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Abstract

Usual resource models with capital accumulation focus upon simple one
to one process transforming output either into some consumption good or
into some capital good. We consider a bisectoral model where output from
the consumption good production sector may be either consumed or used
in producing some capital good through an irreversible capital accumulation
process. The natural resource and the capital good are also inputs in both
production sectors. In this framework we reconsider the usual results of the
efficient and optimal growth theory under an exhaustible resource constraint.
We show that the usual efficiency condition relates to the investment good
production function and not to the consumption good production function
as in the canonical model of Dasgupta and Heal. We give an economic inter-
pretation of the efficiency conditions in our bisectoral setting. We show then
that the standard Hotelling rule relating the growth rate of the consumption
good to the growth rate of the marginal productivity of the resource remains
valid independently of the multisectoral specification of the model. Last we
explore different forms of the Hartwick rule in the context of efficient paths
and optimal paths.
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1 INTRODUCTION

The basic framework of numerous aggregate models with a man made capital
and a non renewable resource has been laid down by Dasgupta and Heal (DH
in the sequel) in their well known seminal paper (Dasgupta and Heal, 1974).
In their setting there exists one and only one man made good which can be
either consumed or used to increase the capital stock. Capital accumulation
is a reversible process: It is possible to transform back the capital stock into
consumption good at no cost. Furthermore, there is no physical deprecia-
tion of capital. We try here to build the minimally differentiated production
model permitting to disentangle basic relationships which are blurred in a
single production sector model. Thus we assume that there exist two pro-
duction sectors. The consumption good production sector uses labor, capital
and some non renewable resource while the capital good production sector
uses the same inputs and possibly the consumption good. Furthermore, cap-
ital is a specific good which cannot be consumed and is depreciating over
time.

In this framework we reconsider the usual results of the efficient and
optimal growth theory derived from the canonical DH model. We assume
that the exhaustible resource is an essential input in both production sec-
tors. Without technical progress, it is well known that the feasibility of a
sustained consumption path in the long run is a crucial problem with es-
sential exhaustible resources. We put a particular emphasis upon physical
efficiency issues. Efficiency is a fundamental problem, rooted in the issue of
minimizing the use of the resource to sustain as long as possible a strictly
positive consumption rate. This problem has received most attention in the
sustainability literature. The possibility of a sustained utility level, or of a
sustained constant consumption rate, has strong connections with different
forms of Hartwick’s rule1.

To study the efficiency problem we resort to a standard two stages pro-
cedure: First solve the static efficiency problem having to be solved at each
point of time before attacking the pure dynamical problem, the solution of

1See Dixit, Hammond and Hoel, (1980), Dasgupta and Mitra, (1983), Cass and Mitra,
(1991), Mitra, (2002), Asheim, Buchholz and Withagen, (2003), Cairns and Long, (2006),
for important contributions to this issue.
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which is linking through time the optimized values of the sequence of static
problems. The static problem may be given different formulations. Here
we maximize the capital good production given an aggregate resource use,
a given available capital stock at time t and some given consumption good
production level having to be achieved at the same date. This is one possible
way to describe the global production frontier at time t, a frontier which is
assumed to exist in most disaggregated models, like in the Dixit et al. (1980)
paper. Next we solve the truly dynamic efficiency problem. The main result
is that dynamic efficiency implies that the growth rate of the marginal pro-
ductivity of the resource in the capital good production sector must be equal
to the net marginal productivity of capital in the capital good production
sector. This is a result which cannot be isolated in any model in which the
consumption good and the capital good production sectors are merged to-
gether, and wear and tear is not taken into account. This is also the kind of
result which cannot be identified in disaggregated models like the Dixit et al.
(1980) model. In such models built on strong microeconomic foundations,
sectors do not exist.

To select amongst the set of efficient paths we maximize the sum of dis-
counted current utilities. We show that the Hotelling rule takes the following
form. The growth rate of the discounted marginal utility of consumption has
to be equalized to the growth rate of the marginal productivity of the resource
in the sole consumption good production sector. This is again a result which
cannot be isolated in a one man made production good economy. Assum-
ing no global economies or diseconomies of scale, we then derive from the
optimality conditions the form of the net national accounts.

Turning to Hartwick’s rule, we first consider forms of the rule for effi-
cient paths, stating that the value, in terms of the natural resource, of the
instantaneous change in asset endowments must be nil at each point of time.
Adapting the proof strategy initiated by Michel (1982), we first show that
the converse of this form of the rule should hold along any efficient path
having to sustain a constant consumption level. Considering the rule itself,
we show that an efficient path satisfying at each time this form of the rule
can only sustain a consumption path which is some step function. Thus it
appears that as a prescriptive rule, the rule strongly constrains the kind of
consumption plans that may be efficiently achieved but does not impose that
the consumption level should be constant forever. This stands in accordance
with Asheim et al. (2003) analysis which exhibits possible discontinuities in
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the consumption path to narrow the prescriptive scope of the rule. What we
prove is that the type of functions they use is the only one compatible with
the rule.

We next consider the generalized Hartwick rule as defined in the Dixit
et al. (1980) paper. We show first that in our model the converse of the
rule should hold, that is along any optimal constant utility path, the instan-
taneous change in asset endowments, valued in discounted marginal utility
terms, should be nil at each time. As for the rule itself, we depart from the
smoothness assumptions of Dixit et al. and rely instead over our previous
efficiency results. Since an optimal path must be efficient, following the rule
forever implies that the corresponding optimal consumption path should be
a step function. But assuming a strictly concave utility function, the opti-
mal consumption path should be continuous, implying that the consumption
level,hence the utility level, should be constant over time.

The paper is organized as follows. Section 2 describes the bisectoral
model. Efficiency is studied in Section 3 while optimality is considered in
Section 4. Section 5 concludes.

2 THE MODEL

We consider an economy in which the labor supply is inelastic and constant
through time. Let l be the amount of labor available at each point of time.

The economy is producing two goods, "gelly" and "capital". Gelly is the
usual polymorphic good of most macroeconomic models and can be either
consumed or used as an input in the capital good production sector. Capital
is the other produced good which is required to produce both gelly and capital
itself, but cannot be consumed.

Let g be the gelly production function and, by slight abuse of notation,
the gelly production level. Producing gelly requires capital, labor and non
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renewable resource, denoted respectively by Kg, lg and sg:

g = g(Kg, lg, sg) .

Assumptions G.1 and G.2 are both standard assumptions but are distin-
guished for analytical reasons:

Assumption G.1: g : R3
+ → R+ is a function of class C2 strictly

increasing and strictly quasi-concave satisfying the Inada condition, that is:

lim
Kg↓0

gK = lim
lg↓0

gl = lim
sg↓0

gs = +∞ ,

where gK , gl and gs are the partial derivatives of g with respect to Kg, lg and
sg respectively, and for each limit the two other factors are held constant
and strictly positive. Furthermore each input is assumed to be essential:
g(Kg, lg, sg) = 0 if any one input is equal to 0.

A more stringent condition is that g is homogeneous:

Assumption G.2: g satisfies G.1 and:

g(Kg, lg, sg) = gKKg + gll
g + gss

g , ∀(Kg, lg, sg) ∈ R3
++ .

Let k be the output level of the capital good production sector and the
production function of this sector. Capital production requires capital, labor,
gelly and resource, denoted respectively by Kk, lk, gk and sk, so that:

k = k(Kk, lk, gk, sk) .

The following assumptions K.1 and K.2 parallel the assumptions G.1 and
G.2 for the capital good production sector.

Assumption K.1: k : R4
+ → R+ is a function of class C2 strictly

increasing and strictly quasi-concave satisfying the Inada condition, that is:

lim
Kk↓0

kK = lim
lk↓0

kl = lim
gk↓0

kg = lim
sk↓0

ks = +∞ .
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where kK , kl, kg and ks are the partial derivatives of k with respect to Kk, lk,
gk and sk respectively, and for each limit the three other factors are constant
and positive. Furthermore each input is essential.

Assumption K.2: k satisfies K.1 and:

k(Kk, lk, gk, sk) = kKKk + kll
k + kgg

k + kss
k , ∀(Kk, lk, gk, sk) ∈ R4

++.

We assume that capital is freely and instantaneously transferable from
any production sector to the other one and that its attrition law is the stan-
dard radioactive decay law, the same in both sectors. Let δ be the propor-
tional rate of capital wear and tear. Denoting by K(t) the amount of capital
available in the economy at time t, we have: K(t) ≡ Kg(t) + Kk(t), and
under the equal proportional wear and tear assumption:

K̇(t) = k(Kk(t), lk(t), gk(t), sk(t))− δK(t) .

K0 is the initial capital stock: K(0) ≡ K0. We assume that K0 > 0. If not,
under the above essentiality assumption, the only feasible consumption path
would be the zero consumption path forever.

The labor can be costlessly and instantaneously reallocated from any
production sector to the other one, so that the only constraints to satisfy
are:

l − lg(t)− lk(t) ≥ 0 , lg(t) ≥ 0 and lk(t) ≥ 0 , t ≥ 0. (2.1)

Let S(t) be the stock of the non renewable resource available at time t

and S0 be the initial endowment, S(0) = S0, then:

Ṡ(t) = −s(t) ,

where: s(t) ≡ sg(t) + sk(t). Extraction costs are neglected.

We denote by u(c) the instantaneous utility generated by the instanta-
neous consumption rate c.

Assumption U : u : R++ → R is a function of class C2 strictly increas-
ing, strictly concave, satisfying the Inada condition: limc↓0 u′(c) = +∞.
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The welfare W is the sum of the instantaneous utilities discounted at
some positive constant social rate ρ:

W =

∫ ∞

0

u(c(t))e−ρtdt .

A policy P is a path {(Ki(t), li(t), si(t), i = g, k ; gk(t), c(t)), t ≥ 0}. It
is feasible starting from K0 and S0 iff ∀t ≥ 0:

K0 +
∫ t

0

[
k(Kk(τ), lk(τ), gk(τ), sk(τ))− δK(τ)

]
dτ −Kg(t)−Kk(t) ≥ 0 ,

Kg(t) ≥ 0 and Kk(t) ≥ 0 ,

g(Kg(t), lg(t), sg(t))− gk(t)− c(t) ≥ 0 ,

c(t) ≥ 0 and gk(t) ≥ 0 ,

S0 −
∫ t

0

[
sg(τ) + sk(τ)

]
dτ ≥ 0 ,

sg(t) ≥ 0 and sk(t) ≥ 0 ,

together with (2.1).

The problem of the social planner is to choose a welfare maximizing policy.
Since optimal policies must be efficient policies we characterize first such
policies.

3 EFFICIENCY

Let us consider some feasible policy P∗. According to the usual definition of
efficiency this policy is efficient if it does not exists any alternative feasible
policy P ′ such that c′(t) ≥ c∗(t), t ≥ 0, with the strict inequality over
some non degenerate time interval. Under G.1 and K.1, this definition is
equivalent to the following one. P∗ is efficient if, first over any time interval
[t1, t2], 0 ≤ t1 < t2, over which c∗(t) > 0, the restriction of the policy to the
interval is minimizing the cumulated use of the resource amongst the set of
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subpolicies which are securing a consumption rate c′(t) ≥ c∗(t) over the whole
interval, when starting from K(t1) = K∗(t1) and ending at K(t2) = K∗(t2).
Clearly this is just a local necessary condition. For a global condition, we
should add that, when considering any infinite duration time interval, [t1,∞),
t1 ≥ 0, the resource stock is exhausted.

The problem of minimizing the cumulated extraction is best understood
when conceived as a two stages optimization problem. The first stage is a
standard static optimization problem which has to be solved at each point
of time. At any date, given the available capital and given that the available
labor has to be wholly used since it is not storable, there exists some static
efficiency frontier in the three dimensional space: Consumption, capital pro-
duction and resource use, leaving aside the labor dimension since the labor
supply is assumed to be inelastic and constant through time. This frontier
may be described as some function denoted by κ, giving the maximum in-
stantaneous production of capital good which can be obtained from some
available capital K and resource use s, assuming that a given consumption
rate c has to be achieved. Thus taking into account that no capital is never
discarded excepted the unescapable wear and tear attrition, the instanta-
neous rate of change of the capital stock must be equal to:

K̇(t) = κ(K(t), s(t), c(t))− δK(t) .

Note that K̇(t) may be either positive or negative. Because κ ≥ 0, the
RHS of the above equation may be as low as −δK(t). Under a free disposal
assumption, K̇(t) could be even lower, although it will never happen for
trivial efficiency reasons in the present setting.

The second stage is the truly dynamical problem. For a given consump-
tion path c∗(t) to be achieved, the tradeoff at each point of time is between
accumulating capital at a higher rate today but at the cost of a higher present
use of the resource, allowing to save the resource in the future, versus saving
the resource today but at the cost of a lower capital accumulation inducing
a higher use of the resource in the future. Using the function κ, this second
stage arbitrage problem may be formulated as a problem in which the only
command variable is the global resource extraction rate s(t).
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3.1 Solving the static optimization problem

Dropping the time index, let K, l, s, be the capital, labor and resource
extraction rate at time t. The maximum consumption rate which can be
expected is attained when all the inputs are allocated to the gelly production
sector and the whole gelly production is consumed. Let us denote by c̄(K, l, s)
this maximum consumption rate:

c̄(K, l, s) ≡ g(K, l, s) .

Next assume that some lower consumption rate c, c < c̄, has to be achieved.
Then the problem is to allocate K, l and s amongst the two production
sectors so as to maximize the capital production. This problem may be given
a very simple formulation under G.1 and K.1. Because each factor is essential
in the both sectors we must have Ki > 0, li > 0 and si > 0, i ∈ {g, k} and
gk > 0. Hence for all these decision variables the non negativity constraints
may be dropped. Next because the marginal productivity of each factor is
strictly positive in the both sectors, we must have Kg = K −Kk, lg = l− lk,
sg = s− sk and gk = g(Kg, lg, sg)− c. Thus the problem may be reduced to
the problem of maximizing the following function with respect to Kk, lk and
sk, without any additional constraint:

k(Kk, lk, g(K −Kk, l − lk, s− sk)− c, sk) . (3.1)

The first order conditions are:

kK − kggK = 0 , kl − kggl = 0 and ks − kggs = 0 . (3.2)

For the sake of simplicity we focus upon problems having a unique solution
at each time, that is upon g and k functions such that the vector (Kk, lk, sk)
maximizing (3.1) is unique. This is requiring more stringent restrictions than
the strict quasi-concavity of the functions g and k. In order that the solution
of (3.2) be unique, we must assume that:

Assumption GK.1 : The below matrix M is non positive definite:

M ≡ [mij]i,j ∈ {K,l,s} , (3.3)
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where:

mij ≡ σi
j + gij (3.4)

σi ≡ ki

kg

, i ∈ {K, l, s} and σi
j ≡

∂σi

∂xk
j

, xk
j ∈ {Kk, lk, sk} (3.5)

gij ≡ ∂gi

∂yg
i

, i ∈ {K, l, s} and yg
i ∈ {Kg, lg, sg} . (3.6)

Note that the conditions (3.2) are implying that:

gl

gK

=
kl

kK

,
gs

gK

=
ks

kK

and
gl

gs

=
kl

ks

. (3.7)

As expected the marginal rates of transformation between any pair of inputs
used in the both sectors must be equalized.

The conditions (3.2) also imply that:

1

kg

=
gK

kK

=
gl

kl

=
gs

ks

. (3.8)

Equation (3.8) means that the direct marginal cost of capital in terms of the
consumption good or gelly, 1/kg, must be equal to any one of its indirect
marginal costs, also in terms of the consumption good, obtained by divert-
ing any small part of some input (capital, labor or resource) from the gelly
production sector towards the capital good production sector.

To conclude there exists some function k̃ the arguments of which are K,
l, s and c, with c ≤ c̄(K, l, s), which gives the maximum production level of
the capital good sector for any available global inputs K, l and s, and a gelly
consumption rate c having to be secured. Since we assume that l is constant
we may drop this argument and define γ(K, s) and κ(K, s, c) as follows:

γ(K, s) ≡ c̄(K, l, s) and κ(K, s, c) ≡ k̃(K, l, s, c) , c ≤ γ(K, s) .(3.9)

Clearly γ is increasing in each of its arguments and κ is an increasing function
of K, of s and a decreasing function of c:

γK ≡ ∂γ

∂K
= gK > 0 and γs ≡

∂γ

∂s
= gs > 0 , (3.10)
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and by the envelope theorem:

(i) κK ≡ ∂κ

∂K
= kggK > 0, κs ≡

∂κ

∂s
= kggs > 0

(ii) and κc ≡
∂κ

∂c
= −kg < 0 . (3.11)

Furthermore:

lim
c↑γ(K,s)

κ(K, s, c) = 0 . (3.12)

We have to define a last boundary relationship which will happen to be useful
later for characterizing the solution of the second stage problem. Consider
some c ≤ γ(K, s) and assume that no new capital has to be produced. Then
we must have:

κ(K, s, c) = 0 .

This equation may be solved for s as a function of K and c. Let us denote
by s(K, c) the solution, that is the minimum resource extraction necessary
to achieve a consumption rate c when the available capital amounts to K.
Because κ = 0, then s(K, c) is nothing but the solution of: c = g(K, l, s)
where l is the constant labor supply. Thus s is a decreasing function of K
and an increasing function of c:

sK ≡ ∂s

∂K
= −gK

gs

< 0 and sc ≡
∂s

∂c
=

1

gs

> 0 ; (3.13)

3.2 Solving the dynamical problem

Armed with the κ function we may focus the attention upon the proper
dynamical aspect of the problem. Given that c∗(t), t ∈ [t1, t2], has to be
achieved, minimizing the cumulated extraction of the resource over [t1, t2]
may be formulated as the following problem (E) in which the only command
variable is the instantaneous rate of resource extraction s(t).

(E) max
{s(t),t∈[t1,t2]}

−
∫ t2

t1

s(t)dt

K̇(t) = κ(K(t), s(t), c∗(t))− δK(t) , t ∈ [t1, t2] (3.14)
K(t1) = K∗(t1) and K(t2)−K∗(t2) ≥ 0 , (3.15)
s(t)− s(K(t), c∗(t)) ≥ 0 , t ∈ [t1, t2]. (3.16)
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For s(t) = s(K(t), c∗(t)), then κ(K(t), s(K(t), c∗(t)), c∗(t)) = 0, so that:

K̇(t) = −δK(t) .

No new capital is produced. The capital stock decreases at its proportional
decay rate δ.

Let LE(t) be the Lagrangian of the program (E):

LE(t) = −s(t) + νE(t) [κ(K(t), s(t), c∗(t))− δK(t)] + αE(t)[s(t)− s(K(t), c∗(t))] .

The first order condition is:

∂LE

∂s
= 0 ⇐⇒ νE(t)κs(t) = 1− αE(t) , (3.17)

αE(t) ≥ 0 and αE(t)[s(t)− s(K(t), c∗(t))] = 0 . (3.18)

The dynamics of the costate variable νE(t) must satisfy:

ν̇E(t) = −∂LE

∂K
⇐⇒ ν̇E(t) = −νE(t)[κK(t)− δ] + αE(t)sK(t) .(3.19)

Last the transversality condition is:

νE(t2) ≥ 0 and νE(t2)[K(t2)−K∗(t2)] = 0 . (3.20)

Assume that the solution is an interior solution, i.e. (3.16) is not effective so
that αE(t) = 0. Then differentiating (3.17) and using (3.19), we obtain the
below relationship (3.21). Next using (3.8) and (3.11), (3.21) may be given
the three equivalent arbitrage conditions (3.22)-(3.24) between the use of the
resource and the uses of the other inputs, gelly, capital and labor, conditions
which must hold along any dynamically efficient path at each point in time.

Proposition 1 Under G.1, K.1 and G.K.1, along any dynamically efficient
path:

κ̇s(t)

κs(t)
= − ν̇E(t)

νE(t)
= κK(t)− δ , t ∈ [t1, t2], (3.21)
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which is equivalent to:

κs = kggs : (3.21) =⇒ ġs

gs

= − k̇g

kg

+ kggK − δ (3.22)

κs =
kK

gK

gs : (3.21) =⇒ ġs

gs

=
ġK

gK

− k̇K

kK

+ kK − δ (3.23)

κs =
kl

gl

gs : (3.21) =⇒ ġs

gs

=
ġl

gl

− k̇l

kl

+ kl
gK

gl

− δ (3.24)

The conditions (3.22)-(3.24) are conditions warranting that all the arbitrage
opportunities are locally exhausted. Any tradeoff, either direct or indirect,
between some increase of the resource extraction rate and some simultaneous
decrease of the investment rate today being balanced by a higher investment
rate in the near future and a simultaneous decrease in the extraction rate,
while maintaining the consumption level c∗, cannot reduce the cumulative
resource extraction.

To give some intuition about the type of arbitrage opportunities these
conditions are exhausting, let us detail how, under (3.22), the following in-
tertemporal input substitutions cannot save natural resource.

Let us consider a sequence of three consecutive time intervals: Θ1 ≡
[t, t + dt[, Θ2 ≡ [t + dt, t + h[, h > dt > 0, and Θ3 ≡ [t + h, t + h + dt[ such
that (3.22) is satisfied at each instant τ ∈ [t, t + h + dt[. Denote by PE an
efficient policy, each component of PE being indexed by the superscript E
and the same for the derivatives of the functions g and k along the path.

During the first interval Θ1, assume that the society decides to increase
by an amount ds the resource use in the gelly production sector at each
time within this interval. Such an increase allows for an increase of gelly
production by an amount dg = gE

s ds. In order to stay upon the consumption
reference path, the society transfers this gelly production increase to the
capital good production sector through an increase of gk by the same amount.
This transfers allows for an increase in the capital stock level by an amount
d1K > 0 but at the cost of an extra consumption of the natural resource
stock d1S < 0. Assume that this increase in the capital stock is allocated
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only to the capital good production sector. We get at the end of Θ1:

d1K
k ' kE

g (t)gE
s (t)dsdt and d1S ' −ds dt

During the second interval Θ2, the capital stock increase is maintained
constant. This allows for a decrease of the use of gelly in the production of
the capital good. Since wear and tear has also been increased, the reduction
is dgk(τ) = d1K

k(kE
K(τ)−δ)/kE

g (τ) at any time τ ∈ Θ2. Having to sustain the
consumption reference path, the economy can decrease the gelly production
level by reducing the use of the natural resource by an amount: dsg(τ) =
dgk(τ)/gE

s (τ). This allows for resource savings at the end of Θ2 equal to:

d2S = d1K
k

∫ t+h

t+dt

kE
K(τ)− δ

kE
g (τ)gE

s (τ)
dτ

For dt sufficiently small we get the following approximation:

d2S ' kE
g (t)gE

s (t)

[
kE

K(t + dt)− δ

kE
g (t + dt)gE

s (t + dt)

]
(h− dt)dsdt

During the third interval Θ3, the economy drives back the capital stock to
its reference level by cutting down gk by an amount: dqk = (kE

g (t)gE
s (t)/kE

g (t+
h))dsdt at each time within this interval. This allows for savings of the nat-
ural resource stock by an amount d3S over Θ3:

d3S =
kE

g (t)gE
s (t)

kE
g (t + h)gE

s (t + h)
ds dt

Let dS = d1S + d2S + d3S be the amount of resource saved over the
reference path during the interval [t, t + h + dt[.

dS '
{
−1 + kE

g (t)gE
s (t)

[
kE

K(t + dt)− δ

kE
g (t + dt)gE

s (t + dt)

]
(h− dt)

+
kE

g (t)gE
s (t)

kE
g (t + h)gE

s (t + h)

}
ds dt
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For h sufficiently small and dt infinitely smaller than h we get the following
approximations:

h− dt ' h

kE
K(t + dt) ' kE

K(t) and kE
g (t + dt)gE

s (t + dt) ' kE
g (t)gE

s (t)

kE
g (t + h)gE

s (t + h) ' kE
g (t)gE

s (t) + ˙(
kE

g (t)gE
s (t)

)
h

=⇒
kE

g (t)gE
s (t)

kE
g (t + h)gE

s (t + h)
' 1−

˙(
kE

g (t)gE
s (t)

)(
kE

g (t)gE
s (t)

)h

Thus dS is approximatively equal to:

dS '

{
−

˙(
kE

g (t)gE
s (t)

)(
kE

g (t)gE
s (t)

) + kE
K(t)− δ

}
hds dt

that is:

dS '

{
−

˙gE
s (t)

gE
s (t)

−
˙kE

g (t)

kE
g (t)

+ kE
K(t)− δ

}
hds dt (3.25)

Now note that since the economy is assumed to follow the reference path
over [0, t)∪ [t+h+dt,∞) then the resource extraction is not affected during
this time interval. Thus if the previous perturbation is to be feasible, we
must have:

dS =

∫ t+h+dt

t

s(τ)dτ −
∫ t+h+dt

t

sE(τ)dτ ≤ 0

But since dS < 0 would imply that the reference path is not efficient, clearly
we must have dS = 0, hence the term into brackets on the right hand side
of (3.25) must be equal to zero, which is nothing but than (3.22). The same
kind of reasoning, by increasing sg and transferring some capital amount
dKg to the capital good production sector would lead to (3.23). Similarly,
a perturbation increasing sg and transferring some labor dlg to the capital
good production sector would result in (3.24).
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3.3 Remarks about the Dasgupta and Heal (1974) canon-
ical model

The DH model (1974) is not explicitly framed as a two sectors model. But it
can be understood as such a model in which first, the production function of
the capital good sector takes a one to one form, second, the working life of
capital goods is infinite (δ = 0) and third, the capital accumulation process
is perfectly reversible, that is the capital can be instantaneously and freely
transformed back into gelly and consumed. The same kind of framework
is also found in Mitra (1978) or Dasgupta and Mitra (1983), although in a
slightly more general form and in a discrete time model.

Thus the production core of the DH model may be written as:

g = g(Kg, lg, sg) and k = gk

Static efficiency trivially implies that Kg = K, lg = l, and sg = s. Hence the
maximization of (3.1) results in:

κ(K, s, c) = g(K, l, s)− c and γ(K, s) = g(K, l, s)

Furthermore because the capital is reversible, the only lower bound to extrac-
tion rate s, given any consumption rate c having to be secured, is trivially
s(K, c) = 0 provided that K > 0: It is sufficient not to produce any gelly and
consume the capital at disposal so that sg = s = 0. Given that the condition
(3.16) is not binding, that is s(t) ≥ 0 is not tight, since furthermore δ = 0,
then (3.21) results in:

ġs(t)

gs(t)
= gK(t) .

This is nothing but that the well known efficiency condition of the DH model
in which the consumption good and the capital good are produced within
the same sector, g being the production function of this unique sector.

3.4 Efficiency and Hartwick’s rule

Let us show now that the so-called Hartwick’s Rule may be deduced from
pure efficiency conditions.
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We define a global efficiency problem (G.E) as the following extension of
a simple (E) problem in which:

1. First t1 = 0 and t2 = ∞.

2. Second, the constraint on K(t) is the following constraint (3.26) instead
of (3.15):

K(0) = K0 > 0 given, and lim inf
t↑∞

K(t) ≥ 0 (3.26)

3. Third and last, the consumption having to be achieved c∗(t) is de-
fined accordingly over [0,∞), with the qualification that c∗(t) must be
strictly positive over some non degenerate time interval [t, t′), 0 ≤ t < t′

to avoid trivialities.

A global efficiency consumption step problem (GE.cs) is a (GE) problem
in which the consumption path {c∗(t), t ≥ 0} is a step function, that is a set
of non degenerate time intervals [0, t1), ..., [ti−1, ti), ..., [tn−1, tn), ti−1 < ti,
i = 1, · · · , n2, n ∈ N , tn = ∞, and a corresponding set of non-negative
consumption rates {c∗i , i = 1, · · · , n}, one of which at least is strictly positive,
such that c∗(t) = c∗i , t ∈ [ti−1, ti), i = 1, · · · , n. A uniform consumption
(GE.sc) problem, (GE.uc), is a global problem in which n = 1, hence c∗(t) =
c∗ > 0, t ∈ [0,∞).

Proposition 2 Assume that G.1, K.1 and GK.1 hold and consider some
constant consumption path c∗(t) = c∗ > 0 which, given K0 > 0, would be
feasible were the society be endowed with a finite amount of resource suffi-
ciently high. Let {s∗(t), t ≥ 0} be some continuous path of resource use such
that

∫ ∞
0

s∗(t)dt < ∞. Denote by K∗(t) the solution of (3.14) for c∗(t) = c∗,
{s∗(t), t ≥ 0} and K(0) = K0. Assume that for {(s∗(t), K∗(t)), t ≥ 0}, (3.16)
is satisfied as a strict inequality. If {s∗(t), t ≥ 0} is solving the (GE.uc) prob-
lem, then there exists some C1 function {νE∗(t), t ≥ 0}, the costate variable
of K∗(t), such that:

νE∗(t)K̇∗(t) = s∗(t) , t ∈ [0,∞) (3.27)
2Denoting t = 0 by t0.
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Note that in this version of the rule, νE∗(t), the shadow marginal value
of the capital stock, is a current price in terms of the resource. Given the
objective function of the problem (G.E), νE∗(t) is the amount of resource
which could be marginally saved were the stock of capital K∗(t) be marginally
higher. In such a context, the current marginal valuation of the resource is
equal to 1 at any time t. Thus what (3.27) is asserting is that the value
of the instantaneous change in asset endowment3 at any time t, at prices
(νE∗(t), 1), that is νE∗(t)K̇∗(t)− s∗(t), must be nil.

The proof is running as follows. LetH(t) be the Hamiltonian of a (GE.uc)
problem:

H(t) = −s(t) + νE(t) [κ(K(t), s(t); c∗)− δK(t)] .

By the dynamic envelope theorem4, we must have:

dH(t)

dt
=

∂H(t)

∂t

Thanks to the fact that c∗(t) is constant through time, ∂H/∂t = 0 so that
dH/dt = 0, implying that:

H(t) = h ⇐⇒ νE(t) [κ(K(t), s(t); c∗)− δK(t)]− s(t) = h

where h is some constant, thus:

νE(t)K̇(t)− s(t) = h

To prove that h = 0, we follow the general strategy developed in Michel
(1982) with due care that in the present case there is no discounting. The
idea of the proof, formally developed in Appendix A.1.1, is to convert the
problem (GE.uc) into a Bolza problem of the form:

max
{s(t),t∈[0,T )}

∫ T

0

(−s(t))dt + R(T )

where T is any finite time horizon, R(T ) ≡
∫ ∞

T
(−s∗(t))dt, and {s∗(t), t ∈

[T,∞)} being an efficient path followed from T onwards starting from an
3Not to be confused with the instantaneous change of the endowment value which

amounts to ν̇E∗(t)K∗(t) + νE∗(t)K̇∗(t)− s∗(t).
4For a standard formulation of the theorem, refer for example to Seierstad and Syd-

sæter, 1987, Chap 2, Note 3, p 61.
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efficient level of the capital stock, K∗(T ) at time T . Remark that since
{s∗(t), t ∈ [T,∞)} has been assumed to be efficient and hence feasible, one
should have:

−R(T ) =

∫ ∞

T

s∗(t)dt < ∞

R(T ) should be a well defined integral bounded from below. Using the same
mild assumptions as imposed by Michel (1982)5, it is possible to derive the
limit properties of an efficient solution letting T → ∞. For a constant
consumption path having to be achieved, this will result in limT↑∞H(T ) = 0,
a generalization over an infinite time horizon of a well known transversality
condition for a finite free endpoint T . But since the Hamiltonian must be
constant along a solution path of the (GE.uc) problem, this in turn implies
that H(t) = 0, t ≥ 0, that is that h = 0 and the Hartwick’s rule must be
satisfied.

Let us show now that, as an efficiency signal, the Hartwick rule may work
iff the problem is a (GE.sc) type problem.

Proposition 3 Assume that G1, K.1 and GK.1 hold. Let {s∗(t), t ≥ 0},∫ ∞
0

s∗(t)dt < ∞, be solving a (GE) problem for some given consumption
path {c∗(t), t ≥ 0} and some initial capital endowment K(0) = K0 > 0.
Denote by {K∗(t), t ≥ 0} the associated capital path solving (3.14). Assume
also that, for {(s∗(t), K∗(t)), t ≥ 0}, (3.16) is satisfied as a strict inequality.
Let {νE∗(t), t ≥ 0} be the path of the costate variable associated to the capital
stock. If the Hartwick rule (3.27) is satisfied at each point of time, then
{c∗(t), t ≥ 0} is necessarily a step function that is the problem must be a
(GE.sc) type problem.

Formal details of the proof are given in Appendix A.1.2. But the intuition
of the proof is straightforward. Over any open time interval, were the con-
sumption profile would be a time differentiable function, then the constancy

5In particular, Michel’s proof does not require that the Hamiltonian of the Bolza prob-
lem be concave in the vector of state and control variables, an assumption sometimes
made to derive transversality conditions in infinite time horizon problems, see Seierstad
and Sydsæter, 1987, Chap 3, Theorem 13, p 235 for an example. In the present case, since
we want to maximize a linear criterion, concavity would be an issue and our proof should
not depend upon such an assumption.
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of the Hamiltonian resulting from the Hartwick rule combined with the dy-
namic envelope theorem would imply that the consumption level should be
constant within the interval. Next, if over the interval the consumption path
is continuous but not differentiable, it is easily checked that the consumption
must be constant hence no kink points can exist. Last considering a possible
finite size jump of the consumption level at some time, it is always possible
to define a jump in the extraction level such that the Hartwick rule would
remain verified at the time of the jump.

Although the Hartwick rule may be an efficiency signal for economies
having different types of consumption paths, the structure of such paths is
strongly constrained. This is the reason why the counterexamples of Asheim
et al. (2003) showing that the Hartwick rule may hold even if the con-
sumption level is not constant, are all examples of economies in which the
consumption path is a step function.

4 OPTIMALITY

The function κ may be used to formulate the optimality problem (P ).

(P ) max
{(c(t),s(t)),t≥0)}

∫ ∞

0

u(c(t))e−ρtdt

s.t. Ṡ(t) = −s(t) , S(0) = S0 > 0 given , t ∈ [0,∞) (4.1)
S(t) ≥ 0 , t ∈ [0,∞) (4.2)
(3.14) over [0,∞) instead of [t1, t2] and with K(0) = K0 given ,

(3.16) over [0,∞) instead of [t1, t2] ,

c(t) ≥ 0 and s(t) ≥ 0 , t ∈ [0,∞) . (4.3)

Under assumption U , c(t) must be positive hence s(t) and S(t) too. Thus we
my leave aside the corresponding non negativity constraints and write the
current value Lagrangian as follows:

LP (t) = u(c(t))− λ(t)s(t) + ν(t) [κ(K(t), s(t), c(t))− δK(t)]

+α(t)[s(t)− s(K(t), c(t))] .
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The first order conditions are:

∂LP

∂c
= 0 ⇐⇒ u′(c(t)) + ν(t)κc(t)− α(t)sc(t) = 0 (4.4)

∂LP

∂s
= 0 ⇐⇒ −λ(t) + ν(t)κs(t) + α(t) = 0 (4.5)

α(t) ≥ 0 and α(t)[s(t)− s(K(t), c(t))] = 0 . (4.6)

The dynamics of the costate variables must satisfy:

λ̇(t) = ρλ(t)− ∂LP

∂S
⇐⇒ λ̇(t) = ρλ(t)

⇐⇒ λ(t) = λ0e
ρt where λ0 = λ(0) (4.7)

ν̇(t) = ρν(t)− ∂LP

∂K
⇐⇒ ν̇(t) = ρν(t)− ν(t)[κK(t)− δ]

+α(t)sK(t) (4.8)

Last the transversality conditions are:

lim
t↑∞

e−ρtλ(t)S(t) = λ0 lim
t↑∞

S(t) = 0 (4.9)

lim
t↑∞

e−ρtν(t)K(t) = 0 (4.10)

4.1 Hotelling rule

Assume first that the constraint (3.16) is not effective so that α(t) = 0.
Then time differentiating (4.4) and substituting for ν̇(t) as given by (4.8),
we obtain:

u′′(c(t))c(t)

u′(c(t))

ċ(t)

c(t)
− ρ =

κ̇c(t)

κc(t)
− (κK(t)− δ) (4.11)

Next, time differentiating (4.5), taking into account both (4.7) and (4.8),
results in:

κK(t)− δ =
κ̇s(t)

κs(t)
.

This is nothing but that the efficiency condition (3.21).
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Next making use of (3.11), we get also, dropping the time index:

κs

κc

= −kggs

kg

= −gs =⇒ κ̇s

κs

− κ̇c

κc

=
ġs

gs

,

Thus denoting by η(c) the absolute value of the elasticity of marginal utility
−u′′(c)c/u′(c), we conclude:

Proposition 4 Under G.1, K.1, and G.K.1 along an interior optimal path:

η(c)
ċ

c
+ ρ = κK − δ − κ̇c

κc

=
κ̇s

κs

− κ̇c

κc

=
ġs

gs

(4.12)

The last equality, ηċ/c+ρ = ġs/gs is the standard formulation of the Hotelling
rule as appears in DH model (1979, p 297) with only one production sector.
What we show is that the production function involved here must be the
production function of the consumption good sector.

As pointed out in the above subsection 3.3, in the DH model, κc = −1,
hence κ̇c/κc = 0, and because δ = 0, then (4.12) results in:

η(c)
ċ

c
+ ρ = gK (4.13)

which is nothing but than the DH optimality condition (10.18)6. This is
basically the Ramsey-Keynes condition in the standard Ramsey-Solow opti-
mal growth model. The DH Heal model merges a Ramsey model, implying
the same form of the arbitrage condition between savings and investment as
expressed in (4.13), and a Hotelling model, characterized by an arbitrage con-
dition between using the resource either today or in the future, a condition
expressed in (4.5) in the present model. Time differentiating the Hotelling
condition and identifying with the Ramsey Keynes condition in the DH model
leads to the expression of the Hotelling rule:

η(c)
ċ

c
+ ρ = gK =

ġs

gs

In the present model, the natural resource is involved both in the production
of gelly and in the production of new capital good. Furthermore, gelly may

6Dasgupta and Heal (1979), Chapter 10, p 296.
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be either consumed or used to produce the capital good. Hence the sav-
ing versus consumption arbitrage and the intertemporal arbitrage over the
use of the natural resource are connected directly at the production stage.
This explains why the efficiency condition (3.21) results directly from the
Hotelling condition (4.5) and the dynamics of the costate variables λ and ν.
Static efficiency collapses the autonomous effect of consumption κ̇c/κc in the
investment versus consumption arbitrage condition, resulting in the standard
version of the Hotelling rule, where only the growth rate of the resource pro-
ductivity in the sole production of gelly has to be balanced with the growth
rate of the discounted marginal utility of gelly consumption.

4.2 National accounts

Under constant returns, that is under G.2 and K.2, it is also possible to derive
an interesting national accounting condition. To simplify the exposition, let
us denote by π(t) ≡ e−ρtu′(c(t)) the discounted marginal utility level and by
µ(t) ≡ e−ρtν(t) the discounted level of the costate variable ν(t). Multiplying
both sides of (4.4) and (4.5) by e−ρt and making use of these new notations
result in:

π(t) ≡ u′(c(t))e−ρt = −µ(t)κc(t) = µ(t)kg(t) (4.14)
λ0 = µ(t)κs(t) = µ(t)kg(t)gs(t) = π(t)gs . (4.15)

We get also from (4.8):

µ̇(t) = −µ(t)(κK − δ) = −µ(t)(kg(t)gk(t)− δ)

=⇒ δµ(t)− µ̇(t) = µ(t)kg(t)gK(t) = π(t)gK(t) . (4.16)

Next by G.2 and dropping the time index we get:

πg = πgKKg + πlggl + πsggs .

Making use of (4.15) and (4.16), the above equation is equivalent to:

πg = (δµ− µ̇)Kg + πgll
g + λ0s

g . (4.17)

Under K.2, we get also:

πk = πkKKk + πkll
k + πkss

k + πkgg
k .
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Making use of the static efficiency conditions (3.2), we obtain:

πk = πkggKKk + πkggll
k + πkggss

k + πkgg
k .

Substituting for πgK and πgs their expressions given in (4.15) and (4.16), the
above equation is equivalent to:

π

kg

k = (δµ− µ̇)Kk + πgll
g + λ0s

k + πgk . (4.18)

Summing up (4.17) and (4.18) while taking into account all the full employ-
ment conditions results in:

πc +
π

kg

k = (δµ− µ̇)K + πgll + λ0s . (4.19)

Since by (4.14), π/kg = µ and k = K̇ + δK, (4.19) simplifies to:

πc = −( ˙µK) + πgll + λ0s . (4.20)

Integrating over [0,∞) and using the transversality conditions (4.9) and
(4.10), we get the following national accounting relationship7:

Proposition 5 Under G.2, K.2, G.K.1 and U , for any optimal interior
path:∫ ∞

0

u′(c(t))c(t)e−ρtdt = ν(0)K0 + λ0S
0 + l

∫ ∞

0

u′(c(t))e−ρtgldt .(4.21)

The left hand side of (4.21) is the sum of all the future consumption rates
c(t) valued at their discounted marginal instantaneous utility u′(c(t))e−ρt.
Absent any global economy or diseconomies of scale, the intuition suggests
that the value of the optimized net output of the economy could be decom-
posed into the sum of the values of the components of the economy initial
endowments. This is precisely what (4.21) is proving. Homogeneity of both
g and k implies the homogeneity of the global production process. The ini-
tial endowments of the economy are its initial capital stock K0, its initial

7Note that our national accounts balance is expressed in net terms, in particular, the
provision for wear and tear has been included in the expression of the available product.
For a detailed treatment of accounts in gross an net terms, refer to Hartwick (2000) or
Aronsson et al. (1997).
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stock of non renewable resource S0 and last, the constant flow of labor l,
that is the constant flow of a renewable resource. In (4.21) they are valued
at their initial shadow prices, ν(0) and λ0 for the capital and resource stocks
respectively, for the labor flow and the marginal productivity of labor in the
consumption good industry weighted by the discounted marginal utility of
consumption, u′(c(t)))e−ρtgl(K

g(t), lg(t), sg(t)).

4.3 Generalized Hartwick’s rule

In their seminal paper, Dixit, Hammond and Hoel (1980) proved that a
generalized version of the Hartwick’s rule has to hold along any constant
utility optimal path. It is easily checked that such a version of the Hartwick’s
rule holds also in our model.

The Hamiltonian in present value of the optimality problem (P ) is:

H(t) = u(c(t))e−ρt + νd(t)K̇(t)− λd(t)s(t)

where νd(t) and λd(t) denotes the costate variables in discounted value. In
the Dixit et al. formulation, νd(t)K̇(t)−λd(t)s(t) is nothing but than the net
present value at time t of investments in all the capital goods: the capital
stock K(t) and the resource stock S(t). Through the dynamic envelope
theorem, and denoting by H∗(t) the maximized Hamiltonian:

dH∗(t)

dt
=

∂H∗(t)

∂t
= −ρu(c∗(t))e−ρt ,

where c∗(t) is the optimal consumption level at time t. Assume a constant
optimal utility level u∗. Integrating the above relation over [t,∞), we obtain:

lim
τ↑∞

H∗(τ)−H∗(t) = −
∫ ∞

t

ρu∗e−ρτdτ = −u∗e−ρt .

Michel (1982) proved that in an optimality problem of this kind, we must
have: limτ↑∞H∗(τ) = 0. This results in:

H∗(t) = u∗e−ρt +
[
νd(t)K̇∗(t)− λd(t)s∗(t)

]
= u∗e−ρt

=⇒ νd(t)K̇∗(t)− λd(t)s∗(t) = 0 .
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The net present value of investments should be equal to zero if the optimal
utility level is constant, that is the Hartwick rule should hold. Here the
capital investment K̇∗(t) and the resource use s∗(t) are both valued in terms
of cumulative discounted utility, the objective function of the problem (P ).

Conversely, consider an optimal path {(K∗(t), s∗(t), c∗(t)), t ≥ 0} sat-
isfying the Hartwick rule at each time t. Denote by u∗(t) ≡ u(c∗(t)) the
optimized value of the utility. The corresponding Hamiltonian thus verifies:

H∗(t) = u∗(t)e−ρt , t ∈ [0,∞).

Applying the dynamic envelope theorem requires that u∗(t) be a continuous
and time differentiable function along the optimal consumption trajectory.
Assuming time differentiability results thus in:

H∗(t) = u∗(t)e−ρt =

∫ ∞

t

ρu∗(τ)e−ρτdτ .

Differentiating with respect to t gives:

u̇∗(t)e−ρt − ρu∗(t)e−ρt = −ρu∗(t)e−ρt =⇒ u̇∗(t)e−ρt = 0 .

Thus the utility level, and hence the consumption level should be constant
along an optimal path satisfying the Hartwick rule at each time. This is the
main result of Dixit et al. (1980). But note that Dixit et al. (Theorem 1,
p 553) are assuming the smoothness of all time functions along the optimal
trajectory, which is an additional assumption which cannot be deduced from
their primitive regularity assumptions.

But we can exploit the efficiency property of an optimal path to show
that the optimal consumption level, and hence the optimal welfare level,
should be constant if the Hartwick rule is verified, without relying on the
time differentiability of u∗(t), the optimized utility level.

First note that under (4.7), λd(t) = λd a constant. Dividing by λd side to
side the Hartwick rule and making use of (4.5), we obtain:

νd(t)K̇∗(t) = λds∗(t) =⇒ νd(t)

λd
K̇∗(t) =

1

κs

K̇∗(t) = s∗(t) ,

and since an optimal path must be efficient: νE(t) = κ−1
s . We conclude

that the simple form of the Hartwick rule along an efficient path should
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hold. Applying Proposition 3, the optimal consumption path sustained by
the Hartwick rule is a step function. But under the strict concavity of the
utility function embodied in assumption U , a jump in the consumption level
would imply a jump in the marginal utility level in the opposite direction.
This opens the door to consumption arbitrage opportunities, contradicting
the assumption that the consumption path is optimal. Since c∗(t) has to be a
continuous time function under U , we conclude that the optimal consumption
level should be constant over time if (4.22), and thus (3.27), have to be
satisfied at each point of time. That is {(K∗(t), s∗(t)), t ≥ 0} should be
solution of a (GE.uc) problem. We conclude as follows:

Proposition 6 Under G.1, K.1, GK.1 and U , if along an interior optimal
path {(s∗(t), K∗(t)), t ≥ 0} the current utility level is constant over time,
then:

νd(t)K̇∗(t) = λd(t)s∗(t) t ∈ [0,∞) (4.22)

where νd(t) and λd(t) are the costate variables of K∗(t) and S∗(t) respectively,
both in terms of discounted utility. Reciprocally assume that (4.22) holds,
then the current utility level is constant through time.

Note that we get the generalized Hartwick’s rule without invoking ’transver-
sality’ conditions stating the limit of νd(t) as time increases up to infinity.
A limit property of the optimized Hamiltonian, which can be shown to be
a necessary condition for optimality (see Michel, 1982) with a constant dis-
count rate, is all that is needed to obtain the rule along an optimal constant
utility path.

5 CONCLUSION

The Dasgupta and Heal (1974) seminal contribution is the basic framework
of numerous analysis of the long run sustainability issue through man made
capital substitution to the use of an essential exhaustible resource. We de-
part from this framework by introducing a complete bisectoral model where
the consumption good is produced from labor, man made capital and an ex-
haustible resource, the capital good being also produced from labor, capital,
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exhaustible resource and some fraction of the output from the consumption
good sector. This is the minimum disaggregation allowing to isolate some
fundamental relationships which are blurred in the Dasgupta and Heal model
in which the two sectors are merged together.

We focus more upon efficiency issues rather than over optimality issues,
the first ones appearing as more fundamental for the sustainability of an
economy submitted to an exhaustible resource depletion constraint. We show
that local dynamic efficiency relates basically to the properties of the cap-
ital good production function, while optimal properties like the Hotelling
rule rely upon the properties of the consumption good production function.
Our emphasis upon efficiency considerations proves also to be helpful in clar-
ifying important aspects of Hartwick’s rule in resource models. We show
that Hartwick’s result can be obtained without relying upon continuity and
smoothness assumptions, as frequently postulated in the literature.

An important issue we do not consider is the existence of efficient or
optimal positive constant consumption paths. It is clear that if the economy
cannot sustain a constant consumption level through an efficient management
of its scarce resources, it cannot do better than experiencing some declining
to zero consumption level in the long run.

In our model, the economy is constrained both by the limited availability
of an exhaustible resource and by a limited and constant amount of labor.
Most existence results of efficient plans sustaining some constant consump-
tion level have been derived from monosectoral models of substitution be-
tween the exhaustible resource and a man capital stock8, and their counter-
parts in a bisectoral model remain an open question.These points are beyond
the scope of the present study but are developed in a companion paper9.

8Existence results for monosectoral models with or without labor constraints have been
derived in Solow (1974), Cass and Mitra (1991), Pezzey and Withagen (1998) and Asheim
et al. (2007).

9Amigues and Moreaux (2008).
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APPENDIX

A.1.1 Appendix A.1: Proof of Proposition 2

We adapt the proof strategy of Michel (1982) to the problem (GE.uc) of
Proposition 2 in which, contrary to Michel’s assumption, there is no dis-
counting.

Denote by {(s∗(t), K∗(t)), t ∈ [0,∞)} the solution of the problem (GE.uc)
of the Proposition 2 defined by c∗(t) = c∗ > 0, t ≥ 0. Let us define the new
time variable τ as τ ≡ t−x so that dτ/dt = 1 and s∗(τ) = s∗(t−x). For any
given T > 0 and x ≥ 0, define R∗(T, x) as minus the cumulated extraction
over the time interval [T + x,∞), the time being measured by τ :

R∗(T, x) ≡
∫ ∞

T+x

(−s∗(τ))dτ

Note that by construction ∂R∗/∂x = 0.

Consider the following auxiliary problem (PT ) with the non negative state
variables Y (t) and Z(t) and the control variables r(t), r(t) ∈ <+, and v(t),
v(t) ∈ <++:

PT : max
{(r(t),v(t)),t∈[0,T )}

∫ T

0

v(t)(−r(t))dt + R∗(T, Z(T )− T )

s.t. Ẏ (t) = v(t)f(Y (t), r(t)) Y (0) = K0 Y (T ) = K∗(T )

Ż(t) = v(t) and Z(0) = 0

where f(Y (t), r(t)) ≡ κ(Y (t), r(t), c∗)− δY (t). It is proved in Michel (1982)
that the states (Y (t), Z(t)) = (K∗(t), t) and the controls (r(t), v(t)) = (s∗(t), 1),
for t ∈ [0, T )} are solving the auxiliary problem PT (Michel, 1982, Lemma,
p 977).

Let HT (t) be the Hamiltonian of the auxiliary problem (PT ):

HT (t) = aT v(t)(−r(t)) + νT (t)v(t)f(Y (t), r(t)) + ϑT (t)v(t)

Note that we explicitly introduce the scalar aT , usually implicitly assumed
to be equal to one, into the expression of the Hamiltonian.
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As proved by Michel (1982, p 983), the necessary optimality conditions for
the problem (PT ) are as follows.

First, there must exist a non negative real number aT , a real number nT , and
continuous functions of time νT (t) and ϑT (t) such that:

(aT , nT ) 6= (0, 0) (A.1.1)

ν̇T (t) = −∂HT

∂Y
= −νT (t)v(t)

∂f

∂Y

=⇒ ν̇T (t) = −νT (t)
∂f

∂K
(K∗(t), s∗(t)) , t ∈ [0, T ) (A.1.2)

νT (T ) = nT (A.1.3)

ϑ̇(t) = −∂HT

∂Z
= 0 (A.1.4)

ϑT (T ) = aT
∂R∗

∂x

∂x

∂Z
= aT

∂R∗

∂x
(T, 0) = 0 (A.1.5)

Second, the Hamiltonian must be maximized with respect to the control
variables. Concerning v(t), since the Hamiltonian is linear in v(t), in the
case v(t) = 1 6= 0, this is implying that:

νT (t)f(Y (t), r(t)) + ϑT (t) = aT r(t) t ∈ [0, T ) (A.1.6)

Concerning r(t), we obtain, for v(t) = 1:

νT (t)
∂f

∂r
(Y (t), r(t)) = aT t ∈ [0, T ) (A.1.7)

Let us show now that both aT 6= 0 and νT (0) 6= 0. Consider the above
condition (A.1.7) at time t = 0:

νT (0)κs(Y (0), r(0)) = aT (A.1.8)

Under the assumptions G.1 and K.1, κs(Y (0), r(0)) > 0, hence:

νT (0) = 0 =⇒ aT = 0 and aT = 0 =⇒ νT (0) = 0 . (A.1.9)

Thus:

• Either both νT (0) = 0 and aT = 0,

• Or νT (0) 6= 0 and aT 6= 0.

31



Assume that νT (0) = 0, then by (A.1.2) and ∂f/∂K > 0:

• Either νT (t) = 0, t ∈ [0, T ), implying that first νT (T ) = 0 hence by
(A.1.3) nT = 0, and by (A.1.9) aT = 0 because νT (0), thus (aT , nT ) =
(0, 0) contradicting (A.1.1).

• Or νT (t) 6= 0 over some first interval (t1, t2), 0 ≤ t1 < t2 ≤ T after
having been equal to 0 over the interval [0, t1) (possibly degenerate).
Because ∂f/∂K > 0 then by (A.1.2) this is possible iff νT (t) is jumping
either upwards or downwards at t1 which is contradicting the continuity
of νT (t) which must be equal to 0 over [0, t1), hence again a contradic-
tion.

We conclude that aT > 0 and νT (0) 6= 010.

Multiplying side to side (A.1.2), (A.1.3), (A.1.6), (A.1.7) by a constant θ > 0,
while taking into account (A.1.4) and (A.1.5) which imply together that
ϑ(t) = 0, t ∈ [0, T ), we get:

θν̇T (t) = −θνT (t)
∂f

∂K
θνT (T ) = θnT

θνT (t)f(Y (t), r(t)) = θaT r(t)

θνT (t)
∂f

∂r
= θaT

By letting a′T ≡ θaT and ν ′T (0) ≡ θνT (0), we can choose a value of θ such that
‖a′T , ν ′T (0)‖ = 1 without changing the solution of the problem (PT ). Thus
we can renormalize aT and νT (0) in such a way that (aT , νT (0)) lies into the
unit simplex, that is a compact set.

Since (aT , νT (0)) is of unit norm, there exists a sequence (aTn , νTn(0)) such
that limTn→∞(aTn , νTn(0)) = (a, ν0) with a > 0 and ν0 > 0. Since limTn→∞ aTn =
a and limTn→∞ νTn(0) = ν0, we can define ν(t) = limTn→∞ νTn(t) and ϑ(t) =

10Note that νT (0) 6= 0 implies that νT (0) > 0 under the assumptions of Proposition
2 according to which the efficient path is an interior path, that is (3.16) is satisfied as a
strict inequality.
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limTn→∞ ϑTn(t). Remembering that {K∗(t), s∗(t)}T
0 should be a solution of

the problem (PT ), (ν(t), ϑ(t)) should be a solution of:

ν̇(t) = −ν(t)
∂f

∂K
(K∗(t), s∗(t)) ν(0) = ν0

ϑ̇(t) = 0

ϑ(t) = a lim
x↑∞

∂R∗

∂x
(0) = 0

The asymptotic properties of ϑ show that first ϑ̇(t) = 0, that is ϑ(t) should
be constant, and second ϑ(t) = 0. Since (a, ν0) is of unit norm, we get also:

−s∗(t) + a−1ν(t)f(k∗(t), s∗(t)) = 0 =⇒ H∗(t) = −s∗(t) + ν(t)K̇∗(t) = 0

which is nothing but than the Hartwick’s rule (3.27).

A.1.2 Appendix A.2: Proof of Proposition 3

If a solution of the problem (GE) satisfies the Hartwick’s rule (3.27), then
the corresponding Hamiltonian HE(t) should be zero at each time t along
the solution path and hence be constant. Next note that K(t) should be a
continuous function of time along an efficient path.

Consider some time interval T C where the consumption path having to be
achieved would be a continuous function of time. Then over any time interval
TD ⊂ T C where the consumption path would also be a time differentiable
time function, we can apply the dynamic envelope theorem and get:

dHE(t)

dt
=

∂HE(t)

∂t
= νE(t)

∂κ(K(t), s(t); c(t))

∂c

dc(t)

dt
= 0 t ∈ TD ⊂ T C

Thus c(t) should be constant for t ∈ TD.

Next consider some time τ ∈ T C such that the function c(t) would be non
differentiable at time τ . We cannot apply the dynamic envelope theorem
at t = τ . Let τ− ≡ t ∈ (τ − ε, τ), τ+ ≡ t ∈ (τ, τ + ε), ε > 0. Since
c(t) is continuous and differentiable for t ∈ (τ − ε, τ), K̇ and νE(t) are
differentiable and continuous at τ−. The same applies at τ+. Since through
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the Hartwick rule, νE(t)K̇(t) = s(t) at t = τ− and t = τ+, s(t) should also
be a continuous and differentiable time function for t = τ− or t = τ+. Thus
time differentiating for t ∈ (τ − ε, τ), we get:

ν̇E(τ−)[κ(K(τ−), s(τ−), c(τ−)− δK(τ−)]

+νE(τ−)[κK(τ−)K̇(τ−) + κs(τ
−)ṡ(τ−) + κc(τ

−)ċ(τ−)− δK̇(τ−)] = ṡ(τ−)

And since the path {K(t), s(t)} is an interior solution of the problem (GE),
the following necessary conditions have to be verified:

ν̇E(τ−) = −νE(τ−)[κK(τ−)− δ]

νE(τ−) = κs(τ
−)−1

which gives:

ν̇E(τ−)K̇(τ−) + νE(τ−)K̇(τ−)[κK(τ−)− δ] + ṡ(τ−)[νE(τ−)κs(τ
−)− 1]

+νE(τ−)κc(τ
−)ċ(τ−) = 0

=⇒ νE(τ−)κc(τ
−)ċ(τ−) = 0

which is only possible if ċ(τ−) = 0. But the same computation may be
performed for τ+ leading to ċ(τ+) = 0. Thus the c(t) consumption level
having to be achieved being a continuous time function at τ with equal
lefthand and righthand time derivatives limits should be a differentiable time
function at t = τ . This implies that c(t) has to be constant for t ∈ T C .

It remains to consider the case of a jump in the consumption path having
to be achieved. Note that in such a case the function f(K, s; c) defined by
K̇(t) = κ(K, s; c) − δK ≡ f(K, s : c) is no more a continuous function of
(K, s), jumping upwards if c jumps downwards or jumping downwards if c

jumps upwards since κc < 0. Thus we are not in the usual setting of the stan-
dard optimal control theory where f is currently assumed to be a continuous
function. In such a situation, the costate variable νE∗(t) associated to K∗(t)
is a piecewise continuous function of time, with possible jumps at the point
of discontinuity of the consumption path11. This allows to determine some
jump in s∗(t) such that:

νE∗(t)K̇∗(t) = s∗(t) ⇐⇒ [κ(K∗(t), s∗(t); c)− δK∗(t)]

κs(K∗(t), s∗(t); c)
= s∗(t)

11Seierstad A. and K. Sydsæter, 1987, Chap 2, Note 6, p 87.
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would remained satisfied even at point of discontinuities of the consumption
path, showing that the Hartwick rule is not a sufficient condition to exclude
jumps in the consumption path having to be achieved.

Thus a solution path of the problem (GE) and satisfying the Hartwick rule
(3.27) can only sustain a sequence of constant consumption levels, that is
the consumption trajectory having to be achieved can only be some step
function.
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