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Abstract6

This paper offers interpretations and applications of the “fear of ruin” coefficient (Aumann and Kurz, 1977,
Econometrica). This coefficient is useful for analyzing the behavior of expected utility maximizers when they face
binary lotteries with the same worse outcome. Comparative statics results of “more fear of ruin” are derived. The
partial ordering induced by the fear of ruin coefficient is shown to be weaker than that induced by the Arrow-Pratt
coefficient.
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This paper offers various interpretations of a risk-aversion coefficient, [u(w)−u(0)]/u′(w) in14
standard notation, that was first introduced by Aumann and Kurz (1977). This coefficient,15
coined the “fear of ruin” (FR) coefficient, captures an individual’s “attitude toward risking16
his fortune.”1 There has not been to date any systematic analysis of this coefficient. This17
paper fills this gap by identifying situations in which the FR coefficient controls the behavior18
of expected utility maximizers. These situations involve choices among binary lotteries with19
a fixed worse outcome.20

1. Fear of ruin in the small and in the large21

How much would an individual be willing to pay to be fully insured against the possibility22
of ruin? Suppose that this individual maximizes his expected utility, with an increasing von23
Neumann Morgenstern utility function u and current wealth w (assume w > 0). He may24
lose his entire wealth w with probability p. The insurance premium z(p) is defined by225

u(w − z(p)) = (1 − p)u(w) + pu(0). (1)

∗To whom correspondence should be addressed.
1Aumann and Kurz note that this interpretation is an outcome of a conversation they had with Kenneth Arrow.
2The model could allow any arbitrary wealth w in the case of ruin. Here, we simply assume, without loss of

generality, that w = 0. We also assume that u(0) is finite.
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Assume that u is differentiable. Differentiating (1) with respect to p gives z′(p) = u(w)−u(0)
u′(w−z(p)) . 26

Suppose that the probability p is small enough so that z(p) may be reasonably approximated 27
by pz′(0) since z(0) = 0. A first-order Taylor approximation of the insurance premium z(p) 28
is then given by z(p) ≈ p u(w)−u(0)

u′(w) . 29
This insurance premium “in the small” thus depends separately on the characteristics 30

of the risk and of the individual. In accord with intuition, the premium is proportional to 31
the probability of ruin p. Moreover, it depends on the characteristics of the individual’s 32
utility function only through the ratio u(w)−u(0)

u′(w) . Observe that this ratio is invariant to affine 33
transformations of utility. 34

As in Aumann and Kurz (1977), we scale the utility function by assuming u(0) = 0. 35
This is done for expositional convenience and without loss of generality since the utility 36
function is defined up to an affine transformation. In this case, the insurance premium is 37

z(p) ≈ p
u(w)

u′(w)
(2)

The coefficient u/u′ corresponds to the “fear of ruin” coefficient, as it was first introduced 38
by Aumann and Kurz (1977). From now, and throughout the paper, we will refer to u/u′ as 39
the coefficient of fear of ruin, or FR.3 40

Observe that our approximation for the insurance premium does not directly depend 41
on the Arrow-Pratt coefficient, −u′′/u′. This is because we approximate this premium for 42
a small change in the probability p, not for a small change in the variation of terminal 43
wealth, as in Pratt (1964) and Arrow (1971). Consequently, we can derive a first-order 44
approximation of the insurance premium by simply examining the rate of increase of the 45
insurance premium with respect to p.4 46

Furthermore, observe that u(w)/u′(w) is always strictly positive under u(·) increasing, 47
since u(0) = 0. Moreover, under risk-aversion, it is easy to see that this coefficient always 48
increases with wealth w. Intuitively, there are two reasons why the insurance premium 49
increases with wealth. First, when the agent is wealthier, there is more to lose. As a result, 50
the agent is willing to pay more in the face of the risk of losing his entire wealth. This is 51
the effect related to the numerator, u(w), which increases in w. Second, under risk-averse 52
preferences, the marginal value of money is smaller when the agent is wealthier, so he is 53
willing to sacrifice a larger amount of money in face of the same risk. This effect is related 54
to the term 1/u′(w), which also increases in w under risk-aversion. 55

Also, simply observe that, under risk neutrality, the FR coefficient reduces tow. Moreover, 56
if u is concave, 57

u(w)

w
≥ u′(w).

This inequality states that the slope of the tangent to the utility function at w is always 58
smaller than the slope of the chord drawn from 0 to w. Multiplying both sides of this 59

3Hence, the reader should remember that the appropriate FR coefficient in the general case is [u(w)−u(0)]/u′(w).
4The equivalent first-order effect for a variation in terminal wealth is zero in Pratt, so that he examines the second

order effect. See Gollier (2001, p. 21–24) for a detailed analysis of Pratt (1964)’s “in the small” approximation.
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inequality by w/u′(w) shows that the FR coefficient is always larger under risk-aversion60
than under risk-neutrality. This is consistent with the intuitive requirement that one’s fear61
of ruin is lower when one is risk-neutral.562

Previous remarks interpret FR as a measure of local risk aversion or local propensity to63
insure against a small chance of ruin. We next examine comparative properties of the FR64
coefficient for any probability of ruin p. To do so, we first introduce two Definitions.65

Definition 1. We define z(u, w, p), the insurance premium of agent u facing the risk of66
losing wealth w with probability p, by67

u(w − z(u, w, p)) = (1 − p)u(w).

Definition 2. We define c(u, w, p), the compensating premium of agent u facing the risk68
of losing wealth w with probability p, by69

u(w) = (1 − p)u(w + c(u, w, p)).

The quantity z(u, w, p) is the insurance premium that agent u with current wealth w is70
willing to pay to avoid the possibility that a ruin occurs with probability p. The quantity71
c(u, w, p) is the compensating premium that agent u is willing to accept to face a possibility72
of ruin, namely to end up with wealth 0 with probability p or with wealth w + c(u, w, p)73
otherwise.74

Following the approach developed by Pratt (1964), we now compare the FR of two75
individuals u and v for all w and p. Under the normalization at 0 adopted above, we76
introduce the following natural definition of “more fear of ruin”.77

Definition 3. Agent v is said to have more fear of ruin (FR) than agent u if and only if for78
all w,79

v(w)

v′(w)
≥ u(w)

u′(w)
.

Using the three Definitions above, we can now state the first Proposition of this paper.680

Proposition 1. Consider two agents with strictly increasing and differentiable utility func-81
tions u and v such that u(0) = v(0) = 0. For all p ∈ [0, 1] and all strictly positive wealth82
w, the following four conditions are equivalent:83

(i) Agent v has more I than agent u, namely v(w)
v′(w) ≥ u(w)

u′(w) ;84
(ii) Agent v has a higher insurance premium than agent u,namely z(v, w, p) ≥ z(u, w, p);85

(iii) Agent v has a higher compensating premium than ū, namely c(v, w, p) ≥ c(u, w, p);86

5Moreover observe that the fear of ruin is even lower when preferences are risk-seeking.
6Detailed proofs are available upon request. See also Foncel and Treich (2003).
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(iv) There exists an increasing and differentiable function T (·) = v ◦ u−1(·) such that 87
T (0) = 0 and for all x , T (x)

x is decreasing in x . 88
89

A sketch of the proof follows. We prove the equivalence between (i), (ii) and (iv). First, 90
(ii) implies (i) by (2). Second, we show that (i) implies (iv). Observe that since u and 91
v are increasing and differentiable functions, there always exists a unique, increasing and 92
differentiable function T = v◦u−1 such that v = T ◦u. Also, v (0) = T ◦u (0) = T (0) = 0. 93
Moreover, from u

u′ ≤ v
v′ , we have T ′(u) ≤ T (u)

u , which must be true for all u. This latter 94
condition is equivalent to (iv). Third, we show that (iv) implies (ii). By Definition 1 95

v(w − z(u, w, p)) = T (u((w − z(u, w, p))) = T ((1 − p)u(w)).

Since T (x)/x is decreasing in x , we get T ((1 − p)u(w)) ≥ (1 − p)T (u(w)). We thus have 96
v(w − z(u, w, p)) ≥ (1 − p)v(w) = v(w − z(v, w, p)). This implies (ii). The proof of the 97
equivalence between (i), (iii) and (iv) is similar. 98

The result would trivially generalize to a risk premium π (u, w, p), namely the insurance 99
premium net of the expected value of the risk π (u, w, p) = z(u, w, p) − pw. 100

2. Applications 101

In this section, we show that the FR coefficient is applicable to a wide variety of models. 102
Consistent with the previous section, these applications involve choices among lotteries 103
with just two possible outcomes in which the worse outcome of the lotteries is the same, 104
equal to the “ruin point” (normalized to zero). 105

2.1. Value-of-statistical-life 106

Let us interpret u(0) in model (1) as the utility when dead. In other words, the ruin point is 107
the death point. The expected utility equals (1 − p)u(w); there is no bequest motive. The 108
value-of-statistical-life (VSL) is usually defined as the rate of substitution between wealth 109
w and mortality risk p (see, e.g., Viscusi, 1993). We have 110

VSL = dw

dp
= u(w)

(1 − p)u′(w)
= FR[u(w)]

(1 − p)

where FR[u(·)] ≡ u(·)/u′(·). In this simple model, it is clear that there is a one-to-one 111
relation between VSL and FR. An individual has, other things being equal, a higher VSL if 112
and only if he has more FR. 113

Let us slightly adapt the model now to allow for insurance opportunities. More precisely, 114
assume that there is an annuity market in which survivors are offered fair tontines shares 115
(Rosen, 1988). In a large group of identical individuals, a proportion p die and their wealth 116
is distributed to (1 − p) survivors. A survivor’s consumption thus equals initial wealth w 117
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plus the tontine share pw/(1− p), that is a total of w/(1− p). The state-dependent expected118
utility thus equals (1 − p)u(w/(1 − p)) and we have119

VSL = FR[u(w/(1 − p))] − w

1 − p

There is still a one-to-one relation between VSL and FR in this model introduced by Rosen120
(1988).121

Interestingly, FR plays an important role in a life-cycle model as well. To see this point,122
consider the following two-period model123

V ≡ max
c

u(c) + β(1 − p)u(R(w − c))

where β is a discount factor, R the interest factor, c consumption in period 1 and (1 − p)124
the survival probability from period 1 to period 2. (Observe again that there is no bequest125
motive.) Then compute the VSL defined by the rate of substitution between wealth w and126
survival probability p, i.e. dw/dp = −( ∂V

∂p / ∂V
∂w

). Using the Envelope Theorem, it is equal127

to 1/(1 − p)R times the FR coefficient computed at the optimal period 2 consumption.7128

2.2. First-price auctions129

Let us consider the standard first-price auction model. There are N agents, i = 1, . . . , N130
each with identical utility function u where u(0) = 0. They participate in an auction where131
they all bid for an indivisible object. Each agent i has a private value xi for the object.132
This value is drawn independently from a common distribution F(·) with density f (·) on133
a support [x, x̄]. The highest bidder wins the object. His payoff is the value of the object134
minus the bid, i.e. xi − bi . Other bidders have payoff 0 (or 0 is the status quo).135

Agent i chooses bi so as to maximize136

pi u(xi − bi ),

with pi ≡ Pr(bi > B(x j ), ∀ j 
= i) and where B(·) is the optimal bidding strategy. It is137
well-known that the first order condition for the Nash equilibrium bidding strategy B(x) is138
given by the differential equation8139

B ′(x) = (N − 1)
f (x)

F(x)

u(x − B(x))

u′(x − B(x))
, withB(x) = x .

140

7Garber and Phelps (1997) indicate that u/u′ is a “central component” in their lifetime medical spending model.
Also, in a recent unpublished paper, Bommier (2003) shows that FR is a crucial coefficient when one wants to
compare lotteries involving lives of different lengths. He calls the FR coefficient the “general rate of substitution
between the length of life and consumption at the end of life”.

8See for instance Milgrom (2004, pages 123–125).
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What is the effect of increased risk aversion in the sense of more FR on the equilibrium
bidding function B(x)? Assume that bidders v have more FR and let us compare, ceteris
paribus, the outcome of a first-price auction populated by bidders v instead of bidders u.9

Using straightforward notation we find

B ′
v(x) − B ′

u(x) = (N − 1)
f (x)

F(x)

[
v(x − Bv(x))

v′(x − Bv(x))
− u(x − Bu(x))

u′(x − Bu(x))

]

≥ (N − 1)
f (x)

F(x)

[
u(x − Bv(x))

u′(x − Bv(x))
− u(x − Bu(x))

u′(x − Bu(x))

]
,

by v(.)
v′(·) ≥ u(·)

u′(·) . From that last result, we easily find that, for all x, 141

Bv(x) = Bu(x)impliesB ′
v(x) ≥ B ′

u(x).

We thus have obtained a single crossing property. This property means that Bv can only 142
cross Bu from below. Since Bv(x) = Bu(x) = x , the function Bv(x) will always be larger 143
than Bu(x) for any x such that x ≥ x . Therefore, more FR always raises the bidding price 144
equilibrium. This finding leads to the following Proposition. 145

Proposition 2. The equilibrium price of a first-price auction with independent private 146
values increases when bidders have more FR. 147

This result extends that of Milgrom and Weber (1982), who showed that introducing 148
risk-aversion raises the bidding price compared to the risk-neutral case. 149

2.3. Conflict and bargaining games 150

A conflict game may be described as follows (see, e.g., Skaperdas, 1997). Two agents, say 1 151
and 2, possess one unit of a resource. They may convert this resource and invest it into arms, 152
in quantities y1 and y2 respectively. The winner of the conflict gets a prize that depends on 153
the remaining productive resources of both agents, while the loser gets 0. The prize is a 154
function C ≡ C(1 − y1, 1 − y2) which is increasing in both arguments. Let p ≡ p(y1, y2) 155
and 1 − p denote the winning probability of agent 1 and 2 respectively, and u1 and u2 their 156
utilities so that they respectively maximize 157

pu1(C) and (1 − p)u2(C).

It can be shown that, in such a game, an agent with more FR always invests more into arms 158
and has a higher probability of winning the conflict when C is symmetrical. See Skaperdas 159
(1997, page 117, equation. 4). Moreover, when two identical agents simultaneously have 160

9The assumption that private values are independent of private characteristics, like risk-aversion, obviously
facilitates the comparative statics analysis here.
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more FR, the total amount invested into arms increases as well. The intuition for this is161
straightforward. On the one hand, increasing investment into arms decreases payoff C in162
the case of victory. On the other hand, increasing investment decreases the chance of losing163
the conflict, and so helps to avoid ruin (notice that the loser’s payoff is the ruin point here).164
The trade-off is thus similar to the one presented in the previous models. It is not surprising165
that FR controls the amount of resources invested into arms in this model.10166

Another application in strategic games is the Nash bargaining problem, as first noticed by167
Aumann and Kurz (1977, p. 1149). To see that, consider two agents u1 and u2 who bargain168
over the division of a cake of size w. The well-known Nash solution to this problem calls169
for maximizing170

u1(y1)u2(y2) subject to y1 + y2 = w.

It is easy to show that this solution equates the two individuals’ FR computed at the optimal171
bargaining points. The intuition is as follows (see also Svejnar, 1986): In the bargaining172
problem, the ruin point u(0) = 0 can be interpreted as the threat utility if the bargaining173
process fails. As a result, at each stage of the bargaining process, each agent considers a174
gamble in which he risks losing the entire net gain which he has won so far against an175
additional gain of a small amount. More fear of ruin thus reduces the willingness to accept176
this gamble and so is a disadvantage in bargaining. See Roth and Rothblum (1982) for a177
general analysis.178

2.4. Contingent background risk179

Take model (1) but replace the term u(w) by the term uε(w) ≡ Eεu(w + ε̃) and assume180
E ε̃ = 0. The individual thus faces a background risk ε̃ only if ruin does not occur. What181
is the effect of this contingent background risk? From Proposition 1, it is clear that the182
insurance premium always decreases if and only if183

uε

u′
ε

≤ u

u′

Observe that, given risk-averse preferences, E ε̃ = 0 implies uε(·) = Eu(.+ ε̃) ≤ u(·) by the184
Jensen inequality. Similarly, given prudence, E ε̃ = 0 implies u′

ε(·) = Eu′(.+ ε̃) ≥ u′(·) by185
the Jensen inequality. Hence, under the conditions of positive risk-aversion and prudence,186
FR decreases with a contingent background risk. Some implications directly follow. For187
instance, the VSL of risk-averse and prudent individuals decreases in face of a background188
risk contingent on being alive.11189

10The FR coefficient is also at play in contest games (Skaperdas and Gan, 1995), or in rent-augmenting and
rent-seeking games (Konrad and Schlesinger, 1997). However, more FR is not enough to control the comparative
statics of more risk-aversion in those games as the loser’s payoff generally depends on the agents’ actions, and so
the ruin point varies.

11This observation relates to Eeckhoudt and Hammitt (2001)’s analysis of the effect of a financial background
risk on the VSL.
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Let us now consider an implication of this observation concerning the first-price auction 190
model. This implication arises when the value of the auctioned object is uncertain. Here, 191
we follow (Eso and White, 2004). Take the standard model of Section 3.2. Assume that the 192
private value of the auctioned object is no longer xi but instead is xi+ εi , where εi is the 193
realization of a random variable ε̃i . Random variables ε̃i are identically distributed as ε̃, 194
and are independent of private values xi . Thus, the highest bidder now receives an ex post 195
payoff xi + εi − bi . Losing bidders still receive payoff of 0. This model implies that the 196
background risk is contingent upon winning the auction. Ex ante, agent i chooses bi so as 197
to maximize 198

pi Eεu(xi + ε̃ − bi ) ≡ pi uε(xi − bi )

with pi defined as above. It is immediately clear that the differential equation characterizing 199
the equilibrium strategy in the noisy auction takes on the following form 200

B ′(x) = (N − 1)
f (x)

F(x)

uε(x − B(x))

u′
ε(x − B(x))

, with B(x) = x .

In other words, analyzing the effect of the noise ε̃ on the equilibrium bidding price amounts 201
to comparing the equilibrium with utilities uε(·) to the equilibrium with utilities u(·). This 202
leads to the following Proposition. 203

Proposition 3. Consider a first-price auction with independent private values and with 204
risk-averse and prudent bidders. Then uncertainty over the value of the auctioned object 205
decreases the equilibrium price. 206

The intuition is two-fold. First, when preferences are risk-averse, utility is reduced if one 207
wins the object uε(·) ≤ u(·). Hence, the object is less desirable. Second, given prudence, the 208
marginal utility of income increases u′

ε(·) ≥ u′(·). Individuals thus bid less aggressively in 209
the noisy auction because they value an extra dollar of income more. This Proposition shows 210
that Eso and White (2004)’s result that decreasing absolute risk-averse (DARA) individuals 211
bid smaller amounts in a noisy first-price auction also holds for any risk-averse prudent 212
bidders (i.e., DARA is sufficient for prudence but the converse is not true). 213

Overall, these applications suggest that FR may be useful to sign various comparative 214
statics results in a large class of models used throughout the economics literature. 215

3. Comparison with the Arrow-Pratt and the asymptotic risk-aversion coefficients 216

We have demonstrated in the previous section that more risk-aversion in the sense of FR 217
increases the bidding price in a model of first-price auctions, and also controls risk-aversion 218
motives in other models. This raises the question of the effect of an increase in risk-aversion 219
à la Arrow-Pratt in those models. The answer to the question is given in the present section, 220
as we precisely examine the link between FR and the Arrow-Pratt coefficient. 221
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Following Jones-Lee (1980), it is useful to distinguish three different risk-aversion coef-222
ficients223

FR[u(·)] ≡ u(·)
u′(·)

AP[u(·)] ≡ −u′′(·)
u′(·) (3)

AS[u(·)] ≡ u′(·)
u∗ − u(·) .

The last coefficient corresponds the asymptotic risk aversion coefficient (AS) introduced by224
Jones-Lee (1980). The AS coefficient measures the individual’s willingness to participate225
in a “small-stake large-prize gamble.” It assumes that u is bounded above, where u∗ is the226
supremum of u.12227

The complementarity of these three coefficients is apparent when one approximates228
insurance premia “in the small.” Indeed, it is well-known that the Arrow-Pratt coefficient229
appears when considering risks with small gains and small losses. On the other hand, we230
have seen that the FR coefficient appears when the risk is a small probability of ruin. Finally,231
the AS risk aversion coefficient appears for a small loss/large gain risk, like gambling for232
the jackpot. See Jones-Lee (1980) for an interesting presentation and discussion.233

In this section, we ask: to what extent is an individual v who is more risk-averse than an234
individual u in one specific sense also more risk-averse with respect to another sense? In235
other words, we want to compare the partial orderings induced by these three risk-aversion236
coefficients. To do so, let the statement “v is more risk averse than u in the sense of I ” be237
condensed into v ⊇I u and defined as follows.238

Definition 4. Consider the three coefficients I = {FR, AP, AS} as they are introduced in239
(3). Then240

(i) v ⊇FR u holds if and only if FR[v(w)] ≥ FR[u(w)] for all w,241
(ii) v ⊇AP u holds if and only if AP[v(w)] ≥ AP[u(w)] for all w,242

(iii) v ⊇AS u holds if and only if AS[v(w)] ≥ AS[u(w)] for all w.243

Conversely, the ordering v ⊇/
I u means that there exists w such that u is locally more244

risk averse than v in the sense of I .245

The claim that an individual v is more risk averse than an individual u (in the sense of AS,246
AP or FR) can be fully characterized by setting the corresponding properties on a function T247
such that v = T ◦ u. First, from Pratt (1964, Theorem 1) we know that v ⊇AP u if and only248
if v = T ◦ u with T increasing, twice differentiable and concave. Second, from Proposition249
1, we know that v ⊇F R u if and only if v = T ◦ u where T is increasing, differentiable,250
T (0) = 0 and T (x)/x decreasing in x . Finally, it is easy to show that v ⊇AS u if and251

12What is actually important is that both the ruin point and u∗ are very bad and very good points beyond which
it is not possible to go. In particular, the utility u needs not be bounded above if we set an upper limit for wealth.
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Figure 1. Represents an increasing and concave function T with T (0) = 0. This function is such that T (x)/x >

T ′(x) together with T ′(x) >
T (x̄)−T (x)

x̄−x for all x ∈ [0, x̄].

only if v = T ◦ u where T is increasing, differentiable on [0, x̄] and T ′(x) ≥ T (x̄)−T (x)
x̄−x , 252

with x̄ = u∗ = supw u (w). Hence, the comparative analysis of the different risk-aversion 253
coefficients can be presented by equivalent characterizations on such transformations T 254
without any reference to the underlying utility functions u and v.13 255

It is immediate that if a function T is concave on [0, x̄] then T (x)/x is decreasing in x , 256
which is equivalent to T (x)/x > T ′(x), and to T ′(x) ≥ T (x̄)−T (x)

x̄−x . Figure 1 illustrates this 257
result. First, observe on the figure that the slope of the chord drawn from the end-point x̄ 258
to any point x1, i.e. T (x̄)−T (x1)

x̄−x1
, is always lower than the slope of the tangent at this point 259

T ′(x1). Second, observe that the slope of the chord drawn from the origin to any point x2, 260
i.e. T (x2)/x2, is larger than the slope of the tangent at this point T ′(x2). The results for 261
partial orderings are summarized as follows. 262

Proposition 4. Let u and v be two strictly increasing, twice differentiable and concave 263
functions that are bounded above with u∗ = supw u (w) and v∗ = supw v (w). Moreover, 264
assume that u (0) = v (0) = 0. Then v ⊇AP u implies: 265
(i) v ⊇F R u 266

(ii) v ⊇AS u. 267

This Proposition shows that if an agent is more risk-averse in the classical sense of AP then 268
he is also more risk-averse in the sense of AS and FR. Proposition 4 is of clear mathematical 269
significance. As mentioned above, v is more risk-averse than u in the sense of AP if and 270
only if v is obtained by a concave transformation of u. This is a very intuitive mathematical 271
property, as any coefficient of curvature of a function should in principle increase when one 272

13In order to compare these different characterizations T , we need to restrict our attention to any increasing,
differentiable T defined over [0, x̄] and such that T (0) = 0.
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“concavifies” a function. The Proposition shows that this is actually the case for AS and FR273
coefficients.274

Proposition 4 shows that ⊇FR and ⊇AS are weaker orderings than ⊇AP. Moreover, it is pos-275
sible to show that these orderings are strictly weaker. To see this, take the function T1 (x) =276
(x − 2)3 + 8 over the interval [0, x̄] where x̄ = 2.8 . This function is such that T1(x)/x is277
decreasing in x over this entire interval while T ′′

1 (x) > 0 together with T1(x̄)−T1(x)
x̄−x > T ′

1(x)278
for some x over this interval. In other words, there exists an individual v who has globally279
more FR than u but who is also locally less risk-averse than u in the sense of AS and of AP.280
Similarly, let T2 (x) = x̄ − 2 − [T1 (x̄) − x − 8]1/3 over the interval [0, T1(x̄)] where T1 is281
the function just defined above.14 Function T2 is such that T2(T1(x̄))−T2(x)

T1(x̄)−x < T ′
2(x) over this282

entire interval while T2(x)/x is increasing in x and T ′′
2 (x) > 0 for some x over this latter283

interval. In other words, there also exists an individual v who is globally more risk-averse284
in the sense of AS than u but who is locally less risk-averse in the sense of FR and of AP.285

To conclude this section, we remark that ⊇FR, ⊇AS and ⊇AP are equivalent for some286
important classes of utility functions. This is the case if we restrict our attention to power287
functional forms. Technically, the curvature of power functions is often captured by one288
single parameter and the AP, FR and AS coefficients may vary monotonically with this289
parameter.15 The equivalence result follows.290

4. Conclusion291

In this paper, we have investigated the basic properties of the “fear of ruin” (FR) coefficient292
introduced by Aumann and Kurz (1977). First, we have derived an approximation of the293
insurance premium that an individual would be willing to pay in face of a small chance294
of losing his entire wealth. This premium has been shown to be proportional to the FR295
coefficient. We have then provided equivalent characterizations for comparing the FR of296
two agents. Specifically, we have shown that an agent v has globally more FR than an297
agent u if and only if v’s premium to insure against the risk of ruin is always larger than298
u’s premium. We also have given a characterization of more FR in terms of the properties299
required of an increasing transformation T , such that v = T ◦ u. Furthermore, we have300
shown that the FR coefficient plays a crucial role in strategic games with risk-averse players.301
For instance, in first price auctions, we have demonstrated that the equilibrium bidding price302
of an auctioned object is always higher if auctioneers have more FR, and that uncertainty303
over the value of the auctioned object always leads the equilibrium bidding price to decrease304
under prudence. In addition, we have shown that the FR coefficient may be instrumental305
in simple mortality risk models. Finally, we have compared the FR’s coefficient with other306

14Observe that T1 appears in the characterization of T2. This can be easily understood once we explain how
these counter-examples were generated. In short, we used the fact that finding T1 such that we have ⊇F R and ⊇AS

is equivalent, up to a change of reference axes, to finding T2 such that ⊇F R and ⊇AS . Mathematically, the change
of reference axes is such that T2(x) = x̄ − T −1

1 (T1(x̄) − x).
15Foncel and Treich (2003) derive a formal proof of this equivalence for a generic class of power utility functions.

This generic class Uz is the class of increasing and concave function of w that takes the form (z+w)1−m

1−m − z1−m

1−m , and
defined for all positive parameter m 
= 1 and over the interval [0, w]. (This result does not hold for all functions
with a single parameter of power form.)
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coefficients of risk-aversion. In particular, we have shown that if an agent v is more risk- 307
averse than u in the sense of Arrow-Pratt, then v has more FR than u. 308
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