
Wavelet-based statistical classification of skin
images acquired with reflectance confocal
microscopy

ABDELGHAFOUR HALIMI,1 HADJ BATATIA,1,* JIMMY LE DIGABEL,2

GWENDAL JOSSE,2 AND JEAN YVES TOURNERET1

1University of Toulouse, IRIT-INPT, 2 rue Camichel, BP 7122, 31071 Toulouse cedex 7, France
2Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, 2 rue Viguerie,

31025 Toulouse Cedex 3, France
∗hadj.batatia@inp-toulouse.fr

Abstract: Detecting skin lentigo in reflectance confocal microscopy images is an important and
challenging problem. This imaging modality has not yet been widely investigated for this problem
and there are a few automatic processing techniques. They are mostly based on machine learning
approaches and rely on numerous classical image features that lead to high computational costs
given the very large resolution of these images. This paper presents a detection method with very
low computational complexity that is able to identify the skin depth at which the lentigo can be
detected. The proposed method performs multiresolution decomposition of the image obtained at
each skin depth. The distribution of image pixels at a given depth can be approximated accurately
by a generalized Gaussian distribution whose parameters depend on the decomposition scale,
resulting in a very-low-dimension parameter space. SVM classifiers are then investigated to
classify the scale parameter of this distribution allowing real-time detection of lentigo. The
method is applied to 45 healthy and lentigo patients from a clinical study, where sensitivity of
81.4% and specificity of 83.3% are achieved. Our results show that lentigo is identifiable at depths
between 50µm and 60µm, corresponding to the average location of the the dermoepidermal
junction. This result is in agreement with the clinical practices that characterize the lentigo by
assessing the disorganization of the dermoepidermal junction.
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1. Introduction

Reflectance confocal microscopy (RCM) is a non-invasive imaging technique that enables in-vivo

visualization of the epidermis down to the papillary dermis in real time [1,2]. The development of

this technology has taken about two decades and is currently granted the clinical status in various

countries [3]. Early investigations focused on the identification of cell populations in different

skin layers. Research on RCM images addressed three aspects: i) clinical studies to evaluate their

usefulness, ii) segmentation of nuclei, and iii) classification of skin tissues. Later, interest has

moved to diagnosis applications (especially cancer) with the objective of improving the sensitivity

and specificity [4, 5]. Other applications of RCM have been reported such as treatment follow

up [6], surveillance of lentigo malign treatment [7, 8], and guidance of cutaneous surgery [9].

At the time of this writing, a review of the literature on RCM imaging during the previous

semester shows about 1500 publications. Most of them report methods based on visual inspection

or ad’hoc quantitative measures. Research works reporting automatic techniques to process RCM

images are limited. Luck et al. [10] have been pioneers in developing automatic RCM image

processing. Their nuclei segmentation method was based on Gaussian image models for the

nuclei reflectivity and the cytoplasm fibers intensity, and a Gaussian Markov random field for

spatial correlation. They proposed a Bayesian classification algorithm to label tissues. Later,

Kurugol et al. developed a semi-automatic method to locate the dermoepidermal junction (DEJ)

using a statistical classifier of texture features describing the brightness of basal cells [11,12].

Other methods were then investigated for RCM image proc essing. Koller et al. [13] proposed a

wavelet-based decision tree classification method to distinguish benign andmalignant melanocytic

skin tumors in RCM. The authors of [14] developed an automatic method to localize skin layers

in RCM images based on texture analysis. Hames et al. developed a logistic regression classifier

to automatically segment the different layers of the skin in RCM images [15, 16]. In [17],

SURF texture features were classified with support vector machines (SVM) to identify skin

morphological patterns in RCM images. In [18], an algorithm based on neural networks was

developed to segment nuclei in RCM images. All these works use machine learning techniques

to classify texture features directly extracted from the image. More recently, a Bayesian method

to segment the dermoepidermal junction in 3D RCM images has also been proposed [19]. This

method is based on a marked Poisson process to detect locations of papillae, a spherical model

for their shape and a Gaussian model of texture features to capture their appearance. Determining

quantitative markers for tissue characterization in RCM images has not been widely investigated.

Raphael et al. [20] reported a characterization method of RCM images to assess photoageing. In

their study, features including the intensity, 2D wavelet coefficient values, 2D Fourier coefficients

and shapes were correlated with clinical data. They concluded that the image intensity and the

wavelet coefficients have no significant correlation, contrary to Fourier coefficients and shapes.

In [21], Richtig et al. reported that solar lentigines show rete-edges with regular honeycomb

patterns and edged dermal papillae in RCM images. Based on these observations, we propose in

this paper to characterize solar lentigo using a parametric statistical model for textures associated

with RCM images. More precisely, we show that a quantitative parameter of this model allows

identifying lentigo in these images.

The proposed characterization method is based on a multi-resolution discrete wavelet decom-

position of RCM images. This technique has been considered for tissue characterization and

classification in many practical applications using directly values of wavelet coefficients [22–25].

However, wavelet coefficients have a large variability due to image details such as the range of inten-

sities, resolution and contrast. In addition, RCM images have a high resolution (50× 1000× 1000)

leading to processings with high computational complexity. The proposed method fits within the

framework of machine learning. The aim is to address the two aforementioned limitations. A

generalized Gaussian distribution (GGD) model is proposed to represent wavelet coefficients at

each depth of the skin. This model maps the data into a two-parameter space resulting in a strong



dimension reduction and allowing the implementation of a real-time lentigo detection algorithm.

Precisely, an SVM classifier is trained offline for each depth. It allows detecting in real-time the

depth at which the lentigo is present. In addition, the multiresolution approach has the advantage

of alleviating the problem of dependency to the resolution of the image. Experiments with real

data from a clinical study show that the shape parameter of the GGD (alone) is a good indicator

to discriminate between lentigo and healthy tissues. These experiments show that lentigo is

identifiable at depths between 50µm and 60µm. The remainder of the paper is organized as

follows. Section 2 presents the proposed method for lentigo characterization and classification.

It describes the wavelet decomposition process and the statistical model used for the wavelet

coefficients. It also presents the proposed texture characterization method based on T-tests and the

Bayes factor and the SVM classification protocol. Experimental results are presented in Section

3. Discussions reported in Section 4 summarize the findings of this study with some physical

interpretation. Conclusions and perspectives for future work are finally reported in Section 5.

2. Proposed method

This section presents a new statistical method to detect lentigo in RCM and simultaneously

identify the depth where the lesion is best identifiable. The method has very low computational

cost and is suitable for real-time detection. Let Y k ∈ RP×N×N denotes a stack of P images of

N × N pixels from a patient k. The tensor Yk contains P images denoted as Yk,1, . . . ,Yk,P , where

Yk,d is a grayscale image, oriented in the horizontal (en face) plane, associated with the skin

depth d. Image registration ensures that for all patients, images acquired at depth d correspond

to the same measure of depth in micrometers. This paper considers the problem of detecting a

lentigo in an image stack Yk in real-time, while identifying the depth at which the lesion is best

identifiable. Formally, we define a label zk associated with the patient k that takes the value 1

when the stack of images Yk has a lentigo and 0 otherwise. Let {Y (0)
k
}K0

k=1
and {Y (1)

k
}K1

k=1
denote

some expert annotated stacks of images corresponding to healthy and lentigo skins. We first

consider the identification of the C most characteristic depths (1 ≤ C ≤ P). We consider then

the classification problem consisting of estimating the label of a collection of C test images{
Yk,d1
, . . . ,Yk,dC

}
, at a given range of depths [d1, dC] ⊂ [1, P], denoted as zk using a training set

composed of the annotated characteristic depth images. The proposed method is organized in a

pipeline depicted in Fig. 1, whose components are detailed below.

Fig. 1. Block-diagram of the proposed method. It consists of 4 different stages. First, a wavelet

decomposition is applied to the image. Second, GGD parameters (α, β) are estimated, along
with the variance V and the entropy H. Third, statistical tests are implemented to identify

characteristic depths. Finally, SVM classifiers based on the GGD parameters classify tissues

as lentigo or healthy.

2.1. Wavelet decomposition

Inspecting visually the considered images, one can easily notice that the lentigo produces a

significant change in the texture of the images (Fig. 2). At the DEJ, lentigines exhibit more

papillae whose shapes appear more irregular than on healthy skin, explaining this difference



in texture. As mentioned earlier, wavelet coefficients have proven effective in capturing texture

properties in various applications [22–25]. Following this approach, the first stage of our method

consists in applying a wavelet decomposition to RCM images.

A Daubechies wavelet filter bank is used to decompose each image Yd. Such filter bank is

computationally efficient and can be implemented in real-time. The decomposition is performed

at four scales. At each scale, the result is a set of horizontal, vertical and diagonal coefficients that

we denote by H , V and D, respectively. Let x
(b)
s denotes the L × 1 vector of the arbitrarily ordered

coefficients obtained at the scale s for the band b ∈ {H,V,D}. Figure 3 shows an example of
decomposition of an RCM image at scale 1. In this work, we are interested in identifying the

lentigo lesion in real-time based on these coefficients. Given the large number of data, the next

section addresses the problem of dimension reduction.

2.2. Statistical modeling for dimension reduction

Designing a classification method directly from the wavelet coefficients would be ineffective due

their variability (see [20]) and inefficient due the computational cost of the required learning

algorithm. It is therefore necessary to map the wavelet coefficients data into a lower dimensional

space. Such representation should uncover the hidden structure that discriminates healthy and

lentigo images. It should also allow the implementation of a simple classification method for

rapid detection. In this work, as in [26–29], we propose to represent the empirical distribution of

the coefficients x
(b)
s , ∀b ∈ {H,V,D}, ∀s ∈ {1, . . . , 4} using a zero-mean generalized Gaussian

distribution (GGD). This distribution is known to capture the statistical properties of wavelets for

a large class of images [28, 30]. It allows us to reduce the size of the features vector from several

thousand coefficients to two parameters only, while capturing the variability of the coefficients.

The GGD has the following probability density function

f (x;α, β) = β

2αΓ(1/β) exp

(
−
��� x

α

���β
)

(1)

where α ∈ R+ is a scale parameter, β ∈ R+ is a shape parameter that controls the density
tail, and Γ (·) is the gamma function. We estimate the values of α and β for each set

X
(b)
s , ∀b ∈ {H,V,D}, ∀s ∈ {1, ..., 4} by maximum likelihood estimation using a Newton-

Raphson algorithm [28].

Let δ
(d)
b,s
=

[
α
(d)
b,s
, β

(d)
b,s

]
be the (1×2) parameter vector estimated for depth d at scale s from band

b. For depth d and scale s, the image is represented by a parameter vector θ
(d)
s =

{
δ
(d)
s,H
, δ

(d)
s,V
, δ

(d)
s,D

}
with s=1,...,4. We will denote as θ(d) =

{
θ
(d)
1
, . . . , θ

(d)
4

}
the parameter vector associated with the

depth d. This proposed dimension reduction step results in representing a patient by an array

of parameters Θ =
{
θ(1), . . . , θ(P)

}
, giving a total number of parameters of only 2 × 3 × 4 × P.

In addition, we will experimentally show that i) only few depths (C ≪ P) will be necessary to

identify the lentigo; ii) one single parameter out of the two (α, β) is sufficient to classify healthy
and lentigo patients; iii) scale 1 has enough information for lentigo identification; and iv) the 3

bands are better considered jointly. This results in a more reduced dimension, allowing a patient

to be represented by only 3 × C parameters. We will also show in Section 3.2 that the density

(1) fits correctly (with good Kolmogorov-Smirnov test) the empirical distribution of the wavelet

coefficients. The next section investigates a statistical test using the estimated parameters (α, β)

to assess their ability to discriminate healthy from lentigo patients.



Fig. 2. Typical images at the DEJ from six healthy (left to right and top to bottom #1, #5, #4,

#3, #2, #6) and six lentigo (#33, #38, #40, #31, #44, #37) patients. One can observe coarse

texture in the form of round shapes in the presence of lentigo. N.B. Values of the parameter

β are explained in section 4.



Fig. 3. Example of the first scale wavelet decomposition (right) of an RCM image (left). The

decomposition has four bands: Approximation (A), Horizontal (H), Vertical (V ), Diagonal

(D). Applying the same scheme to the approximation gives the next decomposition scale.

As explained in the text, our statistical method consists of estimating the GGD parameters

(α, β) for bands (H,V,D) at each scale. These parameters are used for the characterization
and classification of the underlying tissues.

2.3. Lentigo characterization by parametric T-tests

Before applying a classification method, we performed a parametric T-test to the shape and scale

parameters α and β of the different patients. This test allows assessing the statistical significance

of these parameters to separate healthy and lentigo patients. Note that similar tests were also

performed with the entropy and the variance of the distribution. The corresponding results are

available in a technical report [31] and are not presented here for brevity. We consider a corpus

composed of images from n healthy and m lentigo patients, annotated by a dermatologist. Let

Θ
(S)
=

{
Θ

(S)
1
, . . . ,Θ

(S)
n

}
andΘ(L)

=

{
Θ

(L)
1
, . . . ,Θ

(L)
m

}
denote the parameters estimated for healthy

and lentigo patients, respectively. The maximum likelihood estimator (MLE) is known to be

asymptotically Gaussian and asymptotically efficient [32, p.191]. Thus for large sample size, these

parameters can be assumed to be distributed according to Gaussian distributions. Figure 4 shows

that this assumption is reasonable for all the parameters. As an illustration, we consider here

the T-test for the parameter α at an arbitrary depth. Let µ
(S)
b,s

denote the mean of the parameters{
α1
b,s
, . . . , αn

b,s

}
estimated for the healthy patients for the band b at the scale s. Similarly, µ

(L)
b,s

is

the mean of the parameters
{
α1
b,s
, . . . , αm

b,s

}
estimated for lentigo patients at the same depth and

scale. A classic two-sample T-test [33–35] has been used to compare the means µ
(S)
b,s

and µ
(L)
b,s

H0
b,s

: µ
(S)
b,s
= µ

(L)
b,s
, (2)

H1
b,s

: µ
(S)
b,s
, µ

(L)
b,s
. (3)

In this study, we chose a probability of false alarm PF A = 0.05 corresponding to a threshold

TPFA = 2.02 to reject H0
b,s
. The p-value has also been calculated for each test. Then, the following



decision rules have been applied

• When p value > 0.10 → the observed difference is “not significant”

• When p value ∈ [0.05, 0.10] → the observed difference is “marginally significant”

• When p value ∈ [0.01, 0.05[ → the observed difference is “significant”

• When p value < 0.01 → the observed difference is “highly significant”

Following [36], we also calculated the Bayes factor (BF) given by

BF =
©­­«

ν + T

ν +

(
T −

√
(νγ∗)

)2 ª®®¬

(n+m)/2

(4)

where ν is the degrees of freedom, T the T-test score, γ∗ = γ2/(n+m−1) − 1 and γ =

[(T2
PFA

/ν) + 1](n+m)/2. With this statistics the hypothesis H0
b,s

is rejected when BF >
√
νγ∗.

In the experimentation section, we will show that β is the only parameter that can be used for

detecting lentigo at specific depths, meaning that β is a good tissue discriminator for those depths.

Fig. 4. Histograms of the scale and shape parameters, estimated from band H at depth

54µm, with their means and standard deviations for all healthy and lentigo patients. Similar

histograms are obtained for other bands and scales.

2.4. Lentigo detection by SVM classification

The last stage of the proposed method consists in classifying patients as lentigo or healthy based

on the GGD parameters. Precisely, the GGD parameters, the variance, and entropy associated with

the C most characteristic depths d = (d1, . . . , dC), as identified by the statistical test (presented
in Section 2.3), are considered. In our experiments, we chose C = 3 and d = (d1, d2, d3). Many



classification methods could be investigated to classify lentigo and healthy images. We present

here the results obtained with a linear SVM classifier that is simple to implement and has shown

good performance in many applications. Our objective here is to confirm that the parameter β is

able to classify tissues better than α, the variance (V), and the entropy (H). Therefore, we have

considered these parameters separately and have determined the corresponding classification

performance. We also aim at identifying which scale provides better classification and whether

there exists any preferred direction detail, horizontal, vertical or diagonal. The parameters were

estimated for each scale s ∈ {1, 2, 3, 4} from each band b ∈ {H,V,D}. Let us consider the case
of β as an example. The estimated parameters β for each scale and band are summarized in the

following matrix 
βH,1 βH,2 βH,3 βH,4

βV,1 βV,2 βV,3 βV,4

βD,1 βD,2 βD,3 βD,4


(5)

where βb,s =

(
β
(d1)
b,s
, . . . , β

(dC )
b,s

)
is the vector of parameters estimated from the C images, for

scale s and band b. SVM classifiers were designed for each element of the matrix (5), for

each row, each column and for the whole matrix (5) leading to a total of 20 classifiers. In

other words, the scales were considered separately and jointly, and for each scale the bands

were also considered separately and jointly. The leave-one-out method was used to evaluate

the classification performance. This operation was conducted 1000 times, and all results were

averaged in order to obtain averaged confusion matrix and performance indicators (sensitivity,

specificity, precision and accuracy). In the experiments presented in Section 3.5, we will focus

on the 20 SVM classifiers that are based on the parameter β (results obtained with the other

parameters are available in [31]).

3. Experiments

3.1. Data

RCM imaging was performed using an apparatus Vivascope 1500. The in-vivo images were

acquired from the stratum corneum, the epidermis layer, the dermis-epidermis junction (DEJ) and

the upper papillary dermis. Each RCM image shows a 500 × 500µm field of view (1000 × 1000

pixels). Forty-five women aged 60 years and over were recruited. The study was conducted

according to the principles of the declaration of Helsinki, and was approved by the Comité de

Protection des Personnes Sud-Ouest et Outre-mer III in Bordeaux, France, No. CPP 2011/36.

All the volunteers gave their informed consent for examination of skin by RCM. According

to the clinical evaluation performed by a physician, volunteers were divided into two groups.

Twenty-seven (m = 27) women with at least 3 lentigines on the back of the hand formed the

first group and eighteen (n = 18) women with no lentigo formed the control group. For each

volunteer, the acquisition on the same location was repeated twice, giving two stacks for each

patient. Images were taken on lentigo lesions for volunteers of the first group and on healthy skin

on the back of the hand for the control group. An examination of each acquisition was performed

in order to locate the stratum corneum and the DEJ precisely on each image. Consequently, our

database contained M = 45 patients. For each patient, we retained two stacks of 25 RCM images

giving a total of 2250 images. Images were registered in order to correspond to the same depths.

3.2. Statistical analysis of wavelet coefficients

This section illustrates the goodness of fit of the generalized Gaussian distribution for the wavelet

coefficients of RCM images. Figure 5 compares the histograms of the wavelet coefficients from

band H with the estimated GGD distributions for the four scales at 3 representative depths.

This figure concerns two arbitrary healthy and lentigo patients, namely patients #6 and #38



respectively. It shows the good fit between the observed histograms and the estimated distributions

for all scales for both healthy and lentigo images. For scale 4, the distribution misses the mode

but fits well the shape. This can be explained by the small number of data since coefficients

at this scale are very sparse and tend toward a flat histogram. Slight differences in the shape

of the distributions can be observed between healthy and lentigo patients, as illustrated by the

differences in the corresponding parameters α and β. These differences are at the basis of the

proposed characterization method as illustrated in the next experiments. Good results have also

been obtained for the bands V and D. They are not shown here for brevity.

Figure 6 shows the quantitative assessment of the fit using the the Kolmogorov-Smirnov (KS)

test. The mean KS statistic score of the whole population (45 patients) has been calculated at

each depth for all scales. One notices the excellent scores with values of the KS statistic very

close to zero. Quantitatively, considering all depths and bands, the mean KS is 0.008 ± 0.002 for

scale #1; 0.009 ± 0.003 for scale #2; 0.013 ± 0.004 for scale #3; and 0.027 ± 0.009 for scale #4.

The increase of the score with the scale is due to sparser data.

3.3. Identification of characteristic depths

Each of the 2250 images was decomposed according to the multi-resolution analysis presented

in Section 2.1 and GGD distributions were fitted to each scale at each band. Having acquired

two stacks of 25 images for each patient, one of the two stacks was selected randomly for the

analysis. The mean µ
(S)
b,s

and µ
(L)
b,s

for α and β were calculated for healthy and lentigo images,

respectively. The curves showing the evolution of the average parameters with respect to the

image depth were finally elaborated. To account for variability, the process of selecting one

stack for each patient was repeated 300 times and average curves with standard deviations were

calculated. Results are shown in Fig. 7, which clearly shows that, for all depths, bands and scales,

α is not characteristic. Conversely, β allows the discrimination of healthy and lentigo images

for all bands at scales 1 to 3 for depths between 31µm and 76µm. Depths around 50µm give the

largest discrimination. Results obtained with the bands H and V for the fourth scale show large

variability due to the low quantity of data. Figure 2 shows two sets of images associated with six

healthy (#1, #2, #3, #4, #5, #6) and six lentigo (#31, #33, #37, #38, #40, #44) patients. As expected,
one notices that in the presence of lentigo images are more textured at the DEJ range of depths.

3.4. Statistical significance with T tests

The parametric test described in Section 2.3 has been applied to the parameters of each band,

scale and depth to assess the significance of the results. Figures 8 and 9 show the p-values

and Bayes factors associated with the two-sample t-tests conducted respectively with α and

β, at different depths. The p-value has been represented in − log scale for readability. Figure

8 shows weak values of both p-value and Bayes factor confirming that α cannot discriminate

healthy and lentigo images. Figure 9 shows high scores for both indicators for a range of depths.

Table 1 presents depths that give Tβ higher than the threshold, hence confirming the hypothesis

that the parameter β can be used to discriminate healthy and lentigo patients. This table also

shows the depths that provide p-values lower than the probability of false alarm PF A = 0.05

and their corresponding Bayes factor. It can be seen that for all depths where H0
.,.(β) is rejected,

p-values are lower than 0.01. According to our decision rules, the results are highly significant

for depths 49µm and 60µm for scale one, with the highest score at 54µm. These results are in

good agreement with the quantitative differences shown in Fig. 7. These results confirm that

β gives a good test statistics for discriminating lentigo and healthy skin, especially at depths

around 50µm. As mentioned in the introduction, lentigines are mainly characterized in RCM by

the disorganization of the dermoepidermal junction (DEJ). It is therefore not surprising to find

no significant difference between healthy and lentigo skin in the stratum corneum and higher

epidermis layers (below 40µm). Coherently, the parameter β is very discriminant at depths close



Fig. 5. Histograms of the wavelet coefficients from band H at the four scales and the

corresponding estimated GGD distributions. The figure shows data from two arbitrary

healthy and lentigo patients (#6 and #38 respectively) at three representative depths (one

depth per column).



Fig. 6. Assessment of the GGD fit to wavelet coefficients. Mean KS statistic for the whole

population at some selected depths, shown by scale and band. Scores are very good for all

configurations, although they increase with higher scales, due to sparser data.

to 50µm, which corresponds to the average location of the DEJ as shown in Fig. 10.

3.5. Performance of the SVM classification

For the classification, we processed separately three images (C = 3) corresponding to characteristic

depths (49.5µm, 54µm, 58.5µm) for each patient. As described in section 2.4, a GGD distribution

was fitted at each scale (#1, #2, #3, #4) to wavelet coefficients form separate bands (H,V,D). The
2 parameters (α, β) were estimated, along with the variance and the entropy. For each of these
parameters, SVM classifiers were trained and tested to classify patients into 2 classes referred to

as "lentigo" and "healthy". The leave-one-out cross-validation method was used to compute the

different probabilities of errors. This method uses M −1 images for training (where M = 45 is the

number of patients in the database) and the remaining image for testing. This operation was run

N = 1000 times. For each experiment, we considered only images from one acquisition out of the

available two stacks (for each patient). The obtained N results were used to calculate the average

confusion matrix shown in Table 2 and to evaluate average indicators (sensitivity, specificity,

precision and accuracy). This table allows us to assess the classification performance for each

scale and for the three bands separately and jointly. The results show that the classification of

healthy and lesion tissues is similar for the different combinations of detail-bands, and thus we

recommend to use the joint bands (H,V,D). Regarding the different scales used for the analysis,
Table 2 shows that results from the first scale are slightly better than those obtained with the other

scales. Thus we recommend to use the first scale of the wavelet decomposition. Our method

was then compared to the method presented in [13], named here Koller. This method consists of

extracting 39 features from each RCM image (more technical details are available in [37]) and

applying a classification procedure based on a regression tree (CART). We tested this method on

the real RCM images using a leave one out procedure. As shown in Table 3, the accuracy (75.5%)

obtained with the Koller method is smaller than the one obtained with the proposed method and



leads to three additional misclassified patients. In addition, this result is obtained at the expense

of higher complexity given the number of parameters (39 for Koller as compared to our method).

For illustration purpose, Fig. 11 shows examples of classified RCM images using the proposed

methodology. The results concerning the other parameters (α, Entropy, Variance) were not

convincing. Thus, they are not reported in this paper.

Table 1. Depths where H0
.,.(β) is rejected (t-score > T0.05 = 2.02); the corresponding p-value

and Bayes factor (BF) are shown. The first row gives intervals of depths (min depth to max

depth) where T-scores are significant. The second row shows depths giving highest T-scores

(maximal T-score ∓ 10%). The third row shows the depths corresponding to the maximal

T-score. P-values and Bayes factors corresponding to each depth are shown below.
scale 1 scale 2 scale 3 scale 4

min max min max min max min max

T
(β)
ν > 2.02

depths (µm) 14 90 18 90 18 90 18 94

T-score 2.10 2.22 2.13 2.27 2.10 2.20 2.14 2.11

p-value 0.040 0.037 0.040 0.030 0.040 0.037 0.038 0.040

BF 11.00 13.40 7.18 15.23 23.10 29.70 13.24 10.20

Highest T
(β)
ν

depths (µm) 48 60 48 63 48 68 48 68

T-score 4.80 4.84 4.54 4.73 4.02 4.07 3.99 4.26

p-value 0.0002 0.0002 0.0004 0.0003 0.002 0.002 0.003 0.001

BF 877 970 891 949 454 460 359 435

Maximal T
(β)
ν

depths (µm) 54 54 59 59

T-score 5.11 4.94 4.69 4.41

p-value 0.00008 0.00016 0.00031 0.00074

BF 1246 1459 436 507

Table 2. Confusion matrices of SVM classifiers based on the vector of parameters

(β49.5µm, β54µm, β58.5µm) from the three characteristic depths. Twenty different classi-

fiers have been tested with the leave-one-out method for the H,V,D, and H,V, D bands at

the four scales 1, 2, 3, 4 separately and combined (1, 2, 3, 4). Se and Sp stand for the sensitivity
and specificity. One notices the good accuracy for all bands (there is no preferred direction,

justifying the joint H,V, D band) especially with the first scale.

β Scale 1 Scale 2 Scale 3 Scale 4 All scales

Confusion matrix L ĥ

Se

Sp

L̂ ĥ

Se

Sp

L̂ ĥ

Se

Sp

L̂ ĥ

Se

Sp

L̂ ĥ

Se

Spf

H

Lentigo 22 5 81.4 % 21 6 77.7 % 20 7 74% 19 8 70.3 % 21 6 77.7 %

Sain 3 15 83.3 % 4 14 77.7 % 4 14 77.7% 6 12 66.6 % 5 13 72.2 %

Precision 88% 75% 84% 70% 83.3 % 66.6 % 76% 60% 80.7 % 68.4 %

Accuracy 82.2% 77.7% 75.5 % 68.8 % 75.5 %

V

Lentigo 22 5 81.4% 20 7 74% 20 7 74% 20 7 74% 20 7 74%

Sain 3 15 83.3% 4 14 77.7% 4 14 77.7% 5 13 72.2 % 5 13 72.2 %

Precision 88% 75% 83.3 % 66.6 % 83.3% 66% 80% 65% 80% 65%

Accuracy 82.2% 75.5 % 75.5 % 73.3 % 73.3%

D

Lentigo 22 5 81.4 % 21 6 77.7 % 20 7 74% 19 8 70.3 % 21 6 77.7 %

Sain 3 15 83.3 % 5 13 72.2 % 5 13 72.2% 5 13 72.2% 5 13 72.2 %

Precision 88 % 75 % 80.7 % 68.4 % 80% 65% 79.1 % 61.9 % 80.7 % 68.4 %

Accuracy 82.2 % 75.5 % 73.3 % 71.1 % 75.5 %

HVD

Lentigo 22 5 81.4% 21 6 77.7% 20 7 74% 19 8 70.3% 21 6 77.7 %

Sain 3 15 83.3% 4 14 77.7% 4 14 77.7% 5 13 72.2% 5 13 72.2 %

Precision 88% 75% 84% 70% 83.3% 66% 79.1% 61.9% 80.7 % 68.4 %

Accuracy 82.2% 77.7% 75.5 % 71.1 % 75.5 %



Fig. 7. Evolution of the average parameters α̂ and β̂ throughout the depth for the different

bands at all scales. Values of α are too similar for healthy and lentigo patients and cannot be

used for discrimination. The parameter β shows significant difference for depths between

31µm and 76µm, with maximal difference at around 50µm. Our conclusion is that this

parameter β can discriminate healthy and lentigo skin tissues.



Fig. 8. P-value (in − log scale) and Bayes factor of the T test for α. The weak scores show

that α is clearly not a discriminant between healthy and lentigo images.

Fig. 9. P-value (in −log scale) and Bayes factor (BF) of the T test for β. The third row

contains zooms on the lower scores of the BF to clarify the significance threshold. Strong

scores can be seen for depths between 31µm and 76µm. Highest scores are obtained with

depths around 50µm. This confirms that β is a good discriminant function that can be used

to separate healthy and lentigo images at these depths.



Fig. 10. Characteristics depths (found to be between 48um and 63um according to the T-test)

and DEJ depths associated with the 45 patients.

Table 3. Confusion matrix of SVM classifiers based on Koller method using the same training

and testing conditions as in Table.2. Features from images of the three characteristic depths

have been concatenated in one feature vector. Slightly higher accuracy (77.7%) has been

obtained when Koller’s method is applied only to depth 54µm.

Koller method

Confusion matrix L̂ Ĥ
Sensitivity

Specificity

Lentigo 21 6 77.7 %

Healthy 5 13 72.2 %

Precision 80.7 % 68.4 %

Accuracy 75.5 %

4. Discussion

The experimental results, with skin types 2 and 3, have shown that the lentigo phenomenon can

be characterized using reflectance confocal microscopy images. Statistical tests demonstrated

that it can be identified with sufficient statistical significance at depths between 50µm and 60µm.

Classification of patients with GGD statistical models associated with wavelet transforms of

images acquired at these characteristic depths show that the parameter β can discriminate healthy

and lentigo tissues. Other parameters including the scale parameter α, the variance and the

entropy failed to achieve the same objective. Formally, β ∈ R+ is the shape parameter of the
GGD distribution. When β→ 0, the GGD curve has a picked shape around the mode. However,

when β is large, the curve has a rounded and more spread mode. Lower β indicate sparser wavelet

coefficients. In our case, healthy images have values of β larger than those of lentigo (Fig.5).

One possible interpretation of this result is related the visual structure of the dermal papillae

in the lentigo images. In the case of lentigo, the papillae of the dermis grow higher and more

dense towards the surface, with irregular shapes, making the DEJ junction larger. In our data, the

DEJ starts at the mean depth of 13µm for lentigo and 25µm for healthy patients, with similar



Fig. 11. Examples of RCM images of lentigo and healthy patients classified by the SVM

classifier.



ending depths. As a consequence, images taken at the middle of the dermoepidermal junction

contain more widespread and irregularly shaped papillae in lentigo than in healthy patients. The

papillae appear as irregular shapes surrounded by bright borders that represent concentration of

melanocytes (Fig. 2). These patterns of shapes are captured by the distribution of the wavelet

coefficients as regular coarse textures with lower values of β. In comparison, the fewer and

regular round shaped papillae that appear in the healthy images give slightly larger values of β.

This numerical difference is statistically sufficient to distinguish healthy from lentigo patients. As

shown in Fig.2, β decreases with the increase of the density and shape irregularity of the papillae

in the image. Please notice that the value of β shown in this figure correspond to band H at scale

#1. A similar behavior of this parameter is obtained for the other bands and scales. Finally, it

is interesting to note that the proposed method would not discriminate lentigo from other skin

lesions or types if their corresponding images have similar texture patterns, which is one of its

limitations.

5. Conclusions

This paper investigated the potential of using the statistical properties of wavelet coefficients

of RCM images to characterize the skin lentigo. The proposed method computed the scale and

shape parameters of a generalized Gaussian distribution associated with each band and each scale

of images acquired at different depths. These parameters were then used to distinguish between

healthy and lentigo tissues. A parametric T-test was performed to assess the statistical significance

of the observed differences between healthy and lentigo images. The proposed hypothesis test was

run on a database of 2250 real images associated with 45 patients. SVM classifiers were created

and tested for the different parameters. The results of t-test and SVM classification were found in

perfect agreement. In conjunction, these results showed that the shape parameter β is well suited

to discriminate healthy and lentigo tissues. They showed also that there is no preferred direction,

and thus that it is better to use the joint vector (H,V,D) with the first scale to provide a good

characterization of RCM images. Interestingly, for images from the back of the hand, this study

found that the shape parameter β of the generalized Gaussian distribution characterizes lentigo at

depths around 50µm corresponding to the location of the dermoepidermal junction. This result is

in agreement with the clinical fact that lentigo significantly disorganizes this layer of the skin.

Future work includes the consideration of different skin types and other pigmented skin lesions

that lead to the destruction of the dermoepidermal junction such as the melanoma. It would be

also interesting to analyze the distributions of RCM images directly in the image domain. The

associated parameters could complement the statistical model defined by the scale and shape

parameters of the generalized Gaussian distribution associated with the wavelet coefficients

considered in this paper.
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