
Graph-Based ETL Processes For Warehousing Statistical Open Data

Alain Berro1, Imen Megdiche1, Olivier Teste1

1 IRIT UMR 5505, University of Toulouse, CNRS, INPT,

UPS, UT1, UT2J, 31062 TOULOUSE Cedex 9
{berro, megdiche, teste}@irit.fr

Keywords: Statistical Open Data, RDF Graphs, Tables Extraction, Holistic Integration, Multidimensional Schema

Abstract: Warehousing is a promising mean to cross and analyse Statistical Open Data (SOD). But extracting structures,

integrating and defining multidimensional schema from several scattered and heterogeneous tables in the SOD

are major problems challenging the traditional ETL (Extract-Transform-Load) processes. In this paper, we

present a three step ETL processes which rely on RDF graphs to meet all these problems. In the first step,

we automatically extract tables structures and values using a table anatomy ontology. This phase converts

structurally heterogeneous tables into a unified RDF graph representation. The second step performs a holistic

integration of several semantically heterogeneous RDF graphs. The optimal integration is performed through

an Integer Linear Program (ILP). In the third step, system interacts with users to incrementally transform the

integrated RDF graph into a multidimensional schema.

1 INTRODUCTION

Crossing and analysing Statistical Open Data (SOD)

in a data warehouse is a promising way to derive

several insights and reuse these miner sources of

information. Except that Open Data’ characteris-

tics make them unaffordable with traditional ETL

(Extract-Transform-Load) processes. Indeed, an im-

portant part1 of governmental SOD holds into spread-

sheets disposing structurally and semantically hetero-

geneous tables. Moreover these sources are scat-

tered across multiple providers and even in the same

provider which hampers their integration.

To cope with these problems, we propose RDF-

based ETL processes composed of three steps which

adapt the extract, transform and load traditional ETL

steps. The first step gives a solution to the automatic

data table extraction and annotation problem. The

second one gives a solution to the automatic holistic

data integration problem. The third step focuses on an

incremental multidimensional schema definition from

the integrated RDF graphs. In this latter, we aim to

maintain the re-usability of processed SOD.

RDF Graph-Based ETL Processes. Our ETL pro-

cesses are based on manipulating RDF graphs. They

are depicted in Fig.1 as follows:

1http://fr.slideshare.net/cvincey/opendata-benchmark-
fr-vs-uk-vs-us

• Step 1: ”Extraction and Annotation”, it takes as

input flat SOD spreadsheets and provides as out-

put unified RDF instance-schema graphs. The

main challenge is to automatically identify and re-

structure data from spreadsheets tables in order to

be able to reuse them. We propose a workflow to

automatically perform the ETL extraction phase.

Each activity in the workflow extracts and anno-

tates table components guided by a table anatomy

ontology then constructs iteratively the vertices

and edges of the output graph. Finally, users val-

idate automatic annotations and the output graphs

are stored in a staging area.

• Step 2: ”Holistic Integration”, it takes as input

structural parts of several SOD RDF graphs and

generates as output an integrated RDF graph and

Figure 1: Graph-Based ETL Processes



the underlying matchings. The integrated graph is

composed of collapsed and simple vertices con-

nected by simple edges. Collapsed vertices ref-

erence groups of matched vertices. Not matched

ones remain simple vertices. We propose a lin-

ear program to perform an automatic and optimal

holistic integration. Users can validate and/or ad-

just the proposed solution. The linear program

maximizes semantic and syntactic similarity be-

tween the labels of the vertices of the input graphs.

It also resolves conflictual matching situations in-

volving different graphs’ structures by ensuring

strict hierarchies (Malinowski and Zimányi, 2006)

and preserving logical edges directions.

• Step 3: ”Incremental Multidimensional Schema

Definition”, it takes as input an integrated graph

and generates as output a multidimensional

schema. An interactive process is established be-

tween users’ actions and system. On the one hand,

users’ actions consist on incrementally identify-

ing multidimensional components such as dimen-

sions, parameters, hierarchies, fact and measures.

On the other hand, system interacts with users’ ac-

tions by transforming identified components into

a multidimensional schema.

Motivating Example. The case study deals with an

agricultural company in England aiming at launching

a new project on cereal production. The company is

interested on analysing cereal production activity in

the previous years in UK. With a simple search on

the UK governmental provider https://www.gov.uk/,

the company retrieves relevant informations for this

topic. For instance the link2 provides several detailed

sources for cereal production by cereal type, by farm

size, by farm type, and soon. These sources suffer

from the different problems presented above. They

are: (i) scattered into different spreadsheets even in

the same link, (ii) structurally heterogeneous since the

spreadsheets can have one or several tables disposed

randomly, and (iii) semantically heterogeneous due to

the different analysis axis influencing the agricultural

statistics.

The following sections describe the three steps of

our approach respectively in sections 2, 3, 4.

2https://www.gov.uk/government/statistical-data-
sets/structure-of-the-agricultural-industry-in-england-and-
the-uk-at-june

Figure 2: The Open Data Tables Annotating Concepts

2 EXTRACTION AND

ANNOTATION

In this section, we describe a workflow performing

extraction, annotation and transformation of flat open

data tables into RDF instance-schema graphs.

2.1 The Tables Annotating Ontology

In order to annotate tables, we have extended the ba-

sic table anatomy described by (Wang, 1996). A ta-

ble contains a body (a set of numerical data) indexed

by structural data which are StubHead (row headers)

and/or BoxHead (column headers).

We propose, as depicted in Fig.2, a formalisation

of the ontology describing table annotations. We have

constructed this ontology manually. It forms a sup-

port for the automatic construction of each Open Data

source ontology as it will be detailed in the next sec-

tion. Each table is composed of two types of data:

(i) ”StructData” which means concepts (sequence of

words) able to express schema tables and (ii) ”Num-

Data” which means statistical or quantitative data.

For each data type, we associate three overlapping an-

notation types as follows:

• Inherent Annotation (IA) describes the low level

data types namely Numeric, Label, Formula and

Date.

• Topological Annotation (TA) describes name and

location of tables’ parts. As depicted in Fig.2,



Figure 3: The Workflow Activities Description

the class ”TopologicalAnnotation” has four prop-

erties FL, LL, FC, LC (First Line, Last Line,

First Column, Last Column) representing respec-

tively the landmarks of the component in the ta-

ble. This class has different sub-classes: (i) ”Unit-

NumBlock” which is the body of table composed

it self by ”NumData” and describes a measure,

(ii) ”StubHead” and ”BoxHead” which are both

composed of ”StructData” and indexing ”Unit-

NumBlock” and (iii) ”SimBlock” composed of

”UnitNumBlock”. The ”SimBlock” has two sub-

classes: ”SimBlockC” (a block composed of Unit-

NumBlock indexed by the same StubHead and

different BoxHead) and ”SimBlockL” (a Block

composed of UnitNumBlock indexed by the same

BoxHead and different StubHead).

• Semantic Annotation (SA) describes the seman-

tic class of data, we focus on Temporal (Year,

Month,..) and Spatial (Region, GPS coordi-

nates,..) classes. The different types of concepts

will be related with a ”skos:broader”3 relationship

to express the order between types.

2.2 The Workflow Activities Description

We propose, as depicted in Fig.3, a workflow activi-

ties transforming input flat open data (encapsulating

tables) into enrich annotated graphs. Each activity

will perform, in the same time, the table components

detection, ontology-guided annotation and graph con-

struction.

The first workflow activity consists of converting

flat open data into a matrix M which encodes low level

cells’ types namely Numeric, Label, Date and For-

mula. The vertices and relations for Inherent Annota-

tions are created in Gi. Then, four activities, related to

search all types of blocks, are executed. The numer-

ical detection activity extracts all the UnitNumBlock,

creates in Gi all the UnitNumBlock instances vertices

with their landmarks properties, creates NumData in-

stances vertices and finally makes relations (i.e anno-

3http://www.w3.org/2009/08/skos-reference/skos.html

tates) between each NumData and the UnitNumBlock

encapsulating it. The label (resp. date, formula) de-

tection activity extracts all blocks containing concepts

(resp. dates and formula) but does not add vertices

into Gi.

Thereafter, BoxHead and StubHead detection ac-

tivities use the detection results of numerical and

label activities. To identify the BoxHead (respec-

tively StubHead) of each UnitNumBlock, our algo-

rithm consists of a backtracking search of the first line

(respectively column) of labels situated above (re-

spectively on the left) the UnitNumBlock beginning

the search from the UnitNumBlock.FL (respectively

UnitNumBlock.FC). BoxHead, StubHead and Struct-

Data instances vertices contained into these blocks are

added to Gi. Then the relationships between these lat-

ter are created into Gi. Finally, indexing relationships

between UnitNumBlock, StubHead and BoxHead are

added into Gi.

Similar block detection activity can be executed

after Stubhead or Boxhead activities. It groups dis-

joint UnitNumBlock having either the same BoxHead

(SimBlockC type) or the same StubHead (SimBlockL

type). Spatial detection activity uses the result of label

and numerical detections. It uses predefined lists4 to

annotate instances present in the detected blocks. In

Gi, the found instances are added and annotated with

their appropriate types. Hierarchical relationships are

expressed by the property skos:broder (a hierarchical

link indicating that a concept is more general than an-

other concept) between all spatial concepts.

Temporal detection uses date detection or numeri-

cal detection results. For temporal concepts, we refer

to the generic temporal graph defined by (Mansmann

and Scholl, 2007). We use regular expressions to

identify instances of each temporal entity. The mea-

sure detection activity uses the date detection and re-

lies on users to textually input measures names and

units.

The last activity is the hierarchical relationships

detection (skos:broader relations between StructData

4www.geonames.org



Figure 4: An excerpt from a resulting RDF Open Data Graph

as shown in Fig.2). Regarding the impact of com-

plex hierarchies (Malinowski and Zimányi, 2006) in

the summarizability problems, we focus on construct-

ing graphs with non complex hierarchies by applying

a set of rules (we will not detail them in this paper).

We propose two complementary alternatives for hier-

archical classification: (i) concept classification us-

ing annotations detected by the workflow activities

and (ii) concept classification using data mining tech-

niques to complement the first one. The first alter-

native is based on the arrangement of the numerical

blocks which can determine hierarchical relationships

between StubHead or BoxHead concepts. The second

alternative concerns Stubhead or Boxhead concepts.

We cross two conceptual classification techniques and

we select the relevant classes resulting from them.

The first technique is lattices (Birkhoff, 1967) which

does not consider semantic aspects and generates for-

mal contexts formed by concepts and attributes. The

second technique is RELEVANT (Bergamaschi et al.,

2011). It clusters a set of concepts and provide rele-

vant attributes for each cluster.

An example of Open Data RDF graph An Open

Data Extraction Tool (ODET) has been implemented

to validate our approach (Berro et al., 2014). It per-

forms the workflow described above. Fig.4 repre-

sents an excerpt of the output graph resulting from

ODET for one source from our running example. This

source contains statistics on wheat production per

city, district and year. As depicted in Fig.4, the Unit-

NumBlock describes the yield measure which has as

unit Tonnes/Hectares. The StubHead is composed

of StructData, for instance we have StuctData1 with

value ”England” and StructData2 with value ”South

West”. StructData1 has the semantic annotation city

and StructData2 has the semantic annotation district.

The relation skos:broader between city and district

in the ontology has been instantiated in the instance-

schema graph between StructData1 and StructData2.

The BoxHead1, as an instance of the BoxHead class,

is the topological annotation of the StructData3 which

has as value 2010 and as semantic annotation Year.

3 HOLISTIC OPEN DATA GRAPH

INTEGRATION

This section is devoted to present our holistic inte-

gration approach based on the integer linear program-

ming technique.

3.1 Pre-Matching Phase

This phase takes as input a set of N graphs Gi =
(Vi,Ei) i ∈ [1,N], N ≥ 2 representing only struc-

tural schema elements which are StubHead, Box-

Head, spatio-temporal concepts and enrichment con-

cepts. The output of this phase is composed of: (1)

∑
N−1
i=1 (N − i) similarity matrices and (2) N direction

matrices representing the hierarchical relationships

between structural vertices.

Similarity matrices computation : We compute

∑
N−1
i=1 (N− i) similarity matrices denoted Simi, j of size

ni × n j defined between two different graphs Gi and

G j, ∀i ∈ [1,N − 1], j ∈ [i + 1,N]. Each matrix en-

codes similarity measures. We define the similarity

measure as the maximum between two known sim-

ilarity distances : (i) the syntactic measure Jaccard

(Jaccard, 1912) and (ii) the semantic measure Wup

(Wu and Palmer., 1994). As we deal with N input

graphs, similarity measure are computed between all

combination of all pairwise vertices concepts vik and

v jl belonging to two different input graphs Gi and G j

such as i ∈ [1,N −1], j ∈ [i+1,N].
Simi, j = {simik, jl ,∀k ∈ [1,ni] ,∀l ∈ [1,n j]}

Direction matrices computation : We compute a

set of N direction matrices Diri of size ni ×ni defined

for each graph Gi, ∀i ∈ [1,N]. Each matrix encodes



edges directions and defined as follows:

Diri ={dirik,l , ∀k× l ∈ [1,ni]× [1,ni]}

dirik,l =







1 if eik,l ∈ Ei

−1 if eil,k ∈ Ei

0 otherwise

3.2 Matching Phase

The idea of the LP4HM matcher consist of extending

the maximum-weight graph matching problem with

additional logical implication constraints. These lat-

ter stand for constraints on matching setup and graph

structure. Fig.5 depicts three abstract graphs G1, G2

and G3, and similarities between graph vertices (not

shown similarities are considered as null values).

Figure 5: An example of holistic graph matching problem

Decision Variable We define a single decision vari-

able which expresses the possibility to have or not

a matching between two vertices belonging to two

different input graphs. For each Gi and G j, ∀i ∈
[1,N − 1], j ∈ [i + 1,N], xik, jl is a binary decision

variable equals to 1 if the vertex vik in the graph Gi

matches with the vertex v jl in the graph G j and 0 oth-

erwise.

Logical Implication Constraints A logical impli-

cation (Plastria, 2002) is expressed as follows: for xi

a binary variable for all i in some finite set I and y a

binary variable, if xi = 0 for all i ∈ I then y = 0 which

is also equivalent to y ≤ ∑i∈I xi.

The first type of constraints belongs to Matching

Setup (MS). MS1 encodes the matching cardinality in

particular we focus on 1:1 matching (Rahm and Bern-

stein, 2001). MS2 encodes the matching threshold in

particular the model should not match vertices whose

similarity is inferior than a given threshold.

MS1 (Matching Cardinality) Each vertex vik in the

graph Gi could match with at most one vertex v jl

in the graph G j, ∀i× j ∈ [1,N −1]× [i+1,N].

n j

∑
l=1

xik, jl ≤ 1, ∀k ∈ [1,ni]

MS2 (Matching Threshold) We setup similarity thresh-

old thresh in order to get better matching results.

Our model encodes the threshold setup in the fol-

lowing constraint : ∀i× j ∈ [1,N − 1]× [i+ 1,N]
and ∀k× l ∈ [1,ni]× [1,n j]

simik, jl xik, jl ≥ thresh xik, jl

The second type of constraints belongs to graph

structure. GS1 constraint generates strict hierarchies

and GS2 generates simple edge directions.

GS1 (Strict hierarchies) This constraint allow us to re-

solve non-strict hierarchy problem (Malinowski

and Zimányi, 2006) which is an important issue in

multidimensional schema definition. Hence, users

will save time in resolving such problems in the

multidimensional schema definition step. ∀i× j ∈
[1,N −1]× [i+1,N] and ∀k× l ∈ [1,ni]× [1,n j]:

xik, jl ≤ xipred(k), jpred(l)

GS2 (Edge Direction) The purpose of this constraint

is to prevent the generation of conflictual edges.

∀i× j ∈ [1,N − 1]× [i+ 1,N] such as i 6= j and

∀k,k′ ∈ [1,ni] ∀l, l′ ∈ [1,n j]

xik, jl + xik′ , jl′
+(dirik,k′

dir jl,l′
)≤ 0

Objective Function The objective of our model

is to maximize the sum of the similarities between

matched vertices. The objective function is expressed

as follows

N−1

∑
i=1

N

∑
j=i+1

ni

∑
k=1

n j

∑
l=1

simik, jl xik, jl

The resolution of the linear program of the exam-

ple in Fig.5 gives the following solution:

• v12
matches with v21

with sim12,21
= 0.9

• v12
matches with v31

with sim12,31
= 0.3

• v21
matches with v31

with sim21,31
= 0.9

• v22
matches with v32

with sim22,32
= 0.8

• v23
matches with v33

with sim23,33
= 0.8

• the objective function value is 3.7



4 INCREMENTAL DATA

WAREHOUSE SCHEMA

DEFINITION

In this section, we describe an incremental process to

define a multidimensional schema from the integrated

Open Data RDF graphs. The system will interact with

users’ actions in order to generate a script to create

the data warehouse schema and populate data, in the

same time the integrated RDF graph will be refined

with the QB4OLAP vocabulary proposed in (Etchev-

erry et al., 2014). QB4OLAP is more complete than

RDF Data Cube Vocabulary 5 (RDF QB) to describe

multidimensional schema. This twofold output is mo-

tivated by : (i) the interest of analysing populated data

with OLAP tools, (ii) the interest to keep reuse of in-

tegrated Open Data tables in other scenarios for in-

stance link them with available Statistical Open Data

or Linked Open Data in general.

4.1 A Conceptual Multidimensional

Schema and an Augmented RDF

Graph

Two types of output are expected from our incremen-

tal process. The outputs are described as follows :

A Conceptual Multidimensional Schema. We

will use the conceptual specifications of a generic

multidimensional schema (a group of star schema)

proposed in the works of (Ravat et al., 2008). This

generic model is the most suitable according to the al-

ternatives that can generate the integrated graph (for

instance several facts which share the same dimen-

sions). A multidimensional schema E is defined by

(FE , DE , StarE ) such as :

• FE = {F1, . . . ,Fn} a finite set of facts;

• DE = {D1, . . . ,Dm} a finite set of dimensions;

• StarE : FE → 2DE a function associating for each

fact a set of dimensions.

A dimension D ∈ DE is defined by (ND, AD, HD):

• ND a dimension name,

• AD = {aD
1 , . . . ,a

D
u } ∪ {idD,All} a set of attributes,

• HD = {HD
1 , . . . ,HD

v } a set of hierarchies.

A hierarchy denoted Hi ∈ HD is defined by (NHi ,

ParamHi , WeakHi ) such as:

• NHi a hierarchy name,

5http://www.w3.org/TR/vocab-data-cube/

• ParamHi = < idD, p
Hi
1 , . . . , p

Hi
vi ,All > an ordered

set of attributes called parameters which repre-

sent the relevant dimension’ graduations, ∀k ∈

[1 . . .vi], p
Hi

k ∈ AD,

• WeakHi : ParamHi → 2AD−ParamHi is a function as-

sociating each parameter to one or several weak

attribute.

A fact denoted F ∈ FE is defined by (NF , MF ):

• NF a fact name,

• MF = f1(m
F
1 ), . . . , fw(m

F
w) a set of measures asso-

ciated to an aggregation function fi.

Example 1. The example depicted in Fig.6(a) is

the expected multidimensional schema from the

phase 3 of our process applied to the motivat-

ing example. For the sake of simplicity, fact

Fi, dimension Di and hierarchy Hi are cited by

their names. The multidimensional schema E

is composed of one fact and three dimensions.

E = ({AgriculturalStatistics}, {Time, Geography,

AgriculturalProduct}, {Star(AgriculturalStatistics)=

{Time, Geography, AgriculturalProduct} ) The di-

mensions are : (Time, {Year, All}, {HTime}),

(Geography, {City, Region, All}, {HRegion})

and (AgriculturalProduct, {TypeProduct, Product ,

All}, {HProduct}). The fact is : (Agricultural-

Statistics, {AVG(Yield), SUM(Area), AVG(Area),

SUM(Production), AVG(Production)})

An Augmented RDF Graph. The integrated RDF

graph resulting from the matching phase will be aug-

mented with concepts belonging to the QB4OLAP

vocabulary proposed in (Etcheverry et al., 2014). This

latter uses the basic concepts of RDF QB and extends

it with concepts representing hierarchies, hierarchies

levels, aggregation functions, cardinalities. The cor-

respondences between the multidimensional schema

and the concepts of the RDF graph are as follows:

• E is an instance of qb : dataStructureDe f inition.

• FE is an instance of a qb : Observation class.

• DE is an instance of a qb : DimensionProperty

class.

• StarE : FE → 2DE is an instance of qb : DataSet.

• AD is an instance of qb4o : levelProperty

• The members of AD are instances of qb :

leveMumber.

• HD is an instance of qb4o : HierarchyProperty.

• ParamHi is an instance of qb4o : LevelProperty.

• WeakHi is an instance of a qb : AttributeProperty.



(a) An example of Multidimensional Schema (b) An Augmented RDF Graph

Figure 6: Expected outputs for the incremental schema definition step

• MF is an instance of qb : MeasureProperty and

the associated aggregation function fi is an in-

stance of qb4o : AggregateFunction.

The Fig.6(b) shows an excerpt of an expected aug-

mented RDF graph by following the correspondences

explained above.

The processes we use to obtain the two expected

results will be explained in the next section.

4.2 An incremental process to define

multidimensional components

We propose an incremental process in which users

should begin by identifying dimensions and their

components (hierarchies, attributes, members) then

they define the fact and its measures. Three ac-

tors interact in this process: (1) users who interact

with the integrated graph via different functions to in-

crementally define multidimensional components, (2)

graph transformation (GT) which interacts with user’

actions in order to enrich the integrated graph with

OLAP4QB objects and properties, (3) data warehouse

script generator (SG) which interacts with user’ ac-

tions in order to generate the script describing the

multidimensional schema and from which the data

warehouse will be populated with SOD.

Dimensions Identification. When a user

add dimensions, the GT creates a new vertex

with the dimension name as an instance of a

qb:dimensionProperty and the SG creates a new

table dimension without attributes. Then user add

hierarchies to the dimension, but as hierarchies are

composed of levels, users have to choose either

to add level or to select a level from the graph.

If user chooses the action add level, the GT cre-

ates a vertex with the hierarchy name instance

of qb4o:hierarchyProperty, a vertex for the level

instance of qb4o:levelProperty and a property

qb4o:haslevel between the hierarchy and the level. If

the user chooses the action select level form graph,

this level had to be a StructData vertex, it will be

changed to become an instance of qb4o:levelProperty

and the property qb4o:haslevel will be created

between this vertex and the hierarchy level. Then for

both actions add level and select level from graph,

user have to select members form the graph. The

GT will collect members from graph which are

StructData. These members are changed into in-

stances of qb:levelMemeber. Properties qb4o:inlevel

will be created between the concerned level and its

members and visually these vertices will be collapsed

in the label vertex. In the same time, the SG updates

dimension with its attributes, creates hierarchies with

levels and populates dimension attributes with their

members. The users have to iterate the described

process for all dimensions knowing that when a

the task of dimension creation finish, the system

can suggest to user potential dimensions. Indeed,

since each NumData is related to a path composed

of a succession of StructData, the GT deduces the

NumData related to the paths belonging to the actual

identified dimension and proposes to the users the

non yet identified paths related to the NumData as a

potential dimension.

Fact Identification. When all dimensions have

been identified, the user can proceed to fact and mea-

sures identification. When the user creates a fact, the

GT creates a vertex with the fact name as an instance

of qb:observation. Then he should link dimensions to

the fact, and select measures from the graph. So, the

SG creates a fact table with its measures and relates

it to the created dimensions. GT collects the Num-

Data related to the selected dimensions and measures

which are instances of the qb:dataset. Finally SG add

these instances to the fact table.



Discussion and future work. In the process de-

scribed above, the user intervention can be error-

prone hence some improvements may be envisaged.

For instance, we can inject some of the algorithms

proposed by (Romero and Abelló, 2007) in order to

semi-automate the identification of dimensions and

facts. Moreover, even if we have resolved the prob-

lem of complex hierarchies in the first two steps of our

ETL processes by generating strict hierarchies, we ac-

knowledge that the summarizabiliy problem (Mazón

et al., 2010) is not totally resolved especially com-

pleteness and disjointness integrity constraints (Lenz

and Shoshani, 1997). Both the works of (Romero and

Abelló, 2007) and (Prat et al., 2012) propose solu-

tions applied on ontologies. Compared to (Romero

and Abelló, 2007), the authors of (Prat et al., 2012)

propose more explicit rules which seems straightfor-

ward to be added to our process. Since the construc-

tion of our process outputs are performed in paral-

lel, the verification of the summarizabilty constraints

in the ontology will be used to check the same con-

straints in the multidimensional model.

5 CONCLUSIONS

In this paper, we have presented a full RDF graph-

based ETL chain for warehousing SOD. This ETL

chain takes as input a set of flat SOD containing sta-

tistical tables and transforms them into a multidimen-

sional schema through three steps. The first step au-

tomatically extracts, annotates and transforms input

tables into RDF instance-schema graphs. The second

step performs automatically a holistic graph integra-

tion through an integer linear program. The third one

incrementally defines the multidimensional schema

through an interactive process between users and sys-

tem. The main contributions of our approach are:

(i) the unified representation of tables which facili-

tates their schema discovery and (ii) the extension of

the maximum weighted graph matching problem with

structural constraints in order to resolve the holistic

open data integration problem. In our future works,

we aim to train a user study on our approach to mea-

sure the efficiency of automatic detections and inte-

grations, and to measure the difficulties that users may

encounter when they define incrementally the multi-

dimensional schema from visual graphs.

REFERENCES

Bergamaschi, S., Guerra, F., Orsini, M., Sartori, C., and
Vincini, M. (2011). A semantic approach to etl

technologies. Data and Knowledge Engineering,
70(8):717 – 731.

Berro, A., Megdiche, I., and Teste, O. (2014). A content-
driven ETL processes for open data. In New Trends in
Database and Information Systems II - Selected pa-
pers of the 18th East European Conference on Ad-
vances in Databases and Information Systems and As-
sociated Satellite Events, ADBIS 2014 Ohrid, Mace-
donia, pages 29–40.

Birkhoff, G. (1967). Lattice Theory. American Mathemati-
cal Society, 3rd edition.

Etcheverry, L., Vaisman, A., and Zimnyi, E. (2014). Mod-
eling and querying data warehouses on the semantic
web using QB4OLAP. In Proceedings of the 16th
International Conference on Data Warehousing and
Knowledge Discovery, DaWaK’14, Lecture Notes in
Computer Science. Springer-Verlag.

Jaccard, P. (1912). The distribution of the flora in the alpine
zone. New Phytologist, 11(2):37–50.

Lenz, H.-J. and Shoshani, A. (1997). Summarizability in
olap and statistical data bases. In Scientific and Sta-
tistical Database Management, 1997. Proceedings.,
pages 132–143.

Malinowski, E. and Zimányi, E. (2006). Hierarchies in
a multidimensional model: From conceptual mod-
eling to logical representation. Data Knowl. Eng.,
59(2):348–377.

Mansmann, S. and Scholl, M. H. (2007). Empowering the
olap technology to support complex dimension hierar-
chies. IJDWM, 3(4):31–50.

Mazón, J.-N., Lechtenbrger, J., and Trujillo, J. (2010). A
survey on summarizability issues in multidimensional
modeling. In JISBD, pages 327–327. IBERGARC-
ETA Pub. S.L.

Plastria, F. (2002). Formulating logical implications in com-
binatorial optimisation. European Journal of Opera-
tional Research, 140(2):338 – 353.

Prat, N., Megdiche, I., and Akoka, J. (2012). Multidi-
mensional models meet the semantic web: defining
and reasoning on OWL-DL ontologies for OLAP. In
DOLAP 2012, ACM 15th International Workshop on
Data Warehousing and OLAP, pages 17–24.

Rahm, E. and Bernstein, P. A. (2001). A survey of
approaches to automatic schema matching. VLDB
JOURNAL, 10.

Ravat, F., Teste, O., Tournier, R., and Zurfluh, G. (2008).
Algebraic and graphic languages for OLAP manipu-
lations. International Journal of Data Warehousing
and Mining, 4(1):17–46.

Romero, O. and Abelló, A. (2007). Automating multidi-
mensional design from ontologies. In Proceedings of
the ACM Tenth International Workshop on Data Ware-
housing and OLAP, DOLAP ’07, pages 1–8. ACM.

Wang, X. (1996). Tabular abstraction, editing, and format-
ting. Technical report, University of Waretloo, Water-
loo, Ontaria, Canada.

Wu, Z. and Palmer., M. (1994). Verb semantics and lexical
selection. In In 32nd. Annual Meeting of the Associa-
tion for Computational Linguistics, New Mexico State
University, Las Cruces, New Mexico., pages 133–138.


	berro_15245_auteur

