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Abstract

We study partial identification of the preference parameters in the one-to-one matching model

with perfectly transferable utilities. We do so without imposing parametric distributional as-

sumptions on the unobserved heterogeneity and with data on one large market. We provide a

tractable characterisation of the identified set under various classes of nonparametric distribu-

tional assumptions on the unobserved heterogeneity. Using our methodology, we re-examine

some of the relevant questions in the empirical literature on the marriage market, which have

been previously studied under the Logit assumption. Our results reveal that many findings in

the aforementioned literature are primarily driven by such parametric restrictions.

∗First version: February 2019. We would like to thank Pierre-André Chiappori, Thierry Magnac, and the seminar
and conference participants at Toulouse School of Economics, the University of Warwick, IAAE 2019, EEA-ESEM 2019,
the Bristol-TSE Econometrics Workshop, the 2019 Cowles Foundation conference on Matching: Optimal Transport and
Beyond, the 2019 Network Econometrics Juniors’ Conference at Northwestern University, and the University of Toronto.
Rossi Abi-Rafeh and Camila Comunello provided excellent research assistance. We acknowledge funding from the French
National Research Agency (ANR) under the Investments for the Future (Investissements d’Avenir) program, grant ANR-17-
EURE-0010. An earlier version of the paper was previously circulated under the title “Partial Identification and Inference in
One-to-One Matching Models with Transfers”. We also thank four anonymous referees for their valuable feedback. Edited
by Magne Mogstad.

1



1 Introduction

Matching markets are two-sided markets, where agents on each side have preferences over

matching with agents on the other side. For example, social interactions lead individuals

to find marital partners, production tasks are assigned to workers, and auctions sort

buyers with sellers. While the economic theory of matching models has been around for

more than five decades, the literature on empirical matching models is relatively recent

(Chiappori and Salanié, 2016).

An important strand of this literature focuses on the one-to-one matching model, in

which every agent forms at most one match. Each possible match generates a surplus.

In the framework where utilities are perfectly transferable, agents can share the match

surplus with their partners without frictions. Since Becker (1973), the one-to-one match-

ing model with perfectly transferable utilities (hereafter, 1to1TU) has been extensively

used in household economics to represent the marriage market (Chiappori, 2017). In

particular, researchers have exploited the 1to1TU model to estimate the systematic part

of the match surplus. Recovering the systematic match surplus is useful, for example,

to investigate sorting patterns and how they change over time, to learn about the com-

plementarities and substitutabilities of partner characteristics, to assess the efficiency

and welfare implications of the status-quo assignment, and to measure the impact of

pre-marital decisions on the sharing of the match surplus between spouses.1

Most of the papers using the 1to1TU model to estimate the systematic match surplus

proceed under strong parametric distributional restrictions on the agents’ unobserved het-

erogeneity. These restrictions amount to imposing i.i.d. standard Extreme Value Type

I taste shocks, independently distributed from covariates. Along with data on one large

market, these restrictions make the 1to1TU model just identified, leading to point iden-

tification of the systematic match surplus via standard Logit formulas (Choo and Siow,

2006). The motivation for using the Logit 1to1TU model is computational simplicity.
1The 1to1TU model has also been used to study matching of CEOs to firms (Chen, 2017), match-

ing of academics to offices (Baccara, et al., 2012), merging of banks (Akkus, Cookson, and Hortaçsu,
2016), formation of research alliances (Mindruda, Moeen, and Agarwal, 2016), and collaboration between
academics and firms (Mindruda, 2013; Banal-Estañol, Macho-Stadler, and Pérez-Castrillo, 2018).
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However, this framework may lead to paradoxical conclusions that run against economic

sense. For example, it is well known that the one-sided Logit model is inherently linked

to the independence of irrelevant alternatives (IIA) axiom and severely restricts cross-

elasticities. The same holds in two-sided markets and causes unintuitive comparative

static predictions, as explained in Graham (2013a) and Galichon and Salanié (2019).

The fact that widespread empirical practices rest on the Logit 1to1TU model raises

several questions. When we have data on one large market, does the 1to1TU model

retain any identifying power on the systematic match surplus without restrictions on

the taste shock distribution? If not, is it still possible to recover some information on

the systematic match surplus under nonparametric distributional assumptions on the

unobserved heterogeneity? How are the answers to relevant policy questions driven by

the Logit assumption? The contribution of our paper is to address these issues. By doing

so, we also offer methodological guidance for researchers who wish to consider more robust

alternatives to (or do sensitivity checks of) the Logit 1to1TU model.

We start our analysis by observing that, if the taste shock distribution is not assumed

to be fully known by the researcher, then the 1to1TU model is under-identified with data

on one large market (Galichon and Salanie, 2021; hereafter, GS). In the absence of any

restrictions on the taste shock distribution, we show that the under-identification issue

is severe, as the 1to1TU model is completely uninformative about the systematic match

surplus. Formally, this means that, for every possible value of the systematic match

surplus, there exists a taste shock distribution that rationalises the data when combined

with that value of the systematic match surplus.

We proceed by investigating whether the 1to1TU model retains some information on

the systematic match surplus under various classes of nonparametric distributional as-

sumptions on the unobserved heterogeneity (for instance, independence of taste shocks

from covariates, quantile restrictions, symmetry restrictions, and identically distributed

marginals). Answering this question poses the challenge of tractably characterising the

identified set of the systematic match surplus. We do that by extending the linear pro-

gramming computational approach of Torgovitsky (2019) to our framework. For a given
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value of the systematic match surplus, this method transforms a search over the space of

infinite-dimensional cumulative distribution functions into a search over a space of cumu-

lative distribution functions evaluated at a finite number of points. The latter search can

be written as a simple linear program. Further, note that the analyst would need to solve

the linear program for every admissible value of the systematic match surplus. Usually,

this is carried out in the partial identification literature by generating a grid of points to

approximate the parameter space and then repeating the exercise of interest for each grid

point. However, the difficulty of doing so increases with the size of the grid, which, in the

1to1TU model, increases exponentially with the cardinality of the covariates’ support,

leading quickly to a computational bottleneck. We alleviate this issue by showing that

the parameter space can be ex-ante partitioned into a finite number of subsets such that,

for each subset, every value belonging to that subset gives rise to the same linear program.

Therefore, the analyst has to solve the linear program only once for each subset. These

results are new and represent the methodological contribution of the paper.

We use our methodology to re-examine some of the relevant questions in the empirical

literature on the marriage market that have been previously answered by relying on

the Logit 1to1TU model. A key question that stands out in this literature is whether

educational sorting (i.e., the tendency of agents to marry someone with similar or very

different education levels) has changed over time. Answering this question is important

because educational sorting may have a crucial impact on inequality by determining

family formation and intergenerational transmission of human capital (Kremer, 1997;

Fernández and Rogerson, 2001; Fernández, Guner, and Knowles, 2005; Heckman and

Mosso, 2014; Dupuy and Weber, 2019; Eika, Mogstad, and Zafar, 2019; Chiappori, et

al., 2020; Ciscato and Weber, 2020). The literature proposes two approaches to measure

changes in educational sorting. The first amounts to using indices of sorting based on

comparing the empirical match probabilities to a counterfactual world where matching

happens randomly (Fernández and Rogerson, 2001; Greenwood, Guner, and Kocharkov,

2003; Liu and Lu, 2006; Greenwood, et al., 2014; Abbott, et al., 2019; Eika, Mogstad,

and Zafar, 2019; Shen, 2019). The second consists of using a structural model of the
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marriage market in order to estimate individual preferences and analyse how they evolve

over time. The second approach has been implemented by Siow (2015) and Chiappori,

Salanié, and Weiss (2017) (hereafter, CSW), based on the Logit 1to1TU model.

Both approaches suggest that, on average, positive educational sorting has increased

in the U.S. in the past decades. However, there is some debate around this trend when

we look closer at each education category. For instance, Eika, Mogstad, and Zafar (2019)

find that positive educational sorting has declined among the highly educated and in-

creased among the less educated. Instead, CSW find that positive educational sorting

has increased particularly among the highly educated.2 Using data from the Ameri-

can Community Survey between the years 1940 and 1967 as in CSW, we exploit our

methodology to assess whether the conclusions achieved via the structural approach are

robust to the dropping of the Logit assumption. Under various classes of nonparametric

distributional assumptions, we find that the 1to1TU model is uninformative about the

presence and trend of positive educational sorting among the highly educated. We find

the presence of positive educational sorting among the less educated, although the model

remains ambiguous about its evolution across cohorts. Overall, our results suggest that

the previous findings on the increase in positive educational sorting based on the Logit

1to1TU model are, in fact, driven by the Logit assumption.

Lastly, we use our methodology to study the evolution of marital returns to educa-

tion. As discussed by Chiappori, Iyigun, and Weiss (2009) and CSW, the increase in

educational sorting makes a higher stock of human capital more valuable in the marriage

market. Consequently, they predict an increase in the expected maximum payoff an agent

can receive in the marriage market due to achieving a college degree (“marital college pre-

mium”), especially among women. Their empirical findings corroborate such a prediction

for the U.S., based on the Logit 1to1TU model. Without imposing parametric distribu-

tional assumptions, we find that the 1to1TU model is inconclusive about the evolution

of marital college premium over time. Further, it is particularly uninformative about the

women’s side, indicating that any evidence on the increase in marital college premium
2See also Chiappori, Costa-Dias, and Meghir (2020) and Chiappori, Costa-Dias, and Meghir (2021)

for similar conclusions.
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from the Logit 1to1TU model is a consequence of the arbitrary parametric restrictions.

In what follows, Section 2 summarises the related literature, Section 3 presents the

model, Section 4 discusses identification, Section 5 illustrates the empirical applications,

and Section 6 concludes.
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2 Literature review

The Logit 1to1TU model was introduced by Choo and Siow (2006) and since then has

become popular in empirical research on the marriage market. Several papers use it to

learn whether matching preferences are positive assortative by age, education, geograph-

ical location, etc. (Choo and Siow, 2006; Botticini and Siow, 2011; Bruze, Svarer, and

Weiss, 2015; Choo, 2015;3 Siow, 2015; Galichon, Kominers, and Weber, 20194). Other

papers use it to assess which of the partner characteristics are complements/substitutes

in the production of the systematic match surplus and their relative strengths (Dupuy

and Galichon, 2014;5 Ciscato, Galichon, Goussé, 2020). The Logit 1to1TU model has

been frequently used to investigate the evolution of the link between education levels

and marriage market outcomes over time. In particular, the literature has studied ques-

tions like how educational sorting and the marital college premium have changed over

time (Chiappori, Iyigun, and Weiss, 2009; Siow, 2015; CSW; Chiappori, Costa-Dias, and

Meghir, 2020; Chiappori, et al., 2020). Other papers adopt the Logit 1to1TU model to

measure the effect on marital choices of exogenous events that change the distribution of

individual characteristics on each side of the market, such as the famine in China between

1958 and 1961 (Brandt, Siow, and Carl, 2016).

The Logit 1to1TU model is often incorporated into bigger structural models. Ex-

amples of these include collective household models with marriage and labour supply

(Choo and Seitz, 2013); life cycle models of education, marriage, labour supply, and con-

sumption (Chiappori, Costa-Dias, and Meghir, 2018); collective household models with

marriage, labour supply, home production choices, and joint taxation (Gayle and Shep-

hard, 20196); collective household models with marriage, fertility decisions, and child

socialisation choices (Bisin and Tura, 2020). Mourifié and Siow (2021) extend the Logit

1to1TU model to allow for peer effects and cohabitation.
3Bruze, Svarer, and Weiss (2015) and Choo (2015) incorporate dynamic aspects into the framework

of Choo and Siow (2006).
4Galichon, Kominers, andWeber (2019) extend the framework of Choo and Siow (2006) to imperfectly

transferable utilities.
5Dupuy and Galichon (2014) extend the framework of Choo and Siow (2006) to continuous covariates.
6Gayle and Shephard (2019) allow for imperfectly transferable utilities.
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GS investigates the identification of the 1to1TU model when one dispenses with the

Logit assumption. Under the assumption that the taste shock distribution is fully known

by the analyst, they show that the 1to1TU model is just identified (and, thus, the sys-

tematic match surplus is point identified) with data on one large market. They also

provide closed-form expressions of the systematic match surplus for some parametric

distributional families.

The literature has explored two ways to introduce unknown parameters in the taste

shock distribution while maintaining point identification. The first approach exploits

variations in matching patterns across many i.i.d. markets (Fox, 2010; Fox, 2018; Fox,

Yang, and Hsu, 2018; Sinha, 2018), as in the empirical IO tradition. With data on many

i.i.d. markets, one can proceed without parametric restrictions on the taste shock distri-

bution. However, in most datasets, it is unclear as to what truly defines i.i.d. markets.

For instance, the majority of the empirical applications of this approach assume that

consecutive years represent i.i.d. markets, which can be often hard to justify (Baccara, et

al., 2012; Mindruda, 2013; Akkus, Cookson, and Hortaçsu, 2016; Mindruda, Moeen, and

Agarwal, 2016; Chen, 2017; Banal-Estañol, Macho-Stadler, and Pérez-Castrillo, 2018).

The second approach exploits variations of matching patterns across a few large cohorts

which feature different distributions of covariates, independent matching processes, iden-

tical systematic match surplus up to some drifts or linear/quadratic trends, and identical

taste shock distributions. This approach is implemented by CSW to introduce gender

heteroskedasticity in the Extreme Value Type I distribution.

Recent advances in the partial identification literature have pointed out an alternative

route to avoid parametric assumptions on the taste shock distribution, without adding

any further structure on the systematic match surplus, and while remaining within a one

large market framework. In particular, Graham (2011; 2013b) shows that if the taste

shocks are i.i.d., then the signs of some complementarities between the spouses’ observed

characteristics are identified. Fox (2018) bounds the systematic match surplus under the

assumption that the taste shocks are exchangeable across the observed characteristics of

the potential partners. Our paper contributes to this strand of the literature by construct-
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ing the identified set of the systematic match surplus without requiring the taste shocks

to be i.i.d. or exchangeable, which can both be strong assumptions. Further, our paper

showcases the usefulness of partial identification approaches for formally understanding

empirical results that might otherwise be accepted less critically.
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3 The model

This section describes the 1to1TU model that has been previously studied in Choo and

Siow (2006) and GS. The model relies on four main assumptions that are standard in the

current empirical practice. In what follows, we refer to agents on one side of the market

as men and to agents on the other side of the market as women.

Assumption 1. (One large market) There is a two-sided market. One side is populated

by an (uncountably) infinite set of men, I, with measure dµ̃I . The other side is populated

by an (uncountably) infinite set of women, J , with measure dµ̃J . The two sides are

stochastically independent. �

Assumption 2. (Finite number of observed types) Each man i ∈ I is characterised by a

type, Xi, with finite support, X . The mass of men of type x ∈ X is denoted by mx. Each

woman j ∈ J is characterised by a type, Yj, with finite support, Y . The mass of women

of type y ∈ Y is denoted by wy. Without loss of generality, we normalise the total mass

of agents to 1, i.e., ∑x∈X mx +∑
y∈Y wy = 1. The realisations of Xi and Yj are observed

by the researcher and all agents. We define the sets of partner types that are available to

men and women by Y0 ≡ Y ∪ {0} and X0 ≡ X ∪ {0}, respectively, where “0” represents

the option not to match. �

Assumption 3. (Taste shocks) Each man i ∈ I is endowed with a |Y0| × 1 vector of

taste shocks, εi ≡ (εiy : y ∈ Y0), where |Y0| denotes the cardinality of Y0 and εiy is the

idiosyncratic preference of man i for marrying a woman of type y ∈ Y0. Conditional on

Xi = x and for each x ∈ X , εi has cumulative distribution function (hereafter, CDF) Fx.

Fx is absolutely continuous with respect to the Lebesgue measure and has support in R|Y0|.

Each woman j ∈ J is endowed with a |X0|×1 vector of taste shocks, ηj ≡ (ηxj : x ∈ X0),

where ηxj is the idiosyncratic preference of woman j for marrying a man of type x ∈ X0.

Conditional on Yj = y and for each y ∈ Y , ηj has CDF Gy. Gy is absolutely continuous

with respect to the Lebesgue measure and has support in R|X0|. The realisations of εi

and ηj are observed by all agents but are not observed by the researcher. �
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Assumption 4. (Separability) A match between man i ∈ I of type x ∈ X and woman

j ∈ J of type y ∈ Y generates a match surplus defined as

Φ̃ij ≡ Φxy + εiy + ηxj,

where Φ ≡ (Φxy : (x, y) ∈ X × Y) is the systematic match surplus. The payoff of man

i ∈ I from remaining unmatched is

Φ̃i0 ≡ εi0.

The payoff of woman j ∈ J from remaining unmatched is

Φ̃0j ≡ η0j.

�

Assumption 1 outlines the one large market framework. The restriction on the stochas-

tic independence of the two sides of the market is not crucial for our results and can be

relaxed. Assumption 2 requires each agent to belong to one type. There is a finite num-

ber of types, which is defined by the Cartesian product of the individual characteristics

observed by the researcher. Assumption 3 requires each agent to have idiosyncratic mar-

ital preferences over the types of the potential partners and not over their identities. It

implies that women (men) of the same type are perfect substitutes for a man (woman).

Assumption 4 imposes that the match surplus is the sum of two components. One is the

systematic match surplus, that is determined by the types of potential partners. The

other is the sum of the taste shocks of the potential partners. In particular, the latent

heterogeneity entering the match surplus equation does not consist of an ij-indexed term.

Instead, it is modelled through the sum of two terms, εiy+ηxj, each of which only depends

on the type of the potential partner. Assumption 4 is typically referred to as “separabil-

ity” (Chiappori, 2017). Lastly, observe that the systematic match surplus from remaining

single is normalised to zero. This location normalisation is standard in the literature and
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imposed, for instance, also by GS and CSW.

A matching consists of

(i) A measure dµ̃ on the set I × J , such that the marginal of dµ̃ over I (J ) is dµ̃I

(dµ̃J ).

(ii) A set of payoffs, {Ũi}i∈I and {Ṽj}j∈J , such that

Ũi + Ṽj = Φ̃ij ∀(i, j) ∈ supp(dµ̃).

(Chiappori, McCann, and Nesheim, 2010; Chiappori, McCann, and Pass, 2020). That is,

a matching consists of a match assignment and a match surplus sharing rule. A match

assignment is a description of who is matched with whom. A match surplus sharing rule

tells us how the match surplus is divided between spouses. This division of the match

surplus relies on endogenously determined transfers, ensuring that every agent maximises

their utility and the market clears.

A matching, dµ̃, {Ũi}i∈I , {Ṽj}j∈J , is stable when no agent has an incentive to change

his partner, i.e.,
Ũi ≥ Φ̃i0 ∀i ∈ I,

Ṽj ≥ Φ̃0j ∀j ∈ J ,

Ũi + Ṽj ≥ Φ̃ij ∀(i, j) ∈ I × J .

The first two sets of inequalities imply that married agents would not prefer being single.

The last set of inequalities states that no man or woman would get a strictly higher

match surplus by matching together than what they get under the match assignment,

dµ̃. It can be shown that a stable matching exists under mild continuity assumptions

(Villani, 2009). Moreover, in the limit of continuous and atomless populations, the stable

matching is generically unique (Gretsky, Ostroy and Zame, 1992). Importantly for the

identification analysis, the resulting equilibrium mass of couples where the man is of type

x and the woman is of type y is unique for every (x, y). In what follows, we denote this
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equilibrium mass of couples by

µxy for each (x, y) ∈ Z ≡ X0 × Y0 \ {0, 0}.
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4 Identification

4.1 Data and parameters of interest

For identification, we assume that the analyst knows {µxy}(x,y)∈Z , {mx}x∈X , and {wy}y∈Y .

For estimation, we replace {µxy}(x,y)∈Z , {mx}x∈X , and {wy}y∈Y with consistent sample

analogues, resulting from sampling at random from the market at the individual level or

at the household level. Define

py|x ≡
µxy
mx

and px|y ≡
µxy
wy

,

as the equilibrium probability of marrying a woman of type y ∈ Y0 conditional on being

a man of type x ∈ X , and the equilibrium probability of marrying a man of type x ∈ X0

conditional on being a woman of type y ∈ Y , respectively. Lastly, let

px ≡
mx∑
x∈X mx

and py ≡
wy∑
y∈Y wy

,

be the proportion of men of type x ∈ X and the proportion of women of type y ∈ Y ,

respectively.

Our primary interest lies in recovering the systematic match surplus, Φ. In fact,

(partially) identifying Φ allows us to answer many important questions considered in the

marriage market literature. In particular, Φ can be used to learn whether agents tend to

match with similar people, i.e., whether there is positive assortativeness. Investigating

positive assortativeness and its evolution over time has been a focus of empirical research

since Becker (1973) because it is crucial to understand the sources of inequality in inter-

generational outcomes. For instance, if parents’ education level affects their children’s

school attainment and marriage is positive assortative by education, then inequality in

the next generation may be higher. Formally, let X = Y ≡ {1, ..., r} collect r educa-

tion levels, ordered from lowest to highest. For any x, x̃ ∈ X with x > x̃, consider the
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cross-difference operator,

Dxx,x̃x̃(Φ) ≡ Φxx + Φx̃x̃ − Φxx̃ − Φx̃x. (1)

Dxx,x̃x̃(Φ) measures how the incremental (dis)value of marrying a more educated man

evolves as the education of the woman increases. Hence, one can evaluate changes in

positive educational sorting across markets (for instance, across cohorts) by estimating

the supermodular core of Φ,

D(Φ) ≡ (Dxx,x̃x̃(Φ) : x, x̃ ∈ X , x > x̃),

within each market. As per Definition 1 in CSW, if every component of the vector D(Φ)

is positive within a given market, then that market exhibits positive educational sorting.

Further, if every component of D(Φ) increases across markets, then positive educational

sorting increases across markets. The definition can be restricted to a subset of education

categories. We can say that there is positive educational sorting among more educated

people if each component of the vector

D`(Φ) ≡ (Dxx,x̃x̃(Φ) : x, x̃ ∈ {`, `+ 1, ..., r}, x > x̃),

is positive, where ` is large enough. Similarly, there is positive educational sorting among

less educated people if each component of the vector

D`(Φ) ≡ (Dxx,x̃x̃(Φ) : x, x̃ ∈ {1, ..., `}, x > x̃),

is positive, where ` is low enough. We can also say that positive educational sorting

increases across markets among more (less) educated people if every component of D`(Φ)

increases across markets.7
7In settings with multidimensional covariates, the cross-difference operator defined in (1) can be used

to learn which of the spouses’ observed characteristics are complements or substitutes in the production
of the systematic match surplus and, in turn, discover the key drivers of the gains to matching. See, for
instance, Fox (2010) and Graham (2011; 2013b).
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In addition to recovering Φ, our methodology permits the analyst to (partially) iden-

tify how Φ is shared between spouses and hence assess the impact of pre-marital decisions

on marriage market outcomes. In particular, let Uxy be the part of Φxy that is gained by

a man of type x ∈ X when matching with a woman of type y ∈ Y . Analogously, let Vxy

be the part of Φxy that is gained by a woman of type y ∈ Y when matching with a man

of type x ∈ X . Define Ūx as the expected payoff that a man of type x ∈ X gets when

marrying,

Ūx ≡ EFx(max
y∈Y0

Uxy + εiy|Xi = x).

For any x̃ ∈ X with x̃ < x, the difference ∆xx̃(U) ≡ Ūx− Ūx̃ denotes the gain in expected

utility from reaching education level x instead of x̃. Therefore, it represents the marital

education premium. When x = r, a college degree, and x̃ = r − 1, such a difference is

called the marital college premium. These quantities have received particular attention

because they capture the value of human capital on the marriage market (Chiappori,

Iyigun, and Weiss, 2009; CSW). As shown in GS, the marital education premium is equal

to

∆xx̃(U) =
∑
y∈Y0

py|xUxy −
∑
y∈Y0

py|x̃Ux̃y + EFx(εiy∗i |Xi = x)− EFx̃(εiỹ∗i |Xi = x̃), (2)

where y∗i ∈ Y0 is the optimal choice of man i of type x and ỹ∗i ∈ Y0 is the optimal

choice of man i of type x̃. Note from (2) that computing (bounds for) ∆xx̃(U) requires

the specification of (finite bounds for) EFx(εiy∗i |Xi = x) − EFx̃(εiỹ∗i |Xi = x̃). The latter

are typically not obtained within a nonparametric framework like ours without further

assumptions. Nevertheless, we will provide bounds for the difference

Cxx̃(U) ≡
∑
y∈Y0

py|xUxy −
∑
y∈Y0

py|x̃Ux̃y,

which represents the change in the weighted average systematic payoff due to reaching

education level x instead of x̃. Such bounds will help us make certain conclusions regard-

ing ∆xx̃(U). In fact, we will see that in all the empirical cases of interest, the estimates
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of

C(U) ≡ (Cxx̃(U) : x, x̃ ∈ X , x > x̃) and C(V ) ≡ (Cyỹ(V ) : y, ỹ ∈ Y , y > ỹ),

are unbounded above and below. By (2), this implies that the marital education premia

are unbounded as well, and therefore, their evolution over time cannot be inferred.8

4.2 Two multinomial choice models

Based on the separability restriction (Assumption 4), Proposition 1 of GS provides a

key result for our identification analysis.9 This result states that, given the primitives Φ,

{px}x∈X , {py}y∈Y , {Fx}x∈X , {Gy}y∈Y generating the stable matching dµ̃, {Ũi}i∈I , {Ṽj}j∈J ,

there exist vectors

U ≡ (Uxy : (x, y) ∈ X × Y0) ∈ R|X×Y0| and V ≡ (Vxy : (x, y) ∈ X0 × Y) ∈ R|X0×Y|,

such that

Ũi = max
y∈Y0

(Uxy + εiy) ∀i ∈ I of type x ∈ X , ∀x ∈ X , (3)

Ṽj = max
x∈X0

(Vxy + ηxj) ∀j ∈ J of type y ∈ Y , ∀y ∈ Y , (4)

Uxy + Vxy = Φxy, Ux0 = 0, V0y = 0 ∀(x, y) ∈ X × Y . (5)

Proposition 1 of GS allows us to rewrite the framework of Section 3 as two separate

one-sided multinomial choice models linked by market-clearing transfers that are implic-

itly embedded into the vectors U and V . This alternative representation of the problem

is useful as it immediately suggests a way to investigate the identification of Φ: the re-
8Note that imposing EFx(εiy|Xi = x) < +∞ and EFx̃(εiy|Xi = x̃) < +∞ for each y ∈ Y0 is

necessary to ensure finiteness of EFx
(εiy∗

i
|Xi = x) and EFx̃

(εiỹ∗
i
|Xi = x̃) in (2). In our framework, we do

not consider such a class of nonparametric assumptions on {Fx}x∈X . This is without loss of generality.
In fact, as suggested by Example 2 in Torgovitsky (2019), requiring EFx

(εiy|Xi = x) to be equal to
some finite number for each (x, y) ∈ X × Y0 does not place any restrictions on the set of underlying
distributions that determines the identified set for U , thus leaving the bounds for C(U) unchanged.

9This result also appears in previous working paper versions of GS, in Chiappori, et al. (2008), and
in CSW.
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searcher can study separate identification of U and V from (3) and (4) using various

restrictions on the unobserved heterogeneity, and then obtain identification results for Φ

through (5).10

Based on Proposition 1, Proposition 2 of GS shows that if {Fx}x∈X and {Gy}y∈Y

are fully known by the analyst, then the 1to1TU model is just identified and, thus, Φ

is point identified. Note that fully knowing {Fx}x∈X and {Gy}y∈Y requires either such

conditional CDFs to be parameter-free, or the analyst to fix the value of each parameter

governing them. In particular, a widespread practice in the empirical literature amounts

to assuming that the taste shocks are i.i.d. standard Extreme Value Type I, independently

distributed from types, so that Φ can be recovered via standard Logit arguments applied

to each side of the market (Choo and Siow, 2006).

Unfortunately, the Logit 1to1TU model suffers from the same limitations of the one-

sided Logit framework. It exhibits IIA which has counterintuitive predictions by implying

proportional substitution across types. This is illustrated by Galichon and Salanié (2019)

with an example that resembles the blue-bus/red-bus example of McFadden (1974).11

While most of the applied literature on one-sided markets has replaced the Logit as-

sumption with the Generalised Extreme Value (GEV) framework, such a transition is

yet to occur in the two-sided literature. This is because, due to the just identification

result mentioned above, it would be necessary to arbitrarily specify the value of each pa-

rameter governing the GEV distribution, at the risk of incurring serious misspecification.

There are two possible ways to solve this impasse with data on one large market: the

researcher could either place assumptions on Φ (for instance, by restricting complemen-

tarities/substitutabilities among observed characteristics) so as to get degrees of freedom

for estimating the GEV parameters, or adopt a partial identification perspective. The

first approach is rare in the marriage market literature because most of the empirical

studies consider marital sorting on a single dimension (one attribute at a time). In this

paper, we explore the second approach and construct bounds for Φ. In doing so, we
10The restrictions Ux0 = V0y = 0 in (5) come from the fact that the systematic match surplus from

remaining single is normalised to zero in Assumption 4.
11See also Graham (2013a) for another example on violation of IIA.
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do not restrict the distribution of the taste shocks to belong to any specific parametric

family.

4.3 The extent of under-identification

As shown by GS, if {Fx}x∈X and {Gy}y∈Y are not assumed to be fully known by the ana-

lyst, then the 1to1TU model is under-identified. As a first step, this section investigates

the extent of under-identification by answering the following question: does the 1to1TU

model retain some identifying power on Φ without imposing any restrictions on {Fx}x∈X

and {Gy}y∈Y? Lemma 1 below gives a negative answer.

Let U , V , and Θ denote the parameter spaces of U , V , and Φ, respectively, i.e.,

U ≡ {U ∈ R|X×Y0| : Ux0 = 0 ∀x ∈ X},

V ≡ {V ∈ R|X0×Y| : V0y = 0 ∀y ∈ Y},

Θ ≡ R|X×Y|.

Further, let F and G be the function spaces of all admissible taste shock distributions,

{Fx}x∈X and {Gy}y∈Y , respectively.12 Lastly, for any y ∈ Y0, U ∈ U , and {Fx}x∈X ∈ F ,

let κ(U, Fx, y) be the model-implied probability of marrying a woman of type y ∈ Y0

conditional on being a man of type x ∈ X , i.e.,

κ(U, Fx, y) ≡ λFx({(ey : y ∈ Y0) ∈ R|Y0| : Uxy + ey ≥ Uxỹ + eỹ ∀ỹ ∈ Y0 \ {y}}),

where λFx is the probability measure associated with Fx. Similarly, for any x ∈ X0,

V ∈ V , and {Gy}y∈Y ∈ G, let κ(V,Gy, x) be the model-implied probability of marrying a

man of type x ∈ X0 conditional on being a woman of type y ∈ Y , i.e.,

κ(V,Gy, x) ≡ λGy({(ex : x ∈ X0) ∈ R|X0| : Vxy + ex ≥ Vx̃y + ex̃ ∀x̃ ∈ X0 \ {x}}),

where λGy is the probability measure associated with Gy.
12Note that one element of F is a family of |X | conditional CDFs, {Fx}x∈X . Similarly, one element

of G is a family of |Y| conditional CDFs, {Gy}y∈Y .
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Lemma 1. (Under-identification) For every data, {py|x}(x,y)∈X×Y0 and {px|y}(x,y)∈X0×Y ,

and systematic match surplus, Φ ∈ Θ, there exist (U, V ) ∈ U × V , {Fx}x∈X ∈ F , and

{Gy}y∈Y ∈ G such that

py|x = κ(U, Fx, y) ∀(x, y) ∈ X × Y0, (6)

px|y = κ(V,Gy, x) ∀(x, y) ∈ X0 × Y , (7)

Uxy + Vxy = Φxy ∀(x, y) ∈ X × Y . (8)

�

Lemma 1 is a straightforward application of Theorem 1 of Haile, Hortaçsu, and

Kosenok (2008) to our two-sided setting. It shows that in the absence of restrictions on

{Fx}x∈X and {Gy}y∈Y , the 1to1TU model leads to uninformative bounds on Φ. There-

fore, one needs to impose at least some distributional assumptions on the unobserved

heterogeneity to get information on Φ.

4.4 Adding distributional assumptions on unobserved hetero-

geneity

In this section, we ask ourselves whether the 1to1TU model retains some identifying

power on Φ under various classes of nonparametric distributional assumptions on the

unobserved heterogeneity, so as to still be able to address relevant policy matters while

maintaining a certain degree of robustness. To answer this question, we adopt a computa-

tional approach. In particular, we start from observing that if {Fx}x∈X and {Gy}y∈Y are

not assumed to be fully known by the analyst, then the 1to1TU model is under-identified,

leading to partial identification of Φ. Hence, we provide a methodology to construct the

identified set of Φ under various classes of nonparametric distributional assumptions on

the unobserved heterogeneity.

The identified set of Φ (hereafter, Θ∗) is the set of values of Φ such that there exists U ,

V , {Fx}x∈X , and {Gy}y∈Y that satisfy (6)-(8). By Proposition 1 of GS, we can construct

Θ∗ by separately focusing on each side of the market. First, we construct the identified
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set of U (hereafter, U∗), i.e., the set of values of U such that there exists {Fx}x∈X that

satisfies (6). Then, we construct the identified set of V (hereafter, V∗), i.e., the set

of values of V such that there exists {Gy}y∈Y that satisfies (7). Finally, we obtain Θ∗

from (8). In what follows, we explain the construction of U∗. The construction of V∗ is

analogous.

Recall that in multinomial choice models what matters is differences in utilities.

Therefore, as a preliminary step, we rewrite the identification problem using the taste

shock differences. Without loss of generality, we label the women’s types as Y ≡ {1, ..., r}.

Let ∆εi be the vector of differences between every pair of taste shocks of man i ∈ I,

∆εi ≡ (εi1 − εi0, ..., εir − εi0, εi1 − εi2, ..., εi1 − εir, εi2 − εi3, ..., εi2 − εir, ..., εir−1 − εir), (9)

with length d ≡
(
r+1

2

)
.

Observe that each {Fx}x∈X ∈ F determines a corresponding family of d-dimensional

conditional CDFs of ∆εi, which we denote by {∆Fx}x∈X . Further, note that the first r

components of ∆εi can be arbitrary, while the remaining (d − r) components are linear

combination of the first r components. Define the set

B ≡ {(b1, b2, ..., bd) ∈ Rd : br+1 = b1 − b2, br+2 = b1 − b3, ..., b2r−1 = b1 − br,

b2r = b2 − b3, ..., b3r−3 = b2 − br, ...,

bd = br−1 − br}.

By the above arguments, ∆Fx has support contained in B, i.e.,

λ∆Fx(B) = 1, (10)

for every x ∈ X . We denote by ∆F the function space of all admissible {∆Fx}x∈X , each

with support contained in B. Moreover, one may want to impose various nonparametric

restrictions on {∆Fx}x∈X in order to obtain informative bounds on U (and ultimately,

Φ), as highlighted by Lemma 1. We denote by ∆F † ⊂ ∆F the restricted collection
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of conditional CDFs. We describe later which classes of nonparametric restrictions on

{∆Fx}x∈X are considered.

In summary, our objective is to construct the identified set of U , defined as

U∗ ≡ {U ∈ U : ∃ {∆Fx}x∈X ∈∆F † s.t.

py|x = κ(U,∆Fx, y) ∀(x, y) ∈ X × Y0},

where, with slight abuse of notation, we have replaced the argument Fx of κ(U, Fx, y) with

∆Fx. We split the discussion into two steps. First, for any given U ∈ U , Section 4.4.1

explains how to verify whether U ∈ U∗. Second, Section 4.4.2 provides a result which

reduces the computational burden of repeating the first step for every U ∈ U . Lastly,

we introduce some useful notation adopted in the forthcoming arguments. R̄ denotes the

extended real line. 0d is the d× 1 vector of zeros. ∆εi,l is the l-th component of ∆εi and

∆Fx,l is the l-th marginal of ∆Fx. ∆εyi is the r × 1 subvector of ∆εi collecting the taste

shock differences that are relevant when choosing y ∈ Y0, with conditional CDF ∆F y
x .13

4.4.1 A linear program

As discussed above, U ∈ U∗ if and only if

∃ {∆Fx}x∈X ∈ ∆F † s.t. py|x = κ(U,∆Fx, y) ∀(x, y) ∈ X × Y0. (11)

Without parametric restrictions on the unobserved heterogeneity, (11) is an infinite-

dimensional existence problem. In what follows, we use and extend Torgovitsky (2019)

to transform (11) into a linear program. We illustrate the result in the easiest case where

r = 2 (hence, d = 3). Although notationally more cumbersome, the result for a generic

r follows the same intuition and is illustrated in Appendix A.2.
13For instance, consider r = 2 (hence, d = 3). When choosing 0, man i evaluates εi1−εi0 and εi2−εi0.

Thus, given the definition of ∆εi in (9), ∆ε0i ≡ (εi1 − εi0, εi2 − εi0). Similarly, ∆ε1i ≡ (εi1 − εi0, εi1 − εi2)
and ∆ε2i ≡ (εi2 − εi0, εi1 − εi2).
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The two type case (r = 2r = 2r = 2)

For simplicity, assume that ∆F † = ∆F . Hence, (11) can be more explicitly written as

∃ {∆Fx}x∈X ∈ ∆F s.t. ∀x ∈ X ,

p1|x = 1 + ∆Fx(−Ux1,+∞, Ux2 − Ux1)−∆Fx(+∞,+∞, Ux2 − Ux1)−∆Fx(−Ux1,+∞,+∞),

p2|x = ∆Fx(+∞,+∞, Ux2 − Ux1)−∆Fx(+∞,−Ux2, Ux2 − Ux1),

p0|x = ∆Fx(−Ux1,−Ux2,+∞).
(12)

Note that, for each x ∈ X , (12) depends on the values of ∆Fx at a finite number of

3-tuples. We collect such 3-tuples in the following three sets:

Ax,1,U ≡ {−Ux1,+∞,−∞},Ax,2,U ≡ {−Ux2,+∞,−∞},Ax,3,U ≡ {Ux2 − Ux1,+∞,−∞},

(13)

where Ax,1,U collects the elements at which ∆Fx is evaluated along the first dimension,

Ax,2,U collects the elements at which ∆Fx is evaluated along the second dimension, and

Ax,3,U collects the elements at which ∆Fx is evaluated along the third dimension. We add

−∞ to each set because it will be key later to outline the defining properties of CDFs.

Lastly, we define Ax,U ≡ Ax,1,U ×Ax,2,U ×Ax,3,U .

Thus, the infinite-dimensional existence problem (12) is equivalent to verifying whether

there exists a finite-domain function ∆F̄x : Ax,U → [0, 1] that satisfies the equations in

(12) and that can be extended to a proper CDF ∆Fx : R̄3 → [0, 1], for every x ∈ X . That

is, (12) is equivalent to

∃ ∆F̄x : Ax,U → [0, 1] s.t. ∀x ∈ X ,

p1|x = 1 + ∆F̄x(−Ux1,+∞, Ux2 − Ux1)−∆F̄x(+∞,+∞, Ux2 − Ux1)−∆F̄x(−Ux1,+∞,+∞),

(14)

p2|x = ∆F̄x(+∞,+∞, Ux2 − Ux1)−∆F̄x(+∞,−Ux2, Ux2 − Ux1), (15)

p0|x = ∆F̄x(−Ux1,−Ux2,+∞), (16)

and {∆F̄x}x∈X can be extended to a proper family of conditional CDFs in ∆F . (17)
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Importantly, observe that (14)-(16) are linear in ∆F̄x. Further, we show below that (17)

can be expressed as a finite collection of equations and inequalities that are also linear in

∆F̄x. Therefore, we can transform (12) into a linear program.

We now explain how to write (17) as a finite collection of linear equations and in-

equalities. It is clear that ∆F̄x can be extended to a proper CDF ∆Fx only if

∆F̄x satisfies the defining properties of a CDF. (18)

Consider first the case where the support restriction (10) is ignored in the definition of

∆F . Then, based on Sklar’s Theorem (Sklar, 1959; 1996; Nelsen, 2006), Lemma 2 of

Torgovitsky (2019) proves that (18) is also sufficient for extendibility. In particular, the

defining properties of CDFs are:

(i) ∆F̄x(a1, a2, a3) = 0 for every (a1, a2, a3) ∈ Ax,U that has at least one component equal

to −∞. That is,

∆F̄x(−∞, a2, a3) = 0,∆F̄x(a1,−∞, a3) = 0,∆F̄x(a1, a2,−∞) = 0 ∀(a1, a2, a3) ∈ Ax,U .

(19)

(ii) ∆F̄x(a1, a2, a3) = 1 when al = +∞ for every l ∈ {1, 2, 3}. That is,

∆F̄x(+∞,+∞,+∞) = 1. (20)

(iii) ∆F̄x is 3-increasing. Formally, given a pair of 3-tuples, (a1, a2, a3), (a′1, a′2, a′3) in Ax,U

with (a1, a2, a3) ≤ (a′1, a′2, a′3), let Vol∆F̄x
([a1, a

′
1]× [a2, a

′
2]× [a3, a

′
3]) denote the volume of

the 3-box [a1, a
′
1]× [a2, a

′
2]× [a3, a

′
3]. ∆F̄x is called 3-increasing if

Vol∆F̄x
([a1, a

′
1]× [a2, a

′
2]× [a3, a

′
3]) ≥ 0,

for every (a1, a2, a3), (a′1, a′2, a′3) ∈ Ax,U ,

s.t. (a1, a2, a3) ≤ (a′1, a′2, a′3).14

(21)
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Note that (19)-(21) constitute a finite collection of equations and inequalities that are

linear in ∆F̄x. Therefore, if (10) was absent, we could rewrite (12) as a linear program

by direct application of Lemma 2 of Torgovitsky (2019).

The presence of (10) slightly complicates our analysis as we need to extend the latter

result to handle such a support restriction.15 To do so, we first rewrite (10) in a more

convenient way. Specifically, note that (10) is equivalent to λ∆Fx(Bc) = 0 where Bc is the

complement of B in R̄3. Also observe that, when r = 2, B is simply the plane

B ≡ {(b1, b2, b3) ∈ R3 : b1 = b2 + b3}.

Hence, Bc can be written as the union of the infinite collection of 3-boxes that lie fully

above or below such a plane. In particular, for each (b1, b2, b3) ∈ B, one can construct a

3-box Bb1,b2,b3 such that Bc = ∪(b1,b2,b3)∈BBb1,b2,b3 . See Appendix A.1 for the representation

of Bb1,b2,b3 .

In turn, assuming λ∆Fx(Bc) = 0 is equivalent to assuming

Vol∆Fx(Bb1,b2,b3) = 0 ∀(b1, b2, b3) ∈ B. (22)

Therefore, it is clear that ∆F̄x can be extended to a proper CDF ∆Fx satisfying

(22) only if the increasingness condition (21) holds as equality for every pair of 3-tuples,

(a1, a2, a3), (a′1, a′2, a′3) in Ax,U with (a1, a2, a3) < (a′1, a′2, a′3), such that the 3-box [a1, a
′
1]×

[a2, a
′
2]×[a3, a

′
3] is contained in a box Bb1,b2,b3 for some (b1, b2, b3) ∈ B. Proposition 1 shows

that such a condition is also sufficient for extendibility when combined with (19)-(21).

Proposition 1. (Extendibility) Given U ∈ U and x ∈ X , let Ax,U ≡ Ax,1,U × Ax,2,U ×
14Take (a1, a2, a3), (a′1, a′2, a′3) ∈ Ax,U with (a1, a2, a3) ≤ (a′1, a′2, a′3). Then,

Vol∆F̄x
([a1, a

′
1]× [a2, a

′
2]× [a3, a

′
3]) ≡

∑
v∈vert((a1,a2,a3),(a′1,a′2,a′3))

∆F̄x(v) ∗ sgn(v),

where vert((a1, a2, a3), (a′1, a′2, a′3)) is the set of the box’s vertices, v ≡ (v1, v2, v3) denotes a generic
vertex, sign(v) is equal to 1 if vl = al for an even number of l ∈ {1, 2, 3}, and equal to −1 otherwise; 0
is considered even.

15Torgovitsky (2019) discusses how to handle support restrictions in the case of one-dimensional CDFs.
We provide similar findings for multidimensional CDFs.

25



Ax,3,U , where Ax,l,U is a finite subset of R̄ and contains {+∞,−∞} for each l ∈ {1, 2, 3}.

Let ∆F̄x : Ax,U → [0, 1] be a function satisfying (19)-(21), and

Vol∆F̄x
([a1, a

′
1]× [a2, a

′
2]× [a3, a

′
3]) = 0, (23)

for every (a1, a2, a3), (a′1, a′2, a′3) ∈ Ax,U ,

s.t. (a1, a2, a3) < (a′1, a′2, a′3),

and [a1, a
′
1]× [a2, a

′
2]× [a3, a

′
3] ⊂ Bb1,b2,b3 for some (b1, b2, b3) ∈ B.

Then, there exists a proper CDF ∆Fx : R̄3 → [0, 1] such that: (i) ∆F̄x can be extended

to ∆Fx, i.e., ∆Fx(a1, a2, a3) = ∆F̄x(a1, a2, a3) for each (a1, a2, a3) ∈ Ax,U ; (ii) λ∆Fx(B) =

1. �

Note that (23) constitutes a finite collection of equations and inequalities that are

linear in ∆F̄x. Therefore, by combining (14)-(16), (19)-(21), and (23), we can transform

(12) into a linear program. By verifying the linear program for each U ∈ U , we can

obtain the sharp identified set.

In addition, we give a simple condition to verify if a box [a1, a
′
1]× [a2, a

′
2]× [a3, a

′
3] is

contained in a box Bb1,b2,b3 for some (b1, b2, b3) ∈ B, as required by (23).

Lemma 2. (Zero-volume boxes) Given U ∈ U and x ∈ X , let Ax,U ≡ Ax,1,U × Ax,2,U ×

Ax,3,U , where Ax,l,U is a finite subset of R̄ and contains {+∞,−∞} for each l ∈ {1, 2, 3}.

Take (a1, a2, a3), (a′1, a′2, a′3) in Ax,U with (a1, a2, a3) < (a′1, a′2, a′3). Define the 3-box H ≡

[a1, a
′
1]× [a2, a

′
2]× [a3, a

′
3]. Then, H ⊂ Bb1,b2,b3 for some (b1, b2, b3) ∈ B if and only if

a1 > a′2 + a′3 or a′1 < a2 + a3. (24)

�

As shown by Theorem 1 of Torgovitsky (2019), the above methodology remains valid

under various classes of nonparametric restrictions on {∆Fx}x∈X , which can be simply

imposed on {∆F̄x}x∈X as linear constraints. In particular, in the simulations of Ap-

pendix C and the empirical application, we explore the identifying power of the following
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restrictions (not necessarily all maintained simultaneously):

Assumption 5. (Nonparametric assumptions on {∆Fx}x∈X )

5.1. ∆εi is independent of Xi.

5.2. Conditional on Xi and for each l ∈ {1, ..., d}, ∆εi,l has a distribution symmetric at

0.

5.3. Conditional on Xi, {∆εi,l}l∈{1,...,d} are identically distributed.

5.4. Conditional on Xi, {∆εyi }y∈Y0 are identically distributed.

�

In Appendix A.3, we provide a formal statement of Theorem 1 of Torgovitsky (2019)

and a list of nonparametric distributional assumptions on the taste shock differences that

can be generally accommodated. Finally, Appendix A.4 contains an example of a linear

program to solve.

4.4.2 Simplifying grid search

To construct U∗, the analyst has to solve the linear program of Section 4.4.1 for every

U ∈ U . Typically, this is done in the partial identification literature by constructing a

grid of points to approximate U and then repeating the exercise of interest for each grid

point. However, the difficulty of implementing this approach increases with the size of the

grid, which in turn, increases exponentially with r, quickly leading to a computational

bottleneck. In what follows, we give a characterisation of U so that the issue of solving

the linear program for every U ∈ U is reduced to solving the linear program for a handful

of U ∈ U . This mitigates the burden of doing grid search. We first provide an intuition

of the result and then a more formal statement.

For simplicity, we continue the example of Section 4.4.1 with r = 2 (hence, d = 3).

For any given x ∈ X , the only pieces of the linear program that might induce different

sets of solutions for different values of U are the 3-increasingness constraint, (21), and the

support constraint, (23). In fact, note that (21) is activated only for the pairs of 3-tuples
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in Ax,U that are componentwise comparable. Similarly, (23) is activated only for the pairs

of 3-tuples in Ax,U that are componentwise comparable and satisfy (24). We refer to such

pairs as the critical pairs. Let h ≡ Π3
l=1hl be the cardinality of Ax,U . Fix an order of the

3-tuples in Ax,U and list them in an h×3 matrix, αx,U . If the positions (i.e., row-indices)

of the critical pairs in αx,U are different across two values of U , then these two values of

U will induce potentially different sets of solutions to the linear program. Conversely, if

the positions are the same, then the two values will induce the same (possibly, empty)

set of solutions. This idea can be used to ex-ante partition the parameter space, U , into

equivalence classes so that the researcher can solve the linear program only once for each

class.16

In what follows, we provide some sufficient conditions to establish whether the posi-

tions of the critical pairs in αx,U are equal across two values of U . For every l ∈ {1, 2, 3},

fix an order of the elements of Ax,l,U and list them in an hl × 1 vector, αx,l,U . Similarly,

construct an (h1 + h2h3) × 1 vector, βx,U , listing αx,1,U and the sum of every possible

element of αx,2,U with every possible element of αx,3,U . Let Π1 be the set of all possi-

ble permutations without repetition of {1, ..., hl} and let Π2 ≡ {<,=}hl−1. Define the

functions

π1 : R̄hl → Π1 and π2 : R̄hl → Π2,

where π1(ω) sorts the hl elements of ω from smallest to largest and reports their positions

in the original vector; π2(ω) reports the relational operators, < or =, among the sorted

elements of ω. When ω contains multiple elements with the same value or indeterminate

forms (like +∞−∞), then we can adopt any convention on which element to sort first.

Lastly, let π(ω) ≡ (π1(ω), π2(ω)) ∀ω ∈ R̄h. For instance, suppose ω = (100, 99,+∞).

Then, π(ω) = {(2, 1, 3), (<,<)}. Suppose ω = (5, 5,−∞). Then, π(ω) = {(3, 2, 1), (<,=

)}.
16Torgovitsky (2019) suggests to ex-ante partition the parameter space in order to simplify grid search,

even though no algorithm is provided.
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Definition 1. (π-ordering) Take any U, Ũ ∈ U . U and Ũ have the same π-ordering if

π(αx,l,U) = π(αx,l,Ũ) ∀l ∈ {1, ..., d}, x ∈ X ,

π(βx,U) = π(βx,Ũ) ∀x ∈ X .

�

Proposition 2 shows that if U, Ũ ∈ U have the same π-ordering, then the positions of

the critical pairs in αx,U are equal to the positions of the critical pairs in αx,Ũ . Therefore,

either both, U and Ũ , lie inside or outside the identified set, U∗.

Proposition 2. (Simplify grid search over U) Take any U, Ũ in U with the same π-

ordering. Then, U ∈ U∗ if and only if Ũ ∈ U∗. �

Remark B.1 in Appendix B explains how Proposition 2 is used in practice to ex-ante

partition the parameter space.
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5 Empirical application

In this section, we use our methodology to re-examine some of the questions considered

in the empirical literature on the marriage market that have been previously answered

by relying on the Logit 1to1TU model.

An important question is whether educational sorting has changed over time, as this

can be key to understanding the sources of inequality in intergenerational outcomes (see

references in Section 1). Detecting changes in educational sorting is challenging because

it requires disentangling the effect of changes in the marginal probability distribution

of education categories from potential structural changes in the match surplus. In fact,

men and especially women have become more educated over time. This implies that

individuals with higher education levels are mechanically more likely to marry. We are

thus interested in capturing the changes in educational sorting after having accounted for

the variations naturally arising due to distributional shifts in education.

The literature offers two approaches to do this. The first consists of using indices

of sorting, based on comparing empirical matches to a random matching counterfactual

(e.g., Eika, Mogstad, and Zafar, 2019). The second consists of using a structural model

of the marriage market to estimate individual preferences. For instance, one can take the

1to1TU model with X = Y ≡ {1, ..., r} listing education categories and study the evolu-

tion of D(Φ), as discussed in Section 4.1. The second approach has been implemented by

CSW based on the Logit assumption. Both approaches conclude that positive educational

sorting has overall increased in the U.S. in the past decades, although there is some debate

about this trend when we distinguish among education categories. For example, Eika,

Mogstad, and Zafar (2019) find that positive educational sorting has declined among the

highly educated and increased among the less educated. Instead, CSW find that positive

educational sorting has increased particularly at the top of the education distribution.

We use our methodology to investigate the robustness of the conclusions achieved via the

structural Logit approach to the dropping of the Logit assumption.

In addition to studying the evolution of educational sorting, this section touches

upon another important question in the empirical literature on the marriage market.
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In particular, as discussed by CSW, the increase in educational sorting makes a higher

stock of human capital more valuable on the marriage market. Therefore, one should also

expect an increase in the marital education premium, especially at the highest levels of

education and for women. Based on the Logit 1to1TU model, CSW empirically confirm

such a prediction for the U.S. We apply our methodology to verify whether the same

findings can be achieved without the Logit assumption.

The remainder of the section is organised as follows: in Section 5.1, we describe the

data; in Section 5.2, we present and interpret our results.

5.1 Data

We focus on the U.S. marriage market and take our data from the American Community

Survey, which is a representative extract of the census. To construct the final dataset, we

follow the steps outlined in Section I.A and Appendix B of CSW. In particular, from the

21, 583, 529 households in the 2008 to 2014 waves, we take all white adults out of school.

We record the education level of each adult by distinguishing four categories: high school

dropouts (HSD, or “1”); high school graduates (HSG, or “2”); some college (SC, or “3”);

four-year college graduates and graduate degrees (CG, or “4”).17 We treat individuals as

married if they define themselves as such, without including cohabitation. We focus on

first marriages and never-married singles. The final sample consists of 1, 502, 157 couples

and 136, 052 singles.

We define cohorts by using year of birth and take women to be one year younger.

For instance, cohort 1940 includes all men born in year 1940 and all women born in year

1941. In turn, the sample analogue of p1940
y|x is computed by taking the ratio between the

number of men of type x ∈ X who are born in year 1940 and marry a woman of type

y ∈ Y0 born in any year, and the number of men of type x ∈ X who are born in year

1940. Similarly, the sample analogue of p1940
x|y is computed by taking the ratio between

the number of women of type y ∈ Y who are born in year 1941 and marry a man of type
17For the white population, CSW further distinguish between four-year college graduates (CG, or “4”)

and graduate degrees (CG+, or “5”). In the Logit case, the main conclusions remain unchanged even
without this distinction, as shown in Chiappori, Costa-Dias, and Meghir (2020). In our analysis too, the
conclusions do not change when distinguishing between CG and CG+, as we remark in Section 5.2.
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x ∈ X0 born in any year, and the number of women of type y ∈ Y who are born in year

1941.18 In what follows, we consider 28 cohorts, from 1940 to 1967, as in CSW.

Figures 1 and 2 are similar to Figures 1 and 2 of CSW and provide some key de-

scriptive facts. Figure 1 reveals that the proportion of college educated men increases

until 1950, then drops, and finally reverses into an increase around 1960. Instead, the

proportion of college educated women always increases. Moreover, the proportion of col-

lege educated women is lower than that of men in 1940, while the opposite is true by

1967. These changes imply that the evolution of educational sorting cannot be inferred

by simply comparing matching patterns across cohorts. Figure 2 (A) shows an increase

in the proportion of marriages of like with like. A substantial surge is also registered

when focusing on the proportion of couples where both spouses have a college degree, as

shown in Figure 2 (B). However, these figures are not proof of an increase in positive ed-

ucational sorting because they may be mechanically driven by changes in the proportions

of individuals in each education category.

5.2 Results

For each of the 28 cohorts, we estimate the identified sets of Φ, D(Φ), C(U), and C(V )

under two classes of nonparametric distributional assumptions on the taste shocks, which

we refer to as specifications [A] and [B]. Specification [A] imposes Assumption 5.4. Spec-

ification [B] imposes Assumptions 5.2, 5.3, and 5.4. According to our simulations in

Appendix C, such specifications tend to deliver the tightest bounds among the various

combinations of assumptions explored.

We start by discussing the results on educational sorting. The Logit estimates ofD(Φ)

are positive, suggesting the presence of positive educational sorting in each education

category and cohort. In particular, Figure 3 plots the Logit estimates of D(Φ) demeaned

over cohorts (black curves). If educational sorting has not changed over time, then the

black curves (and the smooth grey curves representing trends) should be identical to
18We ignore the issue of cohort mixing to exactly mimic the data construction process of CSW and

make our conclusions as comparable as possible. In particular, given that the modal age difference within
couples is one year in the data, CSW concentrate their analysis on couples in which the age difference
takes one year.
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the horizontal 0 line. The property is violated for the highly educated, as the trend for

D44,33(Φ) is increasing in the most recent decades.19 We can thus conclude that there has

been an increase in positive assortativeness, at least among the highly educated, under

the Logit assumption. More formally, based on the test described in Section IV.A of

CSW, the null hypothesis that educational sorting has not changed over time is rejected:

the Chi-squared test statistic has value 1, 047.725 with 243 degrees of freedom and the

p-value is below 10−99.20

Figure 4 reports our estimates of the identified set of D(Φ), under specifications [A]

(grey region) and [B] (dotted region).21 By construction, the dotted region is contained in

(or is equal to) the grey region. Further, the Logit estimates of D(Φ) (black line) are con-

tained in the grey and dotted regions because Assumptions 5.2, 5.3, and 5.4 are satisfied

when imposing the Logit assumption. As in CSW, we obtain our estimates by assuming

that the cohorts feature independent matching processes. However, our analysis is more

robust in many ways. Importantly, we allow the taste shocks to have any distribution

within specifications [A] and [B]. For instance, the taste shocks can be correlated among

each other, their distribution may freely vary across education categories, and there could

be heteroskedasticity.

Figure 4 reveals that, under the classes of nonparametric distributional assumptions

considered, the 1to1TU model is uninformative about the presence and trend of positive

educational sorting among the highly educated, as the estimates of D44,33(Φ) are un-

bounded above and below.22 We find the presence of positive educational sorting among

the less educated, as indicated by the jump to positive values of the lower bound of

D22,11(Φ) around 1954. However, once the lower bound reaches the positive values, it
19As discussed in Section 4.1, there is positive educational sorting among more educated people if

D`(Φ) ≡ D44,33(Φ) > 0 and among less educated people if D`(Φ) ≡ D22,11(Φ) > 0. Further, positive
educational sorting increases across cohorts among more educated people if D44,33(Φ) increases across
cohorts. Similarly, positive educational sorting increases across cohorts among less educated people if
D22,11(Φ) increases across cohorts.

20When distinguishing between CG and CG+, the conclusions on educational sorting based on the
Logit assumption are similar, as shown by Figure 15 of CSW and subsequent discussion. In particular,
the null hypothesis that educational sorting has not changed over time is rejected also with 5 types
(the Chi-squared test statistic has value 1, 573.717 with 432 degrees of freedom and the p-value is below
10−100).

21We do not demean the estimates in Figure 4 in order to study their signs.
22The estimates are unbounded when the grey or dotted region hits the vertical axis limit.
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does not exhibit any clear trend, thereby remaining inconclusive about the evolution of

positive educational sorting among the less educated. These results suggest that the pre-

vious findings on educational sorting based on the Logit 1to1TU model are driven by the

Logit assumption.2324

Table 1 confirms the above conclusions. The first section of the table reports the

projections of the estimated identified sets of Φ, averaged over cohorts 1940, 1941, and

1942 (“early cohorts”), under specifications [A] and [B]. The second section of the table

reports the projections of the estimated identified sets of Φ, averaged over cohorts 1965,

1966, and 1967 (“late cohorts”), under specifications [A] and [B]. The last section of

the table reports the changes in estimates between early and late cohorts. The average

estimates of Φ under the Logit assumption (“Logit”) are also included. When using the

Logit assumption, the decline in surplus is always smaller (or inverted) for more educated

couples, which is in line with the increase in positive educational sorting at the top of

the distribution seen in Figure 3. This conclusion cannot be confirmed once the Logit

assumption is relaxed, as highlighted by the many unbounded intervals.25

We now move to discuss the results on the marital education premia. The grey curves

in Figure 5 are the estimates of the marital education premia under the Logit assumption

for men and women. Panels (C) and (F) suggest that the marital college premium has

increased for both men (∆43(U)) and women (∆43(V )). The increase is particularly

pronounced for women. Further, while women of older cohorts had a negative marital

college premium, this has become positive for recent cohorts.26 The black curves in Figure
23When distinguishing between CG and CG+, our estimates of D55,44(Φ), D55,33(Φ), and D44,33(Φ)

are unbounded above and below. Therefore, the 1to1TU model still does not allow us to conclude
anything about the presence and trend of educational sorting among the highly educated, as in Figure
4.

24Figures D.1 and D.2 in Appendix D further disentangle the men and women’s contribution to D(Φ).
They highlight that the unboundedness of D22,11(Φ) (above) and D44,33(Φ) (above and below) is mostly
driven by the limited empirical content of the 1to1TU model on the women’s side.

25The Logit estimates in Table 1 for early and late cohorts are numerically different from the Logit
estimates in Table 6 of CSW due to two reasons. First, CSW construct those estimates by using the
assumptions that the evolution of the systematic match surplus is driven by education-specific drifts,
which is not assumed here. Second, CSW distinguish between CG and CG+. Nevertheless, the changes
in the Logit estimates between early and late cohorts that we obtain (last section of the table) are very
close to CSW’s findings and, importantly, suggest the same conclusions.

26When distinguishing between CG and CG+, the conclusions on the marital education premia based
on the Logit assumption are similar, as shown by Figures 20 and 21 of CSW and subsequent discussion.
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5 are the estimates of C(U) and C(V ) under the Logit assumption. The black curves

mimic the trends of the grey curves closely, although they are quite shifted from the grey

curves in panels (C) and (F).

Figure 6 reports our estimates of the identified sets of C(U) and C(V ) under speci-

fications [A] (grey region) and [B] (dotted region). Observe that we obtain unbounded

intervals in almost every cohort. This is particularly true for the women’s side, where

the estimates of C21(V ), C32(V ), and C43(V ) remain constantly unbounded above and

below.27 In turn, the estimates of the marital education premia will be unbounded as

well, and nothing can be said about their evolution over time. As earlier, this indicates

that the previous evidence on increasing marital college premium based on the Logit

1to1TU model is a consequence of the Logit assumption. No evidence of an increase in

the marital education premia has also been recently found by Christensen and Connault

(2022) using a different methodology.

27We obtain the same results when distinguishing between CG and CG+. In particular, the estimates
of C21(V ), C32(V ), C43(V ), and C54(V ) remain constantly unbounded above and below.

35



6 Conclusions

This paper investigates the identifying power of the 1to1TU model for the systematic

match surplus and related policy-relevant quantities when no parametric distributional

assumptions are imposed on the unobserved heterogeneity. We conclude our analysis by

highlighting three main findings. First, we formally show that the 1to1TU model contains

no information about the systematic match surplus without restricting the distribution

of the unobserved heterogeneity. Second, we propose a computational approach for con-

structing the identified set of the systematic match surplus that is based on principles

of linear programming and works under various classes of nonparametric distributional

assumptions on the unobserved heterogeneity. Third, we use our methodology to re-

examine some relevant questions in the empirical literature on the marriage market,

which have been previously studied under the Logit assumption. Our estimates show

that, without parametric distributional assumptions, the 1to1TU model is inconclusive

about the evolution of educational sorting and marital education premia across cohorts.

Therefore, most of the previous evidence on increasing positive educational sorting and

marital college premium is likely to be driven by the Logit assumption. Our paper il-

lustrates the usefulness of partial identification approaches in testing the robustness of

empirical results based on strong parametric assumptions.
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A Further details on Sections 4.4.1 and 4.4.2

A.1 Characterisation of BcBcBc for r = 2r = 2r = 2

When r = 2 (hence, d = 3), recall that B is the plane

B ≡ {(b1, b2, b3) ∈ R3 : b1 = b2 + b3}.

Given (b1, b2, b3) ∈ B, let Bb1,b2,b3 be a 3-box of any of these forms:

(b1,+∞]× [−∞, b2]× [−∞, b3], [−∞, b1)× [b2,+∞]× [b3,+∞],

(b1,+∞]× [−∞, b2)× [−∞, b3), [−∞, b1)× (b2,+∞]× (b3,+∞],

(b1,+∞]× [−∞, b2]× [−∞, b3), [−∞, b1)× [b2,+∞]× (b3,+∞],

(b1,+∞]× [−∞, b2)× [−∞, b3], [−∞, b1)× (b2,+∞]× [b3,+∞],

[b1,+∞]× [−∞, b2]× [−∞, b3), [−∞, b1]× [b2,+∞]× (b3,+∞],

[b1,+∞]× [−∞, b2)× [−∞, b3], [−∞, b1]× (b2,+∞]× [b3,+∞],

[b1,+∞]× [−∞, b2)× [−∞, b3), [−∞, b1]× (b2,+∞]× (b3,+∞].

Then, Bc = ∪(b1,b2,b3)∈BBb1,b2,b3 .

A.2 A linear program (generic rrr)

In this section, we generalise the discussion of Section 4.4.1 to any r. As in Section 4.4.1,

we illustrate the result in the case where ∆F † = ∆F . Hence, (11) becomes

∃ {∆Fx}x∈X ∈ ∆F s.t. ∀x ∈ X ,

p1|x = κ(U,∆Fx, 1), p2|x = κ(U,∆Fx, 2), ..., pr|x = κ(U,∆Fx, r), p0|x = κ(U,∆Fx, 0).
(A.2.1)

It is straightforward to explicitly express κ as in (12), although notationally cumbersome.

Once this is done, we can see that, for each x ∈ X , (A.2.1) depends on the values of ∆Fx at

a finite number of d-tuples. We collect such d-tuples in the setsAx,1,U , ...,Ax,d,U , as in (13),

where Ax,1,U collects the elements at which ∆Fx is evaluated along the first dimension, ...,

Ax,d,U collects the elements at which ∆Fx is evaluated along the d-th dimension. Further,
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we define Ax,U ≡ ×dl=1Ax,l,U . Thus, the infinite-dimensional existence problem (A.2.1) is

equivalent to verifying whether there exists a finite-domain function ∆F̄x : Ax,U → [0, 1]

that satisfy the equations in (A.2.1) and that can be extended to a proper CDF ∆Fx :

R̄d → [0, 1], for every x ∈ X . That is, (A.2.1) is equivalent to

∃ ∆F̄x : Ax,U → [0, 1] s.t. ∀x ∈ X ,

p1|x = κ(U,∆F̄x, 1), p2|x = κ(U,∆F̄x, 2), ..., pr|x = κ(U,∆F̄x, r), p0|x = κ(U,∆F̄x, 0),

(A.2.2)

and {∆F̄x}x∈X can be extended to a proper family of conditional CDFs in ∆F .

(A.2.3)

Importantly, observe that (A.2.2) is a collection of r+1 equations that are linear in ∆F̄x.

Further, we show below that (A.2.3) can be expressed as a finite collection of equations

and inequalities that are also linear in ∆F̄x. Therefore, we can transform (A.2.1) into a

linear program.

We now explain how to write (A.2.3) as a finite collection of linear equations and

inequalities. It is clear that ∆F̄x can be extended to a proper CDF ∆Fx only if (18)

holds. Consider first the case where (10) is ignored. Then, Lemma 2 of Torgovitsky

(2019) shows that (18) is also sufficient for extendibility. In particular, the defining

properties of CDFs are:

(i) ∆F̄x(a1, ..., Ad) = 0 for every (a1, ..., ad) ∈ Ax,U that has at least one component equal

to −∞. That is,

∆F̄x(−∞, a2, ..., ad) = 0 ∀(a2, a3, ..., ad) ∈ ×dl=2Ax,l,U ,

∆F̄x(a1,−∞, a3, ..., ad) = 0 ∀(a1, a3, ..., ad) ∈ ×dl 6=2Ax,l,U ,
...

∆F̄x(a1, a2, ..., ad−1,−∞) = 0 ∀(a1, a2, ..., ad−1) ∈ ×d−1
l=1Ax,l,U .

(A.2.4)
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(ii) ∆F̄x(a1..., ad) = 1 when al = +∞ for every l ∈ {1, ..., d}. That is,

∆F̄x(+∞, ...,+∞) = 1. (A.2.5)

(iii) ∆F̄x is d-increasing. Formally, given a pair of d-tuples, (a1, ..., ad), (a′1, ..., a′d) in Ax,U

with (a1, ..., ad) ≤ (a′1, ..., a′d), let Vol∆F̄x
(×dl=1[al, a′l]) denote the volume of the d-box

×dl=1[al, a′l]. ∆F̄x is called d-increasing if

Vol∆F̄x
(×dl=1[al, a′l]) ≥ 0,

for every (a1, ..., ad), (a′1, ..., a′d) ∈ Ax,U ,

s.t. (a1, ..., ad) ≤ (a′1, ..., a′d).28

(A.2.6)

Note that (A.2.4)-(A.2.6) constitute a finite collection of equations and inequalities that

are linear in ∆F̄x. Therefore, if (10) was absent, we could rewrite (A.2.1) as a linear

program by direct application of Lemma 2 of Torgovitsky (2019).

Next, we discuss how to incorporate (10). As in Section 4.4.1, note that assuming

λ∆Fx(B) = 1 is equivalent to assuming λ∆Fx(Bc) = 0 where Bc is the complement of B in

R̄d. Also observe that Bc can be written as the union of an infinite collection of d-boxes.

In fact, given (γ, δ) ∈ R2, let t ∈ T ≡ {1, ..., r − 1}, p ∈ Pt ≡ {t + 1, ..., r}, and q ∈ Qt,p

where Qt,p ≡
(
r−t

2

)
− (r − p) if r − t ≥ 2 and Qt,p ≡ d − (r − p) otherwise. Let Bt,p,qγ+δ,γ,δ

be a d-box of any of these forms:
28Take (a1, ..., ad), (a′1, ..., a′d) ∈ Ax,U with (a1, ..., ad) ≤ (a′1, ..., a′d). Then,

Vol∆F̄x
(×d

l=1[al, a
′
l]) ≡

∑
v∈vert((a1,...,ad),(a′1,...,a′

d
))

∆F̄x(v) ∗ sgn(v),

where vert((a1, ..., ad), (a′1, ..., a′d)) is the set of the box’s vertices, v ≡ (v1, ..., vd) denotes a generic
vertex, sign(v) is equal to 1 if vl = al for an even number of l ∈ {1, ..., d}, and equal to −1 otherwise; 0
is considered even.
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{(z1, ..., zd) ∈ Rd: zt > γ + δ, zp ≤ γ, zq ≤ δ}, {(z1, ..., zd) ∈ Rd: zt < γ + δ, zp ≥ γ, zq ≥ δ},

{(z1, ..., zd) ∈ Rd: zt > γ + δ, zp < γ, zq < δ}, {(z1, ..., zd) ∈ Rd: zt < γ + δ, zp > γ, zq > δ},

{(z1, ..., zd) ∈ Rd: zt > γ + δ, zp ≤ γ, zq < δ}, {(z1, ..., zd) ∈ Rd: zt < γ + δ, zp ≥ γ, zq > δ},

{(z1, ..., zd) ∈ Rd: zt > γ + δ, zp < γ, zq ≤ δ}, {(z1, ..., zd) ∈ Rd: zt < γ + δ, zp > γ, zq ≥ δ},

{(z1, ..., zd) ∈ Rd: zt ≥ γ + δ, zp ≤ γ, zq < δ}, {(z1, ..., zd) ∈ Rd: zt ≤ γ + δ, zp ≥ γ, zq > δ},

{(z1, ..., zd) ∈ Rd: zt ≥ γ + δ, zp < γ, zq ≤ δ}, {(z1, ..., zd) ∈ Rd: zt ≤ γ + δ, zp > γ, zq ≥ δ},

{(z1, ..., zd) ∈ Rd: zt ≥ γ + δ, zp < γ, zq < δ}, {(z1, ..., zd) ∈ Rd: zt ≤ γ + δ, zp > γ, zq > δ}.

Then, Bc = ∪t∈T ,p∈Pt,q∈Qt,p ∪(γ,δ)∈R2 Bt,p,qγ+δ,γ,δ. In turn, assuming λ∆Fx(Bc) = 0 is equivalent

to assuming

Vol∆Fx(Bt,p,qγ+δ,γ,δ) = 0 ∀(γ, δ) ∈ R2, t ∈ T , p ∈ Pt, and q ∈ Qt,p. (A.2.7)

Therefore, it is clear that ∆F̄x can be extended to a proper CDF ∆Fx satisfying

(A.2.7) only if the increasingness condition (A.2.6) holds as equality for every pair of

d-tuples, (a1, ..., ad), (a′1, ..., a′d) in Ax,U with (a1, ..., ad) < (a′1, ..., a′d), such that the box

×dl=1[al, a′l] is contained in a box Bt,p,qγ+δ,γ,δ for some (γ, δ) ∈ R2, t ∈ T , p ∈ Pt, and

q ∈ Qt,p. Proposition A.1 proves that such a condition is also sufficient for extendibility

when combined with (A.2.4)-(A.2.6).

Proposition A.1. (Extendibility) Given U ∈ U and x ∈ X , let Ax,U ≡ ×dl=1Ax,l,U ,

where Ax,l,U is a finite subset of R̄ and contains {+∞,−∞} for each l ∈ {1, ..., d}. Let

∆F̄x : Ax,U → [0, 1] be a function satisfying (A.2.4)-(A.2.6), and

Vol∆F̄x
(×dl=1[al, a′l]) = 0, (A.2.8)

for every (a1, ..., ad), (a′1, ..., a′d) ∈ Ax,U ,

s.t. (a1, ..., ad) < (a′1, ..., a′d),

and ×dl=1 [al, a′l] ⊂ B
t,p,q
γ+δ,γ,δ for some (γ, δ) ∈ R2, t ∈ T , p ∈ Pt, and q ∈ Qt,p.

Then, there exists a proper CDF ∆Fx : R̄d → [0, 1] such that: (i) ∆F̄x can be extended
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to ∆Fx, i.e., ∆Fx(a1, ..., ad) = ∆F̄x(a1, ..., ad) for each (a1, ..., ad) ∈ Ax,U ; (ii) λ∆Fx(B) =

1. �

In addition, Lemma 2 also applies to verify if a box ×dl=1[al, a′l] is contained in a box

Bt,p,qγ+δ,γ,δ for some (γ, δ) ∈ R2, t ∈ T , p ∈ Pt, and q ∈ Qt,p

Lastly, as in Section 4.4.1, the above methodology remains valid under various classes

of nonparametric restrictions on {∆Fx}x∈X , which can be simply imposed on {∆F̄x}x∈X

as linear constraints.

A.3 Theorem 1 in Torgovitsky (2019)

In this section, we provide a formal statement of Theorem 1 in Torgovitsky (2019) within

our framework. We refer the reader to Definitions 1-5, Lemmas 1-2, and Corollary 1 in

Torgovitsky (2019), which are the other key results and definitions used by Theorem 1.

In what follows, ∆Fx|C denotes the restriction of ∆Fx to a subset, C, of its domain.

Assumption A, Torgovitsky (2019) ∆F † satisfies the following properties: for each

{∆Fx}x∈X ∈ ∆F †, it holds that

1. ∆Fx(a) = ∆Fx̃(a) ∀x, x̃ ∈ {X ∩ X †0,m0}, ∀a ∈ R̄d, ∀m0 ∈ {1, ...,M0}, where each

X †0,m0 is a known (possibly empty) subset of X .

2. ∆Fx,l(a) = ∆Fx̃,l(a) ∀x, x̃ ∈ {X ∩X †l,ml
}, ∀a ∈ R̄, ∀ml ∈ {1, ...,ML}, ∀l ∈ {1, ..., d},

where each X †l,ml
is a known (possibly empty) subset of X .

3. {∆Fx,l}x∈X ∈ ∆F †l ∀l ∈ {1, ..., d}, where ∆F †l is a known collection of families of

one-dimensional conditional CDFs.

4. ρ(U, {∆Fx}x∈X ) ≥ 0 for some known vector-valued function ρ, where the inequality

is interpreted component wise.

In Assumption A, Conditions 1 and 2 are independence restrictions on {∆Fx}x∈X and

{∆Fx,l}x∈X , respectively. Condition 3 requires {∆Fx,l}x∈X to be extendible in the sense
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described below in Theorem 1. Condition 4 allows for miscellaneous restrictions, repre-

sented here by a function ρ chosen by the researcher. Any of the Conditions 1-4 can be

made non-restrictive by using specific choices of X †0,m0 , X
†
l,ml

, ∆F †l , or ρ. The restrictions

listed in Assumption 5 of Section 4.4.1 can be written in terms of 1-4.

Condition U, Torgovitsky (2019) Suppose that ∆F † satisfies Assumption A. A

collection of sets, {Ax,U}x∈X , satisfies Condition U if the following properties hold:

1. ∀x ∈ X , Ax,U ≡ ×dl=1Ax,l,U , where Ax,l,U ⊆ R̄ is closed and such that {+∞,−∞} ⊆

Ax,l,U ∀l ∈ {1, ..., d}.

2. There exists functions κ̄ and ρ̄ such that, ∀{∆Fx}x∈X ∈ ∆F †,

κ(U,∆Fx, y) = κ̄(U,∆Fx|Ax,U
, y) ∀(x, y) ∈ X × Y0,

ρ(U, {∆Fx}x∈X ) = ρ̄(U, {∆Fx|Ax,U
}x∈X ).

3. ∀l ∈ {1, ..., d}, there exists a collection of families of conditional subsdistributions,

∆F̄ †l , such that

∆F̄ †l is extendible to ∆F †l ,

∆F †l is reducible to ∆F̄ †l ,

∀{∆F̄x,l}x∈X ∈ ∆F̄ †l , every ∆F̄x,l has common domain Ax,l,U .

4. Ax,U = Ax̃,U ∀x, x̃ ∈ {X ∩ X †0,m0} and ∀m0 ∈ {1, ...,M0}.

5. Ax,l,U = Ax̃,l,U ∀x, x̃ ∈ {X ∩ X †l,ml
}, ∀ml ∈ {1, ...,ML}, and ∀l ∈ {1, ..., d}.

Theorem 1, Torgovitsky (2019) Suppose that ∆F † can be represented as in As-

sumption A. Take any U ∈ U . Let {Ax,U}x∈X be any collection of subsets of R̄d that

satisfy Condition U. U ∈ U∗ if and only if, for each x ∈ X , there exists ∆F̄x : Ax,U → [0, 1]
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such that:

py|x = κ̄(U,∆F̄x, y) ∀(x, y) ∈ X × Y0,

∆F̄x is a d-dimensional subdistribution ∀x ∈ X ,

∆F̄x(a) = ∆F̄x̃(a) ∀x, x̃ ∈ {X ∩ X †0,m0}, ∀a ∈ Ax,U , ∀m0 ∈ {1, ...,M0},

∆F̄x,l(a) = ∆F̄x̃,l(a) ∀x, x̃ ∈ {X ∩ X †l,ml
}, ∀a ∈ Ax,l,U , ∀ml ∈ {1, ...,ML}, ∀l ∈ {1, ..., d},

{∆F̄x,l}x∈X ∈ ∆F̄ †l ∀l ∈ {1, ..., d},

ρ̄(U, {∆F̄x}x∈X ) ≥ 0.

A.4 Example of a linear program

Let r = 2 (hence, d = 3). Fix U ∈ U . Impose, for instance, Assumption 5.2. Therefore,

Ax,1,U ≡ {−Ux1, Ux1, 0,+∞,−∞},

Ax,2,U ≡ {−Ux2, Ux2, 0,+∞,−∞},

Ax,3,U ≡ {Ux2 − Ux1,−Ux2 + Ux1, 0,+∞,−∞},

for every x ∈ X . By the arguments of Sections 4.4.1, U ∈ U∗ if and only if the following

linear program admits a solution with respect to ∆F̄x : Ax,U → [0, 1] for every x ∈ X :
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p1|x = 1 + ∆F̄x(−Ux1,+∞, Ux2 − Ux1)−∆F̄x(+∞,+∞, Ux2 − Ux1)−∆F̄x(−Ux1,+∞,+∞), (A.4.1)

p2|x = ∆F̄x(+∞,+∞, Ux2 − Ux1)−∆F̄x(+∞,−Ux2, Ux2 − Ux1), (A.4.2)

p0|x = ∆F̄x(−Ux1,−Ux2,+∞), (A.4.3)

∆F̄x(−Ux1,+∞,+∞) = 1−∆F̄x(−Ux1,+∞,+∞), (A.4.4)

∆F̄x(+∞,−Ux2,+∞) = 1−∆F̄x(+∞,−Ux2,−∞), (A.4.5)

∆F̄x(+∞,+∞, Ux2 − Ux1) = 1−∆F̄x(+∞,+∞,−Ux2 + Ux1), (A.4.6)

∆F̄x(0,+∞,+∞) = 1/2, (A.4.7)

∆F̄x(+∞, 0,+∞) = 1/2, (A.4.8)

∆F̄x(+∞,+∞, 0) = 1/2, (A.4.9)

∆F̄x(−∞, a2, a3) = 0 ∀(a2, a3) ∈ Ax,2,U ×Ax,3,U , (A.4.10)

∆F̄x(a1,−∞, a3) = 0 ∀(a1, a3) ∈ Ax,1,U ×Ax,3,U , (A.4.11)

∆F̄x(a1, a2,−∞) = 0 ∀(a1, a2) ∈ Ax,1,U ×Ax,2,U , (A.4.12)

∆F̄x(+∞,+∞,+∞) = 1, (A.4.13)

Vol∆F̄x
([a1, a

′
1]× [a2, a

′
2]× [a3, a

′
3]) ≥ 0 ∀(a1, a2, a3), (a′1, a′2, a′3) ∈ Ax,U ,

s.t. (a1, a2, a3) ≤ (a′1, a′2, a′3), (A.4.14)

Vol∆F̄x
([a1, a

′
1]× [a2, a

′
2]× [a3, a

′
3]) = 0 ∀(a1, a2, a3), (a′1, a′2, a′3) ∈ Ax,U ,

s.t. (a1, a2, a3) < (a′1, a′2, a′3) and a1 > a′2 + a′3 or a′1 < a2 + a3.

(A.4.15)

In the linear program above: (A.4.1)-(A.4.3) match the model-implied conditional choice

probabilities with the empirical ones; (A.4.4)-(A.4.9) impose Assumption 5.2 on ∆F̄x;

(A.4.10)-(A.4.14) ensure that ∆F̄x can be extended to a proper CDF; (A.4.15) impose

that ∆F̄x concentrates its mass within B.
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B Proofs

B.1 Proof of Proposition 1

The proof revisits the proof of the multidimensional case of Lemma 2 of Torgovitsky

(2019) to accommodate the support restriction (10). It is organised in the following

steps. In Step 0, we report some useful definitions and results from copula theory. In

Step 1, we introduce a subcopula. In Steps 2 and 3, we extend this subcopula to a proper

copula. In Step 4, we construct a proper CDF from such a copula and show that it

satisfies (10). The proof of Proposition A.1 follows exactly the same steps, but becomes

notationally more complicated.

Step 0 In this step, we report some definitions and results that are used below. We

follow the discussion in Appendix A of Torgovitsky (2019). See Sklar (1959; 1996) and

Nelsen (2006) for more details.

Definition of subdistribution Let A ≡ ×dl=1Al, where Al ⊆ R̄ and {−∞,+∞} ⊆ Al

for each l ∈ {1, ..., d}. A d-dimensional subdistribution is a function F̄ : A → [0, 1] such

that:

1. F̄ (a1, ..., ad) = 0 for every (a1, ..., ad) ∈ A that has at least one component equal to

−∞.

2. For each l ∈ {1, ..., d}, F̄ (a1, ..., ad) = al for every (a1, ..., ad) ∈ A that has all

components equal to +∞.

3. F̄ is d-increasing. That is, VolF̄ (×dl=1[al, a′l]) ≥ 0 for every pair of d-tuples, (a1, ..., ad),

(a′1, ..., a′d) ∈ A with (a1, ..., ad) ≤ (a′1, ..., a′d).

A d-dimensional CDF is a subdistribution with domain R̄d.

Definition of subcopula Let T ≡ ×dl=1Tl, where Tl ⊆ [0, 1] and {0, 1} ⊆ Tl for each

l ∈ {1, ..., d}. A d-dimensional subcopula is a function C̄ : T → [0, 1] such that:
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1. C̄(t1, ..., td) = 0 for every (t1, ..., td) ∈ T that has at least one component equal to

0.

2. For each l ∈ {1, ..., d}, C̄(t1, ..., td) = tl for every (t1, ..., td) ∈ T that has all compo-

nents, except the l-th one, equal to 1.

3. C̄ is d-increasing. That is, VolC̄(×dl=1[tl, t′l]) ≥ 0 for every pair of d-tuples, (t1, ..., td),

(t′1, ..., t′d) ∈ T with (t1, ..., td) ≤ (t′1, ..., t′d).

A d-dimensional copula is a subcopula with domain [0, 1]d.

Sklar’s Theorem 1. Let F : R̄d → [0, 1] be a d-dimensional CDF with margins

Fl : R̄ → [0, 1] for each l ∈ {1, ..., d}. Then, there exists a d-dimensional copula C :

[0, 1]d → [0, 1] such that F (a1, ..., ad) = C(F1(a1), ..., Fd(ad)) for every (a1, ..., ad) ∈ R̄d. If

Fl is continuous on R̄ for every l ∈ {1, ..., d}, then C is unique. Otherwise, C is uniquely

determined on ×dl=1{Fl(al) : al ∈ R̄}.

2. If C : [0, 1]d → [0, 1] is a d-dimensional copula and Fl : R̄ → [0, 1] is a one-

dimensional CDF for each l ∈ {1, ..., d}, then the function F : R̄d → [0, 1] such that

F (a1, ..., ad) = C(F1(a1), ..., Fd(ad)) for every (a1, ..., ad) ∈ R̄d is a d-dimensional CDF

with margins Fl for each l ∈ {1, ..., d}.

As for Lemma 2 of Torgovitsky (2019), the proof of Proposition 1 uses the second part

of Sklar’s Theorem. Further, it uses a lemma that is part of the proof of the first part of

Sklar’s Theorem.

Sklar’s Lemma Let C̄ : T → [0, 1] be a d-dimensional copula. Then, there exists a

d-dimensional copula C : [0, 1]d → [0, 1] such that C(t1, ..., td) = C̄(t1, ..., td) for every

(t1, ..., td) ∈ T .

Step 1 In this step, we introduce a subdistribution and a subcopula that will be useful

below. Hereafter, we focus on the case where r = 2 (hence, d = 3), as considered by

Proposition 1.
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Given U ∈ U and x ∈ X , let Ax,U ≡ Ax,1,U ×Ax,2,U ×Ax,3,U , where Ax,l,U is a finite

subset of R̄ and contains {+∞,−∞} for each l ∈ {1, 2, 3}. Let ∆F̄x : Ax,U → [0, 1]3 be

a function satisfying (19)-(21) and (23). As per the definition given in Step 0, ∆F̄x is

a 3-dimensional subdistribution. For each l ∈ {1, 2, 3}, let ∆F̄x,l be the l-th margin of

∆F̄x. That is,

∆F̄x,1 : Ax,1,U → [0, 1] s.t. ∆F̄x,1(a1) ≡ ∆F̄x(a1,+∞,+∞) ∀a1 ∈ Ax,1,U ,

∆F̄x,2 : Ax,2,U → [0, 1] s.t. ∆F̄x,2(a2) ≡ ∆F̄x(+∞, a2,+∞) ∀a2 ∈ Ax,2,U ,

∆F̄x,3 : Ax,3,U → [0, 1] s.t. ∆F̄x,3(a3) ≡ ∆F̄x(+∞,+∞, a3) ∀a3 ∈ Ax,3,U .

By Lemma 1 of Torgovitsky (2019), ∆F̄x,l is itself a one-dimensional subdistribution for

each l ∈ {1, 2, 3}.

Next, define the set

T ≡ T1×T2×T3 ≡ {∆F̄x,1(a1) : a1 ∈ Ax,1,U}×{∆F̄x,2(a2) : a2 ∈ Ax,2,U}×{∆F̄x,3(a3) : a3 ∈ Ax,3,U},

and define the function

C̄ : T → [0, 1] s.t. C̄(∆F̄x,1(a1),∆F̄x,2(a2),∆F̄x,3(a3)) = ∆F̄x(a1, a2, a3) ∀(a1, a2, a3) ∈ Ax,U .

As shown by Torgovitsky (2019), C̄ is a 3-dimensional subcopula with domain T .

Step 2 In this step, we apply the one-dimensional case of Lemma 2 of Torgovitsky

(2019) to extend every marginal subdistribution ∆F̄x,l to a proper CDF.

Formally, Lemma 2 of Torgovitsky (2019) shows that, for each l ∈ {1, 2, 3}, there

exists

∆Fx,l : R̄→ [0, 1] s.t. ∆Fx,l(al) = ∆F̄x,l(al) ∀al ∈ Ax,l,U .
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Step 3 In this step, we prove that there exists a proper 3-dimensional copula C :

[0, 1]3 → [0, 1] such that:

C̄ can be extended to C, i.e., C(t) = C̄(t) for every t ∈ T , (B.1.1)

VolC(B∆Fx,1(b1),∆Fx,2(b2),∆Fx,3(b3)) = 0 ∀(b1, b2, b3) ∈ B ≡ {(b1, b2, b3) ∈ R3 : b1 = b2 + b3},

(B.1.2)

where B∆Fx,1(b1),∆Fx,2(b2),∆Fx,3(b3) is a 3-box of any of these forms:

(∆Fx,1(b1),+∞]× [−∞,∆Fx,2(b2)]× [−∞,∆Fx,3(b3)], [−∞,∆Fx,1(b1))× [∆Fx,2(b2),+∞]× [∆Fx,3(b3),+∞],

(∆Fx,1(b1) +∞]× [−∞,∆Fx,2(b2))× [−∞,∆Fx,3(b3)), [−∞,∆Fx,1(b1))× (∆Fx,2(b2),+∞]× (∆Fx,3(b3),+∞],

(∆Fx,1(b1),+∞]× [−∞,∆Fx,2(b2)]× [−∞,∆Fx,3(b3)), [−∞,∆Fx,1(b1))× [∆Fx,2(b2),+∞]× (∆Fx,3(b3),+∞],

(∆Fx,1(b1),+∞]× [−∞,∆Fx,2(b2))× [−∞,∆Fx,3(b3)], [−∞,∆Fx,1(b1))× (∆Fx,2(b2),+∞]× [∆Fx,3(b3),+∞],

[∆Fx,1(b1),+∞]× [−∞,∆Fx,2(b2)]× [−∞,∆Fx,3(b3)), [−∞,∆Fx,1(b1)]× [∆Fx,2(b2),+∞]× (∆Fx,3(b3),+∞],

[∆Fx,1(b1),+∞]× [−∞,∆Fx,2(b2))× [−∞,∆Fx,3(b3)], [−∞,∆Fx,1(b1)]× (∆Fx,2(b2),+∞]× [∆Fx,3(b3),+∞],

[∆Fx,1(b1),+∞]× [−∞,∆Fx,2(b2))× [−∞,∆Fx,3(b3)), [−∞,∆Fx,1(b1)]× (∆Fx,2(b2),+∞]× (∆Fx,3(b3),+∞].
(B.1.3)

By Sklar’s Lemma, there exists a proper 3-dimensional copula C† : [0, 1]3 → [0, 1]

such that C̄ can be extended to C†, i.e., C†(t) = C̄(t) for every t ∈ T . In particular,

C† can be constructed by multilinear interpolation, as shown by Nelsen (2006) for d = 2

and Sklar (1996) for a generic d. In what follows, we show that C† can be tweaked into

another 3-dimensional copula C : [0, 1]3 → [0, 1] such that both (B.1.1) and (B.1.2) hold.

This adjustment of C† is essentially a “volume swapping/redistributing” procedure that

appropriately introduces “holes” in C† so as to satisfy both (B.1.1) and (B.1.2).

We start with two remarks, (B.1.4) and (B.1.5). First, consider any (t1, t2, t3), (t′1, t′2, t′3) ∈

T with (t1, t2, t3) < (t′1, t′2, t′3) and take the 3-box [t1, t′1]×[t2, t′2]×[t3, t′3]. We say that such

a box is “atomic” if t1, t′1 are consecutive elements of T1, t2, t′2 are consecutive elements of

T2, and t3, t′3 are consecutive elements of T3. Let Atomic be the (finite) collection of these

atomic boxes. Let Ãtomic be the collection of every element of Atomic that is contained in

a box B∆Fx,1(b1),∆Fx,2(b2),∆Fx,3(b3) for some (b1, b2, b3) ∈ B. Let Actomic be the complement of

Ãtomic in Atomic. By continuity arguments, there is no element of Actomic that is covered
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by the union of some boxes of the form (B.1.3). That is,

@ H ∈ Actomic s.t. H ⊆ Z ≡ ∪(b1,b2,b3)∈BB∆Fx,1(b1),∆Fx,2(b2),∆Fx,3(b3).

Therefore,

H ∩Zc 6= ∅ ∀H ∈ Actomic. (B.1.4)

Second, by (23), C† is such that

VolC†([t1, t′1]× [t2, t′2]× [t3, t′3]) = 0,

for every (t1, t2, t3), (t′1, t′2, t′3) ∈ T ,

s.t. (t1, t2, t3) < (t′1, t′2, t′3),

and [t1, t′1]× [t2, t′2]× [t3, t′3] ⊂ B∆Fx,1(b1),∆Fx,2(b2),∆Fx,3(b3) for some (b1, b2, b3) ∈ B.

Therefore,

VolC†(H) = 0 ∀H ∈ Ãtomic. (B.1.5)

Next, let λC† be the probability measure associated with C†. Let λ denote the

Lebesgue measure. Define the probability measure λC such that

λC(S) =
∑

H∈Ac
tomic

λC†(S ∩H)λ(S ∩H ∩ Zc)
λ(H ∩Zc) ∀S ⊆ [0, 1]3,

where λ(H∩Zc) 6= 0 for every H ∈ Actomic by (B.1.4). The CDF associated with λC is a

3-dimensional copula C : [0, 1]3 → [0, 1].

For everyH ∈ Atomic, observe that C and C† agree on each atomic box, i.e., VolC(H) =

VolC†(H). Indeed,

∀H ∈ Actomic VolC(H) ≡ λC(H) = λC†(H)λ(H ∩Zc)
λ(H ∩Zc) = λC†(H) ≡ VolC†(H),

∀H ∈ Ãtomic VolC(H) ≡ λC(H) = 0 = VolC†(H),
(B.1.6)

where the last equality in the second line uses (B.1.5).

Given that C† is an extension of C̄ by construction and C is equal to C† on each atomic
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box as highlighted by (B.1.6), it follows that also C is an extension of C̄. Therefore, C

satisfies (B.1.1). Further,

λC(Z) =
∑

H∈Ac
tomic

λC†(Z ∩H)λ(Z ∩H ∩ Zc)
λ(H ∩Zc) =

∑
H∈Ac

tomic

λC†(Z ∩H) 0
λ(H ∩Zc) = 0.

Therefore, C satisfies (B.1.2).

Step 4 This step concludes the proof by constructing a proper d-dimensional CDF from

C.

Define the function

∆Fx : R̄d → [0, 1] s.t. ∆Fx(a1, a2, a3) = C(∆Fx,1(a1),∆Fx,2(a2),∆Fx,3(a3)) ∀(a1, a2, a3) ∈ R̄d.

By Sklar’s Theorem, ∆Fx is a d-dimensional CDF. Following the proof of Lemma 2 of

Torgovitsky (2019), ∆Fx is an extension of ∆F̄x. In fact, for every (a1, a2, a3) ∈ Ax,U ,

∆Fx(a1, a2, a3) ≡ C(∆Fx,1(a1),∆Fx,2(a2),∆Fx,3(a3)),

= C(∆F̄x,1(a1),∆F̄x,2(a2),∆F̄x,3(a3)),

= C̄(∆F̄x,1(a1),∆F̄x,2(a2),∆F̄x,3(a3)),

= ∆F̄x(a1, a2, a3).

Further, by (B.1.2), ∆Fx satisfies (22) or, equivalently, (10).

B.2 Proof of Lemma 2

Given U ∈ U and x ∈ X , let Ax,U ≡ Ax,1,U × Ax,2,U × Ax,3,U , where Ax,l,U is a finite

subset of R̄ and contains {+∞,−∞} for each l ∈ {1, 2, 3}. Take (a1, a2, a3), (a′1, a′2, a′3)

in Ax,U with (a1, a2, a3) < (a′1, a′2, a′3). Define the 3-box H ≡ [a1, a
′
1]× [a2, a

′
2]× [a3, a

′
3].

First, we show that if H ⊂ Bb1,b2,b3 for some (b1, b2, b3) ∈ B ≡ {(b1, b2, b3) ∈ R3 : b1 =

b2 + b3}, then (24) holds. For instance, suppose

Bb1,b2,b3 ≡ (b1,+∞]× [−∞, b2]× [−∞, b3].
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Since H ⊂ Bb1,b2,b3 , it holds that

b1 < a1, (B.2.1)

b2 ≥ a′2, (B.2.2)

b3 ≥ a′3. (B.2.3)

By (B.2.2) and (B.2.3), it holds that b1 ≥ a′2 + a′3. By combining this with (B.2.1), it

holds that a′2 + a′3 ≤ b1 < a1. Therefore, (24) is verified because a1 > a′2 + a′3. As another

example, suppose

Bb1,b2,b3 ≡ [−∞, b1]× (b2,+∞]× [b3,+∞].

Since H ⊂ Bb1,b2,b3 , it holds that

b1 > a′1, (B.2.4)

b2 < a2, (B.2.5)

b3 ≤ a3. (B.2.6)

By (B.2.5) and (B.2.6), it holds that b1 < a2 + a3. By combining this with (B.2.4), it

holds that a′1 < b1 < a2 + a3. herefore, (24) is verified because a′1 < a2 + a3. We can

proceed similarly for the other forms of Bb1,b2,b3 .

Second, we show that if (24) holds, then H ⊂ Bb1,b2,b3 for some (b1, b2, b3) ∈ B. For

instance, suppose that a1 > a′2 + a′3. Consider the box

Bb1,b2,b3 ≡ (b1,∞]× [−∞, b2]× [−∞, b3],

with b2 ≡ a′2 and b3 ≡ a′3. Observe that H ⊂ Bb1,b2,b3 . As another example, suppose that

a′1 < a2 + a3. Consider the box

Bb1,b2,b3 ≡ [−∞, b1]× (b2,+∞]× [b3,+∞],

with b2 ≡ a2 and b3 ≡ a3. Observe that H ⊂ Bb1,b2,b3 . We can obtain similar conclusions
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by using the other forms of Bb1,b2,b3 .

B.3 Proof of Proposition 2

The proof is organised in the following steps. In Step 0, we recall the notation introduced

in Section 4.4.2 and introduce some new one. In Step 1, we present the notion of an

equivalence class for every U ∈ U and prove that if Ũ , Û ∈ U belong to the same

equivalence class, then they induce the same set of solutions of the linear program. In

Step 2, we show how such equivalence classes are related to the notion of π-ordering used

in Proposition 2. In Step 3, we conclude. Remark B.1 explains how Proposition 2 is used

in practice.

For simplicity of exposition, we provide the proof of Proposition 2 for the case r = 2

(hence, d = 3) and Assumption 5.2. The proof for a generic case follows exactly the

same steps, but becomes notationally more complicated. In the case considered, we have

that Ax,1,U ≡ {−Ux1, Ux1, 0,+∞,−∞}, Ax,2,U ≡ {−Ux2, Ux2, 0,+∞,−∞}, and Ax,3,U ≡

{Ux2 − Ux1,−Ux2 + Ux1, 0,+∞,−∞}, for every x ∈ X and U ∈ U . Therefore, for any

given U ∈ U and by following Section 4.4.1, U ∈ U∗ if and only if the linear program

(A.4.1)-(A.4.15) has a solution with respect to ∆F̄x : Ax,U → [0, 1] for each x ∈ X .

Step 0 In this step, we recall the notation introduced in Section 4.4.2 and introduce

some new ones.

Fix U ∈ U and x ∈ X . In the example considered, Ax,l,U has cardinality 5 for

every l ∈ {1, 2, 3}. Ax,U has cardinality 53. The image set of ∆F̄x, which we denote by

∆F̄x(Ax,U), has cardinality 53. Importantly, in all such sets, repetitions of elements are

kept.

For every l ∈ {1, 2, 3}, fix an order of the 5 elements in Ax,l,U and list them in a 5× 1
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vector, αx,l,U . For instance,

αx,1,U ≡ (−Ux1, Ux1, 0,+∞,−∞)>,

αx,2,U ≡ (−Ux2, Ux2, 0,+∞,−∞)>,

αx,3,U ≡ (Ux2 − Ux1,−Ux2 + Ux1, 0,+∞,−∞)>.

Similarly, fix an order of the 53 3-tuples in AxU and list them in a 53 × 3 matrix, αx,U .

Using the same order, list the 53 elements of ∆F̄x(Ax,U) in a 53 × 1 vector, fx,U . Lastly,

construct a (5 + 52)× 1 vector, βx,U , listing αx,1,U and the sum of every possible element

of αx,2,U with every possible element of αx,3,U .

Define the functions ι : ∆F̄x(Ax,U) → {1, 2, ..., 53}, where ι(k) is the row index of

scalar k in the vector fx,U , and τ : Ax,U → {1, 2, ..., 53}, where τ(k) is the row index of

3-tuple k in the matrix αx,U . Define π1 and π2 as in Section 4.4.2.

Finally, by using the formula of Vol∆F̄x
, it is useful to write (A.4.14) and (A.4.15) in

the following more explicit way:

−∆F̄x(a1, a2, a3) + ∆F̄x(a′1, a2, a3) + ∆F̄x(a1, a
′
2, a3)−∆F̄x(a′1, a′2, a3)

+ ∆F̄x(a1, a2, a
′
3)−∆F̄x(a′1, a2, a

′
3)−∆F̄x(a1, a

′
2, a
′
3) + ∆F̄x(a′1, a′2, a′3) ≥ 0,

∀(a1, a2, a3), (a′1, a′2, a′3) ∈ Ax,U s.t. (a1, a2, a3) ≤ (a′1, a′2, a′3), (B.3.1)

−∆F̄x(a1, a2, a3) + ∆F̄x(a′1, a2, a3) + ∆F̄x(a1, a
′
2, a3)−∆F̄x(a′1, a′2, a3)

+ ∆F̄x(a1, a2, a
′
3)−∆F̄x(a′1, a2, a

′
3)−∆F̄x(a1, a

′
2, a
′
3) + ∆F̄x(a′1, a′2, a′3) = 0,

∀(a1, a2, a3), (a′1, a′2, a′3) ∈ Ax,U s.t. (a1, a2, a3) < (a′1, a′2, a′3) and a1 > a′2 + a′3 or a′1 < a2 + a3.

(B.3.2)

Step 1 In this step, we present the notion of an equivalence class for every U ∈ U and

prove that if Ũ , Û ∈ U belong to the same equivalence class, then they induce the same

set of solutions of the linear program (A.4.1)-(A.4.15). We add superscripts Ũ or Û to the

function ∆F̄x to clearly distinguish between a potential solution to the linear program

for Ũ and a potential solution to the linear program for Û .
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Let x ∈ X and Ũ , Û ∈ U . Define

Cx(Ũ) ≡
{
{(t̃, q̃, r̃), (t̃′, q̃′, r̃′)} : (t̃, q̃, r̃), (t̃′, q̃′, r̃′) ∈ Ax,Ũ , (t̃, q̃, r̃) ≤ (t̃′, q̃′, r̃′)

}
,

Dx(Ũ) ≡
{
{(t̃, q̃, r̃), (t̃′, q̃′, r̃′)} : (t̃, q̃, r̃), (t̃′, q̃′, r̃′) ∈ Ax,Ũ ,

(t̃, q̃, r̃) < (t̃′, q̃′, r̃′), and t̃ > q̃′ + r̃′ or t̃′ < q̃ + r̃
}
,

Cx(Û) ≡
{
{(t̂, q̂, r̂), (t̂′, q̂′, r̂′)} : (t̂, q̂, r̂), (t̂′, q̂′, r̂′) ∈ Ax,Û , (t̂, q̂, r̂) ≤ (t̂′, q̂′, r̂′)

}
,

Dx(Û) ≡
{
{(t̂, q̂, r̂), (t̂′, q̂′, r̂′)} : (t̂, q̂, r̂), (t̂′, q̂′, r̂′) ∈ Ax,Û ,

(t̂, q̂, r̂) < (t̂′, q̂′, r̂′), and t̂ > q̂′ + r̂′ or t̂′ < q̂ + r̂
}
.

Definition B.1. (Equivalence class) Let Ũ , Û ∈ U . Û belongs to the equivalence class

of Ũ at x ∈ X if the following conditions hold:

1. For every {(t̃, q̃, r̃), (t̃′, q̃′, r̃′)} ∈ Cx(Ũ), there exists {(t̂, q̂, r̂), (t̂′, q̂′, r̂′)} ∈ Cx(Û) such

that
ι(∆F̄ Ũ

x (t̃, q̃, r̃)) = ι(∆F̄ Û
x (t̂, q̂, r̂)),

ι(∆F̄ Ũ
x (t̃′, q̃, r̃)) = ι(∆F̄ Û

x (t̂′, q̂, r̂)),

ι(∆F̄ Ũ
x (t̃, q̃′, r̃)) = ι(∆F̄ Û

x (t̂, q̂′, r̂)),

ι(∆F̄ Ũ
x (t̃′, q̃′, r̃)) = ι(∆F̄ Û

x (t̂′, q̂′, r̂)),

ι(∆F̄ Ũ
x (t̃, q̃, r̃′)) = ι(∆F̄ Û

x (t̂, q̂, r̂′)),

ι(∆F̄ Ũ
x (t̃′, q̃, r̃′)) = ι(∆F̄ Û

x (t̂′, q̂, r̂′)),

ι(∆F̄ Ũ
x (t̃, q̃′, r̃′)) = ι(∆F̄ Û

x (t̂, q̂′, r̂′)),

ι(∆F̄ Ũ
x (t̃′, q̃′, r̃′)) = ι(∆F̄ Û

x (t̂′, q̂′, r̂′)),

(B.3.3)

and vice-versa.

2. For every {(t̃, q̃, r̃), (t̃′, q̃′, r̃′)} ∈ Dx(Ũ), there exists {(t̂, q̂, r̂), (t̂′, q̂′, r̂′)} ∈ Dx(Û)

54



such that
ι(∆F̄ Ũ

x (t̃, q̃, r̃)) = ι(∆F̄ Û
x (t̂, q̂, r̂)),

ι(∆F̄ Ũ
x (t̃′, q̃, r̃)) = ι(∆F̄ Û

x (t̂′, q̂, r̂)),

ι(∆F̄ Ũ
x (t̃, q̃′, r̃)) = ι(∆F̄ Û

x (t̂, q̂′, r̂)),

ι(∆F̄ Ũ
x (t̃′, q̃′, r̃)) = ι(∆F̄ Û

x (t̂′, q̂′, r̂)),

ι(∆F̄ Ũ
x (t̃, q̃, r̃′)) = ι(∆F̄ Û

x (t̂, q̂, r̂′)),

ι(∆F̄ Ũ
x (t̃′, q̃, r̃′)) = ι(∆F̄ Û

x (t̂′, q̂, r̂′)),

ι(∆F̄ Ũ
x (t̃, q̃′, r̃′)) = ι(∆F̄ Û

x (t̂, q̂′, r̂′)),

ι(∆F̄ Ũ
x (t̃′, q̃′, r̃′)) = ι(∆F̄ Û

x (t̂′, q̂′, r̂′)),

(B.3.4)

and vice-versa.

3. π2(αx,l,Ũ) = π2(αx,l,Û) for every l ∈ {1, 2, 3}.

Let [Ũ ]x denote the equivalence class of Ũ at x ∈ X . �

Lemma B.1. Let x ∈ X and Ũ , Û ∈ U . If Û ∈ [Ũ ]x, then Ũ and Û induce the same set

of solutions of the linear program (A.4.1)-(A.4.15). �

Proof. Let x ∈ X and Ũ , Û ∈ U . As discussed in Section 4.4.2, the only pieces of the

linear program (A.4.1)-(A.4.15) that might induce different sets of solutions for different

values of U are (A.4.14) and (A.4.15). Therefore, if (A.4.14) and (A.4.15) are identical

under Ũ and Û , then Ũ and Û induce the same set of solutions of the linear program

(A.4.1)-(A.4.15). In what follows, we show that if Û ∈ [Ũ ]x, then (A.4.14) and (A.4.15)

are identical under Ũ and Û . To do so, we use the equivalent representations of (A.4.14)

and (A.4.15), which are (B.3.1) and (B.3.2), respectively.

Suppose Condition 3 of Definition B.1 holds. Take any {(t̃, q̃, r̃), (t̃′, q̃′, r̃′)} ∈ Cx(Ũ)

and a corresponding {(t̂, q̂, r̂), (t̂′, q̂′, r̂′)} ∈ Cx(Û) such that (B.3.3) holds. Write constraint

(B.3.1) at {Ũ , (t̃, q̃, r̃), (t̃′, q̃′, r̃′)}, where the terms of the form ∆F̄ Ũ
x (·) are unknowns to

be determined by solving the linear program. Relabel them as θι(∆F̄ Ũ
x (·)). Then, restate
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(B.3.1) as

− θι(∆F̄ Ũ
x (t̃,q̃,r̃)) + θι(∆F̄ Ũ

x (t̃′,q̃,r̃)) + θι(∆F̄ Ũ
x (t̃,q̃′,r̃)) − θι(∆F̄ Ũ

x (t̃′,q̃′,r̃))

+ θι(∆F̄ Ũ
x (t̃,q̃,r̃′)) − θι(∆F̄ Ũ

x (t̃′,q̃,r̃′)) − θι(∆F̄ Ũ
x (t̃,q̃′,r̃′)) + θι(∆F̄ Ũ

x (t̃′,q̃′,r̃′)) ≥ 0,
(B.3.5)

where θ is a 53 × 1 vector of unknowns and θh denotes the h-th element of θ. Do the

same for Û ,

− θι(∆F̄ Û
x (t̂,q̂,r̂)) + θι(∆F̄ Û

x (t̂′,q̂,r̂)) + θι(∆F̄ Û
x (t̂,q̂′,r̂)) − θι(∆F̄ Û

x (t̂′,q̂′,r̂))

+ θι(∆F̄ Û
x (t̂,q̂,r̂′)) − θι(∆F̄ Û

x (t̂′,q̂,r̂′)) − θι(∆F̄ Û
x (t̂,q̂′,r̂′)) + θι(∆F̄ Û

x (t̂′,q̂′,r̂′)) ≥ 0.
(B.3.6)

By (B.3.3), the subscripts of θ in (B.3.5) and (B.3.6) are identical. Further, observe that

if some or all of the components of (t̃, q̃, r̃) are equal to (t̃′, q̃′, r̃′), then (B.3.5) becomes

an equality. Condition 3 of Definition B.1 ensures that if some or all of the components

of (t̃, q̃, r̃) are equal to (t̃′, q̃′, r̃′), then the same holds for (t̂, q̂, r̂), (t̂′, q̂′, r̂′). Therefore,

(B.3.5) and (B.3.6) are identical. In turn, if Conditions 1 and 3 of Definition B.1 hold,

then (B.3.1) is identical under Ũ and Û .

Next, take any {(t̃, q̃, r̃), (t̃′, q̃′, r̃′)} ∈ Dx(Ũ) and a corresponding {(t̂, q̂, r̂), (t̂′, q̂′, r̂′)} ∈

Dx(Û) such that (B.3.4) holds. Analogously to above, write constraint (B.3.2) at

{Ũ , (t̃, q̃, r̃), (t̃′, q̃′, r̃′)} as

− θι(∆F̄ Ũ
x (t̃,q̃,r̃)) + θι(∆F̄ Ũ

x (t̃′,q̃,r̃)) + θι(∆F̄ Ũ
x (t̃,q̃′,r̃)) − θι(∆F̄ Ũ

x (t̃′,q̃′,r̃))

+ θι(∆F̄ Ũ
x (t̃,q̃,r̃′)) − θι(∆F̄ Ũ

x (t̃′,q̃,r̃′)) − θι(∆F̄ Ũ
x (t̃,q̃′,r̃′)) + θι(∆F̄ Ũ

x (t̃′,q̃′,r̃′)) = 0.
(B.3.7)

Do the same for Û ,

− θι(∆F̄ Û
x (t̂,q̂,r̂)) + θι(∆F̄ Û

x (t̂′,q̂,r̂)) + θι(∆F̄ Û
x (t̂,q̂′,r̂)) − θι(∆F̄ Û

x (t̂′,q̂′,r̂))

+ θι(∆F̄ Û
x (t̂,q̂,r̂′)) − θι(∆F̄ Û

x (t̂′,q̂,r̂′)) − θι(∆F̄ Û
x (t̂,q̂′,r̂′)) + θι(∆F̄ Û

x (t̂′,q̂′,r̂′)) = 0.
(B.3.8)

By (B.3.4), the subscripts of θ in (B.3.7) and (B.3.8) are identical. Therefore, (B.3.7)

and (B.3.8) are identical. In turn, if Condition 2 of Definition B.1 holds, then (B.3.2) is

identical under Ũ and Û .
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Step 2 In this step, we show how the equivalence classes of Step 1 are related to the

notion of π-ordering used in Proposition 2.

Lemma B.2. Let x ∈ X and Ũ , Û ∈ U . If

i. π1(αx,l,Ũ) = π1(αx,l,Û) for every l ∈ {1, 2, 3},

ii. π2(αx,l,Ũ) = π2(αx,l,Û) for every l ∈ {1, 2, 3},

iii. π1(βx,Ũ) = π2(βx,Û),

iv. π2(βx,Ũ) = π2(βx,Û),

then Û ∈ [Ũ ]x. �

Proof. Condition ii of Lemma B.2 coincides with Condition 3 of Definition B.1.

Further, Condition i of Lemma B.2 implies Condition 1 of Definition B.1. Indeed,

let x ∈ X . Take Ũ , Û ∈ U such that Condition i holds. Take any {(t̃, q̃, r̃), (t̃′, q̃′, r̃′)} ∈

Cx(Ũ). Pick (t̂, q̂, r̂), (t̂′, q̂′, r̂′) ∈ Ax,Û such that τ((t̂, q̂, r̂)) = τ((t̃, q̃, r̃)) and τ((t̂′, q̂′, r̂′)) =

τ((t̃′, q̃′, r̃′)). By Condition i, it should be that {(t̂, q̂, r̂), (t̂′, q̂′, r̂′)} ∈ Cx(Û). Moreover, it

holds that
τ((t̃′, q̃, r̃)) = τ((t̂′, q̂, r̂)),

τ((t̃, q̃′, r̃)) = τ((t̂, q̂′, r̂)),

τ((t̃′, q̃′, r̃)) = τ((t̂′, q̂′, r̂)),

τ((t̃, q̃, r̃′)) = τ((t̂, q̂, r̂′)),

τ((t̃′, q̃, r̃′)) = τ((t̂′, q̂, r̂′)),

τ((t̃, q̃′, r̃′)) = τ((t̂, q̂′, r̂′)).

Therefore, (B.3.3) holds.

Lastly, Conditions i-iv of Lemma B.2 imply Condition 2 of Definition B.1. Indeed, let

x ∈ X . Take Ũ , Û ∈ U such that Conditions i-iv hold. Take any {(t̃, q̃, r̃), (t̃′, q̃′, r̃′)} ∈

Dx(Ũ). Pick (t̂, q̂, r̂), (t̂′, q̂′, r̂′) ∈ Ax,Û such that τ((t̂, q̂, r̂)) = τ((t̃, q̃, r̃)) and τ((t̂′, q̂′, r̂′)) =
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τ((t̃′, q̃′, r̃′)). By Conditions i-iv, it should be that {(t̂, q̂, r̂), (t̂′, q̂′, r̂′)} ∈ Dx(Û). More-

over, it holds that
τ((t̃′, q̃, r̃)) = τ((t̂′, q̂, r̂)),

τ((t̃, q̃′, r̃)) = τ((t̂, q̂′, r̂)),

τ((t̃′, q̃′, r̃)) = τ((t̂′, q̂′, r̂)),

τ((t̃, q̃, r̃′)) = τ((t̂, q̂, r̂′)),

τ((t̃′, q̃, r̃′)) = τ((t̂′, q̂, r̂′)),

τ((t̃, q̃′, r̃′)) = τ((t̂, q̂′, r̂′)).

Therefore, (B.3.4) holds.

Step 3 In this step, we combine Steps 1 and 2 and conclude. Let Ũ , Û ∈ U . Lemmas

B.1 and B.2 imply that if if Ũ and Û have the same π-ordering, then either both, U and

Ũ , lie inside or outside the identified set, U∗.

Remark B.1. (Proposition 2 in practice) In practice, we use Proposition 2 as follows.

First, we generate a grid of points covering U as precisely as possible, depending on the

available computational resources. We store the grid points in a matrix called grid. The

number of columns of grid is equal to r + 1. The number of rows of grid is equal to

the number of values of U considered. Second, we find the π-ordering of each row of

grid. Third, we collect the rows of grid producing the same π-ordering into the same

equivalence class. In Matlab, steps 2 and 3 can be straightforwardly implemented by

applying the pre-built function sort, without the necessity of solving an optimisation

routine. Fourth, we select a representative grid point from each equivalence class. Fifth,

for each representative grid point, we solve the linear program of Section 4.4.1. If the

linear program has a solution, then all the rows of grid belonging to the representative

grid point’s equivalence class are saved. Otherwise, all such rows are discarded. The

collection of the rows of grid that are saved across different equivalence classes represents

U∗.

Note that the overall procedure can be easily parallelised. For instance, if Assumption
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5.1 is not imposed, then steps 1-5 are entirely separable across x ∈ X , which substantially

reduces the computational burden. Further, note that if ∆F † = ∆F , then there is only

one equivalence class. Instead, if ∆F † ⊂ ∆F , then the number of equivalence classes

increases with r and the amount of nonparametric restrictions imposed on {∆Fx}x∈X .

However, providing a general formula for the number of equivalence classes does not seem

possible to us. Lastly, observe that if grid does not granularly span U , then one may

obtain an imprecise approximation of U∗, due to the risk of leaving unexplored some

regions of the parameter space or neglecting potential disconnections inside the identified

set. This is a well-known issue in the partial identification literature, where “gridding” is

still the most popular approach to construct the sharp identified set for high-dimensional

parameters. We discuss how we have carefully addressed this issue in Appendix C. �
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C Simulations

In this section, we implement the methodology described in Section 4.4 using simulated

data. Given Assumption 5, we consider the six specifications of distributional assumptions

summarised in Table C.1. In order to ensure that the volume of our identified sets

is not improperly inflated relative to the point identified case, we impose some scale

normalisations. In particular, for every (x, y) ∈ X × Y , let

ULogit
xy ≡ log py|x

p0|x
, V Logit

xy ≡ log px|y
p0|y

, and ΦLogit
xy ≡ ULogit

xy + V Logit
xy ,

be the values of Uxy, Vxy, and Φxy, respectively, that are identified under the Logit

assumption (Choo and Siow, 2006). When Assumption 5.1 is not imposed, we divide

each element of Ux· ≡ (Uxy : y ∈ Y0) by Ux1/U
Logit
x1 for every x ∈ X and each element

of V·y ≡ (Vxy : x ∈ X0) by V1y/V
Logit

1y for every y ∈ Y . Hence, the scale normalisations

are Ux1 ≡ ULogit
x1 for every x ∈ X and V1y ≡ V Logit

1y for every y ∈ Y . Instead, when

Assumption 5.1 is imposed, we divide each element of U by U11/U
Logit
11 and each element

of V by V11/V
Logit

11 . Hence, the scale normalisations are U11 ≡ ULogit
11 and V11 ≡ V Logit

11 .

Note that, when Assumption 5.1 is not imposed, we include |X |+|Y| scale normalisations.

This is because determining whether U (resp. V ) belongs to U∗ (resp. V∗) requires

recovering |X | (resp. |Y|) CDFs. When Assumption 5.1 is imposed, we include one scale

normalisation on each side. This is because determining whether U (resp. V ) belongs to

U∗ (resp. V∗) requires recovering one CDF.

Observe that Assumptions 5.1-5.4 are always satisfied under the Logit specification.

Therefore, due to our choice of scale normalisations, ULogit = (ULogit
xy : (x, y) ∈ X × Y0),

V Logit = (V Logit
xy : (x, y) ∈ X0 × Y), and ΦLogit = (ΦLogit

xy : (x, y) ∈ X × Y) fall inside U∗,

V∗, and Θ∗, respectively, for each of specifications [1]-[6].

As a first exercise, we fix X = Y ≡ {1, 2} and investigate the identifying power of the

1to1TU model for each of specifications [1]-[6]. We simulate the data under three DGPs:

(DGP1) {εiy}y∈Y0 are i.i.d., where εiy is distributed independently from Xi, as standard

Extreme Value Type I. Analogous assumptions are imposed on the women’s side.
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{px}x∈X and {py}y∈Y are set equal to {p1950
x }x∈X and {p1950

y }y∈Y from Section 5.29

Φxy is set equal to log p1950
y|x /p

1950
0|x + log p1950

x|y /p
1950
0|y for each (x, y) ∈ X × Y . Hence,

by construction, the simulated match probabilities are almost equal (not exactly

equal, due to simulation error) to p1950
y|x and p1950

x|y for every (x, y) ∈ Z.

(DGP2) εi is distributed independently ofXi as a normal mixture, with 2 equally weighted

components. Every mixture component has mean zero. The two mixture compo-

nents have the following variance-covariance matrices:

Σ =


1 1 1

1 1 1

1 1 1

 and Σ =


50 −10 −10

−10 50 −10

−10 −10 50

 .

Analogous assumptions are imposed on {Gy}y∈Y . {px}x∈X and {py}y∈Y are set equal

to {p1940
x }x∈X and {p1940

y }y∈Y from Section 5. Φxy is calibrated so that the simulated

match probabilities are equal to p1940
y|x and p1940

x|y for every (x, y) ∈ Z.30

(DGP3) εi is distributed as a normal mixture, with 2 equally weighted components.

When Xi = 1, the first and second mixture components have the following means

and variance-covariance matrices:

µ =

2

2

 ,Σ =


1 1 1

1 1 1

1 1 1

 and µ =

0

0

 ,Σ =


50 −20 −20

−20 50 −20

−20 −20 50

 .

When Xi = 2, the first and second mixture components have the following means
29Since r = 2 in this simulation, we regroup the 5 education types in 2 categories: {HSD, HSG} and

{SC, CG, CG+}.
30In order to calibrate Φxy, we use Proposition 2 in GS showing that

Φxy =
∂F ∗x ({p1940

y|x }y∈Y0)
∂p1940

y|x
+
∂G∗y({p1940

x|y }x∈X0)
∂p1940

y|x
,

where F ∗x ({p1940
y|x }y∈Y0) is the Legendre-Fenchel transform of Fx evaluated at {p1940

y|x }y∈Y0 and
G∗y({p1940

x|y }x∈X0) is the Legendre-Fenchel transform of Gy evaluated at {p1940
x|y }x∈X0 . We compute the

Legendre-Fenchel transforms by simulation and the derivatives numerically.
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and variance-covariance matrices:

µ =

0

0

 ,Σ =


1 1 1

1 1 1

1 1 1

 and µ =

4

4

 ,Σ =


40 0 0

0 40 0

0 0 40

 .

Analogous assumptions are imposed on {Gy}y∈Y . {px}x∈X and {py}y∈Y are set equal

to {p1967
x }x∈X and {p1967

y }y∈Y from Section 5. Φxy is calibrated so that the simulated

match probabilities are equal to p1967
y|x and p1967

x|y for every (x, y) ∈ Z.

In Table C.2, we report the true values and the identified sets of U , V , Φ, D22,11(Φ),

C21(U), and C21(V ). Moreover, we report ULogit, V Logit, ΦLogit, D22,11(ΦLogit), C21(ULogit),

and C21(V Logit). We distinguish between the case when Assumption 5.1 is imposed (“w/

5.1”) and the case when Assumption 5.1 is not imposed (“w/o 5.1”) because, as high-

lighted earlier, these two cases entail different scale normalisations.31 Note that, in DGP3,

we do not consider specifications [1] and [2] of Table C.1 because Assumption 5.1 does

not hold.

We highlight a few facts from Table C.2. First, in each of the three DGPs considered,

specifications [5] and [6] deliver the tightest bounds. This is consistent with the fact that

specifications [5] and [6] impose the strongest restrictions on the unobserved heterogeneity

among the six specifications considered. Second, in none of the cases considered, the

identified set of D22,11(Φ) is bounded on both sides. This is because there is always at

least one component of Φ whose identified set is unbounded on at least one side. In

particular, the upper bound for D22,11(Φ) is always infinity. Third, in DGP1 and DGP2,

the sign of D22,11(Φ) is recovered under specifications [5] and [6]. As discussed in Section

4.1, detecting the sign of D22,11(Φ) is important in itself because it reveals the direction of

assortativeness. Graham (2011; 2013b) shows that if the taste shocks are i.i.d., then the

sign of D22,11(Φ) is identified. Our simulations highlight that i.i.d.-ness is not a necessary

condition. Fourth, the identified sets of C21(U) and C21(V ) are always unbounded on

at least one side, except for C21(U) in DGP3 under specifications [5] and [6]. Such
31Consequently, the corresponding identified sets are not necessarily nested.
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unboundedness implies that the identified set of the marital education premium will also

be unbounded on at least one side (see Equation (2)). Further, the signs of C21(U) and

C21(V ) are never identified. Lastly, in DGP2 and DGP3, the assumption that the taste

shocks are i.i.d. standard Extreme Value Type I is misspecified. This implies that ULogit,

V Logit, ΦLogit, D22,11(ΦLogit), C21(ULogit), and C21(V Logit) are different, sometimes quite

significantly, from the true values of U , V , Φ, D22,11(Φ), C21(U), and C21(V ), respectively.

As a second exercise, we investigate how the identifying power of the 1to1TU model

varies as the number of types, r, increases. In particular, we simulate the data under three

DGPs, featuring r = 3, r = 4, and r = 5 for both sides of the market, respectively. In

each DGP, {εiy}y∈Y0 are i.i.d., where εiy is distributed independently from Xi, as standard

Extreme Value Type I. Analogous assumptions are imposed on {Gy}y∈Y . {px}x∈X and

{py}y∈Y are set equal to {p1950
x }x∈X and {p1950

y }y∈Y from Section 5.32 Φxy is set equal to

log p1950
y|x /p

1950
0|x + log p1950

x|y /p
1950
0|y for each (x, y) ∈ X × Y , as in DGP1 above.33 In Tables

C.3-C.8, we report the true values and the identified sets of U , V , Φ, D(Φ), C(U), and

C(V ), under the three DGPs considered and for specifications [5] and [6] of Table C.1.

Overall, the findings of Table C.2 are confirmed. In particular, note that in none of the

cases considered, the identified sets of D(Φ), C(U), and C(V ) are bounded on both sides.

Further, the ability of the model to recover the sign of D(Φ), C(U), and C(V ) seems to

deteriorate as r increases.

We conclude the section by discussing how we have obtained the grids of parameter

values to be evaluated by the linear programs. For instance, consider the construction

of the identified set of U in the second simulation exercise with r = 4. Note that we

can construct the identified set of Ux· ≡ (Uxy : y ∈ Y0) separately across x ∈ X . Also

observe that, for any given x ∈ X , Ux0 = 0 (location normalisation) and Ux1 = ULogit
x1

(scale normalisation). Therefore, for any given x ∈ X , we have to span a 3-dimensional

parameter space. For each j ∈ {500, 300, 100, 50, 20, 10}, we construct a 3-dimensional
32When r = 3, we regroup the 5 education types in 3 categories: {HSD}, {HSG}, and {SC, CG,

CG+}. When r = 4, we regroup the 5 education types in 4 categories: {HSD}, {HSG}, {SC}, and {CG,
CG+}.

33Note that we simulate new data for each r = 3, 4, 5. This is why, for instance, ULogit
11 is not exactly

equal across Tables C.3-C.8.
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grid by evenly spacing 100 points between ULogit
xy − j and ULogit

xy + j in each dimension y ∈

{2, 3, 4}. Such a grid has 106 rows, which can be feasibly evaluated by combining the ex-

ante partitioning approach of Proposition 2 (as discussed in Remark B.1), parallelisation,

and cluster facilities. We thus obtain six approximations of the identified set of Ux·, one

from each of the six grids evaluated. Next, for every pair of elements of Ux·, we plot the

two-dimensional projections of the six approximated identified sets in one graph. These

graphs allow us to accurately determine the boundaries of the identified set of Ux· and

make sure that there are no neglected sources of non-sharpness.34 Importantly, neither in

the simulations nor empirical application we have found a case featuring a disconnected

two-dimensional projection. This facilitates the computation of the identified sets of

functions of U, V . As an example, Figures C.1 (A) and (B) display two two-dimensional

projections of the identified set of U1· ≡ (U1y : y ∈ Y0). Each figure shows the projections

of the six grids of points that are evaluated (in different shades of grey) and the projections

of the six approximations of the identified set of U1· (in blue). By construction, we see

a dense cloud of points around the Logit estimates, which gradually becomes sparser as

we move towards the boundaries of the parameter space.

34In particular, we say that the lower (upper) bound of the identified set of Uxy is equal to −∞ (+∞)
if Uxy can take value ULogit

xy − 500 (ULogit
xy + 500).
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D Additional details on the empirical application

Figures D.1 and D.2 represent the men and women’s contribution toD(Φ). They highlight

that the unboundedness of D22,11(Φ) (above) and D44,33(Φ) (above and below) is mostly

driven by the limited empirical content of the 1to1TU model on the women’s side.
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Data Availability

Code replicating the tables and figures in this article can be found in Gualdani and Sinha

(2022) in the Harvard Dataverse, https://dataverse.harvard.edu/dataset.xhtml?

persistentId=doi:10.7910/DVN/ULGXVU.
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Assumptions
on unobservables Wife → 1 2 3 4

Husband ↓ Early cohorts
Logit

1
−2.06 −3.07 −5.22 −8.55

[A] −2.06 [−3.07,+∞) (−∞,+∞) (−∞,+∞)
[B] −2.06 [−3.07,+∞) (−∞,+∞) (−∞,+∞)

Logit
2

−3.73 −1.35 −3.4 −5.76
[A] [−5.3,−3.48] [−3.79,+∞) (−∞,+∞) (−∞,+∞)
[B] [−5.3,−3.48] [−3.63,+∞) (−∞,+∞) (−∞,+∞)

Logit
3

−5.29 −2.47 −2.12 −4.32
[A] (−∞,−4.69] (−∞,+∞) (−∞,+∞) (−∞,+∞)
[B] (−∞,−4.69] (−∞,+∞) (−∞,+∞) (−∞,+∞)

Logit
4

-8.01 -4 -2.46 -1.11
[A] (−∞,−6.59] (−∞,+∞) (−∞,+∞) [−5.74,+∞)
[B] (−∞,−6.59] (−∞,+∞) (−∞,+∞) [−4.4,+∞)

Husband ↓ Late cohorts
Logit

1
−3.34 −4.41 −5.61 −8.75

[A] −3.34 [−4.56,−2.29] (−∞,−4.6] (−∞,−6.79]
[B] −3.34 [−4.56,−3.65] (−∞,−5.05] (−∞,−7.26]

Logit
2

−5.1 −2.14 −3.18 −4.95
[A] (−∞,−5.1] [−5.02,+∞) [−11.58, 1.38] [−13.46, 2.67]
[B] (−∞,−5.1] [−5.02,+∞) [−11.58, 1.38] [−13.46, 2.54]

Logit
3

−6.98 −3.61 −2.3 −3.52
[A] (−∞,−6.27] (−∞,+∞) [−5.48,+∞) (−∞,+∞)
[B] (−∞,−6.27] (−∞,+∞) [−5.48,+∞) (−∞,+∞)

Logit
4

−9.13 −5.52 −3.49 −1.07
[A] (−∞,−7.92] (−∞,+∞) (−∞,+∞) [−6.16,+∞)
[B] (−∞,−7.92] (−∞,+∞) (−∞,+∞) [−2.16,+∞)

Husband ↓ Change
Logit

1
−1.28 −1.34 −0.39 −0.2

[A] −1.28 (−∞,−0.66] (−∞,+∞) (−∞,+∞)
[B] −1.28 (−∞,−0.7] (−∞,+∞) (−∞,+∞)

Logit
2

−1.37 −0.78 0.22 0.81
[A] (−∞, 0.1] (−∞,+∞) (−∞,+∞) (−∞,+∞)
[B] (−∞, 0.1] (−∞,+∞) (−∞,+∞) (−∞,+∞)

Logit
3

−1.69 −1.14 −0.18 0.8
[A] (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[B] (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Logit

4

−1.12 −1.52 −1.03 0.04
[A] (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[B] (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Table 1: The first section of the table reports the projections of the estimated identified sets of Φ,
averaged early cohorts, under specifications [A] and [B]. The second section of the table reports the
projections of the estimated identified sets of Φ, averaged over late cohorts, under specifications [A]
and [B]. The last section of the table reports the change in estimates between early and late cohorts.
Some intervals are singleton because of the scale normalisations imposed (see Appendix C). The average
estimates of Φ under the Logit assumption are also included.
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Assumptions [1] [2] [3] [4] [5] [6]

5.1 X X
5.2 X X X X
5.3 X X X
5.4 X X

Table C.1: Assumptions on the unobserved heterogeneity maintained in the different specifications.
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Specifications U11 U12 U21 U22 V11 V12 V21 V22 Φ11 Φ12 Φ21 Φ22 D22,11(Φ) C21(U) C21(V )
from Table C.1

w/ 5.1
DGP1

True & Logit 1.16 0.28 0.07 1.4 1.23 −0.55 0.95 1.36 2.39 −0.27 1.02 2.76 4.4 0.2 −0.03
[1] 1.16 (−∞,+∞) (−∞,+∞) (−∞,+∞) 1.23 (−∞, 1] (−∞,+∞) (−∞,+∞) 2.39 (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[2] 1.16 (−∞, 1.1] (−∞,+∞) [0.1,+∞) 1.23 (−∞, 1.2] (−∞,+∞) [0.1,+∞) 2.38 (−∞, 2.3] (−∞,+∞) [0.2,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

w/o 5.1
DGP1

True & Logit 1.16 0.28 0.07 1.4 1.23 −0.55 0.95 1.36 2.39 −0.27 1.02 2.76 4.4 0.2 −0.03
[3] 1.16 (−∞, 1.15] 0.07 [0.07,+∞) 1.23 −0.55 (−∞,+∞) [0.01,+∞) 2.39 (−∞, 0.6] (−∞,+∞) [0.08,+∞) (−∞,+∞) [−0.89,+∞) (−∞,+∞)
[4] 1.16 (−∞, 1.15] 0.07 [0.07,+∞) 1.23 −0.55 (−∞,+∞) [0.01,+∞) 2.39 (−∞, 0.6] (−∞,+∞) [0.08,+∞) (−∞,+∞) [−0.89,+∞) (−∞,+∞)
[5] 1.16 [−1.15, 1.15] 0.07 [0.07,+∞) 1.23 −0.55 [−1.22, 1.22] [−0.27,+∞) 2.39 [−1.7, 0.6] [−1.15, 1.29] [−0.2,+∞) [0.3,+∞) [−0.89,+∞) [−1.3,+∞)
[6] 1.16 [−1.15, 1.15] 0.07 [0.07,+∞) 1.23 −0.55 [−1.22, 1.22] [0.01,+∞) 2.39 [−1.7, 0.6] [−1.15, 1.29] [0.08,+∞) [0.58,+∞) [−0.89,+∞) [−1.1,∞)

w/ 5.1
DGP2

True 1.88 1.6 1.7 1.73 2 0.64 2.01 1.49 3.88 2.24 3.71 3.22 1.14 −0.07 −0.65
Logit 1.88 0.56 0.99 1.93 2 0.29 1.29 1.83 3.88 0.85 2.28 3.76 4.52 0.08 −0.24

[1] 1.88 (−∞,+∞) (−∞,+∞) (−∞,+∞) 2 (−∞, 2] (−∞,+∞) (−∞,+∞) 3.88 (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[2] 1.88 (−∞, 1.8] (−∞,+∞) [0.1,+∞) 2 (−∞, 2] (−∞, 2.01] [0.1,+∞) 3.88 (−∞, 3.8] (−∞,+∞) [0.2,+∞) (−∞,+∞) (−∞,+∞] (−∞,+∞]

w/o 5.1
DGP2

True 1.88 1.6 0.99 1 2 0.29 2 0.68 3.88 1.89 2.99 1.68 0.67 −0.72 −1.3
Logit 1.88 0.56 0.99 1.93 2 0.29 1.29 1.83 3.88 0.85 2.28 3.76 4.52 0.08 −0.24

[3] 1.88 (−∞, 1.87] 0.99 [0.99,+∞) 2 0.29 (−∞, 2] [0.3,+∞) 3.88 (−∞, 2.16] (−∞, 2.99] [1.29,+∞) [0.02,+∞) [−0.78,+∞) [−1.57,+∞)
[4] 1.88 (−∞, 1.87] 0.99 [0.99,+∞) 2 0.29 (−∞, 2] [0.3,+∞) 3.88 (−∞, 2.16] (−∞, 2.99] [1.29,+∞) [0.02,+∞) [−0.78,+∞) [−1.57,+∞)
[5] 1.88 [−1.87, 1.87] 0.99 [0.99,+∞) 2 0.29 [−2, 2] [0.3,+∞) 3.88 [−1.58, 2.16] [−1.01, 2.99] [1.29,+∞) [0.02,+∞) [−0.78,+∞) [−1.57,+∞)
[6] 1.88 [−1.87, 1.87] 0.99 [0.99,+∞) 2 0.29 [−2, 2] [0.3,+∞) 3.88 [−1.58, 2.16] [−1.01, 2.99] [1.29,+∞) [0.02,+∞) [−0.78,+∞) [−1.57,+∞)

w/o 5.1
DGP3

True −1.13 0 −2.41 −0.09 −1.06 −1.61 −1.15 0 −2.19 −1.61 −3.56 −0.09 2.89 0.01 0.22
Logit −1.13 −0.45 −2.41 −1.22 −1.06 −1.61 −1.21 −1.24 −2.19 −2.06 −3.62 −2.46 1.03 −0.08 −0.01

[3] −1.13 (−∞, 0] −2.41 (−∞,−0.01] −1.06 −1.61 (−∞,−0.01] (−∞,−0.01] −2.19 (−∞,−1.61] (−∞,−2.42] (−∞,−0.02] (−∞,+∞) (−∞,+∞) (−∞,+∞)
[4] −1.13 (−∞, 0] −2.41 (−∞,−0.01] −1.06 −1.61 (−∞,−0.01] (−∞,−0.01] −2.19 (−∞,−1.61] (−∞,−2.42] (−∞,−0.02] (−∞,+∞) (−∞,+∞) (−∞,+∞)
[5] −1.13 [−1.12, 1.12] −2.41 [−2.41, 2.41] −1.06 −1.61 (−∞,−1.07] [−1.61, 1.61] −2.19 [−2.73,−0.49] (−∞,−3.48] [−4.02, 4.02] [−2.24,+∞) [−0.85, 0.91] [−0.11,+∞)
[6] −1.13 [−1.12, 0] −2.41 [−2.41,−0.01] −1.06 −1.61 (−∞,−1.07] [−1.61,−0.01] −2.19 [−2.73,−1.61] (−∞,−3.48] [−4.02,−0.02] [−1.12,+∞) [−0.48, 0.39] [−0.11,+∞)

Table C.2: Projections of the identified sets of U , V , Φ, D22,11(Φ), C21(U), and C21(V ) in the first simulation exercise when r = 2.

76



Specifications U V Φ
from Table C.1 Wife → 1 2 3 1 2 3 1 2 3

Husband ↓
True & Logit

1
0.13 0.65 −0.26 0.6 −0.47 −2.63 0.73 0.18 −2.89

[5] 0.13 [0.2,+∞) (−∞,+∞) 0.6 −0.47 −2.63 0.73 [−0.27,+∞) (−∞,+∞)
[6] 0.13 [0.2,+∞) (−∞,+∞) 0.6 −0.47 −2.63 0.73 [−0.27,+∞) (−∞,+∞)

True & Logit
2

−1.11 1.08 0.56 0.55 1.15 −0.62 −0.56 2.23 −0.06
[5] −1.11 [−0.5,+∞) (−∞,+∞) [−0.5, 0.6] [−0.2,+∞) [−2.6, 2.6] [−1.61,−0.51] [−0.7,+∞) (−∞,+∞)
[6] −1.11 [−0.5,+∞) (−∞,+∞) [−0.5, 0.6] [−0.2,+∞) [−2.6, 2.6] [−1.61,−0.51] [−0.7,+∞) (−∞,+∞)

True & Logit
3

−2.78 −0.04 1.39 0 1.15 1.33 −2.78 1.11 2.72
[5] −2.78 [−2.7, 2.7] [−1.3,+∞) (−∞, 0.4] [−0.1,+∞) [−1.2,+∞) (−∞,−2.38] [−2.8,+∞) [−2.5,+∞)
[6] −2.78 [−2.7, 2.7] [0.1,+∞) (−∞, 0.4] [−0.1,+∞) [0.1,+∞) (−∞,−2.38] [−2.8,+∞) [0.2,+∞)

Table C.3: Projections of the identified sets of U , V , and Φ in the second simulation exercise when r = 3.
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Specifications Husband’s payoff Wife’s payoff Core
from Table C.1 C31(U) C21(U) C31(V ) C21(V ) D33,11(Φ) D22,11(Φ)
True & Logit 0.64 0.38 0.47 0.51 9.12 3.34

[5] (−∞,+∞) (−∞,+∞) [−1.56,+∞) [−0.58,+∞) (−∞,+∞) (−∞,+∞)
[6] (−∞,+∞) (−∞,+∞) [−0.65,+∞) [−0.58,+∞) (−∞,+∞) (−∞,+∞)

Table C.4: Projections of the identified sets of elements ofD(Φ), C(U), and C(V ) in the second simulation
exercise when r = 3. We take type “1” as reference category.
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Specifications U V Φ
from Table C.1 Wife → 1 2 3 4 1 2 3 4 1 2 3 4

Husband ↓
True & Logit

1
0.35 0.77 −0.28 −2.18 0.42 −0.48 −1.69 −4.16 0.77 0.29 −1.96 −6.34

[5] 0.35 [0.76,+∞) (−∞,+∞) (−∞,+∞) 0.42 −0.48 −1.69 −4.16 0.77 [0.28,+∞) (−∞,+∞) (−∞,+∞)
[6] 0.35 [0.76,+∞) (−∞,+∞) (−∞,+∞) 0.42 −0.48 −1.69 −4.16 0.77 [0.28,+∞) (−∞,+∞) (−∞,+∞)

True & Logit
2

−1.15 1.17 0.2 −0.69 0.19 1.19 0.06 −1.4 −0.96 2.36 0.26 −2.09
[5] −1.15 [−0.25,+∞) (−∞,+∞) (−∞,+∞) [−0.25, 0.25] [0.76,+∞) [−0.76,+∞) [−3.81, 3.31] [−1.40,−0.9] [0.51,+∞) (−∞,+∞) (−∞,+∞)
[6] −1.15 [0.25,+∞) (−∞,+∞) (−∞,+∞) [−0.25, 0.25] [0.76,+∞) [−0.76,+∞) [−3.81, 3.31] [−1.40,−0.9] [1.02,+∞) (−∞,+∞) (−∞,+∞)

True & Logit
3

−2.22 0.51 0.8 0.09 −0.66 0.75 0.89 −0.39 −2.88 1.26 1.69 −0.3
[5] −2.22 [−0.76,+∞) [−0.25,+∞) (−∞,+∞) (−∞,−0.25] (−∞,+∞) [−0.25,+∞) [−3.31, 3.81] (−∞,−2.47] (−∞,+∞) [−0.50,+∞) (−∞,+∞)
[6] −2.22 [−0.76,+∞) [−0.25,+∞) (−∞,+∞) (−∞,−0.25] (−∞,+∞) [−0.25,+∞) [−3.31, 3.81] (−∞,−2.47] (−∞,+∞) [−0.50,+∞) (−∞,+∞)

True & Logit
4

−3.73 −0.49 0.22 1.2 −1.76 0.17 0.71 1.13 −5.49 −0.32 0.93 2.33
[5] −3.73 [−3.31, 3.31] [−1.27,+∞) [−0.76,+∞) (−∞,−0.76] (−∞,+∞) (−∞,+∞) [−1.27,+∞) (−∞,−4.49] (−∞,+∞) (−∞,+∞) [−2.03,+∞)
[6] −3.73 [−3.31, 3.31] [−1.27,+∞) [0.25,+∞) (−∞,−0.76] (−∞,+∞) (−∞,+∞) [0.25,+∞) (−∞,−4.49] (−∞,+∞) (−∞,+∞) [0.50,+∞)

Table C.5: Projections of the identified sets of U , V , and Φ in the second simulation exercise when r = 4.
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Specifications Husband’s payoff Wife’s payoff Core
from Table C.1 C41(U) C31(U) C21(U) C41(V ) C31(V ) C21(V ) D44,11(Φ) D33,11(Φ) D22,11(Φ)
True & Logit 0.31 0.1 0.21 0.51 0.45 0.61 14.93 7.3 3.8

[5] (−∞,+∞) (−∞,+∞) (−∞,+∞) [−1.58,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[6] (−∞,+∞) (−∞,+∞) (−∞,+∞) [−0.64,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Table C.6: Projections of the identified sets of elements of D(Φ), C(U), and C(V ) in the second simulation exercise when r = 4. We take type “1” as reference
category.
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Specifications U V Φ
from Table C.1 Wife → 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Husband ↓
True & Logit

1
0.30 0.58 −0.35 −2.61 −3.12 0.39 −0.61 −1.73 −3.80 −4.32 0.69 −0.03 −2.08 −6.41 −7.44

[5] 0.30 [0.52,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) 0.39 −0.61 −1.73 −3.80 −4.32 0.69 [−0.09,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[6] 0.30 [0.52,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) 0.39 −0.61 −1.73 −3.80 −4.32 0.69 [−0.09,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

True & Logit
2

−1.28 1.03 0.12 −1.14 −1.81 0.09 1.11 0.01 −1.05 −1.73 -1.19 2.14 0.13 −2.19 −3.54
[5] −1.28 [0.52,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) [−3.32, 3.32] [−1.4,+∞) [−5.68,+∞) (−∞,+∞) (−∞,+∞) [−4.6, 2.04] [−0.88,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[6] −1.28 [0.52,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) [−3.32, 3.32] [−1.4,+∞) [−5.68,+∞) (−∞,+∞) (−∞,+∞) [−4.6, 2.04] [−0.88,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

True & Logit
3

−2.03 0.51 0.78 −0.49 −0.96 −0.52 0.74 0.82 −0.25 −0.74 −2.55 1.25 1.60 −0.74 −1.70
[5] −2.03 [−1.53,+∞) [−2.36,+∞) (−∞,+∞) (−∞,+∞) (−∞, 1.66] (−∞,+∞) [−4.32,+∞) [−8.23, 9.45] (−∞,+∞) (−∞, 0.37] (−∞,+∞) [−6.68 +∞) (−∞,+∞) (−∞,+∞)
[6] −2.03 [−1.53 +∞) [−2.36,+∞) (−∞,+∞) (−∞,+∞) (−∞, 1.66] (−∞,+∞) [−4.32,+∞) [−8.23, 9.45] (−∞,+∞) (−∞, 0.37] (−∞,+∞) [−6.68,+∞) (−∞,+∞) (−∞,+∞)

True & Logit
4

−3.21 −0.51 0.32 0.43 −0.16 −1.73 −0.32 0.32 0.63 0.03 −4.94 −0.83 0.64 1.06 −0.13
[5] −3.21 (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞, 2.89] (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[6] −3.21 (−∞,+∞) (−∞,+∞) (−∞+∞) (−∞,+∞) (−∞, 2.89] (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

True & Logit
5

−4.25 −0.66 0.27 0.89 1.01 −3.43 −1.13 −0.39 0.42 0.53 −7.68 −1.79 −0.12 1.31 1.54
[5] −4.25 (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[6] −4.25 (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Table C.7: Projections of the identified sets of U , V , and Φ in the second simulation exercise when r = 5.
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Specifications Husband’s payoff Wife’s payoff Core
from Table C.1 C51(U) C41(U) C31(U) C21(U) C51(V ) C41(V ) C31(V ) C21(V ) D55,11(Φ) D44,11(Φ) D33,11(Φ) D22,11(Φ)
True & Logit 0.43 −0.08 0.09 0.17 0.05 0.22 0.27 0.53 17.36 13.11 6.92 4.05

[5] (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)
[6] (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Table C.8: Projections of the identified sets of elements of D(Φ), C(U), and C(V ) in the second simulation exercise when r = 5. We take type “1” as reference
category.
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Figure 1: Education of men and women.
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Figure 2: Comparing spouses.

83



1945 1950 1955 1960 1965

Cohort

-0.5

0

0.5

D
3
3
,1

1
(

) 
d

e
m

e
a

n
e

d

(A)

1940 1945 1950 1955 1960 1965

Cohort

-0.2

-0.1

0

0.1

0.2

D
3
3
,2

2
(

) 
d

e
m

e
a

n
e

d

(B)

1940 1945 1950 1955 1960 1965

Cohort

-0.2

0

0.2

0.4

D
4
4
,3

3
(

) 
d

e
m

e
a

n
e

d

(C)

1940 1945 1950 1955 1960 1965

Cohort

-0.6

-0.4

-0.2

0

0.2

0.4

D
2
2
,1

1
(

) 
d

e
m

e
a

n
e

d

(D)

1940 1945 1950 1955 1960 1965

Cohort

-0.8

-0.4

0

0.4

0.8

D
4
4
,1

1
(

) 
d

e
m

e
a

n
e

d

(E)

1940 1945 1950 1955 1960 1965

Cohort

-0.2

0

0.2

0.4

D
4
4
,2

2
(

) 
d

e
m

e
a

n
e

d

(F)

Figure 3: Estimates of D(Φ), demeaned over cohorts, under the Logit assumption.
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Figure 4: The grey and dotted regions are the estimated identified sets of D(Φ) under specifications [A]
and [B], respectively. The black lines are the estimates of D(Φ) under the Logit assumption.
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Figure 5: The black lines are the estimates of C(U) and C(V ) under the Logit assumption. The grey
lines are the estimates of the marital education premia under the Logit assumption.
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Figure 6: The grey regions are the estimated identified sets of C(U) and C(V ) under specification [A].
The dotted regions are the estimated identified sets of C(U) and C(V ) under specification [B]. The black
lines are the estimates of C(U) and C(V ) under the Logit assumption.
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Figure C.1: Projections of the six grids of points to be evaluated by the linear program (in different
shades of grey) and of the six approximations of the identified set of U1· (in blue). The red points
represent the Logit estimates.
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Figure D.1: The grey and dotted regions are the estimated identified sets of Uxx + Ux̃x̃ − Uxx̃ − Ux̃x for
each x, x̃ ∈ X with x > x̃, under specifications [A] and [B], respectively. The black lines are the Logit
estimates of those quantities.
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Figure D.2: The grey and dotted regions are the estimated identified sets of Vyy + Vỹỹ − Vyỹ − Vỹy for
each y, ỹ ∈ Y with y > ỹ, under specifications [A] and [B], respectively. The black lines are the Logit
estimates of those quantities.
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