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Abstract. Argument graphs are a common way to model argumenta-
tive reasoning. For reasoning or computational purposes, such graphs
may have to be encoded in a given logic. This paper aims at providing
a systematic approach for this encoding. This approach relies upon a
general, principle-based characterization of argumentation semantics.

1 Introduction

In order to provide a method to reason about argument graphs [1], Besnard and
Doutre first proposed encodings of such graphs and semantics in propositional
logic [2]. Further work by different authors following the same idea was published
later, e.g. [3–7]. However, all these approaches were devoted to specific cases
in the sense that for each semantics, a dedicated encoding was proposed from
scratch. We aim here at a generalization, by defining a systematic approach to
encoding argument graphs (which are digraphs) and their semantics in a logic
⊢. Said differently, our objective is to capture the extensions under a given
semantics of an argument graph in a given logic (be it propositional logic or
any other logic). We hence generalize the approach originally introduced in [2]
by parametrizing the encoding in various ways, including principles defining a
given semantics.

We consider abstract arguments first, and then provide guidelines to extend
the approach to structured arguments (made up of a support that infers a
conclusion).

2 Argument Graph and Semantics

2.1 Reminder

The notion of an argument graph has been introduced by Dung in [1]1.

Definition 1. An argument graph is a couple G = (A,R) such that A is a
finite set and R ⊆ A×A is a binary relation over A.

The elements of the set of vertices A are viewed as a set of abstract arguments,
the origin and the structure of which are unspecified. The edges R represent
attacks: (a, b) ∈ R, also written aRb, means that a attacks b. A set of arguments
S attacks an argument a if a is attacked by some element of S.

1 Dung uses the term argumentation framework instead of argument graph.



Dung introduced several semantics to define which sets of arguments can be
considered as collectively acceptable: the admissible, stable, grounded, preferred
and complete semantics. The application of a semantics to a given argument
graph results in a set of acceptable sets, called extensions. As an example of a
semantics, one may consider the stable semantics [1].

Definition 2. Given an argument graph G = (A,R), a stable extension S ⊆ A
is a set that satisfies the following two conditions:

1. it does not exist two arguments a and b in S such that aRb;
2. for each argument b �∈ S, there exists a ∈ S such that aRb (any argument

outside the extension is attacked by the extension).

More generally, a semantics gives a formal definition of a method ruling the
argument evaluation process. Extensions under a given semantics σ are called
σ-extensions. Eσ(G) denotes the set of the σ-extensions of an argument graph
G. Following Dung, a huge range of semantics have been defined (see [8] for a
comprehensive overview). For these semantics, the following notions are essential
(where an argument graph G = (A,R) is assumed).

A set S ⊆ A is conflict-free iff � ∃a, b ∈ S such that aRb.
An argument a ∈ A is defended by S ⊆ A iff ∀b such that bRa, ∃c ∈ S such

that cRb.
A set of extensions E ⊆ Eσ(G) is inclusive-maximal iff ∀E1, E2 ∈ E , if E1 ⊆ E2

then E1 = E2.
An admissible set is a conflict-free set that defends all its elements.
A stable extension is an admissible set, but not all admissible sets are stable

extensions.
The set of preferred extensions of an argument graph is the inclusive-maximal

set of its admissible sets.

A number of complexity results have been established for decision problems
in abstract argument graphs [9]. Two such problems are:

Verification VERσ. Given a semantics σ, an argument graph G = (A,R) and
a set S ⊆ A, is S a σ-extension of G?

Existence EXσ. Given a semantics σ and an argument graph G = (A,R),
does G have at least one σ-extension?

For instance, as regards the verification problem [9]: VERstable is in P, but
VERpreferred is coNP-complete. As regards the existence problem, the question
of the existence of a stable extension, EXstable , is NP-complete.

2.2 Encoding

Given any semantics σ, our objective is to capture the σ-extensions of an argu-
ment graph (A,R) in a logic ⊢. The only requirements for this logic are that it
should contain all the Boolean connectives (in order to capture “not”, “and”,
and “or”).



There are two ways to achieve our objective:

(α) By providing a formula θσ whose models characterize the set Eσ(G) of σ-
extensions of G = (A,R). So the set Mod(θσ) of the models of θσ is iso-
morphic to the set of σ-extensions of (A,R): every model of θσ determines
a σ-extension of (A,R) and vice-versa. 2

(β) By providing a formula θσ,S , depending on a subset S of A, that is satisfiable
if and only if S is a σ-extension of (A,R).

Adopting terminology from [2], we call (α) “the model checking approach” and
(β) “the satisfiability approach” (answering the verification problem VERσ).

In (α), we must provide a means to identify extensions in the encoding. (There
might for instance be non-effective ways for a model to coincide with an exten-
sion.) In the rest of the paper, we will focus on the (β) approach.

An additional issue (γ) may be to find a formula (in the logic ⊢) that is sat-
isfiable iff there exists a σ-extension for the argument graph (existence problem
EXσ). This issue is of interest for the stable semantics for instance, but not
for other admissibility-based semantics (preferred, complete, grounded. . .), the
empty set being always an admissible set.

3 Encoding Methodology

Now, we provide a methodology for encoding the σ-extensions of an argument
graph in a given logic, following the satisfiability approach previously introduced.
We are going to illustrate it by a case study in Section 5.

3.1 Encoding Extensions

At the abstract level, given a set of abstract arguments A = {a1, a2, . . .} and an
argument graph G = (A,R), in order to construct θσ,S, the following questions
should be answered:

1. How to represent a subset S of the set of arguments A? For instance, it could
be:

χS =
∧

ai∈S

ai ∧
∧

aj �∈S

¬aj

2. How to define that S is a σ-extension of G? For instance, if σ is the stable
semantics then we might have:

S is a stable extension of G iff χS |=
∧

a∈A

(a ↔
∧

b∈A:bRa

¬b)

In [2], it was shown that
∧

a∈A(a ↔
∧

b∈A:bRa ¬b) = θstable . More gener-
ally, we are aiming at constructing θσ,S enjoying the following equivalence:
S is a σ-extension of G iff χS |= θσ, i.e.,

θσ,S is satisfiable iff χS |= θσ

2 In the case that Mod(θσ) is isomorphic to Eσ(G) then the following consequence
holds: θσ ⊢ ϕ iff ϕ encodes a ⊢-definable property of G.



3. When a semantics involves a notion of maximality or minimality, how to
capture the corresponding sets?

3.2 Encoding Set-Theoretic Relations

Our methodology for systematic encodings θσ,S where S is the subset to be tested
for being an extension relies on several building bricks and a rule as follows.

– Rule

An encoding is of the form

θσ,S = ϕS ∧ ϕS ∧ ΨS

where ϕS encodes the necessary conditions for membership in S, ϕS encodes
the sufficient conditions, and ΨS is a Boolean combination over basic building
bricks (intuitively, ΨS expresses that S enjoys σ).

– Basic Building Bricks3

• Membership in a subset of the arguments: a is an argument in X ⊆ A is
encoded as

ϕ(a∈X) =



















ϕ(a∈S) if X = S

∨

a=x∈X

⊤ if X �= S

where for each a ∈ A, we assume a generic formula4 ϕ(a∈S) expressing
that “a is in the set of arguments S”.

• Subset X of the arguments:

ϕX =
∧

a∈X

ϕ(a∈X)

• Complement of X in the set of arguments:

ϕX =
∧

a �∈X

¬ϕ(a∈X)

Intuitively, ϕS expresses that S contains all the elements of S whereas
ϕS expresses that S contains only elements of S.

3 Remember that an empty conjunction, i.e., a conjunction
∧

C(x) γ[x] whose condition

C(x) holds for no x, amounts to⊤. An empty disjunction, i.e., a disjunction
∨

C(x) γ[x]

whose condition C(x) holds for no x, amounts to ⊥.
4 By generic formula, we mean a formula that is constructed in a systematic way,
by contrast to ad-hoc formulas with no common form. For example, ϕ(a∈S) can be
a (provided that, for all arguments a, there is an atom a in the language). This is
generic because all such formulas have the same form: an atom naming an argument.



– Intermediate Building Bricks

1. X ⊆ Y

This is captured as
∧

a∈A

(

ϕ(a∈X) → ϕ(a∈Y )

)

2. X is maximal such that ΨX holds
This, which amounts to ΨX & ∀Y ⊇ X (ΨY → Y ⊆ X), is captured as

ΨX ∧
∧

X⊆Y ∈2A

(

ΨY →
∧

a∈A

(ϕ(a∈Y ) → ϕ(a∈X))

)

3. X is minimal such that ΨX holds
This, which amounts to ΨX & ∀Y ⊆ X (ΨY → X ⊆ Y ), is captured as

ΨX ∧
∧

X⊇Y ∈2A

(

ΨY →
∧

a∈A

(ϕ(a∈X) → ϕ(a∈Y ))

)

Please bear in mind that, as a consequence of the first building brick, the
following holds: In all of the above clauses, whenever X �= S (and similarly for
Y and Z), ϕ(a∈X) must be encoded as

∨

a=x∈X ⊤ else it is encoded as ϕ(a∈S).

As an illustration, here are the details for the case of maximality:

max: Let us assume that E satisfies Ψ ′ (hence Ψ ′
E holds). Then, for all S ⊂ E,

θσ,S
def
= ϕS ∧ ϕS ∧ Ψ ′

S ∧
∧

S⊆Y ∈2A

(

Ψ ′
Y →

∧

a∈A

(ϕ(a∈Y ) → ϕ(a∈S))

)

is not satisfiable because the conjunct ϕS is contradicted by means of
Ψ ′
Y → ϕY (for the case Y = E); for a ∈ E \ S, it happens that ϕS entails

¬ϕ(a∈S) whereas Ψ
′
E → ϕE yields ϕ(a∈S) (remember, Ψ ′

E holds).

4 Encoding Semantic Principles

Baroni and Giacomin have shown in [10] that the existing argumentation seman-
tics satisfy a number of principles. They have provided a comprehensive list of
such principles. From some subsets of these principles, it is possible to character-
ize existing semantics. Based on such a general characterization of a semantics,
the objective in this section is to encode into formulas the principles P1 . . . Pn

that define the semantics.
This requires two things. One is that we must prepare, from the building

bricks listed in Section 3.2, encodings of statements (and their denials) such as:

– “a is in E”
– “a attacks b” (in symbols, aRb) and set versions thereof



– “S is maximal such that. . . ”
– . . .

The other thing is to provide a concrete list of such principles P . In Section 2
we have already mentioned conflict-freeness, inclusion-maximality, and admissi-
bility. We recall here some of the list in [10]:

Conflict-Free Principle. A semantics σ satisfies the C-F principle iff ∀G, ∀E ∈
Eσ(G), E is conflict-free.
From the building bricks in Section 3.2, conflict-freeness can be encoded as5

∧

bRa

¬(ϕ(a∈S) ∧ ϕ(b∈S))

Inclusion-Maximality Criterion. A semantics σ satisfies the I-M criterion
iff ∀G, Eσ(G) is inclusive-maximal.
Here, an encoding has been already explicitly given in Section 3.2.

Encoding defence (for all b such that bRa, there exists c ∈ S such that cRb) is
achieved by

∧

bRa

∨

cRb

ϕ(c∈S)

which can be used in the encoding of the next three principles that are based on
defence, as follows.

Admissibility Criterion. A semantics σ satisfies the admissibility criterion iff
∀G, ∀E ∈ Eσ(G), if a ∈ E then a is defended by E.
The admissibility criterion can be captured through

ϕ(a∈S) → (
∧

bRa

∨

cRb

ϕ(c∈S))

Reinstatement Criterion. A semantics σ satisfies the reinstatement criterion
iff ∀G, ∀E ∈ Eσ(G), if a is defended by E then a ∈ E.
The reinstatement criterion can be captured by means of

(
∧

bRa

∨

cRb

ϕ(c∈S)) → ϕ(a∈S)

Conflict-Free Reinstatement Criterion. A semantics σ satisfies the CFR
criterion iff ∀G, ∀E ∈ Eσ(G), if a is defended by E and E ∪ {a} is conflict-
free then a ∈ E.
Now, the CFR criterion can be captured just as the reinstatement criterion,
only adding (in the antecedent) a conjunct for conflict-freeness (see above
the conflict-free principle).

5 Please observe that S instead of E occurs in the specification of the formula because
we construct a formula (parameterized by S) which is satisfiable iff S is an extension.



In addition to the criteria listed in [10], we propose the following one:

Complement Attack Criterion. A semantics σ satisfies this criterion iff ∀G,
∀E ∈ Eσ(G) it holds that ∀b ∈ A if b �∈ E then ∃a ∈ E such that aRb. The
complement attack criterion can be captured by means of

∧

a∈A

(

¬ϕ(a∈S) →

(

∨

bRa

ϕ(b∈S)

))

Another encoding is to be found in the example detailed in Section 5.

The stable semantics is characterized by the conflict-free principle and the
complement attack criterion. The stable semantics satisfies the admissibility cri-
terion as well.

5 A Case Study

There are two approaches, (a) and (f). One approach (a) introduces dedicated
atoms in the object language to represent the attack relation. This means that
there is a list of fresh Attxy atoms, one for each ordered pair of nodes (x, y) in
the graph. The other approach (f) dispenses from such atoms, and the properties
to be encoded must be expressed in such a way that reference to attacks can be
captured as a range over conjunction or disjunction.

Example

Let us find θσ,S for σ = stable . The definition for a set of arguments S being
conflict-free is

∀a ∈ S � ∃b ∈ S bRa

According to the (f)-approach, i.e., no dedicated atom is used, we must refor-
mulate the condition as follows: for all a in S, it is not the case that there exists
some b attacking a such that b is in S. The (f)-encoding for being conflict-free is

∧

a∈S

¬
∨

bRa

ϕ(b∈S)

or, equivalently,
∧

a∈S

∧

bRa

¬ϕ(b∈S)

In the case of stable extensions, we need to additionally encode the property of
S attacking its complement:

∀a �∈ S∃b ∈ S bRa

According to the (f)-approach, we must reformulate the condition in the form:
for all a not in S, there exists some b attacking a such that b is in S. Hence the
(f)-encoding for S attacking its complement is

∧

a �∈S

∨

bRa

ϕ(b∈S)



Combining both conditions, we obtain the building brick ΨS (introduced above:
the general case) for stable extensions:

ΨS = (
∧

a∈S

∧

bRa

¬ϕ(b∈S)) ∧ (
∧

a �∈S

∨

bRa

ϕ(b∈S))

Conjoining with ϕS and ϕS , we obtain:

ϕS ∧ ϕS ∧ ΨS =
∧

a∈S

(ϕ(a∈S) ∧
∧

bRa

¬ϕ(b∈S)) ∧
∧

a �∈S

(¬ϕ(a∈S) ∧
∨

bRa

ϕ(b∈S))

which is exactly the formula encoding stable extensions in Proposition 10 of [2]
where ϕ(x∈S) is the atom x.

6 Towards Encoding Graphs of Structured Arguments

The aim of this section is to indicate how the approach, designed for abstract
argument graphs, may be extended to graphs with structured arguments. Our
exposition follows [11].

The very first issue is to choose how to represent nodes of an argumentation
graph in this case. Then, arises the question of the representation of edges,
and next, of how to define the extensions. Moreover, the properties of the logic
underlying the arguments play a role now.

We assume that nodes in the graph (i.e., arguments) enjoy a minimal amount
of structure as pairs (Ai, ci) where Ai is a set of formulas, the premises of the
argument, and ci is a formula, the claim of the argument. Importantly,

Ai 
 ci

In any case, our approach involves the following steps.

1. Representing nodes, with two options:
– Either every two arguments of the form (Ai, ci) and (Ai, c

′
i) are treated

as two distinct entities,
– or they are treated as equals.

The former might be justified on the grounds that we have some (granted,
rudimentary) structure within an argument (it is less abstract) and there
must be the possibility to detail the content of the attack relation. We choose
to leave these two options open.

2. Representing edges, with the question:
– Is it necessary that the attack relation be captured at the object level,

i.e., by a formula of the logic?
Whether representing or not (i.e., simply capturing constraints and condi-
tions to be satisfied by the attack relation), we would need the language to
include something capturing consistency (and presumably, inference, hence
the need for the deduction theorem). E.g., there could be a modal possibility
operator ⋄ and a naming device ⌈·⌉. All these would express consistency of
support of two arguments in an extension, as for example in

⋄(Ai ∧ Aj) → ¬⌈iRj⌉.



Another option would be to use QBF, as done in [12] to characterize the
complexity, or to use Dynamic Logic of Propositional Assignments, as done
in [13] to provide a dynamic account of the construction of extensions.

3. Representing extensions.
As a start, we must decide whether ¬Ai is to mean that (Ai, ci) fails to be
in the extensions being tested. The answer determines whether or not an
argument with the same support as an argument in the extension at hand
has to be in the extension.
Another point is that extensions are defined as conditions using the attack

relation. This may mean building bricks, other than those we have examined,
from which various notions of extensions can be defined.

4. Lastly, attention must be paid to properties of the logic that can play a role.
For example, contraposition and transitivity make the inference constraint
to turn the conflict between arguments i and j into Ai 
 ¬Aj as follows:

Ai 
 ¬cj (assumption)
Aj 
 cj (assumption)
¬cj 
 ¬Aj (contraposition)
Ai 
 ¬Aj (transitivity)

7 Conclusion

We have proposed in this paper a methodology to encode an argument graph
and a semantics in a given logic. Few constraints are imposed on the logic. We
have considered abstract arguments, and we have given guidelines to extend the
approach to structured, non-abstract arguments.

In this methodology, we have made the assumption that a semantics is defined
by a set of principles. Even though evaluation principles have been put forward
by [8, 10], the characterization of a semantics by a set of principles is an issue
that has not been addressed yet. The example of the complement attack cri-
terion (mandatory to characterize the stable semantics), shows that in current
approaches, criteria are missing to obtain such a characterization.

In line with such a general characterization, it can be noticed that [14] con-
tains a general recursive schema that captures all of Dung’s semantics and that is
able to capture other admissibility-based, or non-admissibility-based, semantics.
However, the schema embeds a “base function”, that basically characterizes the
extensions of an argument graph made of only one strongly connected compo-
nent; that is, the semantics is not described by the principles it is based on.

As regards computational issues, [15] surveys implementations of abstract
argument graphs. Many abstract semantics have been implemented, with various
techniques, but none of these implementations is built from a principle-based
characterization of the semantics.

We have encoded in this paper a number of semantic principles, but others re-
main to be defined (and encoded) in order to characterize the existing semantics,
and possibly, new semantics as well.

Moreover, the guidelines given to extend the approach to structured, non-
abstract arguments, will be further explored.
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