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Introduction

Context

Machine-to-Machine (M2M) is a large domain discussing the communication

capabilities between machines in general. Decades ago, this communication was

non-trivial and not as standardized as it is nowadays. It went through several steps

of innovation to be adapted to the needs of the users and so it led to the creation

of Internet, a large computer network.

The Internet itself has evolved to integrate more types of computer like entities

over the years, such as the smart phones, connected cameras, etc. More and more

devices have become connected to this network and have taken part in the com-

munications. We now talk about the Internet of Things (IoT), where a thing

corresponds to any object capable of sending or receiving data over the Internet.

However, the applications of IoT are not only for home appliance and connected

objects [Atzori 2010]. It is a large domain that comprises factories, transportation,

agriculture or e-health. The goal is to connect the things that enable the interaction

with the users present at different locations and to provide an ambient intelli-
gence. For this reason, those domains have names using the “smart” prefix, such

as smart cities or smart factories.

The devices enable the gathering of data from the environment of the user, or the

interaction with the environment or directly with the user. The data is collected by

application software entities present on the Internet. Depending on the environment

state and the user policies, they are able to react by using actuator devices or by

sending information to the users.

However, not all devices are able to directly handle the connection to the In-

ternet to send their data. To perform such an operation, the device would need

to implement the standard protocols to connect to the network. This requires a

minimum of processing power to do so. This is not possible in all cases, since we

want autonomous devices that run on a battery for months or years. To counter-

balance this, specific device protocols are created by industrial organizations that

enable the creation of low-cost devices with a specific communication channel. This

approach requires the usage of gateways that receive the data from the devices. A

gateway corresponds to a machine closely located to the devices. Those machines

are usually low-powered and do not have a lot of processing power to reduce their

initial and maintenance costs. The gateways provide interface between the devices

(using their specific communication protocol) and the Internet (where the high-level

applications using the data of the device are located).

For this purpose, software processes are executed on the gateways. They enable

the communication with the devices and, depending on the application, may have

other features. For instance, such a piece of software may be in charge of the

security of the data handled.
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The main concern with such software is that they may experience a failure for

different reasons. For instance, the gateway may be run on top of solar panel-

powered batteries and may lack energy during some days, or the dynamicity and

mobility of the devices may interfere with the correct operation of the software

entities.

With the growing number of connected devices, Gartner envisioned 20 billion

devices by 20201. The number of gateways deployed will also grow. Furthermore,

the amount of software to handle this will increase, and with the diversity of possible

applications, the task to manage those entities become difficult.

We distinguish the need to provide a management system for this software

with several considerations. The distributed aspect of the gateway has to be taken

into account. In fact, the gateways are spread over different locations and may not

be on the same network. The heterogeneity of the systems and the applications

has to be represented in the management. Depending on the application needs, the

management operations have to be different. This heterogeneity also brings another

issues with is the connectivity of the devices and gateways. The interoperability
of the approach is necessary in term of connectivity and representation of the data.

Moreover, a mechanism is required to change the state of the running software.

For this purpose, we propose the use of a migration mechanism such as checkpoint-

ing. It enables the creation of checkpoint image files of a running program that

may be restarted on another machine.

Contributions and outline of the thesis

The chapters of this thesis are structured as follow:

Chapter 1: Scientific Context and Background

In this chapter, several domains covered by this thesis are presented. General

concepts and protocols of IoT are studied. Secondly, some technologies and tech-

niques that enables process migration between machines are presented, with an

emphasis on the checkpointing mechanism used in the thesis. Then, semantic web

technologies are described and an overview of their usage in IoT is given. Finally,

the autonomic computing approach, used to structure the work of this thesis, is

described.

Chapter 2: The IoT System: Monitoring and Migration mechanism

In Chapter 2, the first contribution of this thesis is presented, discussing the

required elements to interact with an IoT software infrastructure. For this pur-

pose, the operation of two autonomic components are described. The monitoring

component, implemented with device management technologies is presented.

1http://www.gartner.com/newsroom/id/3598917
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Then, the execution of the actions on the system is described with the execution

component. It uses migration techniques based on checkpointing in order to manage

the software entities of the gateways. The usage of checkpointing mechanism is

evaluated in this section.

The proposed Scene mechanism is described and evaluated in this chapter.

This mechanism provides a novel approach to design softwares using large data

on memory-constrained gateways using the checkpointing mechanism.

Chapter 3: Knowledge Base for IoT Infrastructure Management

Chapter 3 illustrates the knowledge base of the autonomic manager. It presents

the semantic model proposed in this thesis that aims at representing the IoT soft-

ware infrastructure. An emphasis on the representation of the software entities is

given in the ontology.

Moreover, for the integration of the autonomic approach, the description of the

autonomic data such as the symptoms and requests for change is discussed.

Chapter 4: Semantic Analyzer for Symptom and RFC inference

Chapter 4 presents the semantic inference system in place to infer issues from

the system. It corresponds to the autonomic analyzer component. Based on SWRL

rules, this chapter demonstrates how the symptoms and the requests for change are

inferred.

This inference system is evaluated with an application to a logistics scenario.

Chapter 5: Software processes optimization in an IoT system

Chapter 5 describes the planner component in charge of creating a plan of action

when an issue is detected. This planning is performed by using a genetic algorithm

in order to find an optimized solution in finite time. In fact, this approach leads to

a combinatorial set of possibilities when we consider the placement of the software

entities on the gateways. This contribution is evaluated and compared through a

brute-force approach.

Finally, a conclusion to this thesis is provided, along with a discussion of future

work.
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The core contribution of this thesis is the high-level management of IoT software

processes. This chapter describes the context of the different domains handled in

the document.

First, we discuss IoT diversity and current challenges. Then, in order to handle

the software processes, we describe the existing runtime software platforms that

enables the migration of the processes. Moreover, definitions of technologies asso-

ciated with web semantic technologies are provided. Its general usage for IoT is

discussed along with the set of known ontologies published for the IoT. Finally, the

autonomic computing paradigm is described and will be used to structure the thesis

work.
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1.1 The Internet of Things

The IoT is a large domain with many possible applications [Atzori 2010]. This

section provides an overview of some aspects of IoT in term of the protocols used,

the device technologies and the literature challenges. Moreover, a discussion around

the device management technologies is provided.

1.1.1 IoT Technologies

Many technologies and protocols must be considered in IoT [Al-Fuqaha 2015].

A description of the main protocols used among the machines and with some devices

are given. A brief overview of the device technologies is also provided.

1.1.1.1 Protocols used in the IoT

Some well-known and standardized protocols are at stake for IoT. Depending on

the application context and its needs, the choice of protocol may differ. Moreover,

several protocols can be used at different layers of the applications.

Hypertext Transfer Protocol (HTTP)1 : is a well-known standard protocol

used in the Web. HTTP is a connection-oriented protocol, built on top of

Transmission Control Protocol (TCP), which enables the exchange of infor-

mation between a client and a server. However, it is a verbose protocol,

including a lot of meta-information in the packets. Moreover, the expressive-

ness of the HTTP operations allows the implementation of Representational

State Transfer (REST) architecture. The protocol provides a set of operations

such as GET, POST, PUT or DELETE to perform, respectively, a retrieval

of resource, a creation, an update and deletion.

Constrained Application Protocol (CoAP)2 : is a protocol built on top of the

User Datagram Protocol (UDP) and is not connection-oriented. It is based

on a subset of HTTP operations. In comparison to the previous protocol, it

uses an optimized set of headers, with a binary representation, to lighten the

communications. The application payload is also limited in size and pushes

the users to use optimized data formats. It uses a client-server architecture.

Message Queuing Telemetry Transport (MQTT)3 : uses a different ap-

proach than the other protocols. It is a publish/subscribe mechanism. MQTT

clients send messages to a broker. The messages are sent to a named topic

by the client. Other clients are able to subscribe to topics on a broker and

will receive the messages sent to the requested topics. A comparison of the

performances between HTTP and MQTT in an IoT scenario has been done

by [Yokotani 2016] and is in favor of MQTT. The authors also propose an

enhancement of the protocol to reduce the network consumption.



1.1. The Internet of Things 7

1.1.1.2 Device technologies and constraints

There is a large diversity of devices and machines deployed for IoT. This large

deployment leads to the usage of constrained devices in order to reduce the cost

of this large deployment. Those constraints come from different aspects such as

the energy management of the entities, or the restricted processing power of the

machines.

In term of energy, a lot of devices rely on internal battery or external power

sources. Energy harvesting is an emerging approach [Kamalinejad 2015] that uses

the power received from an electromagnetic signal to perform its own communica-

tion. Mechanical power is also used to harvest enough energy to perform a radio

communication [Gorlatova 2014]. EnOcean4 technology is based on this mechanical

approach and proposes devices that do not have any battery but also send their

data using radio communications.

There are also more standard IoT devices using other kind of wireless commu-

nications. Z-Wave5 is another short-range communication technology and aims at

providing devices for home applications.

Bluetooth Low Energy (BLE) is an extension of the Bluetooth technology with

a reduced functionality in order to reduce the power consumption of the communi-

cation.

Some long-range technologies are being developed. They are comparable to

cellular networks, but with lower energy consumption and bandwidth. SigFox6

is a company providing the eponymous long-range network. It provides a radio

technology that enables the communication of some devices via the Internet. The

messages sent over this communication are stored in a SigFox cloud and can be

retrieved by other applications through Web Services.

LoRa is another long-range communication technology with a specification han-

dled by the LoRa Alliance7. This is a more open eco-system compared to SigFox,

where everyone can deploy their own LoRa network. This architecture is the same

as SigFox in that the devices can send messages to gateways that are connected to

the Internet. The final destination of the messages is not directly a cloud provider

and may depend on the application.

1.1.2 Architectures and Challenges

Several contributions from the literature discuss the commonly deployed and

architectures and the challenges that are present in this context.

The classic IoT architecture is viewed in three layers as described in the litera-

ture:

• The top layer is composed of powerful nodes, named as “weakly constrained

nodes” in [Zanella 2014b]. This layer is also assimilated into the Cloud by

4https://www.enocean.com
5https://www.z-wave.com
6https://www.sigfox.com
7https://www.lora-alliance.org/

https://www.enocean.com
https://www.z-wave.com
https://www.sigfox.com
https://www.lora-alliance.org/
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others [Liu 2015, Szilagyi 2016]. It corresponds to a set of machine that have

no constraints based on the energy consumption and have large computation

capabilities. Those nodes are the hosts for large programs concerning data

analytics and often serve as an interface between the IoT sub-systems and

the high-level applications. Usually, the storage capabilities of this layer are

extremely large.

• The middle layer corresponds to a mix of several kind of entities. We find the

machines, called gateways in the literature by [Compton 2009, Desai 2015],

whose resources are constrained. In terms of costs, their computation capa-

bilities are quite low and so do not use a lot of energy. However, they are

deployed close to the devices and implement a particular device protocol that

enables their communication with the higher layer.

• The bottom layer corresponds to the end devices that have a limited power

source and almost no computation capabilities. These constrained nodes are

the sensors (as presented in [Compton 2009]) or actuators, which will enable

interaction with the real world. They often implement device-specific tech-

nologies, described in the previous section, and interact with the gateway in

order to send their data to high-level applications.

Other contributions points out specific cases. [Yashiro 2013] proposes an IoT

architecture integrating the already deployed embedded systems in the device net-

works. This is done through a specific framework developed by the author and is

not standardized. An interesting aspect of this work is the usage of protocols with

low network impact, such as CoAP.

[Ma 2011] provides objectives and challenges for the IoT. The author highlights

challenges such as large data exchange among heterogeneous elements, and the

integration of uncertain information for the decision or the adaption of the dynamic

system environment.

[Zanella 2014a] discusses the usage and challenges of IoT in smart city scenarios.

The authors show the diversity of domains present in this context, such as waste

management, traffic congestion, city energy consumption, etc. A standardized ap-

proach is suggested with the proposal of web services technologies supported by

IETF, ETSI or W3C. This standard approach is also supported on a larger scale

by [Gyrard 2014].

The vision also includes virtual objects able to interact with and affect the

real world. This creates a significant number of challenges [Whitmore 2015]. In

most cases, these objects have strong constraints in terms of energy, communication

and/or processing [Chen 2014].

1.1.3 Device Management

Device Management corresponds to the management of the physical entities in

an information infrastructure. The management of deployed devices is a common

issue in the IoT ([Perumal 2015], [Zhu 2010] or [Kim 2015]).
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The Open Mobile Alliance (OMA)8 organization proposed several standard pro-

tocols for Device Management. A first standard, OMA DM9, has been proposed

and the first version has been finalized in June 2008.

Afterwards, they proposed another device management protocol Lightweight

M2M (LWM2M) more oriented for embedded equipment due to its “lightweight”

nature. The first standardized version of the protocol was released in February

2017.

This new protocol is resource-oriented with a REST architecture and based on

CoAP to lighten the networks. Several security mechanisms can be applied in order

to secure the communication channels and authenticate the entities.

This device management protocol enables the representation of the state of the

devices in a resource format. It allows a management entity to retrieve different

information of the deployed devices such as the memory usage, the battery level, etc.

It also contains some descriptive information of the nature of the device handled.

Moreover, it is possible to perform actions on the managed devices. For instance,

standard operations are reboot or firmware update.

Additionally, it is possible to define its own model in the LWM2M resource tree.

This enables the extension of the protocol to other types of data that can transit

by the protocol.

Several implementations of the standard exist in the open-source ecosystem. In

the Eclipse foundation, there are Eclipse Leshan and Eclipse Wakaama.

Eclipse Leshan10 is a client and server implementation of LWM2M in Java.

Eclipse Wakaama11 is a light client written in C. Both projects propose extensions

of the software in order to integrate this technology in new devices.

We observe a large diversity in term of possible protocols and device technologies

used in the IoT. Each type of application will rely on multiple technologies and will

have different constraints. Some literature contributions focus on data handling

and its representation in the IoT domain. Moreover, the autonomous approach

is suggested with the usage standards for the communication protocols. Those

decisions will help to handle the extensibility and heterogeneity of the domain.

The device management technologies are useful in order to monitor an IoT

system. Some of them, such as LWM2M, are based on CoAP, a protocol suggested

for use in IoT to reduce the network overload. This technology, and in particular

LWM2M will be used in this thesis to monitor the IoT software infrastructure.

1.2 Runtime software platforms

This thesis discusses how to manage the running software processes on IoT

infrastructure. For this purpose, a set of platforms that enable the interaction with

8https://www.omaspecworks.org
9List of specifications: http://openmobilealliance.org/wp/index.html

10https://www.eclipse.org/leshan/
11https://www.eclipse.org/wakaama/

https://www.omaspecworks.org
http://openmobilealliance.org/wp/index.html
https://www.eclipse.org/leshan/
https://www.eclipse.org/wakaama/
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the execution of the software entities is described.

We evaluated several existing technologies that enable an important opera-

tion for the IoT, “software migration”. It corresponds to the possibility of stop-

ping the execution of a software entity on a machine and pursuing it on an-

other [Milojičić 2000].

1.2.1 Checkpointing Mechanism

1.2.1.1 Definition

The checkpointing mechanism consists mainly of two operations, checkpoint
and restart, on an operating system process. Figure 1.1 shows an example of

both operations.

Computation

Process

PID: 2652
ckpt-img

checkpoint

ckpt-img

Computation

Process

PID: 3120

restart

Figure 1.1 – Checkpoint and restart operations from
checkpointing mechanism

The checkpoint operation corresponds to the saving of a running process into a

file. It aims at saving the whole state of the process with its memory, open files,

created threads, etc. in a checkpoint file.

Thus, this file can be used to perform the restart operation — the reverse

operation that recreates the running process from the checkpoint file. The process

is in a state semantically equivalent to the state at the time of checkpoint.

Checkpointing has a long history in HPC [Litzkow 1997, Hargrove 2006,

Cao 2014, Cappello 2014]. In 2012, a cluster of ARM CPUs was tested with re-

spect to checkpointing as a basis for power-efficient High Performance Computing

(HPC) [Keville 2012]. This used the more powerful ARM Cortex-A9 CPU, whereas

the current Raspberry Pi Model B uses the less powerful ARM Cortex-A7. In

those earlier experiments, checkpoint times from 3.4 to 138 seconds were observed

on various NAS parallel benchmarks for MPI — a standard test suite for parallel

applications. In comparison, the experiments of this work apply checkpointing only

to a single process.
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1.2.1.2 DMTCP as an implementation of the checkpointing mechanism

In this work, a checkpointing mechanism is used, implemented by Distributed

Multi-Threaded CheckPointing (DMTCP) [Ansel 2009]. DMTCP provides a trans-

parent checkpointing mechanism that provides for checkpoint/restart without any

modification of the original application code or operating system. However, it is im-

portant to note that the checkpointing mechanism is not only for HPC, as presented

before. It is used in several other cases such as:

• Fault tolerance

• Process migration

• Debugging, by creating a checkpoint right before the bug

• Fast startup, using an already initialized checkpoint

DMTCP uses a system based on a coordinator. Each coordinator corresponds

to a single computation with one or more system processes that may be check-

pointed. To checkpoint the computation, a checkpoint command must be sent to

the coordinator, which will notify the managed processes. The DMTCP library

will perform the checkpoint operation on each processes and save its state. The

inverse operation can be performed on the same or a different machine, using a new

coordinator to restart the processes.

User process 1 User process 2

Ckpt Thread Ckpt Thread

User 

thread 2

User 

thread 1

User 

thread 1

DMTCP Coordinator

Checkpoint order

CKPT MSG CKPT MSG

Figure 1.2 – Example of DMTCP coordinator with two processes

An example of the use of the DMTCP coordinator is given in Figure 1.2. It

shows the DMTCP coordinator at the top that is managing two processes. The

first process has two threads executing its computation while the other one only

has one thread. Moreover, we note that the checkpointing thread is present in both

processes, although it is not active when the user thread are computing. When

the coordinator receives a checkpoint request, it sends a checkpoint message to the

DMTCP thread. This will trigger the checkpoint operation, which will freeze the

user threads in their current computation and save the process in a file.
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It is important to note that during the checkpoint operation, the user threads

are frozen. This means, if a new message arrives from a network connection for

instance, it will be handled only after the checkpoint operation is complete.

However, a problem exists in such a mechanism when the process is interacting

with other external entities: the external entities may change between the time

of checkpoint and restart. For instance, the PID of the process itself is not the

same during a checkpoint and after a restart. Moreover, the communication with

other processes may be interrupted in the middle of a message during a checkpoint

request. A plugin mechanism is proposed by DMTCP to solve this problem.

DMTCP provides a plugin facility to adapt the transparent checkpointing ca-

pability of the target application to external subsystems, such as the handling of a

network connection [Arya 2016]. A plugin in DMTCP can have multiple functions.

It can act as a wrapper for system functions. For instance, when the process uses

a system call such as getpid, a virtual value is given to the process and not the

system one. The plugin is in charge of keeping track of the PIDs and providing

wrapper functions that interpose on any system calls invoking PIDs, in order to

hide any alteration in PIDs from the process.

PID: 4000

getpid()

24854000 KERNEL

Figure 1.3 – Example of DMTCP plugin with getpid system call

Figure 1.3 shows an example with the getpid call. The kernel returns the value

but it is intercepted by the DMTCP plugin. A translation table keeps track of the

PIDs and translate it when necessary. The virtual value is sent to the user process

on the left. This value is still correct after the restart of the process, and the plugin

is in charge of keeping this virtualization. The translation is also performed on the

other system calls that uses the PID, such as kill for instance.

1.2.1.3 Existing checkpointing strategies

The checkpointing mechanism manages the software entities. On top of this

mechanism, a decision needs to be made on when to checkpoint.

In [Salehi 2016], the authors propose a two-state checkpoint policy (TsCp) in

order to reduce checkpoint overhead for real-time applications. The policy separates

the state of the application into two cases: fault-free and faulty execution. In fault-

free execution, non-uniform intervals of checkpointing are used to reduce the number

of unnecessary checkpoints. In the second state, checkpoints are performed in a

uniform manner. The aim is to start the application in the non-uniform intervals

until the system fails. At this moment, the system is restarted at the last valid
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checkpoint, and the second state starts with uniform checkpoint intervals to prevent

future failures.

[Ghit 2017] proposes three types of checkpoint policies: 1) greedy checkpoint

policy; 2) size-based checkpoint policy; and 3) resource-aware checkpoint policy.

The greedy policy performs a checkpoint at each steps of the application. This also

uses a budget representation of the possible checkpoints. This policy tries to limit

the effort of re-computing a result previously obtained by the program. The second

policy is denoted “size-based”. This policy aims at checkpointing straggler tasks

that are slower than the main computation. It eliminates the possible time lost

when a long-running task fails but is not directly linked to the main computation.

The last policy proposed is a resource-aware checkpointing policy. It evaluates the

cost of the checkpoint as compared to the cost of the computation that has been

performed. If the cost of the checkpoint is lower, than it is performed. Otherwise,

the computation continues until a failure occurs, since it would be faster to use the

previous checkpoint and re-compute the lost result.

In [Naksinehaboon 2008], the authors propose an incremental approach to the

checkpointing mechanism. Since their contribution concerns checkpointing over

the network, its usage would grow when a large checkpoint is performed. In their

approach, a full checkpoint is performed first, and then incremental checkpoints are

done over the network. On important steps, full checkpoints are also created. When

a failure occurs, the last stable state is constructed with the last full checkpoint and

the incremental ones are also added.

1.2.2 Cloud: Virtual Machine Migration

In cloud computing, the migration of virtual machines is a commonly used

mechanism [Zhang 2010]. It is also called “live migration”. It has evolved from

process migration techniques [Osman 2002].

Several implementations of live migration have been built, as, for example, in

Xen in [Clark 2005]. Other virtualization software such as VMWare has also im-

plemented this live migration12.

Regarding the technical context of the VM migrations, a cloud hypervisor is

required. For the virtual machines, a virtualization is required and the operating

system of the machines is migrated alongside. This requires machines with enough

computational power in order to perform this virtualization and is difficult to apply

to IoT gateways.

It is also important to note that the state of a running application in the virtual

machine can be saved. The snapshot mechanism of virtual machines enables the

serialization of the state of the whole machine. This snapshot can be used to migrate

the machine along with the software application, when needed.

12https://www.vmware.com/products/esxi-and-esx.html

https://www.vmware.com/products/esxi-and-esx.html
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1.2.3 Docker

Docker13 is a virtualization software package based on containers on an operat-

ing system level virtualization. The program allows the user to download images

of containers from an on-line repository.

Docker uses a layer system for the representation of the images. This means

that an image has a set of layers that defines it. In order to reduce the number

of layers a user has to download, a copy-on-write optimization is performed on the

underlying layer. This means, if an image is based on the same layer as another

image, it will not make a copy of it when the base image is not changed.

However, Docker by itself does not directly allow the process migration. Several

other contributions that support Docker enable this process management of images

on multiple machines. Consul14 proposes an orchestration of the services deployed

on Docker. Kubernetes15 is a Google proposal for the orchestration of microservices

deployed on distributed machines. It facilitates the migration of the services, but

requires the components to be completely stateless.

An important note on the Docker environment is that microservices are required

to be stateless. This assumption is used a lot in the management of Docker services

that facilitate the start and stop of the images.

The authors of [Ismail 2015] recommend the use of Docker for the Fog computing

domain. The results of that work found that Docker has a fast deployment, good

performances, and a small footprint on the target machines.

1.2.4 OSGi

Open Services Gateway initiative (OSGi) is a standard proposed by the OSGi

Alliance16 that defines a service platform for Java programs. It defines another

layer of abstraction on the top of the Java Virtual Machine (JVM) that provides

standard services such as logging, communication (e.g., HTTP), etc.

The architecture proposes the use of Bundle. A bundle is a software entity that

contains a set of Java packages that can be exported and provides a set of services.

A bundle also depends on other bundles based on the packages it imports and the

services it uses.

There are several runtime implementations of OSGi, such as Eclipse Equinox17,

which supports the Eclipse IDEs, or Knopflerfish18.

A strong point of OSGi is the possibility of installing or uninstalling bundles

at runtime. This enables the management of an OSGi instance depending on the

current needs of the applications and the context. However, no mechanism is present

in the standard to migrate the state of the bundle between two instances. It is

13https://www.docker.com/
14https://www.consul.io/
15https://www.aquasec.com/wiki/display/containers/Kubernetes+Architecture+101
16https://www.osgi.org/
17http://www.eclipse.org/equinox/
18https://www.knopflerfish.org/

https://www.docker.com/
https://www.consul.io/
https://www.aquasec.com/wiki/display/containers/Kubernetes+Architecture+101
https://www.osgi.org/
http://www.eclipse.org/equinox/
https://www.knopflerfish.org/
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possible to uninstall a bundle from one instance and install it in another. But a

supplementary mechanism is needed to migrate the bundle data. In the literature,

OSGi has been used by the authors of [Pan 2011] to enable task migration.

Moreover, OSGi has a dedicated working group for the IoT19. They aim at

defining base services and an OSGi architecture for the integration of IoT devices.

1.2.5 Comparison of the approaches

Table 1.1 shows a comparison of the different existing solutions for process

migration. It describes several parameters to consider when using a migration

technique:

• Requires resources to perform the migration

• Integration to already existing solution

• Migration cost

• Virtualization level required by the technology

• State of restart if an initialization is needed

19https://www.osgi.org/about-us/working-groups/internet-of-things/

https://www.osgi.org/about-us/working-groups/internet-of-things/


16
C

h
ap

ter
1.

S
cien

tifi
c

C
on

tex
t

an
d

B
ack

grou
n

d

Checkpointing
(DMTCP)

Cloud VM Migration Docker OSGi

Required
resources

Low footprint on the
memory [Ansel 2009].

Requires machines that han-
dle the VM virtualization.

Low foot-
print [Ismail 2015].

Java Virtual Machine and
OSGi runtime.

Integration
to already
existing
solutions

Transparent integration
and adaptation possible
with the plugin mecha-
nism

Easy integration with a VM
that possesses the runtime en-
vironment of the application.

Need the separation
in micro-services and
stateless to facilitate
the migration.

Needs to adapt the archi-
tecture of the Solution to
bundles and force the us-
age of Java or JNI.

Migration
cost

Process frozen during
the checkpointing.
Needs to transfer the
checkpoint file over the
network. The size of
the file depends on the
size of the memory used
by the process.

Creation of a snapshot that
contains the whole VM is re-
quired to be performed and
sent over the network.

Needs to deploy the
images on the target
machine.

Needs to download and in-
stall the bundles requires
to deploy the services on
the destination machine.

Virtua-
lization
level

Virtualization of system
resources when system
calls are used by the
processes.

Hardware virtualization level. Operating system
virtualization level

JVM and OSGi runtime.

State of
restart

The process is already
ready after the restart
has been performed.

When using a snapshot, the
application is already initial-
ized. When restart from a
VM, standard initialization of
the process is required.

The initialization
has to be done after
a restart of a Docker
image but may be
fast if it is stateless.

The bundle has to be
started after it has been
installed. Depending on
the business application, it
may be instant or take
some time.

Table 1.1 – Comparison of technologies enabling process migration.
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1.3 Semantic Web and Technologies

Semantic technologies are used in this thesis in order to represent the system to

manage with its entities in a high level model. This section provides a definition of

the base concepts of those technologies. Moreover, we study its usage in the IoT.

In a survey of multiple context modeling and reasoning techniques,

[Bettini 2010] gives several purposes to semantic technologies: 1) the expressive-

ness of the language enables the description of complex context data; 2) provides

formal representation of the knowledge that is sharable to other entities; and 3) the

existence of reasoning tools that checks the consistency of the knowledge base and

also generate new knowledge based on the complex description of the system.

1.3.1 Definition

In [Berners-Lee 2001], the authors proposed the Semantic Web as an exten-

sion of the regular web but with information understandable by the humans and

the machines. It aims at providing context information that is understandable by

a program when it retrieves a web resource. Semantic computing [Sheu 2010] is an

emerging and rapidly evolving interdisciplinary field that originated from artificial

intelligence. It consists of applying models and standardized technology describ-

ing the semantics of the linked objects to enable interactions and interoperability

between different components.

1.3.1.1 Ontology

The standard recommendations are provided by the World Wide Web Consor-

tium (W3C)20, an organism also responsible for the web standards. In order to

understand the context information, a vocabulary is required. The use of ontolo-

gies has been proposed by [Gruber 1991] and then standardized by the W3C. An

ontology defines a set of concepts of a domain. Also, it defines properties that

are used to characterize the concepts. Two types of properties are possible: object

properties that links two instances of a concept ; or data properties that links an

instance of a concept to a value, e.g., an integer.

Moreover, it is possible to define one ontology based on another one, thus ex-

tending the previous ontology. This is commonly used when an ontology defines

high-level concepts, one needs to refine the ontology to the needs of the considered

application.

1.3.1.2 Representation and serialization

The Linked Data principle is used in the Semantic Web. This defines the use of

a Uniform Resource Identifier (URI) to identify all the resources. Those resources

are connected together via semantic properties and creates a knowledge graph, also

called a knowledge base. To represent this graph, the W3C proposes the use of

20https://www.w3.org/standards/semanticweb/ontology

https://www.w3.org/standards/semanticweb/ontology
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Ressource Description Framework (RDF)21 as a model. The latter is based on

triples composed of a subject, a property and an object. The subject corresponds

to the entity that is concerned by the triple. This property defines the type of

the relation. The object is the entity in relation with the subject by the relation.

The subject and the property are entities identified by a URI. The object can be

another individual of the graph identified by a URI, in the case of an object property.

Otherwise, the object can be a literal in the case of a data property. Its type may

vary depending on the property: integer, string, etc.

RDF only enables the description of resources with a graph representation.

However, it does not contain any semantics. For this purpose, RDFS22 enables the

description of taxonomic and non-taxonomic relationships between classes. Ontolo-

gies defined only with RDFS are considered lightweight ontologies.

To express more complex concepts and relations, the Web Ontology Language

(OWL) formalism has been defined23. It enables the definition of complex classes

and properties by using an extended set of logical axioms.

In order to exchange those information between the users and the machines, a

serialization format is required. The most common one is in Extensible Markup

Language (XML), a widely used format to exchange data on the web. Other more

compact formats exist such as Turtle24. This format is more oriented in the repre-

sentation of the triples, thus making it less verbose than the XML representation.

1.3.1.3 Query possibilities with SPARQL

To retrieve information from the knowledge graph, a querying mechanism is

needed. For this purpose, the W3C proposes SPARQL Protocol and RDF Query

Language (SPARQL)25. This defines a query language to retrieve information in

the knowledge graph by using a graph pattern-matching mechanism. SPARQL has

been extended to enable the insertion, modification and deletion of the triples in

the knowledge base.

1.3.2 Semantic Inference Engines

In order to infer new knowledge, semantic inference engine are used. They base

their reasoning on the logical axioms from RDFS and OWL expressed in the ontol-

ogy. Additionally, they can determine if there is an inconsistency in the knowledge

graph. This kind of engine is called a reasoner.

Moreover, the RDFS and OWL logical axioms are not the only mechanisms to

enable the creation of new knowledge. Other mechanisms, based on rules, enable

the creation of new relations in the knowledge base on certain condition.

21https://www.w3.org/RDF/
22http://www.w3.org/2000/01/rdf-schema
23https://www.w3.org/OWL/
24https://www.w3.org/TR/turtle/
25https://www.w3.org/TR/sparql11-overview/

https://www.w3.org/RDF/
http://www.w3.org/2000/01/rdf-schema
https://www.w3.org/OWL/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/sparql11-overview/
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1.3.2.1 SWRL

Semantic Web Rule Language (SWRL)26, presented in [Horrocks 2004], is a

rule system that allows the creation of new relations. They are compounded of two

parts. First, a precondition has to be evaluated by a reasoner in order to find out

a matching pattern of resources. In its matches, the postconditions are applied on

the knowledge graph.

The SWRL rules can be represented in RDF, thus making it possible to embed

them in an ontology alongside the description of the concepts. Moreover, since

SPARQL enables the insertion and modification of the knowledge graph, it is pos-

sible to change the rule dynamically.

An example of SWRL rule is shown in Listing 1.1.

hasParent (? x1 , ? x2 ) ^ hasBrother (? x2 , ? x3 ) −> hasUncle (? x1 , ? x3 )

Listing 1.1 – Example of SWRL rules

This rule aims at representing the hasUncle object property between x1 and x3,

where x2 is the parent of x1. The parent relation is represented by the hasParent

object property and the brother relationship by the hasBrother object property.

When a graph pattern matches the left part of the rule, meaning we find a x1 that

has a parent x2, and the same second individual has a brother x3, then the last

relation hasUncle between x1 and x3 is inferred.

It is important to note that SWRL has not been standardized (stayed at the

submission status) by the W3C even if it has been supported by several reasoners

and used by the community. For instance, Pellet27 allows the inference of SWRL

rules alongside the RDFS and OWL logical axioms. [Hashmi 2014] presents an

usage of SWRL rules for the automation of negotiation in web services. The rules

are defined in order to find out the issues from the input data of the services, and

also to match the policies for the agreements in the negotiation.

1.3.2.2 SPIN and SHACL

SPARQL Inference Notion (SPIN) is another submission to the W3C. It aims at

representing rules using SPARQL to define constraints to represent in the ontology.

It has quickly transited to Shapes Constraint Language (SHACL), a recommenda-

tion of the W3C28. SHACL aims at representing constraints in the knowledge base

by the definition of “shapes” and infer new knowledge with a rule-based system29.

1.3.3 Usage of Semantics in the IoT

In [Hachem 2011], the authors propose the usage of semantic technologies to

provide interoperability and flexibility in IoT systems since they are highly dy-

namic and heterogeneous. Their approach uses three levels of representation in the

26https://www.w3.org/Submission/SWRL/
27https://www.w3.org/2001/sw/wiki/Pellet
28https://www.w3.org/TR/shacl/
29https://www.w3.org/TR/shacl-af/#rules

https://www.w3.org/Submission/SWRL/
https://www.w3.org/2001/sw/wiki/Pellet
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl-af/#rules


20 Chapter 1. Scientific Context and Background

ontologies. They discuss the use of physics and mathematics domain ontologies

that represent the physicals concepts by their relations. Another ontology provides

estimation models for their system. The last ontology focuses on devices.

Moreover, the use of semantic technologies is a recommended best practice for

IoT [Serrano 2015] for the interoperability approach.

Different types of data can be formalized by semantic models. Sheth et al. pro-

vide in [Sheth 2008] a fundamental approach to sensor data interoperability through

semantic modeling. This formalization facilitates the development of generic ap-

plications that require data for a sensor network. Barnaghi et al. [Barnaghi 2012]

also provide data interoperability for sensors through semantics to facilitate data

integration and service discovery in the IoT system.

A different point of view is taken by Desai et al. [Desai 2015]. The authors

directly model the description of the nodes in their ontology, i.e., for the sensors

and the gateway. This allows the representation of the capabilities of the nodes

and facilitates the creation of new services. They also describe the gateways as the

primary interface between the devices and high-level business applications. The

role of the gateways is to translate the fuzziness of the sensor networks into well-

known and standardized protocols. This shows the importance of gateways in the

IoT architecture and the software that supports this interface.

[De Paola 2014] proposes an ontology-based autonomic system for ambient in-

telligence scenarios. The author discusses the needs for IoT applications to enable

the self-management of the system and the high-level representation of the system.

In this work, the proposed ontology focuses on ambient intelligence scenarios and

the interaction with the users.

1.3.4 Known ontologies in the IoT

The literature also proposes ontologies that aim at representing different aspects

around the devices of the IoT and their data.

SSN / SOSA: Semantic Sensor Network (SSN)30 is an ontology dedicated to the

representation of IoT sensors and their observations. It has been enhanced by

Sensor, Observation, Sample and Actuator (SOSA)31, another W3C initiative,

to integrate other concepts such as the actuation.

SAREF: The ontology Smart Appliance REFerence (SAREF)32 aims at man-

aging the energy and the services of smart homes. It is supported by the

European Commission and by European Telecommunications Standards In-

stitute (ETSI). Afterwards, the ontology has been enhanced in order to be

applied to other IoT domains.[Daniele 2016]

oneM2M Base Ontology: The oneM2M standard also proposes its own vocab-

ulary in the Technical Specification TS-0012. It defines high level concepts

30http://purl.oclc.org/NET/ssnx/ssn
31http://www.w3.org/ns/sosa/
32https://w3id.org/saref

http://purl.oclc.org/NET/ssnx/ssn
https://w3id.org/saref
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in the IoT such as Thing or Service, and aims at being aligned with other

domain specific ontologies.

IoT-O: based on the work of [Alaya 2015b], the ontology aims at orchestrating

several concepts for the description of IoT data [Seydoux 2016b]. It is based

on several ontologies such as SSN for the sensing devices description, SAN

for the actuation part, MSM and WSMO for the service descriptions, etc. It

allows the representation of the device deployment on an IoT scenario and is

based on other known ontologies.

In conclusion regarding the semantic technologies, we observe a large usage of

those technologies in order to represent the data of the IoT devices. Since IoT

is a heterogeneous system and handle a large panoply of data types, a high level

representation is required. Some efforts are made in order to represent the IoT

system from the point of view of the devices and the data they produce.

However, there is a lack of representation of the IoT machine and software

infrastructure. This corresponds to the machines where the device are connected

and where the software processes are executed. A representation of them is required

in order to analyze the issues concerning the infrastructure.

1.4 Autonomic Computing

1.4.1 Definition

In a manifesto of IBM from 2001 [Horn 2001], Paul Horn describes the growing

complexity of the software ecosystem and industry. More and more, the develop-

ment of software requires increasing care to ensure the smooth functioning of such

systems. This vision has been discussed in a work by Kephart et al. [Kephart 2003].

They propose an approach based on living organism that is able to manage a system

and also manage itself.

In [Kephart 2003], the authors propose features that an autonomic system has

to implement:

Seft-configuration: this feature represents the capability of the system to re-

configure itself depending on the evolution of the monitored system.

Self-optimization: the management system needs to optimize itself .

Self-healing: when the system has issues, the management system is able to

detect and repair them based on high-level policies.

Self-protection: the system is able to protect itself from malicious attacks and

error that would disable its operation.

Moreover, an architecture is proposed to implement an autonomic computing

system. Figure 1.4 shows this architecture, called MAPE-K.

The framework is composed of the following components:
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Figure 1.4 – MAPE-K loop for Autonomic Computing

Sensors: they represent entities gathering metrics and sending them to the man-

agement system.

Actuators: (also called effectors) these components are in charge of changing

the managed system when the autonomic framework detects an issues. They

perform basic actions on the managed system, following the orders of the

management framework.

Knowledge Base: this component stores the information of the monitored sys-

tem. It contains a description of the elements of the system, along with their

current state. It also possesses the high level policies to apply when a decision

has to be taken in the system.

Monitor: this component aggregates the metrics received from the sensors. It has

to update the Knowledge Base of the framework when a change is detected.

Analyzer: the Analyzer is in charge of finding out the problems in the system.

Based on the description of the entities in the system and their current state

retrieved by the Monitor. It will infer the Symptoms. With this information,

it will send a Request For Change (RFC), a high-level representation of the

parameters to change in the system, to the Planner.

Planner: this component bases its reasoning on the RFC received from the An-

alyzer. It aims to find a plan of actions to perform on the system in order to

apply the given changes. The choices made by the planner are influenced by

the high-level policies defined in the Knowledge Base.

Executor: this receives the plan of actions inferred by the Planner. It uses this

plan to determine the correct actuators to use in the system in order to per-

form the actions.

1.4.2 Usage in the IoT

In an IoT context, a large number of entities are distributed and need to be

monitored and controlled when a change appears in the system. With the growing
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complexity of such a system, the management task is difficult.

However, some contributions aim at providing a framework of autonomic com-

puting. In [Alaya 2015a], the authors provide a framework designed to manage

M2M systems, called FRAMESELF. It is structured around the MAPE-K loop and

implements the several autonomic computing data such as event, symptoms, RFC

and actions. For the inference system, a logical model of the policies with a rule

based system is used. The inference engine is DROOLS [Bali 2009]. This enables

the expression of high-level policies with logical rules make possible to coincide sev-

eral elements to perform an inference. However, this approach does not allow for

the representation of semantic entities in the knowledge base.

The usage of autonomic computing in order to manage the devices of the IoT has

been suggested in [Aïssaoui 2016b]. Moreover, the combination of the autonomic

computing with standard protocol and semantic representation allows for interoper-

ability in terms of communication and interpretation of data. This is an important

property for IoT, due to the strongly heterogeneous and dynamic environment.

The application of those principle has been carried out in [Seydoux 2016a], in

order to manage the devices from a connected apartment.
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Conclusion

This chapter provided an overview of the different concept used in this thesis.

First, the IoT domain, along with its constraints, has been described. This thesis

aims at handling this diversity and representing the complexity of the application

in order to manage the software processes present on the machines. The device

management technologies have been presented and are used to monitor the IoT

software infrastructure.

Then, several runtime software platforms that enable the migration of software

processes have been presented. We studied multiple technologies that require dif-

ferent levels of virtualization and need different levels of effort in order to adapt

to already existing solutions. In this work, we focus mainly on the checkpoint-

ing mechanism, which provides a transparent and efficient migration mechanism.

based on two available operations, checkpoint and restart. It provides the flexibility

to manage the software processes depending on their needs.

However, the mechanism of migration of the software entities is not enough by

itself. An orchestration of this mechanism is required in order to determine when

to migrate an entity and where. For this purpose, we chose to use the web semantic

technologies. This provides reasoning capabilities, based on a high-level description

of the IoT entities with a common vocabulary, and an ontology. The inferences are

done by reasoners based on the definition of the entities in the vocabularies and the

rules present in the knowledge base.

Finally, to structure this approach, the autonomic computing paradigm has

been discussed. It was shown in the literature to be an architectural approach well-

suited for IoT. It enables a clear separation of components, and it specifies a set of

properties that need to be implemented in order to manage a system.

The next chapter presents the first contribution of the thesis. It covers the in-

terface between the autonomic manager and the managed system. Two components

are described, the Monitor and the Executor. The Monitor uses device management

technologies to retrieve metrics from the software infrastructure, and the Executor

uses the checkpointing mechanism to perform the required modifications to the

system.
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In the previous chapter, we expressed the need to manage the software pro-

cesses executed in an IoT environment. The entities present in this IoT system,

the software processes, the devices, the machines, etc., are changing over time. The

resource consumption of the machines are increasing due to the new deployed pro-

cesses, or the devices physically moving and changing their network connections.

This dynamic environment requires to be monitored and repaired when an issue is

detected. In order to perform this management of this environment, we choose the

autonomic computing approach.

The autonomic computing with the MAPE-K loop has been presented in the

previous chapter, Section 1.4. This approach structures the management frame-
work in several components. The latter has to interact with the managed system
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in order to retrieve information or metrics about its “health”. Moreover, the man-

aging system needs to be able to perform actions on the software infrastructure in

order to fix the issues.

For this purpose, the Monitor component of the MAPE-K loop is in charge

to perform the gathering of metrics on the system. The Executor component acts

on the system when an action has to be performed. As presented in the context,

this thesis focuses on the migration of IoT processes. This chapter presents the

Monitor and the Executor components of the autonomic computing approach. (See

Figure 2.1)
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Figure 2.1 – Framework Architecture — Monitor & Executor

The monitoring is presented with two aspects. First, the technologies used to

perform the monitoring in the system are briefly presented. For this purpose, Device

Management technologies are used. They are industry-approved and standard tech-

nologies that allows the gathering of information on distributed machines. Then,

a discussion on the monitored parameters is given in order to determine which

information is relevant for IoT software process management.

Subsequently, the executor component is presented. Its role is to perform the

software migration of the IoT software processes. Such migration is performed

via a checkpointing mechanism. However, as shown in the previous chapter, this

mechanism has not yet been used in an IoT environment. Thus, an adaptation

of the checkpointing mechanism is discussed. The IoT has resource constrained

machines that may lack RAM when used by several processes, or processes with

large amount of data to handle. To solve this issue, we propose a new software

architecture approach, based on Scenes and checkpointing mechanism, in order

to enable the handling of large data. This scene mechanism is modeled with an

ontology that enables the extension for new applications.

As a final point, an evaluation of the checkpointing improvement in an IoT

context is conducted. This aims at showing that the checkpoint/restart mechanism

is faster than standard initialization and restart of a process. Moreover, the usage

of scene mechanism with DMTCP as a checkpointing software is evaluated. Finally,

a specific mechanism used with the scenes that enables the passing of information
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between them is evaluated in order to determine its overhead.

2.1 IoT Software Process Monitoring

In order to manage the software infrastructure, one need is to collect enough

data to determine the potential issues. For this purpose, the contribution proposed

in this thesis is based on an approach based on standard, and widespread in the

industry, as discussed in previous work [Aïssaoui 2016b]. However, the standard

defines how to transfer the data and not to interpret it.

First, this section describes the Device Management standard used for this ap-

proach. Then, the list of monitored parameters that will be used by other autonomic

components to infer the issues of the infrastructure are given.

2.1.1 Device Management technologies

To collect data from the system, a set of sensors is needed. Device Management

technologies allow to collect this kind of management data. In our framework,

we use LWM2M as a Device Management protocol. It has been described in Sec-

tion 1.1.3.

The standard uses a client-server architecture. This allows the integration of

the server along side the Monitor component of the Autonomic loop. The clients

are executed on the different entities that needs to be managed. The main targets

of those clients are the IoT gateways. They are the entities executing the software

processes this thesis aims at managing.

The sensors are then deployed on the monitored gateway using LWM2M clients.

Several implementations are available as described in Section 1.1.3 and can be cho-

sen depending of the type of equipment that is required to be managed. Figure 2.1

displays the Device Management clients in the gateways.

2.1.2 Monitored parameters

With Device Management technologies, the connection between the gateways

and the Monitor component is established. We are now looking at which information

has to transit through this mechanism.

A distinction of two kind of data can be made. The first one are the available

and used resources by the system. This can correspond to physical properties of

the monitored gateway such as the battery level, or numerical properties such as

RAM usage. We provide a non-exhaustive list of those parameters.

Battery level: The Battery level of the gateway, if it is autonomous in energy,

is an interesting parameter for several scenarios. Actually, knowing that the

battery is almost depleted leads to ensure that the services present of the

named gateway are migrated. This migration can have priorities depending

on the kind of service available and can be expressed in a global migration

policy.
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Processor/RAM/Disk usage: Several parameters such as Processor usage,

RAM Usage or Disk usage are parameters of the current gateways that vary in

time. Those parameters have to be used to determine the “health” of the ma-

chine. If too many resources are used on a single gateway, maybe distributing

the running processes on other gateways may enhance their operation.

Network Connectivity: The Network Connectivity is another parameter to mon-

itor on the gateways. In fact, depending on the kind of current network

connection, a process may have to be stopped or halted. For instance, a

heavy-consuming network bandwidth process have to be stopped on cellular

connection, but may be restored when Wi-Fi is available.

Network usage: From the previous parameter flows the Network usage in term

of bandwidth usage. Even on a Wi-Fi network, if a gateway is having a high

network usage compared to the others, a new distribution of the network

consuming processes has to be performed.

Connected Devices: The Monitor has to retrieve the gateways where the devices

are connected. This information is used for the processes that requires a

specific device or type of device. In the IoT, device can have mobility with

wireless connection to the gateways, e.g., bluetooth, and swap from a gateway

to another when the first one is out of bound.

Executed Processes: The currently executed processes on each gateway is a cru-

cial information. It represents the current distribution of the process in the

software infrastructure. This is the base information that we want to act on

when an issue is detected in the system. The software migration will have a

direct impact on this information.

The second kind of data that needs to be monitored are the application specific

information. They vary in nature and purpose depending on the goal of the software

process. Since Device Management technologies allow the declaration of custom

object models, those application information can be embedded in those objects.

2.1.3 Data Interpretation

We listed a set of parameters that defines the state of the software infrastructure.

Some more parameters may be added in the future, depending on the new technolo-

gies. The advantage of using Device Management technologies for the transport of

those information is that the data models are extensible. It means that the addition

of new parameters to send to the Monitor component can be done by extending

already existing models or create a new one.

Now that the data is present in the Monitor component, it has to be interpreted

in order to be analyzed later on. This step requires a model to do so. In Auto-

nomic Computing, the model is described into the knowledge base. As described
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in the general introduction, this thesis proposes semantic representation of the IoT

software infrastructure using Semantic Web technologies and ontologies.

This leads to the goal of the Monitor to semantically describe the provided

information with a vocabulary. This vocabulary, stored in an ontology, will be

described in the next chapter.

2.2 Process Migration: Execution and Enhancement

The Executor component has to perform the actions on the system to fix it.

Those actions are based on migration mechanisms such as checkpointing.

In order to use the Checkpointing mechanism in the IoT context, some opti-

mization is advised. The goal behind this optimization is to reduce the process

“freeze” time when a checkpoint is created. During this freeze time, the process

is not responding. Depending on the type of application, this can cause timeout

issues with network connections, the lost or depreciation of data in other cases.

Moreover, the restart time of a process is also important when it contains a lot of

data stored in RAM. Indeed, since the restart operation has to remap the memory

of the checkpointed process into the RAM, the larger the memory, the longer the

restart operation will be.

In order to solve the large RAM usage issues by using the checkpointing mech-

anism, the thesis proposes a new software architecture approach based on a scene

representation. A Scene corresponds to a partial view of the data used by the

application which depend on the application domain.

First, this section presents the checkpoint mechanism optimization used for

this adaptation to the IoT domain. Then, the scene approach coupled with the

checkpointing mechanism is set in an IoT software process.

2.2.1 Checkpointing optimization

The DMTCP software is used to perform the checkpointing operations. During

the compilation or the execution of the DMTCP operations, several parameters can

be used to configure the checkpoint and the restart operation. Two possible options

are described in this section: Forked Checkpointing and Fast Restart.

DMTCP also supports options for two optimizations that enhance the speed

of checkpoint and restart. The first is “Forked Checkpointing”. DMTCP forks a

child process, which executes the checkpoint. This takes advantage of the well-

known operating system support for copy-on-write between the parent and child

processes. The parent process continues to execute without blocking, while the

child process writes memory and other state into the checkpoint image file. This

allows to bypass the freeze time during the checkpointing operation.

The second optimization option is “Fast Restart”, based on the Linux mmap

system call. The mmap call maps the checkpoint image file to RAM, but the data

is not actually copied to RAM until the virtual memory subsystem pages it in.
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Thus, execution begins early after restart, paging in only the actively used pages,

and without waiting for all of the checkpoint image file to be loaded.

Some other parameters are used during the real deployment in the experimen-

tation. Those options are described in Section 2.4.1 but have less impact on the

efficiency of the checkpointing.

2.2.2 Scene in action with the Checkpointing mechanism

In principle, the use of scenes within a large, global hierarchy can be imple-

mented as a single large process. However, typical IoT-based embedded systems

are restricted to small RAM without any virtual memory. For this reason, we rep-

resent each scene of the global hierarchy as a separate operating system process.

Only one process (the current scene) runs at a time. We demonstrate that switching

between scenes can be made efficient through the use of checkpointing. The original

scene (with all of its internal state) is checkpointed, and a new scene is restarted

from a previous checkpoint image.

RAM

Manager
Ckpt Scene 1

to ckpt image

Restarts Scene 2

from ckpt image

Scene 2

Manager

Scene 1

RAM

Figure 2.2 – Proposal of new architecture for Scene
Management. Each rectangle represents a process.

Figure 2.2 illustrates the proposed architecture. The data to be handled is split

into multiples scenes, which contain information. Each scene is represented as an

individual process. A Scene Manager is used to checkpoint and restart the process

that represents a scene.

This enhancement provides a simpler way for the end programmer to design the

architecture and the data handling of its program. It also enables the possibility to

handle large amount of data in an optimized way with the checkpointing mechanism

used to swap the scenes.

However, swap from a scene to another is a complex task. It requires the con-

sideration of multiple parameters that may have different descriptions, formalism,

etc. A high level representation of such information is needed.

In order to determine when to swap from a scene to another, we propose a

semantic model of the scene mechanism. This allows the representation of the

scenes with a vocabulary and the possibility to extend its behavior with application

specific rules. This model is provided in the next section.
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2.3 Software Process Architecture based on Scenes

This section presents the global architecture with semantics and scenes that

is used as a testbed in this work. It defines the “scene” approach and describes

the models used to handle the scene management through policies on when to

checkpoint and when to restart. Then the rules used to change from one scene to

another are presented and some examples of application rule will be given.

This leads to a specific need when a process is swapping from a scene to another:

transfer some information from the previous scene to the new one. For this purpose,

we introduce the concept of information sharing between scenes.

2.3.1 Semantic Models Used

A Scene is defined as a partial view of the application context. Several scenes are

created according to the needs of the application. In order to have a fast swapping

between the Scene, it is required to have multiple pre-saved scenes. However, only

one Scene is loaded at any given time.

Figure 2.3 shows a semantic model with some example relations in the semantic

class Scene.

correspondingSpecificity

Interest

Scene CkptImage Process

restarts

checkpointsTo

hasCkptImage

hasValueOfInterest

Specificity

hasSpecificity

Value of 

Figure 2.3 – Overview of Scene representation and link between
Scenes and Checkpointing Mechanism

Scene: This class represents the considered Scene. For each Scene that the appli-

cation needs, an instance of this class will be created.

Specificity: In order to determine how to switch between scenes, one needs to

provide the specificity of a scene. This class represents this specificity. Re-

garding the evolution of the process, the current context may change and we

will have to change scene regarding the new specificity. The Specificity class is

linked with the Scene class with a relation hasSpecificity from the Scene to the

Specificity class. This relation represents, for example, a location specificity,

or a time-of-day specificity (e.g., day and night).

Value of Interest: The class ValueOfInterest is used to characterize the values

that are important for other Scenes and need to be monitored. They are

linked to the Specificity class by a correspondingSpecificity property for that
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class. This property links a value to a specific type of scene. Following the

evolution of this parameter, we can infer that a scene change is required. This

associates with the Scene specific characteristics that enable the reasoner to

choose the best target scene to switch to.

CkptImage: The Scene is linked to a CkptImage class by the hasCkptImage object

property. This allows the reasoner to identify the available checkpoint images

for a Scene.

Process: The Process class represents a process in term of operating system. The

checkpoint image is then linked to a process. Two types of relations are

possible: 1) the process has been checkpointed into a CkptImage (shown via

checkpointsTo); or 2) a CkptImage is used to restart a process (a restarts

relation is created between the CkptImage and the restarted process).

2.3.2 Scene Hierarchy

Since each scene represents a partial view of the global state, a classification of

the scenes is needed. A hierarchy is used in which each scene (except for the root

scene) has a parent scene. This representation allows the definition of more specific

scenes depending on the application requirements.

A “child” scene inherits parameters and rules from its parent scene and adds

additional, more specialized information. That information might be, for example,

information about the type of location (e.g., what city, or what neighborhood in

a vehicular context) and is considered to be static in the sense that it does not

change over time. In contrast, each specialized scene also has dynamic information.

An example is the specific road conditions, which might depend on road work in

progress.

A hierarchical classification of this type allows one to create lightweight scenes,

each of which has more specialized information than the parent in the hierarchy.

Figure 2.4 gives an example of scene hierarchy. This example is based on a smart

application for a vehicle. The root scene is located at the top of the representation.

The first specificity in place is the location. Two child scenes with different value

for the location are depicted in Figure 2.4. Then, depending on the scene, we have

more specification for the same concept, i.e., the location, or different specificity.

For instance, in the bottom layer two scenes are defined when the street is crowded

or not. This allows the definition of different behaviors for the application. More-

over, the piece of code handling the “crowded” situation may not be shared with

the “not crowded” situation. Thus, the scene architecture provides a easy way to

encapsulate the behavior of the application.

2.3.3 Shared Information

The checkpointing mechanism allows the state of a running process to be seri-

alized into a file. But some information and knowledge acquired by the first scene
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Figure 2.4 – Example of a possible scene hierarchy. The root
scene is at the top with general information, then child scenes

are underneath with more specific application information.

must then be passed to the second scene.

As described in Section 2.3.2, the scenes are derived from a hierarchical classifi-

cation. This classification allows the system to provide relevant information to the

next scene. For instance, the whole system shares information from the car sensors

and geographical location. This general information is stored and defined by the

root scene of the system, which will be shared by all sub-scenes.

In considering a sub-scene in the scene hierarchy, note that it is not necessary to

pass all of that sub-scene information to other scenes. For instance, if a sub-scene

with a specialization of the geographical location, e.g., the scene of the city of Paris,

is unloaded and another sub-scene with another location is loaded, the system will

not pass information of specific road conditions of the city of Paris, since it is not

relevant for the new scene.

On the other hand, if a scene of Toulouse is being replaced by a child scene that

is specialized for night driving, road condition must be applied to the new scene,

since the vehicle is not changing its location.

With such a mechanism, the system is able to share information between dif-

ferent scenes, according to the relevance of the data for the next scene. Such a

mechanism allows one to reduce the amount of information handled by the sys-

tem and the reasoner. This mechanism is implemented using the DMTCP plugins

discussed in Section 1.2.1.

The information to share can be retrieved from the model using the property

hasValueOfInterest of the Scene. This relation is shown in Figure 2.3. The storage

system is based on name:value pairs. This means that when a process is about to

be checkpointed, a set of data is stored with this format. Those information are

stored locally.

In the next section, several evaluations are provided. The scene mechanism is
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compared to a standard loading in Section 2.4.3. The overhead of the name:value

mechanism is discussed in Section 2.4.5.

2.4 Experimental Evaluation

In this section we evaluate the scene system presented in Section 2.3 and the cost

of the checkpointing mechanism in an IoT context. Here, we discuss the additional

time needed when a checkpoint is invoked, and the time needed to restart a scene

from a checkpoint image file. Then we compare this restart time to a traditional

approach, which consists of dynamically reading the data files. After, we discuss

the runtime overhead introduced when the process is executed under the control

of DMTCP, as opposed to executing the process natively. Finally, the overhead of

passing information between scenes with the name:value pairs is discussed.

2.4.1 Experimental Environment

These experiments use a Raspberry Pi 2 Model B with 1 GB of RAM. In these

experiments, we emphasize the limited RAM of a constrained embedded system by

restricting ourselves to a more limited 256 MB of RAM. This was also the RAM

provided with the earlier Pi 1 Model A+. The files containing the scenes and the

images files for the experiment are stored in the file system of the SD card of the

Raspberry Pi. The Raspbian-4.4.11–v7+ operating system is used. The program

testbed requires a semantic reasoner. Our testbed is based on Java, using the

Oracle JVM version 1.8.0_65 (Standard Edition). Version 3.0.0 of the Apache Jena

library is used to load the ontology and the data files. The loading, checkpointing

and restarting times are evaluated for a process consisting of the JVM along with

the ancillary libraries and the files that are loaded. Finally, for the checkpointing

software, we use DMTCP version 3.0.0, compiled with GCC version 4.9.2.

By default DMTCP uses gzip to compress the checkpoint image of a process.

This compression makes the checkpoint process and restart process slower since the

checkpoint image has to be compressed and uncompressed for both operations. In

the experiment, we use the “no-gzip” option of DMTCP to skip the compression of

the checkpoint image in order to speed up the checkpoint and restart operations.

During the checkpoint operation, DMTCP has to save the state of open files

used by the target process being checkpointed. If the current process has “write

permission” for the open files, it is possible that an open file has been modified by

the process but the modified data has not yet been written out to the file system. To

avoid any error in the checkpointed process, DMTCP makes a copy of the potentially

modified files for which the process has “write permission”. In our experiments, one

such open file is the jar file of the Java program. But making a copy of this file

can slow down the checkpoint operation. Since the jar file is never modified, we

removed the write permission that is assigned by default by the operating system.

This optimization speeds up the checkpoint-restart operation.
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2.4.2 Checkpoint and Restart

As a first case for evaluation, we analyze the checkpoint and restart times on

the Raspberry Pi. The size of the input files is varied in order to find the relation

between the size of the files and the checkpoint-restart time.
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Figure 2.5 – Checkpoint and restart time

Two sets of experiments are discussed. First the standard checkpointing and

restart mechanism is used. In Figure 2.5, the two lines at the top of the graph

show the time needed for a standard checkpoint and restart the Java program with

the Jena library and the data files loaded. The “standard” times refer to the case

when the DMTCP optimizations of forked checkpoint and mmap-based fast restart

are not used. The times vary as the size of the scene file is varied. Note that a

logarithmic y-axis is used for the checkpoint and restart times. It is assumed that

the operating system must execute in RAM along with the application in a real-

time system. Recall that the goal of these experiments is to simulate a low-cost

embedded device, with only 256 MB of RAM.

The time to checkpoint and restart grows slightly when the size of the scene-

related data increases. This is expected, since DMTCP must map the process image

to the checkpoint file (or reverse for restart operation) and this operation is slower

if there is more data to save to a file (or to load from a file). The unoptimized

checkpointing times of Figure 2.5 vary from 1.5 s to about 2 s. This is reasonable

for energy-constrained devices such as the Raspberry Pi, but it can be improved

to be more responsive. Similarly, the unoptimized restart times vary from about

600 ms to 1.5 s.
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In order to further improve responsiveness, a second experiment (also presented

in Figure 2.5) shows the impact of using the two DMTCP optimizations discussed in

Section 2.2: forked checkpointing and mmap-based fast restart. These optimizations

improve the checkpoint/restart times (and hence the responsiveness) by a further

factor of ten.

The first line from the bottom of Figure 2.5 shows the time for the Forked

Checkpointing. This Forked Checkpointing operation is about 5 to 10 times faster

than the Standard Checkpointing and allows the running process to be available

more time – since the Checkpointing operation freezes all threads to avoid any error

in the memory of the process. The checkpoint operation is done by the child process

and the time to make this operation is equivalent to the Standard Checkpointing.

The times are reduced to about 150 ms to 200 ms for the running process. Since

the times are close to the minimum quantum of times given to the thread, we

expect some variations in the checkpoint time, as exemplified by the slightly higher

checkpoint time for a file size of 15 MB.

The Fast Restart time is the second curve from the bottom in Figure 2.5. The

time for fast restart operation is nearly constant as the file size varies. This is the

mmap optimization defers loading of most of the virtual memory pages. From our

experiment, we see that the Fast Restart operation is about 3 to 10 times faster

than the Standard Restart.

Table 2.1 – Size of Ckpt Image depending on Input file

Input file (MB) 2.0 5.1 10.2 15.4 20.5

Ckpt image (MB) 86.8 98.4 143.5 157.1 179.7

Table 2.1 shows the checkpoint image size as a function of the input file size.

The checkpoint image size increases with the size of the input file, since the file data

has been loaded into RAM during initialization. The image is large compared to the

2 MB input file, since the process is Java-based. The JVM must be checkpointed

along with the loaded classes. The checkpoint image file size is also large because

of the large Java classes running in the JVM. The size of the checkpoint image file

increases more in absolute terms than the increase in size of the input file. This is

because the data loaded are submitted to a semantic reasoner. This reasoner infers

new knowledge that has been stored into the RAM and then must be saved as part

of the checkpoint image.

2.4.3 Startup Times

In the second experiment, we discuss the difference in execution times between

a restart and launching a fresh, new process that need to load data from a file.

Figure 2.6 shows the execution times in different situations. This compares

the time for restarting a new process using the techniques of this work, versus the

traditional alternative of starting (initializing) a new process for each new scene.

The diamond-shaped and square plotted points represent the restart times for a
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Figure 2.6 – Initialization of a new process versus restart of a
previously checkpointed process.

checkpoint image. The square plot uses the mmap-based Fast-Restart option. The

round plot represents the initialization time of the process when reading the data

from the file. The initialization and restart times grow with the size of the input

file that is loaded. Of the total initialization time, about 2 to 4 seconds is required

solely to start the JVM before reaching the “main” method. The remaining time is

used to load the Java-based semantic libraries and the input data.

Collecting together JVM startup, semantic library startup and loading the initial

data, Figure 2.6 shows that “Restarting an Old Process” is about 25 times faster

than the standard execution startup of a new process. Further, the Fast Restart

method is about 500 times faster than the standard initialization. This is because

restart avoids any data initialization that is executed by the Scene framework itself

before it gives control to the end programmer.

2.4.4 Runtime Overhead when Running under DMTCP

In this software architecture, the process that handles processing of the scenes is

larger since it is launched under the control of DMTCP. The use of DMTCP causes

one or more DMTCP libraries to be loaded and a DMTCP checkpoint thread to be

run within the target process (see [Ansel 2009]). However, the size of the resident

RAM for the DMTCP libraries is quite small, about 2.6 MB, and does not vary

with application inputs.

The DMTCP library also can slow the process at runtime due to interposition on
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system calls from the target application to the runtime library. (See Section 1.2.1:

process virtualization.)

Hence, the impact of DMTCP on the process depends especially on the number

of system calls made by the process. This is small, since the model is dominated

by computation, rather than by system calls in the given example.

Table 2.2 – DMTCP Overhead over 2000 OWL operations

File Size 2.05 MB 10.25 MB 20.50 MB

Time w/ DMTCP (ms) 3679 4252 3378

Time w/o DMTCP (ms) 3656 4262 3306

Table 2.2 shows the time required by the scene to execute 2000 OWL operations

in the model. An operation correspond to adding a new triple of data into the

semantic knowledge base. The execution of the target process is carried out in two

different regimes: 1) with DMTCP that can checkpoint the program and system

call wrappers; and 2) without DMTCP such as a native process. The aim is to

determine if the use of DMTCP adds significant runtime overhead to the main

process.

The last table shows that the times required to process the OWL operations is

only 2.4% more with DMTCP than without, for a file size of 20.5 MB, and DMTCP

has almost no effect on times for smaller input files. Notice that the 20.50 MB file

is faster to process the operations than the others. This is due to the type of data

that is used as input. Since we are using semantic reasoners and models, depending

of the inserted data, the knowledge inferred is different, and the data will trigger

different rules.

The test with the 10.25 MB input file is actually slightly faster with DMTCP.

This is due to the natural random variation in processing time of a process allocated

by the operating system scheduler.

2.4.5 Overhead of Passing name:value Pairs between Scenes

Section 2.3.3 presented the sharing of information between different scenes

through a scene change. This is implemented using a DMTCP plu-

gin [K. Arya 2016]. Such a plugin is able to define a set of functions to call when a

checkpoint or restart operation is performed. We define a plugin to save that part

of the state of the current scene to be checkpointed that has to be shared with other

scenes. The plugin writes into a file the information to share when a checkpoint

operation is performed. Then, on restart, the plugin will read this shared file and,

depending of the hierarchy of the scene, will load into the memory the saved state.

This mechanism slows down the system and this section evaluates the cost of this

mechanism.

Table 2.3 shows the time required for the DMTCP plugin to save and load

information from an information sharing file. The time depends on the number of
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Table 2.3 – Average save and load time of DMTCP plugin in
charge of the sharing of information between scenes.

Nb of pairs name:value 25,000 50,000 100,000 200,000

Save time (ms) 18 36 83 145

Load time (ms) 10 19 40 81

name:value pairs that have to be shared. In this experiment, we show that the time

increases when more information has to be shared.

The average time for I/O for 200, 000 name:value pairs is about 145 ms for

saving and 81 ms for loading. If we assume a typical 16 bytes per name:value pair,

and a read/write speed of 100 MB/s for the SSD, then we would estimate 32 ms

to save or load 200, 000 name:value pairs. The longer times for save/load occur

because of the overhead of system calls and random access to the SSD. Nevertheless,

the save/load times are acceptable, since they do not dominate over the times for

checkpoint/restart times shown in Figure 2.5.
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Conclusion

In order to manage the IoT software infrastructure, the definition and role of

monitoring and execution component are required. Those components are the only

ones interacting with the managed system, making them important interfaces to

design.

The Monitor is gathering metrics from the managed system to determine its

health. The Executor is performing actions to repair the issues. In the approach

of this thesis, those actions are based on software migration operations with a

checkpointing mechanism. Those operations allows the Executor to checkpoint a

running process into a file, and restart it later on the same machine, or migrate

it to another one. We also observed that the checkpointing mechanism had to be

adapted in order to fit the resource constrained IoT machines.

Therefore, the technologies used for the monitoring, based on Device Manage-

ment, have been presented in this chapter. An emphasis on the parameters that

are required to be monitored by the component has been given. A clear need to

have an extensible model for the representation of the application metrics has been

highlighted.

Moreover, the execution has been discussed with the optimization of the check-

pointing mechanism. The enhancements of the Forked Checkpointing and Fast

Restart are well-suited mechanism for an IoT application. Subsequently, the issues

of large RAM usage of processes is risen and answered by the proposition of a Scene

mechanism. As for this mechanism, it allows the distribution of the application data

in several scenes that can be swapped efficiently with the checkpoint/restart mech-

anism.

Finally, several experimentation are conducted to validate this approach. We

demonstrated that the proposed scene architecture is about 25 times faster than the

standard startup of a new process. When used with mmap-based fast restart (thus

deferring paging in of virtual memory until runtime), the proposed architecture

can even be 500 times faster. Moreover, the overhead of the checkpointing software

DMTCP and the passing of name:value pair is evaluated. It has been demonstrated

in previous works that the DMTCP is quite small (about 2.6 MB) [Ansel 2009], and

the overhead in term of execution time depends on the number of system calls of

the target process. It has been demonstrated that the passing of large number of

pairs has a quite small execution time even for 200,000 pairs. Usually, applications

does not handle this number of parameters.

This work has been published in [Aïssaoui 2016a].

The data gathered by the Monitor needs to be interpreted. For this purpose

a model is required. Moreover, this model has to be extensible due to the diver-

sity of possible application in the IoT. Chapter 3 provides the model used in the

knowledge base of the autonomic framework. The given ontology aims at providing

a vocabulary to describe the considered IoT software infrastructure. The different

policies to apply to repair the system are also discussed.
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In the previous chapter, we demonstrated how to retrieve management data

from the IoT infrastructure. Those information has to be stored by our management

framework. Those data have to be interpreted in order to find out the potential

problems in the system. This interpretation will lead to the creation of a plan of

execution to fix the software infrastructure.

However, to interpret the data in an efficient manner, a model is required.

Moreover, the description of the managed system has to be given to the management

framework in order to acknowledge the existing entities and their capabilities. This

means that a description of the currently available machine with their computation

capabilities is required. We also need to represent the set of devices present in the

environment, along side with the processes that are executed on this infrastructure.

In summary, we need the static description of the entities present in the system

and the representation of the current state of the system that is retrieved by the

monitor. In addition, this model has to be extensible depending on the specific

application domain. It is required to be able to extend the model to fit several kind

of scenarios.

To respect the given arguments, we suggested in Section 1.3 the usage of se-

mantic technologies and representation. For this purpose, an ontology representing
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the IoT software infrastructure is required. This vocabulary allows one to represent

the targeted system to manage in a formal way, and store it into a knowledge base.

Moreover, this knowledge base contains the state of the entities present in the

monitored system, allowing several components of the autonomic loop to retrieve

relevant information for the problem inference. The Figure 3.1 shows the manage-

ment framework with the knowledge base. This component is used by the inference

system in order to determine the issues.
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Figure 3.1 – Framework Architecture – Knowledge base

This chapter discusses the proposed ontology representing the different enti-

ties of an IoT software infrastructure, focusing on the software capabilities of the

entities. Moreover, a description of several autonomic computing elements such

Symptoms and Request for Change are provided. Finally, an instance of the model

is given, based on a scenario on logistics.

3.1 IoT System Representation

This section presents the proposed ontology representing the different entities

present in an IoT software infrastructure. The vocabulary aims at representing key

parameters and metrics that will help the reasoner to find out the issues of the

several processes.

An overview of the proposed ontology1 is given in Figure 3.2. Note that all

classes and relations are not represented in this figure. It displays the main modules

of the ontology and some relations between the entities.

In order to create this ontology, we went through several steps in the represen-

tation. Each “part” of the ontology correspond to a module representing a type of

entity.

1Ontology available at: http://w3id.org/laas-iot/cpiot-o

http://w3id.org/laas-iot/cpiot-o
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First, we defined the “Machine” module, aiming at representing the entities

that are able to host and execute software processes. The type of machine can

be important depending on the scenario and has to be represented alongside their

capabilities. Then, we need to represent the environment with which the machine

are interacting. This can include physical entities such as the devices, or the virtual

networks. Additionally, the software processes that are executed on the machines

are represented in a separated module. The migration capabilities of the software

entities is also provided in the vocabulary. Finally, for the checkpointable entities,

a checkpoint domain representation is given.

Moreover, in the vocabulary we consider two types of properties: “static prop-

erties” and “dynamic information properties”. The static properties correspond to

descriptive information provided by the IoT infrastructure that will not change,

such as the machine specifications, the devices to consider, and the policies. The

dynamic information properties correspond to the information concerning the cur-
rent state of the system. That information changes over time and the changes are

tracked by the monitor component. But at any given moment, we will consider a

specific state of the system, and we will use the dynamic information to infer the

potential symptoms.

3.1.1 Machine Description Module

The first step to represent the IoT software infrastructure is to provide a vo-

cabulary for the hosts of the processes. The ontology provides several classes to

represent a host and its capabilities.

In the ontology, a Machine corresponds to a physical (or virtual) entity that

runs an operating system capable of hosting and executing some software. Several

subclasses are defined: Gateway, Cloud Virtual Machine (CloudVM) or Server.

There are other possibilities but since the focus is on the IoT domain, the main

interest is to represent a Gateway. Servers and VMs are also interesting for an IoT

approach since some processes may be placed temporally on this kind of equipment

during the physical maintenance of the gateways.

The taxonomy of the machines is not enough for the problem. One needs to rep-

resents the computational capabilities in order to evaluate the available resources.

For this purpose, several data properties are used.

A set of general properties linked to the top level Machine class contains: has-

MaxRAM, hasMaxDiskSpace or hasAverageEnergyConsumption. Those relations

gives a description of the machine for several parameters and will not change over-

time. They are part of the descriptive information of the system.

The last relation, hasAverageEnergyConsumption correspond to a naive ap-

proach of representing the energy consumption. The machines are ranked by their

energy consumption and this rank is stored in this relation. The lower this property

is, the fewer the machine consumes energy. This approach allows the selection of a

machine depending its energy consumption.

After the description of the machines has been given, their state needs to be
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represented in the ontology. For this purpose, several relations are defined: is-

MachineOnline, hasRamUsage or hasDiskUsage. Those relations are part of the

dynamic data that are gathered by the monitoring component. They define the

current state of the machine.

A specific relation is describing the gateway. Since this kind of equipment may

have a battery has a power source, the battery level has to be monitored. This

parameter is given with the property hasBatteryLevel.

3.1.2 IoT Environment Module

The next module represent the physical entities that are interacting with the

machines. This aims at representing the possible physically changing entities that

the software processes are going to interact with. The ontology does not cover

all possible IoT scenarios but proposes an approach for most common usages. This

part focuses mainly on the representation of the devices in the IoT, and the network

for the connectivity of the gateways.

A Device is a physical connected entity which is able to sense or act on the

environment. Several kind of connected device can be represented such as a tem-

perature sensor, a light sensor, a lamp, a heating system, etc. They can be defined

as sub-classes of the Device definitions in the ontology. Moreover, some already

published ontologies on the IoT already provides relevant vocabularies on the types

of devices such as SSN2 (other ontologies have been presented in Section 1.3.3).

However, the definition of a general device is necessary in our approach. Addition-

aly, to facilitate the integration of some application in our management framework,

we added an data property named hasDeviceType allowing one to define a type with

a string.

A Device can be connected to a Gateway to send its information to an appli-

cation. This connection is represented by the object property isConnectedTo that

has for range the Gateway class. It may use a communication protocol, such as

Bluetooth or Wi-Fi, in order to send or receive information from a gateway. This

is translated in sub-properties of the isConnectedTo object property with relations

such as hasCellularConnection or hasBluetoothConnection. The inverse property

is defined as hasConnectedDevice and it lists the Devices connected to a Gateway.

The Device concept is aligned with the definition of Sensor from the SSN ontology3.

The Network class corresponds to a communication Network. It allows one

to determine which entity is reachable through the Network. The connection of a

gateway to a network is represented in the ontology by the object property connects-

To. The Network class has some attributes to specialize the network considered

bandwidth or availability through the relations hasBandwidth or hasAvailability.

Another relations is used to determine the usage of a network with the relation

hasAverageRoundTripTime. This allows one to have an estimation of a network

compared to others.

2https://www.w3.org/TR/vocab-ssn/
3https://www.w3.org/2005/Incubator/ssn/ssnx/ssn#Device

https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn#Device
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3.1.3 Software Domain Module

On the Machines, software is executed and needs to be represented. An abstract

class SoftwareEntity is defined to represent an entity that is executed on a Machine.

“Application” and “Process” are sub-classes of SoftwareEntity. The Process class

represent a process in term of an “Operation System” that is executed on a Machine.

An Application is an abstract entity that provides a set of features or services. An

Application represents complex software that can be split into multiple processes.

However, all software entities are not possible to migrate. To make a distinction

between those entities, we define the MigrationEnabledEntities. This class corre-

sponds to an abstract concept on a piece of software that is possible to migrate by

a specific mean. For instance, several sub-classes on this concept are possible such

as an OSGi bundle or a checkpointable entity. Those concepts correspond to their

own classes in the ontology.

For specific processes that are possible to migrate through the checkpointing

mechanism, specific representation are given. This characteristic is described by a

CheckpointableEntity class that represent a checkpointable Process or Application.

CheckpointableProcess and CheckpointableApplication represents the corresponding

checkpointable entities in term of classes in the ontology. Figure 3.3 illustrates this

hierarchy.
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Checkpointable

Entity
OSGi Bundle

Checkpointable

Process

Software

Application
Process

madeOf

Figure 3.3 – SoftwareEntity taxonomy

Regarding the description of the software entities, some resource usage data

properties are defined. Two data properties are hasAverageRamUsage and hasAv-

erageCpuUsage that represents the average consumption of the machine resources.

The RAM usage is expressed in mega bytes and the CPU usage is an approximate

percentage of the process usage. This is not a totally precise metric but helps

ranking the processes by their usage of the CPU.

Moreover, the software processes, depending on the application domain, have a

set of requirements. A top level object property is defined as hasFunctionalRequire-

mentTo and represents a generic requirement between two entities. This property

has several sub properties defined in the ontology. This will allow an inference sys-

tem to determine when they are not satisfied. For this purpose, we declare object
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properties that link the software entities to their constraint. In this thesis we present

two main constraints that are represented with the object properties actsOnDevice

and requiresNetwork.

The requirement represented by the object property actsOnDevice between a

SoftwareEntity and a Device means that the SoftwareEntity has to be executed on

the Gateway where the device is located. The requiresNetwork relation represent

the need of a software entity to be executed on a gateway that is connected to

the targeted network. If any of those functional requirements are not satisfied, a

symptom needs to be raised.

Machine
executes

ssn:Device

hasConnectedDevice

actsOnDevice

SoftwareEntity

Gateway

Figure 3.4 – Relation illustration between Machine, Device and
Software classes. Also represents the possible constraint between

a SoftwareEntity and a Device by the actsOnDevice object
property.

A connection to a service ontology is possible with the software processes. A

Service class is defined in the ontology and has a relation with the SoftwareEntity.

The providesService object property links the software entitiy to provided services.

Moreover, the Service concept is aligned with the eponymous class of MSM ontol-

ogy.4

3.1.4 Checkpointing Module

The last module represents the checkpointing mechanism concepts present in

the system. It is specifically targeted at representing the behavior of the DMTCP

software.

Several classes are defined to represent the concepts handled by DMTCP. In-

deed, a checkpointable process in DMTCP is connected to a Coordinator. A class

representing this coordinator is defined and has a set of properties to represent its

access point (IP address, port). This coordinator may have a checkpointing pol-

icy representing by another class (CheckpointingPolicy). The link between those

entities is represented by the relation hasPolicy. We can find two types of poli-

cies: event driven policy and periodic policy. The event driven policy is equivalent

to an application driven policy. This means that the application itself, i.e., the

checkpointed process, will send signals to the coordinator to indicate when to per-

4http://iserve.kmi.open.ac.uk/ns/msm#Service

http://iserve.kmi.open.ac.uk/ns/msm#Service
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form a checkpoint operation. The periodic policy performs a checkpoint after a

period. This parameter is also stored in the knowledge base with the data property

hasPeriodicity.

Another part of the checkpointing modules represents the output of a check-

point operation: a Checkpoint Image. This concept has an eponymous class in the

ontology with several relations for its parameters: image size, image location and

a time stamp. This checkpoint image is linked to the CheckpointableProcess with

two object properties. The first one is checkpointsTo meaning that the image is

the result of the checkpoint operation on the running process. The other relation

is restarts which point out that the process has been restarted using the specified

checkpoint image.

3.2 Representation of MAPE-K data in the ontology

In the previous section, the description of the system with its current state is

represented in the ontology. Moreover, some functional properties can be expressed

using semantic object properties. The aim is now to represent an issue in the system

using the autonomic computing vocabulary.

The commonly used data from the autonomic computing are Symptoms and

Requests For Change (RFCs). Then, when those information has been inferred, a

solution has to be defined in order to solve the issues. This is called a Plan and has

to be affected by a high-level policy to guide the choices.

This section presents the set of symptoms and RFCs that are used in our man-

agement framework. Note that with the semantic technology approach, new symp-

toms and RFCs can be defined depending on the application domain.

3.2.1 Symptom and RFC representation

3.2.1.1 Symptoms

The Symptom class is an abstract representation of something outside the nor-

mal operation of the system. It aims at pointing out the defaulting entities or

parameters.

By itself, this class is not enough to define the symptom of the system.

For each kind of symptom, sub-classes can be defined representing the specific

issue. Moreover, a set of object properties can be added to the describe that will

point out the deficient entities.

First, we defined a set of symptoms regarding the resource usage of the machines.

Another abstract class, sub-class of Symptom is defined as LackOfResource, repre-

senting a generic lack of resource on a machine. The object property hasSymptom

links the Machine class to the lack of resource symptom. With this definition,

several sub-classes for different resources can be defined.

In the ontology, the proposed lack of resource are: LackOfRam, LackOfMemory,

LackOfEnergy and LackOfProcessingPower. Depending of the lack of resource, dif-
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ferent policies can be applied. For instance, when the RAM is almost full on a

gateway, or the CPU usage is close to 100%, the migration of some processes is

required for the gateway to be computing more efficiently. However, if the energy is

lacking due to the battery depleting, only important or emergency processes have

to be migrated to other gateways. All other “minor” processes can be stopped or

moved to a server while the battery is recharging. This scenario is possible is the

gateways are powered with solar panels. During the night, the energy may run

low if during the day not enough power has been gathered. Figure 3.5 shows the

different classes and the hasSymptom relation.

Machine

hasSymptom
Lack of 

Resource

Lack of Ram Lack of Energy
Lack of 

Memory

Figure 3.5 – Lack of Resource symptom with hasSymptom
relation

The second type of symptom is related to the function requirements of the soft-

ware processes. Indeed, when one requirement of a process is no more satisfied due

to a change in the system, the process is considered in a defective state. This symp-

tom is represented with the class WrongSoftareLocation, pointing out the defective

process with the object property concernsSoftwareEntity. The inverse relation is

also described in the ontology as hasWrongLocation. Additionally, a proposition

of migration target are provided with the symptom. This is represented with the

object property potentiallyMigratesTo. However, this symptom is not checking for

the migration capabilities of the software entities. The expression of this parameter

does not mean the migration will be possible. Figure 3.6 shows the WrongSoftware-

Location symptom with its relations.

Machine

potentiallyMigratesTo

Wrong Software 

Location
SoftwareEntity

concernsSoftwareEntity

hasWrongLocation

Figure 3.6 – Wrong Software Location symptom illustration

3.2.1.2 Requests for Change (RFCs)

After the defective entities of the system has been pointed out by the symptoms,

the next step is to define the set of changes that needs to be applied.
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This does not yet correspond to actions to perform on the system. It represents

the general change that needs to be applied to the system in order to fix the issues.

In this ontology, we defines mainly two requests for change. Other kind of RFCs

may be defined depending on the application scenario.

The first RFC proposed is represented by the class LightenMachine. This RFC

represents the need to migrate some processes from a machine to another in order

to free some resources. The object property targetsMachine represents the machine

that is targeted by this request.

The second RFC has for semantic class MigrateEntity. It represents the need

to migrate a software entity to a new machine. The concerned software entity is

linked to the request with the relation hasMigrationRequest, and the inverse relation

is also described as targetEntity. This entity has to be possible to migrate in order

to create this migration request. Moreover, a list of possible migration targets is

given with the object property migrationTarget.

Figure 3.7 shows the RFCs and the relations with the other classes. The classes

with a light-red background are Symptoms. The classes with a light-purple back-

ground are RFCs. The other colors corresponds to the description of Figure 3.2.

Machine

migrationTarget

Wrong Software 

Location

targetsEntity

targetsMachine

inferredFrom

Lack of 

Resource

Migrate Entity

Lighten 

Machine

Migration

Enabled Entity

Figure 3.7 – Illustration of the RFCs and their relations

3.2.2 Policies

After the RFC has been created, the autonomic framework has to find a set

of action in order to resolve the issues of the system. However, multiple solutions

are possible in this problem, since multiple gateway may fulfill the requirements of

the deficient software processes. For this purpose, policies are created to rank and

allows a more precise selection of the migration targets when a migration request

is raised.

In the ontology, a high-level Policy concept is defined. This class is extended

with several sub-classes representing the different policies to apply.

An example of a sub-class of Policy is RamPolicy which defines the minimum

available RAM required on the gateway of the system. This policy has a RAM

percentage threshold that the management framework need to avoid to overtake.

This managing policy can be applied to other resources such as the disk space value,

or processing power.
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Another kind of policy are handling the energy management of the machines.

When two gateways satisfy the constraints for a process, the less energy consuming

one has to be chosen in order to apply this policy, even if the second one has more

processing power.

3.3 Model instance: Box of Vaccines

3.3.1 Scenario description

For this scenario, the logistics of transport of goods is considered. This is an

interesting domain because a transportation company has to handle many different

goods and it is difficult to provide an associated traceability mechanism. With a

semantic description of each type of good, the specific policy can be applied on the

system when needed.

More precisely, this scenario considers the transportation of critical goods. In

particular, the package of goods must be kept in a specific state for its safety. This

is applied to the transport of a box of vaccines that must be kept at a specific range

of temperature and humidity for its conservation.

For this purpose, the temperature, humidity and GPS sensors are attached to a

box of vaccines that senses the environment of the box. Then, the data are sent via

a low-powered and short-range wireless communication protocol such as Bluetooth

Low Energy (BLE).

The software is required to be executed on a gateway connected to the box of

vaccines sensors in order to receive the data. Then, to ensure the security of the

communication, the data is encrypted and sent to the global business orchestrator.

Finally, this orchestrator will check the values of the data and, depending on the

business rules, will require intervention concerning the associated software process

for the package of vaccines.

Moreover, the boxes of vaccines are separated by types. Each type of vaccine is

stored in a specific warehouse for that type, and each box of vaccines contains only

one type of vaccine.

The need to migrate the software along with the box of vaccines then arises.

This can be a complex task when considering many boxes of vaccine and many

gateways. To evaluate our approach, we consider two specific cases: 1) the box of

vaccines moves to the warehouse of the same type, the gateway has enough resources

to accept the software, and the migration is planned; and 2) the box of vaccines

moves but the target gateway does not have enough RAM to accept the software,

and so the system must find another plan to satisfy this constraint. Recall that

we are considering gateways to be of low capacity and devices to be low-powered.

Hence, any process swapping mechanism by the operating system is disabled, so as

not to allow the gateways to become over-loaded.

Figure 3.8 shows the architecture deployed in the first scenario. The box of

vaccines with its sensors is displayed along with the wireless connection to the

gateway. The software of the box is represented by the diamond labeled “Monitoring
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Software” in the gateway of the truck. The connection between the software and the

devices is not established. So the software is not able to pursue its normal operation.

The goal is to detect this type of issue by providing a semantic description of the

software and then to use the checkpointing mechanism to fix it.

Box	of	Vaccines

Tem Hum GPS

Warehouse_GatewayTruck_Gateway

Monitoring

Software

Box	of	Vaccine	Orchestrator	(cloud)

Bluetooth	LE	communication

Sending	business	data:	

temperature,	humidity,	GPS

Figure 3.8 – Architecture of the logistics scenario based on box
of vaccines.

3.3.2 Application on the model

In this scenario, we define another semantic class in the ontology that represents

a box of vaccines. The class is called BoxOfVaccines. This class has an object

property hasSensor, which links the box to its sensors. The sensors are instances

of the Device class.

First case For the first case, we consider a set of five warehouse gateways spread

within a transport site for logistics. Each warehouse handled a specific type of

vaccine. A varying number of trucks, containing a random number of boxes of

vaccines, with each box chosen of random type, will arrive at the site. In this

situation, one needs to dispatch the box of vaccines depending on its type and

requires the software executing on the truck gateway to be migrated to the correct

warehouse gateway.

Figure 3.9 shows the instances created in the knowledge base. It represents

a snapshot after the truck arrives at the site. The box is linked to its vaccine

type, which is the same as the warehouse gateway. The monitoring software is

still connected to the truck gateway and must be migrated to the warehouse. This

inconsistency must raise a symptom.
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Figure 3.9 – Representation of the ontology instances used for
the first logistics scenario.

Second case For this case, a third gateway is taken into account, called

Warehouse_Gateway_Bis. Moreover, a RamPolicy is defined, which has a thresh-

old of 80% of the max RAM Usage. The intended migration is the same: we want

the software to be migrated onto the Warehouse_Gatewaay. The same symptom

as before, showing the wrong software location, is also created for this case. Let’s

consider 2048 MB to be the maximum RAM available on the gateway of the ware-

house and 1750 MB to be the current RAM usage. This parameter triggers the

RamPolicy rules and will create a LackOfRam symptom linked to the target gate-

way. Those symptoms, both targeting the same gateway, create the LightenGateway

RFC.

After receiving the information, our approach suggests to begin by finding soft-

ware running on the target gateway that is not strongly constrained on this machine.

It will then create a plan to migrate this software to the second gateway, which cor-

responds to the warehouse. Now that the second gateway has sufficient resources

to accept the software, a migration plan is created for the software corresponding

to the box of vaccines.
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Conclusion

This chapter presented the model used in the knowledge base of the auto-

nomic framework. It also provided the representation of symptoms and requests for

change.

The needs arises to use a model to interpret the gathered data from the mon-

itored system. This model has to provide the definition of the system alongside

its state. Moreover, it has to be extensible in order to adapt the management

framework to different IoT applications.

For this purpose, the semantic technologies have been used. This chapter has

proposed an ontology that aims at describing the important entities of an IoT

software infrastructure. With a module structure, the ontology has defined several

concepts: machines that are hosting the processes the framework aims at managing ;

software entities that are executed on the aforesaid machines ; the IoT environment

comprising the physical entities interacting with the machines such as the devices ;

and the checkpointing mechanism.

The ontology does not only describe the available entities in the system, but

it also represents the current state of the system based on the data received in

the Monitor. This is part of the role of the Monitor to maintain the data in the

knowledge base updated and semantically represented.

In addition, the representation of the issues of the system are given with a set

of possible Symptoms. Those symptoms allows the inference engine to determine

which parameter the management framework need to have an impact on. The

aforesaid step gives as a result a set RFCs also described in this chapter.

Finally, an instance of the proposed ontology is given using a logistics scenario.

This shows the extensibility of the approach that can be extended to several IoT

applications.

The main components of the proposed ontology have been presented

in [Aïssaoui 2017].

The last part in need to be handled in the loop is the inference engine. Indeed,

using the provided description of the entities and their current state, one needs

to infer the issues of the system and creates the aforesaid symptoms. From this

symptoms, a set of RFcs need to be defined. Finally, a plan of actions need to be

defined in order to migrate the processes to solve the issues.

The next chapter presents the semantic rule engine, alongside the meta-

heuristics approach used to infer the previous cited information.
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Several components of the autonomic computing approach has been covered in

the previous chapters. The monitoring one aims at gathering metrics from the IoT

software infrastructure. The need to represent those information in a formal way

has been expressed. For this purpose, the knowledge base includes an ontology

described in the previous chapter. Moreover, the representation of the possible

issues of the system are represented in the vocabulary. The execution component

has also been presented. The latter is based on software migration mechanism such

as the checkpointing mechanism.

Two components of the autonomic computing are still missing: the Analyzer

and the Planner.

The Analyzer uses the information gathered from the Monitor and the descrip-

tive information of the entities in order to infer the Symptoms of the system. When

the issues of the system have been found, another inference is performed in or-

der to find out the required changes. Those changes indicates the parameters to

change in the system, or a general idea of the action to perform in order to solve

the symptoms. They are called Requests for Change (RFCs).

The Planner uses the inferred RFCs to define a plan. This plan is composed of

the actions that will be performed by the executor component.

Figure 4.1 shows the complete architecture of the framework with all the com-

ponents. Moreover, it highlights the approach taken to design the Analyzer and

Planner components.
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Figure 4.1 – Framework Architecture – Final architecture

In this thesis, we propose the usage of semantic reasoner in order to infer the

symptoms and then the RFCs. This approach allows an easy and extensible repre-

sentation of the issues, as demonstrated in the previous chapter, and rule system.

In semantics, the rules are embedded with the model. They are represented directly

in the semantic knowledge base. This means that they can be added directly in the

application model.

This chapter presents the set of rules used to infer the symptoms presented in

the previous chapter, and the rules to infer the corresponding RFCs. With this

approach, we propose a simple algorithm that is able to infer a plan of action with

the requested RFCs. The planing is handled by an algorithm also described in this

chapter.

An evaluation of this approach is proposed with the box of vaccines scenario

that has been presented in the previous chapter (See Section 3.3).

4.1 Analyzer: Semantic inference with SWRL rules

The first step in the inference part of the autonomic computing approach is the

Analyzer. It uses the description of the system entities with their current state in

order to find out the symptoms. Then, Requests for Change (RFCs) are inferred

to solve those symptoms. A set of generic symptoms and RFCs have been defined

in the previous chapter (see Section 3.2).

In order to perform this inference, a semantic reasoner is used. From the system

description and state, the semantic reasoner is going to infer new knowledge. First,

the definition and the inference rules of Symptoms and RFCs are provided. Then,
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the algorithm used to find the actions to perform on the system is described.

4.1.1 Symptom Inference Rules

The inference of those symptoms is performed with SWRL rules. As described

in Section 1.3, an SWRL rule is compounded of two parts. Each part contains a

set of atom representing an OWL axiom. The first part defines a graph that the

reasoner will try to match in the knowledge base. The second part are axioms that

will be inserted in the knowledge base if the first part completely matches.

Moreover, in this approach we use an extension of SWRL providing the

swrlx:createOWLThing atom.1 The role of this atom is to create a new individ-

ual in the knowledge base. This individual is linked to the other arguments used

in the atom. It means, if a rule is matching several times for other variable, it will

create only one individual for each tuple of the other arguments.

In the previous chapter, the different generic symptoms are described in Sec-

tion 3.2. Two kinds of symptoms are defined: resources usage violations and soft-

ware entities functional property violations.

4.1.1.1 LackOfResource symptoms

For the first type of symptoms, the resources usage violations, we have to com-

pare the current usage of the resources to the capabilities of the machines. The

threshold to consider a machine in a critical state is stored in a Policy. In order

to infer this kind of issues, the rule needs to retrieve the policy, the considered

machines with their current state.

An example is given with the detection of exceeding RAM consumption of the

machine. The rule for the inference of the symptom LackOfRam is provided in

Listing 4.1.

The first three axioms are used to bind the variables to specific classes: System-

Context, RamPolicy and Gateway. This means, the possible graph pattern to match

this rule will requires those variables to have the defined type (by the semantic rela-

tion rdf:type). With the hasPolicy relation, we retrieve the RAM policy linked to

the system if it exists in the knowledge base. The hasMinAllowedRamLeft retrieves

the value to compare with the machines of the system. The hasMachine ensures

that the policy is applied to a machine in the same system and the relation has-

RamLeftPercent retrieves the RAM left in percent of the machine variable. Then, a

comparison is made between the RAM left on the machine and the threshold from

the policy with the axiom swrlb:lessThan. The swrlx:createOWLThing is used

to create the symptom individual in the knowledge base when the rest of the left

part of the rule is true. The right part of the rule add the LackOfRam type to the

symptom variable and the relation hasSymptom is added to the machine and points

out the created symptom.

1
swrlx defined in http://swrl.stanford.edu/ontologies/built-ins/3.3/swrlx.owl

http://swrl.stanford.edu/ontologies/built-ins/3.3/swrlx.owl
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SystemContext (? system ) ^
RamPolicy (? p o l i c y ) ^
Gateway (?gw) ^
hasPo l i cy (? system , ? p o l i c y ) ^
hasMachine (? system , ?machine ) ^
hasMinAllowedRamLeft (? po l i cy , ?minRam) ^
hasRamLeftPercent (?gw , ? ramLeft ) ^
swrlb : lessThan (? ramLeft , ?minRam) ^
swrlx : createOWLThing (? symptom , ?gw , ? p o l i c y )

−> LackOfRam(?symptom) ^
hasSymptom (?gw , ?symptom)

Listing 4.1 – Inference rule for LackOfRam symptom in SWRL.

The result of this rule is the creation of a new individual, linked to the gateway

and the RAM policy. This means, only one individual will be created by pair of

Gateway+RamPolicy matching this rule. The created individual is given a type by

the second part of the rule, which is LackOfRam. Moreover, this created symptom

is linked to the gateway with the relation hasSymptom.

Other similar rules are defined for other type of resource consumption. An

example with the LackOfEnergy symptom is given in Listing 4.2.

SystemContext (? system ) ^
EnergyPol icy (? p o l i c y ) ^
Gateway (?gw) ^
Battery (? bat te ry ) ^
hasPo l i cy (? system , ? p o l i c y ) ^
hasMinBatteryLeft (? po l i cy , ? minBatteryLeft ) ^
hasMachine (? system , ?machine ) ^
hasBattery (? machine , ? bat te ry ) ^
hasBatteryLe f tPercent (? battery , ? ba t t e ryLe f t ) ^
swrlb : lessThan (? bat te ryLe f t , ? minBatteryLeft ) ^
swr lx : createOWLThing (? symptom , ?gw , ? p o l i c y )

−> LackOfEnergy (? symptom) ^
hasSymptom (?gw , ?symptom)

Listing 4.2 – Inference rule for LackOfEnergy symptom in
SWRL.

Compared to the previous rule, the difference is that the battery level of the

machine is stored in a separated entity. It is represented by the class Battery and

is linked to the machine with the relation hasBattery. The battery level is retrieved

with the data property hasBatteryLeft. For the policy, the same graph pattern
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is retrieved but the class is not the same, i.e., EnergyPolicy. The data property

hasMinBatteryLeft gives the threshold of the policy.

4.1.1.2 WrongSoftwareLocation inference with actsOnDevice

The second kind of symptoms is related to the software entities functional prop-

erties. The rule has to retrieve the functional property of the software entity, and

find out if it is not satisfied. This symptom is represented with the semantic class

WrongSoftwareLocation.

An instance of such a rule is given in Listing 4.3 with the verification of the

actsOnDevice functional property. At first, the rule has to retrieve the software

entities that has this constraint and the linked device. For this purpose, the software

entities executed on the machines are retrieved with the relation isExecutedOn and

are bound to the variable softwareEntity. The functional requirement of this

entity is retrieved with the actsOnDevice object property and the concerned device

is bound to the device variable. The machine where the device is connected is

retrieved with the object property isConnectedTo and the machine is bound to

the variable deviceGw. In order to determine if there is a violation, a comparison

between the gateway where the software entity is executed and the gateway where

the device is connected to has to be done. This comparison is performed by the

axiom differentFrom, a base SWRL axiom. It checks if the individuals are not

the same.

However, in semantic technologies, having a different URI for the individuals

does not mean they are different. Because of the open world assumption, not

expressing the fact that they are same does not mean they are different. The clear

expression that the gateways are different individuals needs to be expressed in the

knowledge with a AllDifferent2 axiom between the gateways.

The symptom creation is linked to the software entity and the gateway where

the device is. The rules creates the WrongSoftwareLocation symptom, linked to

the software entity with the relation concernsSoftware. Moreover, the potential-

lyMigratesTo relations is defined between the symptom and the gateway on which

the device is connected.

As presented in Section 3.3, the actsOnDevice functional requirement is used in

the box of vaccines scenario. This approach is evaluated in Section 4.2.

Other similar rules can be applied on other functional requirements. Listing 4.4

shows an example with the requirement requiresNetwork. The same approach as the

previous rule is taking, making the comparison if the current gateway is connected

to the network the software entity is executed on.

4.1.1.3 WrongSoftwareLocation inference with requiresDeviceType

Another functional requirement of the software entities is expressed with the

data property requiresDeviceType. This property defines the required type of device

2http://www.w3.org/2002/07/owl#AllDifferent

http://www.w3.org/2002/07/owl#AllDifferent
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SystemContext (? system ) ^
Gateway (? softwareGw ) ^
Gateway (? deviceGw ) ^
SoftwareEnt i ty (? so f twareEnt i ty ) ^
hasMachine (? system , ?deviceGw ) ^
hasMachine (? system , ? softwareGw ) ^
actsOnDevice (? so f twareEnt i ty , ? dev i ce ) ^
isConnectedTo (? device , ?deviceGw ) ^
isExecutedOn (? so f twareEnt i ty , ? softwareGw ) ^
d i f f e r entFrom (? deviceGw , ? softwareGw ) ^
swrlx : createOWLThing (? symptom , ? so f twareEnt i ty , ?deviceGw )

−> WrongSoftwareLocation (? symptom) ^
potent i a l l yMigra te sTo (? symptom , ?deviceGw ) ^
concernsSo f tware (? symptom , ? so f twareEnt i ty )

Listing 4.3 – Inference rule for WrongSoftwareLocation
symptom in SWRL.

with a string.

The property means that if no device of the required type is connected to the

gateway of the software entity, a symptom has to be raised. However, because of

the open-world assumption, SWRL rules do not have negative axioms to represent

the absence of a property.

To counter balance this assumption, a specific approach is taken. When the

inference is performed, the framework takes in consideration that all device connec-

tions are already represented in the knowledge base. Also, the framework is aware

of the possible current device types. With those information, a new data property

is added to the Gateway where the device are connected: absentDeviceType. This

property is added by the framework by subtracting the present device types on the

Gateway to the complete set of device types.

With this new information added to the knowledge base, a new rule can be

written to determine if the gateway does not have the required device for the process.

The Listing 4.5 shows the SWRL rule.

This rule has two functionalities.

First, it creates the symptom WrongSoftwareLocation that represents the is-

sues on the process. This is done by the first part of the rule that checks the

equality between the required device type of the process and the absent device

types of the gateway. To perform this creation, the machine is retrieved with the

hasMachine relation and the software entity linked to it with the isExecutedOn

relation. Then, the required device type is bound to the requiredDeviceType

variable with the relation requiresDeviceType. The missing device types of the

gateway are retrieved with the data property hasAbsentDeviceType and bound to

absentDeviceType. The equality between the absent types and the required type
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SystemContext (? system ) ^
Gateway (? softwareGw ) ^
Gateway (? networkGw ) ^
Network (? network ) ^
SoftwareEnt i ty (? so f twareEnt i ty ) ^
hasMachine (? system , ?networkGw ) ^
hasMachine (? system , ? softwareGw ) ^
requiresNetwork (? so f twareEnt i ty , ? network ) ^
connectsTo (? networkGw , ? network ) ^
isExecutedOn (? so f twareEnt i ty , ? softwareGw ) ^
d i f f e r entFrom (? deviceGw , ? softwareGw ) ^
swrlx : createOWLThing (? symptom , ? so f twareEnt i ty , ?deviceGw )

−> WrongSoftwareLocation (? symptom) ^
potent i a l l yMigra te sTo (? symptom , ?networkGw ) ^
concernsSo f tware (? symptom , ? so f twareEnt i ty )

Listing 4.4 – Inference rule for WrongSoftwareLocation
symptom in SWRL due to the missing network.

is performed by the relation swrlb:equal, a base SWRL axiom. If all this matches,

then the swrlx:createOWLThing axiom creates the symptom.

The second part retrieves the set of gateways that has a connected device with

the required type. This is done by the hasConnectedDevice and hasDeviceType that

links the device with the correct type to the gateway where it is connected. This

allows to retrieve a gateway where the correct device type is available and place it

in the symptom. This set of gateways is linked to the symptom with the relation

potentiallyMigratesTo. This information will be used to easily extract potential

migration targets when the reconfiguration of the software infrastructure will be

defined.

4.1.2 Request for Change inference

When the symptoms are inferred, a second inference for the RFCs can be per-

formed. Those RFCs represents a modification required for the correct operation

of the system. It does not contain how to perform this change.

The first RFC proposed is named MigrateEntity. It represents the required

migration of the software to a new location. The latter is inferred from the Wrong-

SoftwareLocation symptom. The rule retrieves the symptoms and the concerned

software with its maximum RAM usage. It compares this information with the

RAM left on the possible migration targets. Also, the rule makes sure that the

software entity is possible to migrate with the type MigrationEnabledEntity.

The second RFC is LightenMachine. The request represents the need to

“lighten” a machine by removing some software. This RFC has an object prop-
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Gateway (? gateway ) ^
hasMachine (? system , ? gateway ) ^
isExecutedOn (? so f twareEnt i ty , ? gateway ) ^
requiresDeviceType (? so f twareEnt i ty , ? requiredDeviceType ) ^
hasAbsentDeviceType (? gateway , ? absentDeviceType ) ^
swrlb : equal (? absentDeviceType , ? requiredDeviceType ) ^
hasMachine (? system , ?gatewayWithDeviceType ) ^
hasConnectedDevice (? gatewayWithDeviceType , ? dev i ce ) ^
cp iot−o : hasType (? device , ? requiredDeviceType ) ^
swrlx : createOWLThing (? symptom , ? so f twareEnt i ty ,

? requiredDeviceType ) −>

WrongSoftwareLocation (? symptom) ^
concernsSo f tware (? symptom , ? so f twareEnt i ty ) ^
potent i a l l yMigra te sTo (? symptom , ?gatewayWithDeviceType )

Listing 4.5 – Inference rule for WrongSoftwareLocation due to
the missing Device Type on a Gateway.

erty that shows the target of the request: targetsMachine. This RFC is inferred

when a LackOfResource symptom is emitted to a gateway and this gateway has a

critical state to address. Two examples are lack of RAM and lack of memory.

The Listing 4.7 demonstrates the SWRL rule used to infer the LightenMachine

RFC.

4.1.3 Actions to Perform on the System

When the Symptoms and RFCs are inferred by the reasoner, we need to define

what actions on the system to resolve the issues. Based on the inferences, we

propose an algorithm that creates a set of migration plans to repair the system

state.

At first, we need to consider the gateway to lighten, in order to create some space

for the incoming software. For this, we look at the currently running software on the

gateway to be lightened and try to find which software is not strongly constrained

to be on the gateway; i.e., which software has no explicit constraint to remain on

the current gateway.

An example of software with no explicit constraint is software that does not

require any device that is connected to the current gateway. When extracting this

software from the initial gateway, we need to ensure that the new target gateway is

not also a gateway that needs to be lightened. Another element to check is if there

is a migration request on the new target gateway. We need to be sure there are

enough resources for all the software to be migrated there.

After the lightened gateways are handled, we can next create the migration plan

for the MigrateEntity RFCs. Since the management of resources was already been
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cp iot−o : WrongSoftwareLocation (? symptom) ^
cpiot−o : concernsSo f tware (? symptom , ? so f twareEnt i ty ) ^
Migrat ionEnabledEntity (? so f twareEnt i ty ) ^
cp iot−o : potent i a l l yMigra t e sTo (? symptom , ?machine ) ^
cp iot−o : hasMaxRamUsage (? so f twareEnt i ty , ?maxRamUsage) ^
cp iot−o : hasRamLeft (? machine , ? ramLeft ) ^
swrlb : lessThan (?maxRamUsage , ? ramLeft ) ^
swr lx : createOWLThing (? migrateRfc , ? so f twareEnt i ty , ?machine )
−>
cpiot−o : MigrateEntity (? migrateRfc ) ^
cp iot−o : toMigrate (? migrateRfc , ? so f twareEnt i ty ) ^
cp iot−o : migrat ionTarget (? migrateRfc , ?machine )

Listing 4.6 – Inference rule for MigrateEntity RFC.

LackOfResource (? symptom) ^
cpiot−o : Machine (? machine ) ^
cp iot−o : hasSymptom (? machine , ?symptom) ^
cpiot−o : potent i a l l yMigra t e sTo (? ent i ty , ?machine ) ^
swrlx : makeOWLThing(? r f c , ?machine ) −>

cpiot−o : targetsMachine (? r f c , ?machine ) ^
cp iot−o : LightenMachine (? r f c )

Listing 4.7 – Inference rule for LightenMachine RFC.

done in the previous part, it is not required to check again if there are enough

resources for the migrations under consideration.

Algorithm 4.1 Algorithm for the establishment of Migration Plan using DMTCP

Require: Cs is CheckpointableEntity

Ensure: Cs is migrated to Tg

CurrentLocation← currentLocation(Cs)
CsCkptImg ← createCkptImage(Cs, CurrentLocation)
migrateCkptImage(CsCkptImg, CurrentLocation, Tg) {migrating an image
correspond to a file transfer}
Result← restart(Cs, CsCkptImg, Tg)
if Result == SUCCESS then

updateLocation(Cs, Tg)
else {operation failed, report failure}

reportMigrationError(Cs, Tg)
end if

The algorithm presented in Algorithm 4.1 shows the process to create a mi-

gration plan. This process is applied to each software required to be migrated. At
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first, we retrieve the knowledge base where the software is currently being executed.

Then, we can proceed to the checkpoint of this software using the checkpoint oper-

ation of DMTCP. When the checkpoint image has been created, the software can

be stopped on the current gateway. The checkpoint image file is then copied to the

new target gateway. Finally, using DMTCP, the restart operation is performed on

the image and the process is restarted on the new target gateway.

4.2 Experimental Evaluation: Box of Vaccines Scenario

This section presents a scalability study performed on this first scenario, geo-

graphical migration, as described in Section 3.3. First, the experimental environ-

ment is specified, followed by the scalability study.

4.2.1 Experimental Environment

To evaluate our work, a study of the scalability of the model has been carried

out and is described in this section. Since the goal is its use in the IoT domain

in general, we need to evaluate the size of the system that can be managed in a

reasonable time.

To evaluate the scalability, we consider the first scenario, which was presented

previously in Section 3.3. Multiple instances of this scenario are injected into the

knowledge base to generate a complex instance of the model. Then the reasoner

is executed on this knowledge base and it performs the inferences required for

the analysis. The time taken to perform this analysis and determine the required

migration is evaluated and help us determine the scalability of our method.

The experiment was carried out using an Ubuntu server (version 14.04) with

an Intel(R) Xeon(R) CPU E5-2623 v3 (3.00 GHz) and 32 GB of RAM. The JVM

used is OpenJDK JVM version 1.8.0_111. To manipulate the RDF and OWL files,

serialized as XML, representing the model and the data, OWLAPI version 4.2.7 has

been used. The SWRLAPI version 2.0.0 has been used to create and manipulate

the SWRL rules. Then, the Drools engine (version 6.5.0) is linked to apply the

SWRL rules to the ontology via the SWRLAPI Drools bridge (version 2.0.0). The

JFact reasoner (version 4.0.4) is then used to ensure the consistency of the ontology.

Protégé version 5.1.0 has been used to create the model, but it is not used in the

experiment.

4.2.2 Scalability study

Figure 4.2 shows the results of the experiment with the detailed values in Ta-

ble 4.1. The x axis represents the number of box of vaccines in the knowledge base.

Each truck gateway is linked to a random set of box of vaccines, between 10 and

20, with a random type. Each random uses a uniform distribution. The y axis

shows the execution time to perform the inferences on the knowledge. The time

is expressed in seconds and is displayed on a logarithmic scale. For each x value
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displayed, the experiment has been run 30 times, and the chart shows the average

execution time with the solid black line, and the minimum and maximum of the

series are displayed.
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Figure 4.2 – Average-min-max chart of execution time of
semantic reasoner depending on the number of box of vaccines.

Table 4.1 represents the execution time of the semantic reasoner depending

on the number of truck gateways present in the knowledge base. The values are

expressed in seconds. It shows that the execution time of our process depends

greatly on the number of instances in the model. Starting with an average of

3.71 seconds for 1 instance in the model to about 63 seconds for 1430 instances.

The first three numbers (11, 67 and 143 boxes of vaccines) show an execution time

of about 4 seconds. The next number, with 289 is just 1 second longer than the 10

instances.

Table 4.1 – This table displays the data shown in the figure 4.2.

Truck
gateways

Box of
vaccines

Average (s) Minimum (s) Maximum (s)

1 11 3.71 3.42 4.10

5 67 3.88 3.59 4.16

10 143 4.15 3.93 4.41

20 289 5.18 4.95 5.42

50 731 13.36 11.86 15.48

100 1 430 63.10 59.04 69.03

We note that creating the semantic reasoner has a static cost of 3 seconds, due
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to the choice of technology. In particular, the creation of the rule engine with the

SWRL API and Drools takes about 3 seconds to be instantiated, independently of

the number of box of vaccines. However, this initialization has to be performed

only one time at the start of the framework, it does not impact the performances

of the latter executions.

The execution time increases greatly with the number of instances and it is

especially high when considering more than 1000 boxes of vaccines. The time of

63 seconds for 1430 boxes of vaccines is excessive because our approach has the goal

of providing a quick analysis of the system in order to perform changes in reasonable

time.

The experiments have shown that the model is well suited for IoT applications

in general. We have instantiated this model for a transportation logistics scenario

and have shown that the response time is sufficient for fewer than 1000 boxes of

vaccines. In fact, the number of devices to manage in a real system is closer to

hundreds of nodes rather than 1000, and there are several devices per gateways. So

our approach provides reasonable performance in term of execution time for this

scale. Moreover, a hundred truck will not arrive at the same time at a logistic site.

Then, the reasoning can be performed several times when some trucks arrives with

fewer instances and so, fewer execution time.
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Conclusion

This chapter presented the inference system used in the management framework

to infer the Symptoms and the RFCs.

The Analyzer uses the system description with the data gathered by the monitor

to infer the symptoms and RFCs. This is done by a set of SWRL rules and a

semantic reasoner. Since the rule are part of the ontology, they can be easily

extended for new scenarios.

We also evaluated this approach in term of scalability with a scenario based

on logistic domain. We demonstrated that the response time grows exponentially

depending on the number of box of vaccines as expected. Thus, more separated and

lower infrastructures needs to be considered by this approach is order to functional

in an acceptable time.

However, in order to create a plan of action the algorithm presented lacks the

consideration of the optimization of the system. It can find a possible solution that

match the functional requirements of the software processes but will not evaluate

the quality of the solution. Moreover, since the inference system result correspond

to a list of possible migration targets for each software process, it is difficult to

create the optimal combination.

A combinatorial problem arises from this result when the optimization of the

system is at stake. To solve this problem, a meta-heuristics approach is presented in

the next chapter that aims at implementing the Planner component with a genetic

algorithm.

The model including the semantic rules with the box of vaccine evaluation has

been published in [Aïssaoui 2017].
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The previous chapter demonstrated how to infer the symptoms and RFCs of the

software process infrastructure using web semantic technologies. The description of

the entities in the knowledge base with their state allows the semantic reasoner to

infer the issues of the system.

However, the inferred RFCs only point out the need to migrate a software entity,

or lighten a machine. It does not explicitly indicate where to migrate the entities.

Some RFCs hints possible locations for the migration but a decision needs to be

made. The impact of a migration can be huge. Indeed, if a process has to be

migrated to another machine, it will fill the target machine and may not leave

enough resources for the processes to function properly. This means it will require

the migration of other entities to another machine, but the same problem could

appear again. In summary, this problem is combinatory and the optimization of

the system parameters is difficult to perform with a standard algorithm in finite

time.

Therefore, another kind of approach is taken in complement. We propose the use

of meta-heuristics in order to find the plan of actions to perform on the system. More

specifically, a genetic algorithm is used [Davis 1991]. The genetic algorithm accesses

to the knowledge of the previous components and extracts the description of the

system with a subset of constraints to reason on. Moreover, genetic algorithm has

been proven to be efficient in the optimization of multiple objectives [Fonseca 1993].

The definition of an objective function, called fitness function, needs to be de-

fined. The definition of the fitness function is based on a penalty, inspired by cloud
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placement techniques such as [Yusoh 2010]. This approach has also been used in

the literature to optimize the energy of cloud infrastructures [Wu 2012].

To conclude, this approach is evaluated in term of execution time compared to

a brute force approach, and to the quality of the solution found.

5.1 Planner: System optimization through meta-
heuristics

From the given requests for change inferred from the Analyzer and the knowledge

base, the Planner has to define a plan of action in order to repair the system.

The previous sections shows how the RFCs are inferred in the framework. If we

take in consideration the MigrateEntity RFC, we notice that it provides a possible

set of migration targets for the software entity. This allows the selection for a

specific entity but the placement of one software entity on a gateway may have

some side effect. Indeed, placing several software entities on the same gateway may

overload it. In that case, migrating other entities already present on the gateway is

required and may have exactly the same side effect.

This decision of new software entities placement is quite complex. Moreover,

in order to reduce the cost, we need to reduce the number of migrations since the

software entities are not executed during the migration.

In order to solve this combinatorial problem, a meta-heuristics approach is

taken. Since this approach is not implemented with semantic technologies, a trans-

lation of the knowledge is required. This section presents how the knowledge ex-

traction is performed and serialized.

Those information are given to a genetic algorithm. Its goal is to find a new

placement for the software entities in the system. The model used in the genetic

algorithm and its execution are presented in this section and then evaluated.

5.1.1 Knowledge extraction and transformation

When the Symptoms and RFCs are inferred in the knowledge base, they are

used by the planner component to find out the new process placement. However,

the planner component that is executing the genetic algorithm is not using semantic

technologies for execution time optimization purposes. To transfer those informa-

tion from the semantic knowledge base to the planner component, the framework

needs to extract the data with SPARQL queries and transform in a structured

format.

The semantic knowledge extraction with SPARQL

The aim of this operation is to extract only the necessary information for the

planner component. Unnecessary data for the inference of the new process place-

ment has to be omitted if we want a faster execution of the genetic algorithm. For
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this extraction two kinds of data has to be extracted: 1) the current process place-

ment with the capabilities of the entities (e.g., the available RAM of the gateways)

; 2) the functional constraints of the software processes.

To represent the current placement of the software processes, at first the set of

machines present in the system is retrieved with their capabilities. This information

allows the genetic algorithm to be aware of the available machines where the soft-

ware processes can be migrated. Moreover, the capabilities are used to determine

if the inferred placement of the algorithm is possible in term of resource usage.

In the semantic knowledge base, this is done by retrieving all instances of

the class Machine with their linked object properties such as hasMaxRam or has-

AverageEnergyConsumption. Then, the link with the software processes is retrieved

with the relation executes from the machines to the processes. Then, some infor-

mation about the resource consumption of the softwares are fetched such as the

averageRamComsumption.

The second part to extract are the expression of the functional requirements in

the system. However, we do not want to overload the genetic algorithm with a lot

of different information. Indeed, we defined some functional requirements in this

work but it can be extended for other type of IoT applications. In that case, we do

not want to change the extraction when the model evolves. Thus, we are using the

information extracted from the Symptoms and the RFCs. They contains the set of

possible machines where the software entities can be migrated (represented by the

relation potentiallyMigratesTo). The extraction of such information is performed

with a SPARQL query presented in Listing 5.1.

PREFIX cp io to : <http :// w3id . org / laas−i o t / cp iot−o#>
PREFIX rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#>

SELECT ∗ WHERE {
Type (? so f twareEnt i ty , cp i o to : Migrat ionEnabledEntity ) ,
Type (? migrat ionTarget , cp i o to : Gateway ) ,
Type (? symptom , cp io to : WrongSoftwareLocation ) ,
PropertyValue (? so f twareEnt i ty , cp i o to : hasWrongLocation ,

?symptom ) ,
PropertyValue (? symptom , cp io to : potent ia l lyMigratesTo ,

? migrat ionTarget )
}

Listing 5.1 – SPARQL-DL query to extract
WrongSoftwareLocation symptoms

This SPARQL request retrieves the set of software entities that have a

specific type: MigrationEnabledEntity. This is expressed with the clause

Type(?softwareEntity, MigrationEnabledEntity). The same approach is

taken to retrieve the gateways and the symptoms with the WrongSoftwareLoca-

tion type. Then, the requests filters the software entities that have a symptom with

the relation hasWrongSoftwareLocation. If a symptom is found that way, the list
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of migration targets is retrieved by the relation potentiallyMigratesTo. This list is

ensured to be gateways by the previous type statement.

Serialization in XML

The extracted knowledge is serialized in XML. We did not use RDF represen-

tation for the serialization but provide our own structure. The reason is due to the

technologies used for the genetic algorithm. It is written in C++ and the libraries

to handle RDF and query the graph are not well developed. The ecosystem is more

maintained around Java technologies. That is why we extract first the knowledge

and then serialize it in our own structure.

The root node of the XML is ga-model and envelops all the information. Since

the knowledge is compounded of two parts, the XML has a similar structure.

The first part corresponds to the description of the system. It first lists the set

of machines under the tag machines. Underneath, several machine tags are used

with the capabilities of the concerned machine as attributes. Also, the semantic

URI of the machine is added as an XML attribute. If the machine executes a soft-

ware process, a child node softwareInstances is added representing the process.

Similarly to the machines, the node contains the resource usage as attributes.

The second part of the XML are the functional constraints. This is represented

by the nodes named constraints. The latter correspond to a list of node called

softwareConstraints having a parameter that points out the concerned software

entity. As a child node, it has a list of possible migration targets embedded in the

node migrationTargets.

Listing 5.2 shows an example of extracted knowledge in XML in a simplified

case. There is two machines, with equivalent resources. However, a software entity

is executed on the second one. In the constraints, we notice that this software entity

has a constraint and needs to be executed on the gateway GW_0. For the readability,

the URIs have been simplified with URI#.

A more complex and relevant example is provided in Appendix ??.

5.1.2 Genetic Algorithm Resolution

In order to find out the new software processes placement, a genetic algorithm

is used. It is considered as an optimization algorithm, meaning that it tries to

enhance a set of inputs into a better set of output. The quality of a placement is

given by a fitness function. Depending on its definition, the output of the algorithm

can vary.

The genetic algorithm is part of evolutionary computation algorithms. It is

based on genetic transformations and natural selection mechanisms. The base data

are chromosomes that will be transformed with specific operators and inserted in

the global population. Each chromosome has a set of genes that have a allele. Thus,

each chromosome can be represented as an array, with each indexes representing a

gene. The value stored in the array corresponds to the allele.
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<?xml version=" 1 .0 " encoding="UTF−8" standalone=" yes " ?>
<ga−model>

<machines>
<machine maxRam=" 256 " ramLeft=" 256 " energyFactor=" 1 "

u r i="URI#GW_0" />
<machine maxRam=" 256 " ramLeft=" 240 " energyFactor=" 1 "

u r i="URI#GW_1">
<so f t wa r e In s t a nc e s averageRamConsumption=" 16 "

u r i="URI#SE_0" />
</machine>

</machines>
<c o n s t r a i n t s>

<so f twareCons t ra in t s concernedSoftwareUr i="URI#SE_0">
<migrat ionTargets>URI#GW_0</ migrat ionTargets>

</ so f twareCons t ra in t s>
</ c o n s t r a i n t s>

</ga−model>

Listing 5.2 – Example of extracted knowledge serialized in XML.

The aim of the algorithm is to generate several chromosomes in an almost ran-

dom manner, following genetic operators, and find out the best one.

5.1.2.1 Genetic Algorithm Model

We need to specialize the data structure of the genetic algorithm to our problem.

A chromosome corresponds to a placement of the software processes on the machine.

Each gene corresponds to a software entity. This means that an array representing

a chromosome has for size the number of software entities in the system. The allele

of the genes correspond to the machine where the software entity is executed.

Gw_Ϯ Gw_ϯ

Gw_ϭGw_Ϭ
SE_ϭ

SE_Ϯ

SE_ϯSE_Ϭ

[ ϭ ; Ϭ ; ϯ ; ϭ ]

Figure 5.1 – Example of encoding for the Genetic Algorithm

Figure 5.1 shows an example of encoding done for the genetic algorithm. The

Gw_i corresponds to the gateways and SE_i to the software entities. There are 4

software entities executed on the 4 gateways. The representation is a chromosome

with 4 genes. The first index corresponds to the SE_0 and then the index is incre-

menting at the same time as the name of the software entity. The value corresponds

to the gateway where the entity is executed.
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5.1.2.2 Algorithm execution

Algorithm 5.1 shows the execution of the genetic algorithm.

The input is the current state of the system. It is encoded in a chromosome

called Chinit. The output of the algorithm is another chromosome called Choptimum.

In order to evaluate the quality of the chromosome, a fitness function is defined.

It takes a chromosome as argument and returns a score. In order to optimize the

system, this score has to be minimized.

Algorithm 5.1 Genetic Algorithm execution

Require: Chinit, initial chromosome
Ensure: Choptimum, optimized solution

population initialization from Chinit

Choptimum such as ffitness(Choptimum) = +∞
while stop criteria not met do

Crossover on the population
Mutation on population
Survivor selection
Find best

if ffitness(best) < ffitness(Choptimum) then
Choptimum = best

end if
end while
return Choptimum

To start the algorithm, an initial population is required. To create population,

random mutations are performed on the initial chromosome in order to reach a

population of 50 individuals.

After the initialization, the algorithm enters in the main loop which is performed

while the stop criteria are not met. For each iteration, multiple crossovers between

the chromosomes of the population followed by mutations are performed.

The number of crossover performed is five times the size of a chromosome.

For each operation, two different random chromosomes are chosen. This helps

generating more possible solutions when the problem is larger. Then, for each

chromosome present in the population, the mutation operator is applied. This

double the size of the current population.

At the end of the iteration, the survivor selection is performed. It is composed

of two steps: 1) validation and 2) evaluation of the chromosomes.

For the validation, the algorithm checks if the functional requirements of the

software entities are satisfied in the generated solutions. If it is not the case, the

concerned chromosomes are removed from the population. Moreover, the resource

usage of the machine is checked by the component. If the resource usage exceeds

the limit on a machine, the chromosome is also removed.

When the validation is done, the evaluation step retrieves the fitness value of

the chromosomes with the eponymous function. Then, the chromosomes are sorted
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by their fitness value and the n bests are kept, with n = 10 ∗ sizeOfChromosome.

After that, the stop criteria are evaluated and the loop repeats.

5.1.2.3 Genetic Operators

As we have seen in the algorithm execution, two main genetic operators are

defined.

Crossover operator: It takes in argument two chromosomes. The aim is to mix

the two chromosomes in order to create two others chromosomes. The aim is

to take a part of the first chromosome and a part of the second chromosome

is order to create another one. Several breaking points can be taken when

performing this operation. Figure 5.2a shows an example of a one point

crossover while Figure 5.2b shows an instance of multi-point crossover.
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(a) One point crossover
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(b) Multi-point crossover

Figure 5.2 – Crossover operator examples

Mutation operator: It takes two arguments, a chromosome and the list of func-

tional constraints. The aim of this operator is to change randomly some allele

of the chromosome. In order to reduce the number of incorrect chromosome,

the allele (the machine) is selected depending on the constraints of the gene

(the software entity).

2 1 3 3 4 31 2

Figure 5.3 – Mutation operator example

5.1.2.4 Stop criteria

In order to stop the algorithm, some criteria has to be defined. In our approach,

we use mainly 2 criteria.

The first criterion is the number of iterations. This standard stop criteria

allows to define the maximum number of iterations the algorithm has to perform.

In the framework, the maximum number of iterations is set to 10. This number

does not depend on the dimension of the problem because the number of generated

chromosomes scales with it. 10 iterations also allows the algorithm to get through a

lot of elements in the solution space while having to much iterations would be useless
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on low dimensions. It would cause the algorithm to evaluate more chromosome than

the dimension of the solution space.

The second criterion is the variation of the solution found. Indeed, the

solution did not vary for several iterations, it is possible to have reach a local

minimum. In that case, if the minimum has not changed for 3 iterations, the

algorithm stops. This enables a faster execution of the algorithm when the solution

is not progressing. The choice of the number is based on the total number of

iterations. We estimate if the algorithm does not find more interesting solution

in 3 iterations, which correspond to the third of total iteration, then there is few

possibilities to find a new minimum. Of course, with the random part of the genetic

algorithm, it is possible to find out a new global minimum in the set of solution, in

that case the algorithm is continued.

5.1.2.5 Fitness function

The fitness function serves as a measuring function of the quality of the chro-

mosomes. It takes as an argument a chromosome and return a integer value.

We defined the fitness function in two parts. The first one computes the dif-

ferences between the initial chromosome and the provided one. Indeed, each dif-

ference represents a software migration in the real system. Each migration has a

cost. Therefore, the number of migration has to be reduced. To represent this in

fitness, we increment the value by the RAM usage of the processes that needs to

be migrated. Since the cost of the migration is proportional to the RAM usage, it

directly reflects this cost in the fitness.

The second part correspond to the global resource usage. For instance, we want

to promote a system where the energy consumption is the lowest possible. Thus, we

define a cost independent of the initial chromosomes that evaluate the new state of

the system. We use the average energy consumption of the machines and multiply

it to the RAM usage of the processes executed on the machine.

In a mathematical approach, we defined the set P = {p1, p2, . . . , pn}, with n

the number of software processes. The set of hosts (machines) is represented with

H = {h1, h2, . . . , hm}, with m the number of machines.

For mathematical representation, a placement function based on the chromo-

some is defined such as:

Ch, p→ fplacement(Ch, p) = h, p ∈ P, h ∈ H

The fitness function is defined as:

ffitness(Ch) = ∆Chinit,Ch + fcost(Ch)

With,

∆Chinit,Ch =
∑

pi∈P

δpi
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δpi
=

{

mempi

usage if fplacement(Chinit, pi) 6= fplacement(Ch, pi)

0 otherwise.

With E(h) the function representing the energy consumption of a machine, the

function fcost represents the static cost of the chromosome and is defined as:

fcost(Ch) = mempi

usage × E(fplacement(Ch))

In order to normalize the fitness function, we only used the software entities

RAM usage with some modifiers. Moreover, the addition between the two elements

allows an easy comparison. For example, if the migration cost is the same for two

chromosomes, but on one, a process will be hosted on a more machine using more

energy, the other solution will be prioritized.

It is important to note that the result of the fitness function is only used to rank

the chromosomes and does not represent anything.

5.2 Experimental Evaluation

This section presents an experimental evaluation of the framework. The aim is

to show that the response time needed to perform an iteration is satisfying in term

of execution time and the quality of the solution found.

First, the experimental context is provided. Then, the evaluation of the per-

formances of the framework is performed in term of execution time. Finally, the

quality of the solution found by the genetic algorithm is discussed in comparison to

the optimal solution found by a brute-force algorithm.

5.2.1 Experimental context

5.2.1.1 Model used in the Scenario

To evaluate the framework, a simulation of the IoT software infrastructure is

performed. A fixed number of gateway that can host the processes is taken.

We consider a fixed number of gateway of available in the architecture to 10.

In those gateways, half of them shares a profile, and the other half another profile.

The first profile has a low energy consumption but with only 256 MB of RAM. The

second profile has 1024 MB and a larger energy consumption.

Regarding the devices, 27 devices are deployed and have a specific device type.

Five types of device are used and are linked to different gateways. The device

repartition is also shown in Figure 5.4.

The number of software entities will be the parameter varied in the experiments.

The entities are also separated in four profiles. The functional requirement used for

all entities is the requiresDeviceType. The class repartition is the following:

Class 1 : 16 MB of RAM usage and 1 required data type



78 Chapter 5. Software processes optimization in an IoT system

Figure 5.4 – Fixed gateway architecture used in the
experimental evaluation.
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Class 2 : 64 MB of RAM usage and 1 required data type

Class 3 : 16 MB of RAM usage and 2 required data type

Class 4 : 64 MB of RAM usage and 2 required data type

In the following, the number of software entities generated will be used as the

dimension of the problem. The repartition of software entities in the classes is

done randomly. Thus, several instances of the same dimension will lead to different

configurations since the repartition of classes will be different.

For each dimension, a hundred of instances of this model are generated. The

set of dimension chosen comprises all values between 5 and 10, and from 10 to 150

with steps of 5, for a total of 34 dimensions evaluated. We did not push after 150

dimensions because the system is already almost full in term of resource usage .

5.2.1.2 Experimental environment

The experiment was carried out using an Ubuntu server (version 14.04) with an

Intel(R) Xeon(R) CPU E5-2623 v3 (3.00 GHz) and 32 GB of RAM.

The Monitor and the Analyzer are written in Java. The JVM used is OpenJDK

JVM version 1.8.0_171. To manipulate the RDF and OWL files, serialized as XML,

representing the model and the data, OWLAPI version 4.2.7 has been used. The

SWRLAPI version 2.0.0 has been used to create and manipulate the SWRL rules.

Then, the Drools engine (version 6.5.0) is linked to apply the SWRL rules to the

knowledge base via the SWRLAPI Drools bridge (version 2.0.0). The JFact reasoner

(version 4.0.4) is then used to ensure the consistency of the ontology. The SparqlDl

library (version 2.0.0) is used to perform the Sparql requests on the knowledge base.

Protégé version 5.1.0 has been used to create the model, but it is not used in the

experiment.

The Planner with the Genetic Algorithm is written in C++, and has been

compiled with g++ version 4.8.4. The standard level used for the code is C++11,

and optimization flag was -O2. The Boost library (version 1.66) has been used to

parse the XML representation and to parse the command line arguments.

5.2.2 Performance evaluation

5.2.2.1 Analyzer execution

Figure 5.5 shows the execution time of the semantic reasoner for the inference,

and the time for the extraction. The values corresponds to the average execution

time over the 100 models for each dimensions. For each model, the experiment is

run 10 times. The data table is available at Table 5.1.

Dimension Mean of Extraction time (ms) Mean of Inference time (ms)
5 935 764

6 939 769
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Table 5.1 continued from previous page
Dimension Mean of Extraction time (ms) Mean of Inference time (ms)

7 952 776

8 950 781

9 956 784

10 956 784

15 979 806

20 997 819

25 1017 830

30 1041 849

35 1055 864

40 1077 871

45 1094 884

50 1121 898

55 1139 910

60 1163 917

65 1184 922

70 1200 934

75 1223 942

80 1245 949

85 1261 954

90 1275 963

95 1299 967

100 1323 972

105 1327 978

110 1355 981

115 1370 989

120 1381 991

125 1403 995

130 1430 1002

135 1453 1011

140 1478 1019

145 1494 1013

150 1512 1015

Table 5.1 – Mean of the inference time by the semantic reasoner
on the base model and mean of extraction time of the knowledge

to transform the data for the genetic algorithm.

The inference time does not include the genetic algorithm. It is only the infer-

ence of the semantic rules also presented in Section 4.1 but with the new scenario.

The inference time goes from 764 ms in average for the dimension 5 to 1015 ms

for the dimension 150. The semantic reasoner has also a 3 s initialization time
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Figure 5.5 – Execution time of inference and extraction in the
semantic knowledge base.

but it is not represented in the data since it can be initialize at the start of the

framework. We observe that the inference time increases with the dimension of the

problem but stays around 1 s which is a quite acceptable value.

For the extraction time, it starts at 935 ms for the dimension 5 and goes up

to 1512 ms. We notice that the extraction time is longer than the inference time.

It also increases with the dimension of the problem since there is more entities to

extract from the knowledge base.

5.2.2.2 Genetic algorithm evaluation

First, the execution time of the genetic algorithm is studied on the presented

scenario.

Figure 5.6 shows the mean of execution time of the genetic algorithm depending

on the dimension of the problem. Moreover, the mean of chromosome generated is

given. A view of the distribution of the data is given with box plot figures.

The execution time of the genetic algorithm goes from 3 ms on average for the

dimension 5 to 2275 ms for the dimension 150. The time is correlated to the number

of chromosome generated during the algorithm. The number does not increase

linearly since in some iterations of the genetic algorithm, the same chromosome is

generated multiple times but it is only added one time to the population.

We can see on the distribution that there are some points that are significantly

lower than the mean of the series. This is due to the different stop criteria of
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Figure 5.6 – Mean of execution time and number of generated
chromosome of the genetic algorithm.

the algorithm. If the minimum found has not changed for 3 successive iterations,

the algorithm stops. Thus, in some experiments the algorithm is faster when this

criterion is triggered early in the computation.

Moreover, even for a high number of dimensions, the response time around

2 seconds, with the higher time being 3016 ms. We notice a gap in the execution

time from the dimension 140 where the execution time is higher. This is due to the

fact that the system is almost overloaded. For this reason, the algorithm tries to find

possible solutions that are not overloaded and almost never trigger the previously

mentioned stop criterion. There are still some exception as the distribution shows

at Figure 5.8.

5.2.2.3 Comparison with brute force algorithm

In order to compare the results of the genetic algorithm, we implemented a

brute force algorithm. It explores all possible members of the solution set and find

out the one with the lowest fitness value. However, the algorithm does not explore

impossible solutions from the algorithm. It uses the same constraints given to the

genetic algorithm in order to reduce the combinatorial possibilities. Therefore, the

execution time of the brute force algorithm depends on the dimension of the problem

and the problem constraints.

Figure 5.9 shows a comparison of the mean of execution time for the dimensions

5 and 10. It is only displayed for 10 problems for each dimension.
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dimension 5 to 10.

As a general trend, the genetic algorithm is faster than the brute force, even on

really small problems (dimension 5). Only on the problem [5; 10], the brute force

is faster. This is caused by the number of expressed constraints. If there is a lot of

constraints to apply, the set of possible solution is quite small and the brute force

may take less time.

For the dimension 10, the genetic algorithm has an execution time of about 16 ms

when the brute force takes from 24 seconds to 729 seconds for the problems with

fewer constraints. Even in the best case for the brute force, the genetic algorithm

is 1500 times faster for this dimension. Moreover, for the next dimension of 15, the

combinatorial possibilities are strongly higher. With 5 more processes, it means

in the worst case that there is 105 times more possible solutions in the set, since

there are 10 possible machines. Going through all those possibilities makes the

brute force impossible to compute a solution in a finite time. However, the genetic

algorithms only takes on average 44 ms.

We clearly see the need to use meta-heuristics for this kind of problems in order

to find a near-optimal solution in finite time.

Additionally, some optimizations can be added to the genetic algorithm and

the brute force. The given execution times are determined with single threaded

implementation of the algorithms. A multi-threaded approach would reduce the

execution time of both algorithms since the generation of the chromosome is easily

parallelizable.
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5.2.2.4 Quality of the solution found

Even if the genetic algorithm has been demonstrated to be faster than the

brute force, we need to evaluate the quality of the solution found. Meta-heuristics

approach tends to find near-optimal solutions and not the best solution of the

problem.

We compared the result found by the genetic algorithm with the optimal one.

We were able to validate this with only the dimensions where the brute force algo-

rithm is applicable, dimensions {5, 6, . . . , 10}. For those dimensions, and for the 10

iterations on the problem, the genetic algorithm always find the best solution (or

an equivalent in term of fitness value). We start to see different values found in the

algorithm in dimensions 20 and higher.

This demonstrates that the genetic algorithm finds an equivalent to the optimal

solution for the given fitness function. We note that this fitness function creates

a lot of chromosomes with the same fitness value. With a function having more

disparity in the values, the genetic algorithm would not find the optimal solution

so easily. Table 5.2 shows the summary of solutions found by the algorithms.

Dimension 5 6 7 8 9 10 15
Number of base model 10 10 10 10 10 10 10

Number of solutions found
by Genetic Algorithm

10 10 10 10 10 10 10

Number of solutions found
by Brute Force

10 10 10 10 10 10 NA

Fitness difference in % 0 0 0 0 0 0 NA

Table 5.2 – Comparison of solutions found by the genetic and
brute force algorithms
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Conclusion

This chapter presented how the planner is implemented with the genetic algo-

rithm approach to optimize the system. This algorithm is using the data extracted

from the semantic knowledge base in order to find out a placement of the software

processes in the system. The decision of the algorithm is enhanced by the reason-

ing of the semantic representation, since all specific constraints of the software are

solved by the reasoner. This collaboration enables a fast execution of the genetic

algorithm that has been proven to be efficient.

This meta-heuristics approach has been validated with a set of evaluations. A

comparison in term of execution time and quality of the solution has been per-

formed between the genetic and a brute-force algorithm. The genetic algorithm

has a faster execution time than a brute-force approach (exception for some really

small size problems, where an optimized brute-force outperform it). Moreover, an

equivalent solution to the optimal one has been found by the genetic algorithm for

the dimensions where the brute-force is applicable, i.e., where the optimal solution

is found.

This chapter presented the last components left from the MAPE-K loop, in the

implementation of the management framework. It also displays the collaboration

possible between a high-level description of the system, with the semantic represen-

tation and reasoning, and a meta-heuristic algorithm that is not semantic aware. It

enables the extension of this framework for several applications for the management

of IoT software processes.

The planner with the genetic algorithm approach and the evaluation are in

submission.

In the next chapter, a conclusion of the thesis is given with a summary of the

contributions from the previous chapters. Moreover, a discussion on the future work

of short and long term is provided.





Conclusion and Future Work

Conclusion

This thesis aims at providing an autonomous approach based on semantic web

technologies and checkpointing mechanisms in an IoT software system.

The increasing number of devices implies the need to multiply the number of

gateways to handle their connection. Those gateways are hosting software processes

that may experience failure or lack of resources. Moreover, the dynamicity of the

environment leads to modifications to the state of the entities.

Detecting defective software in this distributed and complex infrastructure is

difficult. We illustrate the diversity of applications in the IoT that implies a lot of

possible scenarios that a management framework has to take care of.

First, some information and metrics from the managed system have to be gath-

ered in order to determine its health. This is the role of the Monitor component of

the MAPE-K loop. This is done through the use of a well-known protocol in IoT,

LWM2M (a device management protocol).
To manage the processes, this thesis proposes the use of a migration mechanism.

For this purpose, an evaluation of several mechanisms has been given, and we sug-

gest the use of the checkpointing. This mechanism allows one to create checkpoints

of running processes, serialized into a file. This file can be transfered to another

machine and the process restarted in the same state as it was when checkpointed.

Moreover, an autonomic approach, with the implementation of the MAPE-K loop,

has been shown to be efficient to handle the management of complex systems.

The first contribution discusses the adaptations needed to fit the checkpointing
mechanism for the IoT. Using DMTCP, we suggest several optimizations in order

to use this mechanism in an optimized manner. On top of that, we propose a scene
mechanism aiming at splitting the program data into separated checkpoint files.

This enables the use of large data in a constrained environment. In fact,

the IoT gateways hosting the software processes are low-powered and do not have

large computing capabilities. This scene mechanism is coupled with a semantic
representation, allowing one to describe the different scenes of the process and

their specificities. With such description, a reasoner is able to determine when to

change from a scene to another depending on the gateway environment.

The use of the DMTCP checkpointing mechanism on IoT processes has been

evaluated and it was shown that the overhead of DMTCP is low. The RAM over-

head is about 2, 6 MB and does not vary with application inputs. Moreover, the

computation cost depends on the number of system calls, since they are intercepted

by the DMTCP library and plugins to provide the correct virtualization. With the

use of the scene mechanism, this computation overhead is about 2, 4 % slower with

DMTCP. Additionally, the improvement by using the forked checkpointing and fast

restart has been evaluated. We showed that the forked checkpointing does not freeze
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the process for a long time (less than 250 ms), and forked checkpointing allows the

application to resume much faster than otherwise. Moreover, we demonstrated that

a standard restart using checkpointing is 25 times fast than the initialization time

of the process. The fast restart optimization of DMTCP brings this optimization

to 500 times faster than the standard initialization. This work has been presented

in [Aïssaoui 2016a].

In the autonomic approach, the Executor component assumes the role of in-

teracting with the system to change its behavior.

The second contribution focuses on the representation of the IoT software in-

frastructure. Indeed, a model is required to be used in the knowledge base of the

autonomic loop. The proposed ontology aims at representing the IoT soft-
ware infrastructure with entities such as the devices, the software entities or the

machines where the processes are executed. Moreover, the functional requirements

of the software entities can be expressed through several object and data properties

described in the vocabulary. On top of that, the definition of the possible symptoms

are defined with the requests for change.

The role of the Analyzer is to determine the symptoms of the system and
the RFCs to apply. For this purpose, this thesis proposes the usage of SWRL

rules. This system allows the system manager to define high-level rules depending

on the application, which will be stored alongside the model. This thesis evaluates

this approach with an instance of the ontology and the rules on a logistics scenario.

This ontology with the rule system and the evaluation of the logistics scenario have

been published in [Aïssaoui 2017].

With the result of the analyzer, the Planner has to define a plan of actions
that will be performed by the executor. This task corresponds to finding a new
software entity placement of the set of available machines. This new placement

needs to fulfill the functional requirements of the software entities while not
overloading the machines in term of resource usage. Moreover, several

parameters can be optimized at the same time, such as the energy consumption,

to enhance the system operation. Thus, the definition of the problem leads to a

combinatorial set of possible solution and finding the best solution is a difficult

task. Therefore, the use of a meta-heuristics is proposed by this thesis. More

precisely, a genetic algorithm has been used to find a near-optimal solution. This

algorithm is commonly used in placement problems in cloud computing.

The genetic algorithm uses a simplified description of the system to be aware

of the available resources and the functional constraints of the software entities.

This description is extracted from the semantic knowledge base alongside the cur-

rent state of the system. Using this information, it generates a certain amount of

placement and evaluates it with a fitness function. The number of generated chro-

mosomes scales with the number of problems. Moreover, a stop criterion halts the

execution of the algorithm when no new minimum is found, resulting in a faster

execution time.

In comparison with a brute-force algorithm, we demonstrated that the genetic

algorithm is able to find solutions for much larger problems than by using brute-
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force. While brute-force stops functioning at a dimension of 15 software entities, the

genetic algorithm is able to find a solution in about 2, 5 seconds even for a dimension

of 150. We did not evaluate at still higher dimensions, since the definition of the

problem would lead to an impossible solution, due to the gateways beginning to be

overloaded.

In the dimensions where the brute-force is able to find a solution (from 5 to 10),

this thesis demonstrates that the genetic algorithm finds an equivalent of the opti-

mal solution.

All of the above contributions used together create the autonomic loop and

enables the management of software entities in an IoT context.

Future Work

Short-term work

Semantic inference enhancements As we demonstrated in the evaluation of

Chapter 4, the semantic inference system based on SWRL is not extremely efficient.

Indeed, the execution time can be quite long when the problem gets larger. However,

this complexity is not that high compared to real deployment of IoT systems. For

this purpose, we suggest to evaluate more up to date technologies for the future,

such as SHACL rule system. This semantic inference system is standardized and

will imply more optimization focus from the semantic web community, compared

to SWRL which is just a submission to the W3C.

Genetic algorithm improvements The genetic algorithm has been proven to

be efficient in finding new software entities placement. An enhancement of the algo-

rithm could use a local search. Indeed, this approach enforce the algorithm to look

“around” the solutions found in order to find a new local minimum. This improve-

ment has been suggested in several contributions [Dengiz 1997, Ishibuchi 1998] and

could help the decision in our approach.

The currently used fitness function in the genetic algorithm is based on two

factors, the cost of the migration and an evaluation of the new placement. This

definition may be altered in order to adapt the placement to new policies, de-

pending on the applications needs. This dynamic definition of the fitness function

corresponds to more multi-objectives is an interesting aspect to integrate in this

work. Since the IoT is a highly dynamic domain, the possibility to influence the

new placement depending on new parameters is important.

Long-term work

Other possible IA approaches This thesis uses semantics web technologies and

meta-heuristics algorithm as IA approaches to solve the problem. This contribution

does not include prediction of the environment. With some literature models, such

as machine learning, it could be possible to anticipate the events that will lead to
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new issues in the system. Moving the software processes in advance could have a

positive impact on the operation of the system, leading to a higher update and error

proof software infrastructure.

Integration of the Cloud infrastructure The Cloud infrastructure has been

mentioned in the context of this thesis as the higher layer of the IoT architecture.

Indeed, this infrastructure composed of machines with high computation capabilities

could be used in several scenarios. For instance, if we take in consideration gateways

that are powered by a solar panel, they may experience energy down time depending

on the production. During this down time, one needs to ensure that the service

provided by the gateway are still available. Therefore, migrating the service to a

Cloud virtual machine could replace the service on the gateway while the energy

production is not sufficient.

Evaluation on real deployment The current evaluation of this thesis takes

each component one by one to determine their performance. In order to have a

better idea of the efficiency of the contribution, a deployment on a real case would

enable a better evaluation of the contribution. Moreover, the current architecture

performs its iteration on the current data representing the state of the system. An

interesting question is, when to perform the autonomic iteration? Regarding the

evolution of the system, some changes may impact a large need of reconfiguration

while some are minor. Defining a policy regarding the trigger of the iteration of the

autonomic loop in a real deployment is an interesting topic.
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Abstract:
The Internet of Things (IoT) has to handle more and more connected, com-

municating and moving devices. The software infrastructure needs to insure a

set of parameters to keep the system in a correct state. This infrastructure com-

prises a set of software processes executed on complex hardware platforms such as

servers, gateways or things. The dynamic property of the IoT requires a perpetual

adaptation and reconfiguration of the software infrastructure. In this thesis, we

propose the usage of another migration mechanism: the “checkpointing” mecha-

nism on both the servers and the gateways. This mechanism is light and able to

store the software process state during the migration. The problem addressed by

the thesis is to use this checkpointing mechanism in an efficient and autonomous

way to preserve the properties expected from an IoT software infrastructure. A

first contribution discusses the optimization of the checkpointing mechanism on an

IoT gateway. A second contribution provides an autonomic and semantic approach

to orchestrate the checkpointing mechanism. A third contribution discusses the

optimization performed by a meta-heuristic algorithm on the software distribution.

The contributions presented have been validated on several use cases for the IoT

including optimization of software processes placement depending on the computing

and energy capacity of IoT equipment in a logistic scenario.

Keywords: Internet of Things, Semantics, Ontology, Software process mi-

gration, Checkpointing mechanism, Genetic algorithm, Autonomic management

Résumé :
L’Internet des Objets intègre de plus en plus d’objets connectés, communicants

et mobiles. L’infrastructure logicielle qui doit être déployée pour connecter ces

objets et traiter leurs données doit répondre à différents critères. La nature dy-

namique de l’IoT nécessite une adaptation et une reconfiguration de cette infras-

tructure logicielle en cas de changement. Dans ce travail de thèse, nous proposons

l’utilisation du mécanisme de « checkpointing » permettant aussi de conserver l’état

des processus lors du déplacement. La problématique abordée dans cette thèse est

comment utiliser ce mécanisme de checkpointing de manière efficace et autonome

pour conserver les propriétés de l’infrastructure logicielle. Une première contribu-

tion concerne l’optimisation du checkpointing pour les équipements de l’Internet

des Objets. La deuxième contribution concerne l’utilisation d’une approche au-

tonomique et sémantique pour orchestrer les mécanismes de checkpointing. La

troisième contribution concerne l’optimisation de la répartition des précessus par

un algorithme de meta-heuristique. L’ensemble de ces contributions est validé dans

différents cas d’usage de l’IoT tel que l’optimisation du déploiement des proces-

sus sous des contraintes de capacité de calcul des équipements, de mémoire ou de

consommation énergétique dans un scénario de logistique.

Mots clés :
Internet des Objets, Sémantique, Ontologie, Migration de processus, Mécanisme

de Checkpointing, Algorithme génétique, Gestion autonomique
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