possible to wait until the realization of the event to decide on pro-

duction, since  ≥  it would be optimal to set  = 0 and to choose  so as to

maximize (−
2
)− , which gives the state-contingent output  = − The

expected performance would be the maximum maximorum  = 1
2
 ( − )2.

By contrast, if all production had to be chosen ex ante, production would be based

on the expected value (). With the non-contingent output  = () − 
and no ex-post adjustment  = 0 we would obtain a low performance equal to
 = 1

2
(() − )2 Given (3), the actual performance  ∗ that is the value of

 when we solve (4)  will be between these two extreme values:

1

2
(()− )2 ≤ ∗ ≤ 1

2
( − )2

Notice that  (−)2 =  (−()+()−)2 = (−())2+(()− )2.
Consequently the gap 1

2
( − )2 − 1

2
(() − )2 = 1

2
( − ())2 (which

equals half the variance of ) is independent of . Then the larger the demand
uncertainty, measured by its variance, the higher the potential benefit from a

technology that allows ex-post adjustment.

4.2 Optimal dispatching

4.2.1 Adjustment

Given the quantity planned at stage 1, for each realization  of demand observed
at stage 2, the adjusted production  should be set so as to maximize ( ; ) =
(+  )− ( ) Since  ( ; ) is concave in  the first order condition
is sufficient to determine the unique solution.

• For   0, we have  ( ; )) = ( − +
2
)(+ )− − . Therefore:


0
(; ) ≥ 0⇐⇒  ≤  − (+ )

• For   0, we have  ( ; ) = ( − +
2
)(+ )− . Therefore:


0
(; ) ≥ 0⇐⇒  ≤  −

Consequently, if    + , the expost surplus  ( ; )) is uniquely max-
imized for  =  − (+ ). If   ,  ( ; ) is uniquely maximized for
 =  −. And if  ∈ [ +], the ex-post surplus is uniquely maximized for
 = 0. We then obtain:

Lemma 4.1. Optimal adjustment:
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Figure 3: Unit costs and demand span

If   , the optimal adjustment is  = −  0, and  ( ) = 1
2
2−

If  ∈ [ +], no adjustment is needed:  = 0, and ( ) = (−−
2
)

If    + , the optimal adjustment is  =  − −   0, and  ( ) =
1
2
( − )2 + (− )

These adjustments are shown in Figure 3, where 
0
( ) =  −  is the

marginal surplus in state  In particular for  ∈ [  − ], if  is at the lower
bound of the support ( = ) there is a downward adjustment  =  −   0

whereas if it is at its higher bound ( = ), there is an upward adjustment
 = (− )−  0. For ’medium’ values such as 1 and 2 the marginal surplus
at  is 0   −   so that no adjustment is profitable.

4.2.2 Planned production

Using the optimal adjustment rule of Lemma 41, problem (4) consists in Max≥0 ()
with:

 () = −+
Z 



2

2
 ()+

Z +



∙


µ
 − 

2

¶¸
 ()+

Z 

+

∙
+

( − )2

2

¸
 ()

(14)

where the three integrals correspond, in sequence, to   0  = 0 and   0.

• Note first that if we set    − , all adjustment must be upwards and

the welfare function reduces to  () = − + R 


h
+ (−)2

2

i
 () 

Consequently,  0() =  −   0, which means that  has to be set at

least equal to − .
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The simple case where  =  results in  0() = 0 for all  ≤  − 
Setting  ≤  −  and adapting at the second stage up to  −  gives the best
possible social benefit = 1

2
 (( − )2)  This is because increasing production

a posteriori costs no more than if planned from scratch. Since initial costs are

sunk, it is optimal to choose in the first stage any output level no larger than to

the lowest value of demand −  and later to systematically adapt production
upwards

• Symmetrically, fixing    cannot be optimal since it would give  () =
− + R 


2

2
 (), and then  0() = −  0. Consequently  must be

set at most equal to  to avoid wasteful downwards adjustment.

• Then  () is given by (14). Its first derivative with respect to  is


0
() = −+

Z +



( −)  () + 

Z 

+

 ()  (15)

A slight increase in  costs . It has no effect on the gains corresponding
to low values of  since  is already two large in the corresponding states

of demand. By contrast, it has the benefit of decreasing the set of events

where a costly upward adjustment will be necessary to match demand, as

shown by the last term on the right-hand side in (15). For intermediary

levels of demand (such as those characterized by 1 and 2 in Figure 3)
the gains represented by the second term in the right-hand side of (15) are

the marginal surpluses provided at zero additional cost thanks to a larger

planned production.

The optimal production is then the solution to
0
() = 0. The explicit value

of  is obviously dependent in the shape of the c.d.f of the demand parameter .
In the following, we consider the case of a uniform distribution.

4.3 Uniform distribution of the demand parameter

The explicit solution to 
0
() = 0 (where

0
() is given by (15)) is determined

by the shape of the distribution function  (). To obtain a better understanding
of the flexibility effect, assume now that  follows a uniform distribution function
with density  = (− )−1 1[], so that  () =  We also assume that:
 −   . The adjustment rules of Lemma 4.1 obviously remain unchanged.
Given these rules, the solution to max () for  ≥ 0 is given by Proposition
4.2. The proof is in the Appendix.

Proposition 4.2. The function  is concave and continuously differentiable. It

has a unique maximizer ∗.
Fixing ,  and the mean 1

2
(+ ), the maximum  (∗) is increasing in the

difference −  (or equivalently in the variance of ).
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There are three possible regimes for the optimal first stage production ∗ and
the achieved maximum:

A) If  ≥ 
³
1− 

2(−)

´


∗ = − +
p
2(− )(− ) ∈ [−  ]

 ∗ =
2

3
(−)

p
2(− )(− )+(−)(−)+1

6
(2++2+32(−)−3(+))

B) If 2

2(−) ≤  ≤ 
³
1− 

2(−)

´
,

∗ = − 1
2
− 


(− ) ∈ [ − ]

 ∗ =
2

2
(− )− +

1

2
+

3 − 3

6(− )
− 3

24(− )


C) If  ≤ 2

2(−) ,

∗ = −
p
2(− ) ∈ [−  ]

 ∗ = −+ 2
√
2

3
32

p
(− ) +

3 − 3

6(− )


Notice that when  ≤ 2, case C) is not possible. So we are left with two
possible regimes: ) and ).
Proposition 4.2 can be interpreted as follows. Fix ,  and  such that

 −   . Then let  go from  to 0 so that it becomes more and more costly
to adapt production upwards compared to the cost of phase 1. In regime )

where  ≥ 
³
1− 

2(−)

´
, we obtain  ∈ [ −  ] Regime ) occurs when

2

2(−) ≤  ≤ 
³
1− 

2(−)

´
so that  ∈ [ − ] Finally, regime ) occurs when

 ≤ 2

2(−) , and production is  ∈ [− ] Overall, we see that when  decreases,
the planned production  increases as it becomes less profitable to adapt ex post
production upwards.

An immediate consequence of Proposition 4.2 and Lemma 4.1 is the following.

Corollary 4.3. Given the optimal first stage production ∗, the optimal adjust-
ment is

∗() =  −∗  0 if   ∗. This only happens in regimes ) and ).
∗() = 0 if  ∈ [∗ +∗] . This may happen in all regimes ), ), ).
∗() =  − −∗  0 if    +∗. This only happens in regimes ) and

).
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In zone ),  is close to  It is therefore profitable to fix a low  during the

first stage and a high   0 during the second, rather than a higher  at high

cost  and an adjustment  that may be negative. By contrast, in zone ),  is
so small that it is optimal to produce most of the output during the first stage.

As shown in section 3.2, perfect competition allows one to implement the

outcome of Proposition 4.2 and its corollary. With the current specification,

adjustment prices are ∗() =  when ∗()  0 ∗() = 0 when ∗()  0 and

∗() = −∗ when ∗() = 0 The ex ante price (if there is a day-ahead market)
is the weighted sum of these ex post prices. Regarding the fact that  (∗) is
increasing with the variance of , it is the consequence of the risk neutrality of
all agents.13

4.4 Heterogeneous technologies

In all electricity markets, heterogeneous technologies coexist, in particular be-

cause they have different degrees of flexibility. Ma et al (2013) consider the pro-

vision of flexibility using a portfolio of generating units with different dynamic

characteristics. Their model analyzes the balancing of short term (operation)

costs and long term (building) costs of flexibility provision. By contrast we keep

on thinking in terms of day-ahead and real-time dispatching, neglecting capacity

costs that are already sunk.

Assume there are two technologies ( = 1 2) with costs

( ) =

½
+  if  ≥ 0

 if  ≤ 0 (16)

where 1  2  2  1
Clearly, by 2  1, it is sub-optimal to dispatch technology 2 for the planned

production, and, by 1  2, to use technology 1 for the adjustment production.
Therefore the first-best solution is the same as with a single technology charac-

terized by costs 2 for basic production and 1 for upward adjustment.
The only interplay between the two technologies is that a higher 2 pushes the

use of technology 1 at the initial stage up and, with a higher 1 one can expect
a more intensive use of technology 2 at the adjustment stage. Clearly, the result

is the same under perfect competition. Only producers endowed with technology

1 start their production day-ahead and only those endowed with technology 2

participate in the real-time market if upward adjustment is required.

A mix of technologies at both stages instead of a full specialization could be

justified by relaxing our technological hypotheses, for example in case of capacity

constraints, non-(piecewise) linear cost, adjustment cost varying with duration,

regulatory requirements, correlated risks of failure, etc.

13Oi (1961) proved that competitive producers benefit from price uncertainty because their

profit function is convex in  so that they are risk-lovers when the risk comes from price

variability.
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5 Imperfect competition

The objective of the section is to contrast the one market design and the two-

market design when firms have market power. Indeed, in the former section,

we have considered market mechanisms only in the case of perfect competition.

Hereafter, we assume a duopoly and, given a two-period game setting, we de-

termine the conditions for a subgame-perfect equilibrium when firms compete in

quantities. We show that, contrary to the result of Proposition 3.2, equilibrium

quantities now differ depending on the number of markets.

5.1 No day-ahead market

Suppose that there is no day-ahead market. Firms sell all their production (made

of the planned quantity chosen ex ante and the adjusted quantity chosen ex post)

on ex post state-contingent markets.

The duopoly game is as follows:

Stage 1: Firms choose their planned production  ≥ 0,  = 1 2
simultaneously and independently while demand is still random.

Stage 2: The random parameter  is revealed.
2a: The consumer’s demand function is determined and observ-

able by the two firms.

2b: Given 1 and 2 upon observing demand firms choose
their adjusted production ,  = 1 2 upwards or downwards, simultaneously and
independently.

2c: The entire production 1 + 1 + 2 + 2 is sold to meet
demand, which determines the equilibrium price and profits.

Let  ( ) represent the cost function of firm .
The profit of firm  is Π =  ( ) ( + )−  ( ) where ( ) is the

inverse demand function in state  and 1 + 1 +2 + 2 =  at demand-supply
equilibrium. We solve the model backwards.

• Ex-post

— Knowing , the representative consumer solves

max


( )−  =⇒ 
0
( )−  = 0

Then the demand function is ( ) = 
0
( )

— Knowing  1 and 2, producer  solves

max


( +  +− + − ) ( +)−  ( )

The first order condition is (for  = 1 2)

(++−+− )+
0
(++−+− ) ( +)−0

 ( ) = 0
(17)
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where 0
 ( )


=  ( )  and 

0
( ) = ()


 0 since

firms do have market power.

— From conditions (17) we deduce the best response function of firm 
in state  :  = (−;  −) Combining the two best-response
functions, we obtain the Cournot adjustment outputs:

 = (

−;  −)  = 1 2

and the Cournot price



³



 
´
= 

0
( +− +  + − )

in state , where 

=  +− +  + −.

• Ex-ante, there is no demand. Firm  just launches a fraction  of its total

future supply  + 

— firm  solves

max




h


³



 
´ ¡

 + 
¢− 

¡
 




¢i
The FOC is

[

³



 
´ ¡
1 +  

¢
+



³


 
´



¡
 + 

¢− 
¡
 




¢


] = 0 (18)

where



³


 
´


= 

”

( +− +  + − )
¡
1 +   + −

¢
since a change in  has a direct effect not only on future contingent prices but

also on the quantities supplied by  and − in the adjustment market with indirect
consequences on future prices, and


¡
 




¢


= 0


¡
 




¢
+ 0



¡
 




¢
 

Since 0( ) ≡ 
”

( + − +  + − ) after injecting (17) into (18) and
simplifying we obtain

[(
  ) + 

0
(  )

¡
 + 

¢
(1 +

−


)− 0


¡
 




¢
] = 0 (19)

• — from conditions (19) we deduce the best response function of firm  in
stage 1: 

 = (−) Combining the two best-response functions,
we obtain the Cournot planned outputs:


 = (


−)  = 1 2
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5.2 Day-ahead and adjustment markets

Assume now a framework made of ) a day-ahead market, followed by ) ad-
justment markets. Contrary to the former framework, at stage 1 firms sell

 = 1 + 2 on the day-ahead market at price  and at stage 2 they sell
 = 1 + 2 at price  in the adjustment market.

• Ex-post,

— knowing  1 and 2, producer  solves

max


(+  ) −  ( )

where the demand function still is (+ ) = 
0
(++−+− )

The first order condition is

(++−+− )+
0
(+−++− )−0

 ( ) = 0  = 1 2
(20)

• — From conditions (17) we deduce the best response function of firm 

in state  : e = e(−;  −) Combining the two best-response
functions, we obtain the Cournot adjustment outputs:

e = e(−;  −)  = 1 2

and the Cournot price

e ³e  ´ = 
0
( +− + e + e− )

in state , where e =  +− + e + e−.
• Ex-ante, firm  solves

max


 (1 2) + 

he ³̃  ´ e − 
¡
 e ¢i

where the ex-ante demand is  (1 2) = 

¡

0
(+  ()  )

¢
with  () =e1 + e2 

• — Given the expected adjustments, the FOC is

 (1 2)+
 


+

⎡⎣e
³
̃

 
´


e + e ³̃  ´ e


− 

¡
 e ¢


⎤⎦ = 0
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where

e ³̃  ´


= 0( )
¡
1 + e  + e−

¢
and

( )


= 0


¡
 e ¢+ 0



¡
 e ¢ e .

After substituting these two derivatives, we obtain

 +
 


+

∙³e − 0


¡
 e ¢+ e e0´ e


+ e0e µ1 + e−



¶
− 0



¡
 e ¢¸ = 0

and finally, using (20)

  +
 


 + 

∙e e0µ1 + e−


¶
− 0



¡
 e ¢¸ = 0 (21)

• — From these conditions we deduce the best response function of firm 
in stage 1: e

 =
e( e−) Combining the two best-response functions,

we obtain the Cournot planned outputs:

e
 =

e( e
−)  = 1 2

5.3 Which market design?

Given the shape of the FOCs (19) and (21), outputs are generically different

in the two market designs, contrary to what we obtained in the case of perfect

competition. To facilitate the comparison, let us rewrite the conditions in a

simplified format:

Without day-ahead market [+ 
0 ¡


 + 
¢
(1 +

−


)− 0
] = 0 (22)

With day-ahead market  +  0 e
 + 

∙e0e µ1 + e−


¶
− 0



¸
= 0 (23)

Suppose first that there is only one firm. Clearly, in that case
−

≡ 0

and the two conditions are the same if  =  []  In words, a monopoly pro-
duces the same quantity with or without a day-ahead market if there is no pos-

sibility of arbitrage by consumers. As usual, comparing the resulting condi-

tion 

£
 () + 0 (+  ())− 

0


¤
= 0 to the first-best condition given in (6),

that is 

£

0
(+  ()  )− 

0


¤
= 0, with or without a day-ahead market the

monopoly produces below the optimal level. In both market designs, it has an

incentive to launch its production in advance to benefit from the low costs of

planned procedure and to cost adjust ex post to maximise profit in the revealed

state of nature.
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We now switch back to the duopoly case where
−


is not nil. We first show

that this term is negative. Let 
0

(  − − ) = 0 represent the ex-post

first-order condition of firm  that is (17) or (20). Total differentiation gives


00


 + 

00
−− = 0 where 

00
− = 

0

− and 

00

= 

0

 By the

second-order condition of profit maximization, we have 
00


 0 and, from (17)

or (20), 
00
− = 

0
+ 

”

, which is negative for most demand functions used in

industrial organization.14 Then we obtain


−

= −
00
−

”
 0

and the same obviously applies to
−


 This term is an incentive à la Stackelberg
to produce more than in a standard Cournot framework. As a matter of fact, by

increasing its ex ante output, firm  not only benefits from lower costs but also

pre-empts a larger future market share by pushing its competitor aside. This term

then represents an incentive to produce more. It alleviates the market power of

firms in a way similar to forward contracts in the Allaz and Vila’s model (1993).

It appears in both (22) and (23) 

However, the term 

h

0


−


i
only appears in (22)  Since it is positive, it

shifts the expected marginal revenue of firm  upward. Then expected marginal
revenue intersects expected marginal cost for a higher level of production when

there is no day-ahead market. The result is that the best response function of both

firms is shifted outwards when there is no day-ahead market. At first, we could

conclude that the day-ahead market is potentially bad for efficiency. However,

things are not that simple. First, because shifting the two best-response functions

upwards does not necessarily lead to a larger total production. If the two firms

are asymmetric, the new equilibrium can be such that one firm is closer to the

monopoly outcome leaving the other with a tiny production. Overall, the total

ex ante output may be larger when there is a day-ahead market. Second, the

final net production depends on ex post adjustment, the sign and size of which

depend on the flexibility cost. With a higher ex-ante production, one can expect

more downward and less upward adjustment. It is hard then to predict the net

result without precise specifications of the cost functions and the distribution of

probability of demand.

6 Conclusion

In most industries, there is one single efficient technology in operation at a given

date. Innovation makes the installed machines obsolete so that active firms must

adapt or die. The main reason is that products can be stored and demand is both

14As shown by Novshek (1985), it is a necessary condition for the existence of a Cournot

equilibrium.
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price-responsive and moderately volatile. Therefore the exact date of production

is not crucial. This is not true in the electricity industry where ) storage can
still accommodate only a tiny fraction of total production, ) demand is perma-
nently changing, both cyclically and randomly, and is weakly price-responsive,

and ) producers are politically and socially obliged to satisfy demand at all
dates (at least in developed countries). As a result, from the very beginning

of the electricity industry, several technologies have coexisted, some with low-

variable/high-fixed costs to meet stable demand that can be predicted at least

one day in advance, others with high-variable/low-fixed costs to meet short-term

variations in demand. Actually, all technologies embed some degree of flexibility.

They can accelerate and decelerate but at a cost higher than when they produce

steadily. The paper analyzes optimal dispatching and market outcomes for tech-

nologies that can be operated at low cost day-ahead when demand is only known

in probability, and at high cost for last-minute adjustment to observed actual

demand.

In the last twenty years or so, developed countries have liberalized the elec-

tricity industry, in particular by opening wholesale markets. The design of these

has been very similar in all countries, with a day-ahead market followed by intra-

day adjustment markets. Our paper shows that when all agents are price-takers

and risk-neutral making competition in the wholesale market efficient given de-

mand uncertainty does not necessitate a day-ahead market. By contrast, when

producers have some market power, trading only on ex-post markets or on a

combination of ex-ante and ex-post markets is not the same. Determining which

market design is more socially efficient necessitates the specification of demand,

cost and uncertainty, and the use of simulations.
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7 Appendix: Proof of proposition 4.2:

In the maximization of  () for  ≥ 0, there are several cases to consider de-
pending on the relative positions of  and + compared to  and .

• Zone 1:  ≤ − .
Then () = −++ 1

2
((−)2) This expression is strictly increasing

in , so the maximum in zone 1 is achieved for  = − 

• Zone 2: −  ≤  ≤ . So + ≤ +  ≤ . Here,

 () =  ( ∈ [ +])(( − − 

2
)| ∈ [ +])

+ (  +)

∙
(− )+

1

2
(( − )2|  +)

¸
Computations give15

(− ) () = −1
6
3+

1

2
2(− )+(−(− )− 1

2
2− 1

2
2+ )+

1

6
(− )3

15If  is a random variable uniformly distributed on an interval [ ], then (2) = 1
3
(2 +

+ 2).
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(− ) 0() = −1
2
2 +(− ) +−(− )− 1

2
2 − 1

2
2 + 

The equation  0() = 0 has 2 roots 1 = −−√∆ and 2 = − +
√
∆,

where ∆ = 2(−)(−)  0. Notice that 1  −  2, and we have 2  
if and only if 2(− )(1− ) ≥ . There are two possible cases:
If 2( − )(1 − ) ≤ , the maximum of  in zone 2 is achieved at 2 =

− +
p
2(− )(− ).

If 2(− )(1− ) ≥ ,  is increasing in zone 2, and the maximum of 
in this zone is achieved at .

• Zone 3:  ≤  ≤ − .
Here, (− ) () reads:

−(−)+(−)1
6
(2+2+)+

1

2
(+)+(−−)(+1

6
(2+(−)2+(−)))

Hence

(− ) 0() = −− (− ) + − 1
2
2

So we have  0()  0 if and only if   3, where

3 := − 1
2
− 


(− )

We have:

3 ≥ ⇐⇒ (1− 


)(− ) ≥ 

2


3 ≤ − ⇐⇒ 


(− ) ≥ 

2


And we have three possible cases for zone 3:

If 3 ≤ , then  is decreasing in zone 3 and the maximum of  in this

zone is achieved for  = . If 3 ≥ − , then  is increasing in zone 3 and the

maximum of  in this zone is achieved for  =  − . If  ≤ 3 ≤  − , the
maximum of  in this zone is achieved for  = 3.

• Zone 4: −  ≤  ≤ . Here,

 () =  ( ∈ [])
∙
−+ 1

2
(2| ∈ [])

¸
+ ( ∈ [ ])((−−

2
)| ∈ [ ])

Computations give:

(− ) () = −(− )− 1
6
(−)3 +

1

6
(3 − 3)

So that ( − ) 0() = −( − ) + 1
2
( − )2 and we have  0()  0 if and

only if   4, where

4 := −
p
2(− )
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4 ≥ − ⇐⇒ (− ) ≥ 2

2


And we have two possible cases for zone 4:

If 4 ≤ − , then  is decreasing in zone 4 and the maximum of  in this

zone is achieved for  =  − . If 4 ≥  − , then the maximum of  on this

zone is achieved for  = 4.

• Zone 5:  ≤ . It is easily seen that  is decreasing on this zone, so the

maximum of  on this zone is achieved for  = .

Notice that:

(1− 


)(− ) ≤ 

2
⇐⇒ 2 ≤ ⇐⇒ 3 ≤ 

and if (1− 

)(− ) ≥ 

2
, we have:




(− ) ≥ 

2
⇐⇒ 3 ≤ − ⇐⇒ 4 ≤ − 

One can check that  is 1 and concave on +, and we obtain the solution
to the planification problem as announced in proposition 4.2.

Fix finally ,  and the mean  = 1
2
(+ ), and write  = − .

In zone ,

 ∗


=

√
2(− )32

3
√


− (− )

2
+



12
+

2

2


This function is mimimized at  = 2(− ), and ∗

(2(− )) = 2

2
 0.

In zone ,

 ∗


=

2

2
− 

2
+



12
+

3

242


This function is mimimized at  = , and ∗

() = 

2
(

− 1

2
)
2 ≥ 0.

Finally, in zone ,

 ∗


= −

2
+



12
+

√
232

3
√




This function is mimimized at  = 2, and ∗

(2) = 0. This concludes the

proof of proposition 4.2.
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