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Abstract. A hybrid model coupling an aggregated equation-based
model and an agent-based model is presented in this article. It is applied
to the simulation of a disease spread in a city network. We focus here
on the evaluation of our hybrid model by comparing it with a simple
aggregated model. We progressively introduce heterogeneities in the
model and measure their impact on three indicators: the maximum
intensity of the epidemic, its duration and the time of the epidemic
peak. Finally we present how to integrate mitigation strategies in the
model and the benefits we can get from our hybrid approach over single
paradigm models.
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1 Introduction

The modelling of socio-environmental processes often requires to couple pro-
cesses defined at distinct temporal and spatial scales. Models involving a single
paradigm to describe all the processes, such as either an aggregate approach
at the macroscopic scale (with a system dynamic approach) or a totally disag-
gregated microscopic approach (with an agent-based approach), fail to describe
multi-scale phenomena. The aim of this article is thus to introduce a hybrid
model coupling micro and macro dynamics models and to assess step-by-step
the impact of the heterogeneity and the stochasticity introduced by microscopic
model.

As a case study, we consider a disease spread in a network of cities. The
two main dynamics we take into account are the disease spread within each city
and its spread between cities through air traffic. The former dynamics involves
a large number of people in each city (millions of people) and its temporal scale
order is of several weeks. In contrarily the latter one involves few (hundreds) of
people in each airplane, and a flight temporal scale order is of several hours.



The heterogeneities that will be studied in the model are related to the initial
population distribution, heterogeneity in the network (we will experiment various
network topologies) and heterogeneity in flight duration to take into account the
space size.

The classical approach to model such phenomena is named metapopulation
approach, comes from ecology [8] and has been applied to various fields and in
particular to disease spread in large-scale networks [1,11,3]. The main idea is
that each node of the network has a dynamic described using a system dynamics
approach (often described using an Ordinary Differential Equation (ODE) sys-
tem). In addition edges represent migration (modelled as instantaneous streams)
between nodes. Such an approach allows modellers to study disease spread con-
ditions and to test various spread mitigation strategies [11].

We argue that this approach is too limited to take into account strategies
dealing with individual behaviours. In this article we thus go one step further by
introducing individual and possibly heterogeneous passengers in order to better
take into account intentionality, reflexivity and adaptability of human beings
[4,5]. Due to space limitation, we cannot present this in details; we can only give
an insight of the benefits of our approach. The main contribution is to design,
build and evaluate a frame model that will be extend in the future with more
complex individual behaviors.

The article is organized as follows. Section 2 introduces the various modelling
approach used in this article. Section 3 presents the model and Section 4 the
method we use to evaluate the hybrid model. Section 5 presents the results and
Sections 6 and 7 introduces mitigation strategies in the model and conclude.

2 State of the art

2.1 System dynamics modeling of epidemic

One of the traditional ways to describe the dynamic of systems is the system
dynamics approach [6], i.e. the description of the evolution of macroscopic vari-
ables using a set of equations, often an ODE system. Generally it is not possible
to get an exact solution of such system, and a numerical integration method
(e.g. Runge Kutta [13]) is used to approximate it. Nevertheless we can prove
analytical properties on equilibrium points and on their stability. In epidemiol-
ogy, the most famous equation-based model is the SIR model [9]. It considers
the global population of N people as a whole and describes the evolution of
the 3 stocks of Susceptible (S), Infected (I) and Recovered (R) people using
the system presented in Fig. 1 (N = S + I + R in this system). The numerical
integration using the Runge Kutta 4 (RK4) method is plotted in Fig. 2.

The parameter 3 is the infection rate of the disease in case of contact between
a Susceptible and an Infected individual, i.e. it describes the transition between
Susceptible and Infected stocks. Similarly a describes the transition between
the Infected and the Recovered states, i.e. it represents the recovery rate. This
system can be graphically drawn using a Forrester diagram [6] as in Fig. 3.
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Fig. 1. ODE system for a SIR Fig. 2. Plot of the evolution of S, I and R for a

model SIR model. We choose: o« = 0.2, % = 0.5.

Fig. 3. SIR compartiments

This system is very simple but can be complexified by introducing additional
stocks or streams between stocks. For example if people that have recovered from
the disease can be infected again, a stream between the Recovered and Suscepti-
ble stocks can be added (we get the SIRS model). If the disease is characterized
by a time period when the individual is exposed to the disease but not yet seek,
an additional stock (Exposed) can be added between Susceptible and Infected,
we thus get the SEIR model.

2.2 Metapopulation models

One of the strongest limitation of the system dynamic approach is that it con-
siders the population as a whole. It has been extended in ecology by the so called
metapopulation approach [8]: the aim is to represent several populations and the
migration relationships between them. The whole population is thus split into
several populations that are the nodes of a graph, the edges representing the
possible migrations. The dynamic inside each node (population) is described by
an ODE model whereas migrations are managed as instantaneous streams be-
tween nodes. This approach has also been applied in epidemiology [11,3] to deal
with the spread of a disease over a network of cities.

The metapopulation approach allows modellers to study how to control an
epidemic by testing some mitigation strategies at the city level, such as the quar-
antine (a city is closed for arrivals and departures), avoidance (the traffic avoids
a city, but airplanes can still leave it) or at the individual level, such as the risk
culture (people being aware they are infected can choose to postpone their travel
in order to avoid to infect other persons). Nevertheless such strategies remain
limited as they can not take into account heterogeneous individual travels: in-
dividuals are not and cannot be represented in such models. This is the main
feature of the agent-based modelling approach.



2.3 Agent-based models

The main idea of the agent-based models is to describe individual entities of
a system and to let emerge the macroscopic expected behavior thanks to the
interactions among entities. In epidemiology, it has also been successfully applied
in studying the diffusion of mumps in Portugal [14] or plague in Madagascar [10].

Works such as [12] or [2] have already investigated the link between agent-
based and equation-based models, but their point was to compare the two ap-
proaches in their representation of the same phenomenon. They highlight the
difference of paradigm, scale of representation and way of thinking the phe-
nomenon. But as far as we are aware, few articles investigate deeply the coupling
of these two approaches into one single model as we do in the sequel.

3 A micro-macro coupled model: the MicMac model

In this section, we present the MicMac coupled model. It has been developed
using the Netlogo platform [16] (c.f. Fig. 4) dynamically coupled with a Scala
extension we designed for Runge-Kutta 4 numerical integration method. Due to
space limitation, we cannot present it using the full ODD protocol [7], but we
keep only the main parts of it.

3.1 Overview of the model

The main purpose of this approach is to model the disease spread in a network of
cities using a coupled model composed of an aggregated equation-based approach
(SIR) for the epidemic dynamic within cities and an agent-based approach for
the epidemic spread between cities (air traffic). The two main processes we take
into account are the local spread of the epidemic in each city and the spread
through the network (we consider here only the air traffic).

3.2 Entities, state variables and scales

The model is composed of two kinds of agents: the cities (that are the nodes
of the network) and the airplanes (that will carry passenger from one city to
another one).

A city agent (defined in the node breed) is dedicated to describe the epidemic
evolution of the whole population of a city. As this evolution will be described
using the SIR model, the population of the city is represented by three state
variables (S_Node, I_Node, R_Node) representing respectively the number of in-
habitants in the Susceptible, Infected and Recovered states. It is important to
notice that these state variables will contain float values (due to the integration
of the SIR system using the Runge-Kutta 4 method). A city agent is also charac-
terized by a mobility rate (mobility-rate-node) that will be used to compute the
number of inhabitants that will travel. The number of people that should travel
is stored in the variable stock-to-flight. To deal with mitigation strategies, two



additional state variables are introduced (in-airport and out-airport): they take
boolean values and represent the fact that the city accepts (or not) incoming
flights and emits (or not) flights.

The airplane agents (defined in the Mobile Group breed) are characterized by
their speed (that will be calibrated given the chosen disease and the spacial scale),
their target city (Next-Node) and their population (i.e. the number of susceptible
S_Group, infected I_Group and recovered R_Group people in the plane).

An edge of the network is only characterized by the two cities it connects.
We consider it represents an air route without stopover. As a consequence, in
this simple version of the model, we do not consider stopovers in the trips.

In order to allow the numerical integration of the SIR systems, we chose
that the simulation step corresponds to the integration step. We thus need to
synchronize the air traffic process on this time discretisation. The time and space
scales are defined as parameters of the simulation. Given a disease (characterized
by its alpha and beta parameters) and an initial population, the modeller can
choose the size of the environment ( TerritorySize-km in km) and the integration
step (h). Then a calibration phase is done at the initialization to compute other
parameters (e.g. speed of airplanes).

3.3 Process overview and scheduling

The 2 main processes in the model are (i) the epidemic evolution and (ii) the air
traffic. In terms of scheduling, at each simulation step, first the model computes
the disease spread in each city and each airplane and then each city computes
whether it should create a new airplane and chooses its target. Finally each air-
plane moves toward its target and when it reaches it, its population is integrated
into the city population.

Epidemic evolution. In each city and airplane, the epidemic dynamics is
driven by a SIR ODE system (c.f. Fig. 1). We consider only one disease and we do
the hypothesis that the same system (with the same disease-related parameters)
can be applied to each city and each airplane. So taken as input the number
of people of a city in each state, we update these numbers by discretising the
system using the Runge Kutta 4 numerical integration method!. This computes
the new number of people in each state. It is important to notice that the number
of people in each state computed using the chosen integration method is a float
value.

The equation-based approach has been chosen to describe the epidemic evo-
lution in each city because this approach is dedicated to describe dynamics in a
huge and homogeneous population, which is implicitly the case when we consider
a city as one agent. In addition, it allows us to increase the population on each
node without lose in terms of computation time.

! The numerical integration is done using an external plugin computing each RK4
integration step.



Air traffic. Each city has a variable stock-to-flight that represents the number
of people that should leave the city and travel to another one. At each simula-
tion step, each city computes (thanks to its mobility-rate-node attribute and its
population) the number of people that should leave the city and add it to the
stock-to-flight variable. If this number is greater than an airplane capacity, air-
planes are created in order to empty this stock. Given the number of people that
take an airplane, we extract a set of people that is representative of the whole
city population by using a proportional random draw: for each individual to be
added in the airplane we randomly choose his epidemic state. As a consequence,
the number or Susceptible, Infected and Recovered people are initialized with
an integer value: as the population in airplane is small we need to extract and
manage individually each people.

Once an airplane has been populated, its target is randomly chosen among
all the adjacent cities.

3.4 Initialization

GOS  ticks 3086 SIR global (nodes + airplanes) SIR chosen city
110000 =S 14800 s

10000

Seloct.city o display
tytodisplay |

ErrorPlot
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0
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Fig. 4. Interface of the MicMac model. The modeller can choose the topology of the
network (among complete, random, small-world...), the mobility rate and the initial
population. The interface allows the modeller to observe the epidemic dynamics of
one city but also of the whole network. The difference between the current and the
initial population (error) is computed at each step, in order to ensure that the popu-
lation remains constant during the simulation (a divergence could appear as we both
manipulate float and integer values for the population).

Calibration. The duration of flights depends on the distance between the source
and the target and is calibrated on the integration step. Therefore, the simu-
lation setup contains a calibration step between the integration step, the flight
duration and the distance. Given a particular disease (characterized by its al-
pha and beta (parameters) and its observed duration, the calibration is done on
an additional reference node containing the population of the whole network: a
SIR dynamics is applied until the epidemic end (i.e. until the step where the
number of infected people is lower that an given threshold). This gives us the



simulation step corresponding to the end of the epidemic and thus the duration
corresponding to an integration step h. Given the size of the environment, we
can thus adjust the flight speed.

As an example, if we consider a disease characterized by a = 0.2, /N = 0.5
and a duration of 60 days and an initial population of 39999 susceptible and 1
infected individuals in each of the 10 cities of the network, we get a step duration
of 0.1 days. So 1 simulation step duration is about 2.4 hours in this case, which
justifies the need to take into account flights that are not instantaneous.

Parameters values. Parameters of the MicMac model are based on the U.S.
domestic flights data?. The 10 cities with the biggest airports have 57 709 474
inhabitants and about 21 420 000 passengers per month. The mobility rate is
thus 0.37 per month and 0.012 per day. In addition, the area of the U.S. is about
9600000 km? and the mean size of airplanes is 80 passengers.

We chose thus parameters proportional to these values.

4 Evaluation method

In order to assess the impact of the agent-based model coupled with SIR models,
we will progressively study several heterogeneities introduced by the individual
airplane transportations and compare them with a reference model. This model
considers only the epidemic dynamic in the cities: it is thus the integration
of several SIR nodes®. This model is also equivalent to a homogeneous meta-
population model on a complete graph.

On this model we will consider three particular values (illustrated on the
Fig. 5) as indicators:

— the maximum value of the number of infected people: MaxlI ;
— the time when the number of infected people is maximum: TimeofMaxI ;
— the duration of the epidemic: Duration .

These three indicators will be denoted MaxI,sir, Timeof Maxl,srr and
Duration, sy for the reference model and MaxIyricnrac , Timeof MaxIyricnrac
and Durationsicarae for the hybrid MicMac model.

Whereas the two last indicators are computed by (numerical) simulation, this
model is interesting because the first one can be computed analytically. If we
have n nodes with on each an initial population of I;,;; infected, S;,;; susceptible
and Ry recovered (N = Sinit + Linit + Rinit being the total number of people),
the value of MaxlI is:

Na Na
Mazl,sir =n <Iinit + Sinit + 5 <—1 +In (7) —In (Sinit)>>
2 http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/press_
releases/airline_traffic_data.html
3 This is not equivalent to 1 node containing the whole population.
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Fig. 5. Evolution of the number of susceptible, infected and recovered people over
time, computed with o = 0.2, /N = 0.5 and Sinit = 1000, Iini = 10, Rinie = 1. The
numerical integration method was Runge Kutta 4 with an integration step h = 1075,

5 Comparison

From a mean field model fitting with the reference model (Section 5.1), we pro-
gressively introduce heterogeneity on various dimensions: (i) initial population
distribution (Section 5.2), (ii) time of flights (Section 5.3) and (iii) network (Sec-
tion 5.4) and evaluate their impact.

5.1 Reference case: equivalence of both models

In this model, we remove all heterogeneity and the effect of the spatial component
on the model:

— the mobility rates and initial population are the same for every node (no
heterogeneity among cities).

— flights are instantaneous (the model is aspatial);

— the network is a complete network (no heterogeneity due to the network);

We compute (by simulation) the various indicators and we get the following
results:

— Maxl,sir = MaxIyicmac ;
— Timeof Maxl,sir = Timeof MaxIyricnrac ;
— Duration,sir = Durationyrienmac -

This first experiment shows that the MicMac model fits the reference model:
we have thus built an agent-based model able to reproduce a set of equation-
based models under mean field assumptions. This initial step was necessary
to carefully assess the following models. From this we can go deeper in the
exploration of the impact of heterogeneity in our agent-based model.



5.2 Impact of initial conditions (populations)

Instead of having a homogeneous population in each node, we introduce het-
erogeneity among nodes by creating initially all the infected people in only one
city (this represents a more realistic situation where an epidemic starts in one
location before spreading). Nevertheless the global population remains the same
in the two models. Other hypotheses made in the previous section remain true.
We get the following results:

— Maxl,sir > MaxInicnrac ;
— TimeofMaxl,sir < Timeof MazIyicnrae ;
— Duration,srr < Durationyricyac -

All these indicators show that we now have a disease spread behaving as a
classical diffusion phenomenon: the maximum of the epidemic is lower in the
MicMac model because all the cities are not synchronized anymore and the
TimeofMaxI is postponed (which induces a longer epidemic). We have to notice
that the network topology has no effect here (as it is complete), but the diffusion
is not instantaneous because of the fact that an airplane without infected people
can leave an infected city (due to the random filling of the airplanes).

5.3 Impact of the time in flight

From the MicMac model presented above (with initial heterogeneous popula-
tion distribution), we now release the instantaneity of flights. The size of the
area is now taken into account and thus travels now take several simulation
steps: the temporal coupling between travel time and integration step is made
at initialization during the calibration step (c.f. Section 3.4).

We have explored the impact of the size of the area over the three indicators
and the results are presented in Fig. 6. We observe that the size of the area does
not have a significant impact on the results (for all the indicators).

This result is quite surprising as it shows that the distance has no influence
on results in the current MicMac model. We can imagine two explanations:

— the total flying population is constant (i.e. independent on the travel distance
and time);

— the contagion model in the airplanes is not adapted (the population in air-
planes is small, so out of the scope of the classical SIR model).

It could be interesting to investigate the second explanation. A way to do
could be to replace the ODE model by a Gillespie algorithm that is dedicated
to small population (everything else in the model remaining unchanged).

5.4 Impact of the network

In order to study the impact of the network topology on results, we consider
the same model initialized with various networks. In every case, we consider
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Fig. 6. Influence of the area size on the indicators MaxI , TimeofMaxI and Duration

a network with 100 nodes (cities). First we use regular networks with 4 to 99
neighbours for each node (the last one is a complete network). Then we use
a small-word network. To produce small-world networks, we use the Watts &
Strogatz algorithm [15]: we start with a regular network with 4 neighbors for
each node. Then we rewire some of the nodes. To evaluate the impact of various
small-world network, we consider rewiring probabilities from 0.2 to 1. Results
are summarized in Fig. 7 and Fig. 8 .

In the case of regular networks, we can observe that the MaxI value increases
and the TimeofMaxI and Duration decrease when the number of edges increases.
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Fig. 7. Indicators values for regular networks with order among {0.04, 0.2, 0.5, 0.7,
0.99}

It is due to the fact that it is easier to infect other nodes when it is easier to
access them via the network (which is allowed by increasing the number of edges).
In the case of the small-world networks, we have similar observation when we
increase the rewiring probability. The rewiring indeed creates shortcut in the
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network. The more shortcuts the network has, the easier it is to infect other
nodes.

In fact, increasing the rewiring probability (small-world networks) or the net-
work order (regular networks) have the same effect: they decrease the diameter



and the average path lenght (APL) of the network (c.f. Fig. 9 and 10). In addi-
tion it is interesting to notice that the topology itself has not such an influence
on the result, mainly the diameter (and the APL) of the network has the higher
influence on results*.

Rewiring
probability| 0.2 0.4 [ 0.6 | 0.8 | 1 Order| 0.04 | 0.2 0.5/ 0.7 {0.99
APL 4.2313.73(3.46(3.44[3.41 APL |12.88]2.98|1.5|1.22| 1

Fig.9. Average Path Length for various Fig.10. Average Path Length for
small-worlds networks various regular networks

6 Perspectives: Application of mitigation strategies

Once the model being designed, we can use it to evaluate several mitigation
strategies. Due to space limitation, we give here only the method to implement
these strategies. Several strategies have been proposed in the literature [11,3],
such as the quarantine, avoidance of risk culture (c.f. Section 2.2).

The two first strategies are parameterized by a threshold: a city is put in
quarantine or avoidance when its rate of infected people is greater than the
given threshold. As an example, in the quarantine strategy, we consider that a
city is put in quarantine when the ratio of infected people reached the threshold
Oquarantine, i-€. when the following condition is fulfilled:

1;
m > equarantine

We might consider that such strategy of containment is well defined at a
macroscopic level and directly compatible with the metapopulational model.
Therefore, adding a microscopic component would not add much. However, sim-
ulations run with both models suggest a different conclusion (Fig. 11). While
the dynamics of the epidemic is largely driven by the SIR dynamics on nodes
composed of large static populations (compared to small flying populations), the
discretisation and stochasticity implied by the agent formalism has a significant
impact on containment strategies, even if they rely to a macroscopic level. In-
deed, as can be seen on Fig. 11, the impact of such a quarantine strategy on the
epidemic, defined by the three indicators MaxI , TimeofMaxI and Duration , is
much more progressive and realistic.

4 This is only a first attempt of result: it should be verified on other network topologies.
Other characteristics should also be tested.
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Fig. 11. Influence of the quarantine threshold on the indicator MaxI for the MetaPop
(red plots) and the MicMac models.

7 Conclusion

We have presented the MicMac model that is a model coupling equation-based
and agent-based models in a model representing the spread of a disease in a city
network. We have studied carefully the influence of heterogeneities due to the
agent-based model and compared results w.r.t. a reference model that does not
contain the agent part. Finally we have presented how to integrate mitigation
strategies inside.

As perspectives we plan to show the benefits of the hybrid approach (and in
particular the benefits brought by the agent approach) by introducing much more
complex diffusion processes: in particular, passengers will be able to do multi-
stop travels, with possibility to be infected in the transit airport and passengers
will be able to do round trips (they will be able to bring back disease to their
home city).
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