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Abstract Direct Numerical Simulation of turbulent
flows is a computationally demanding problem that re-
quires efficient parallel algorithms. We investigate the

applicability of the time-parallel Parareal algorithm
to an instructional case study related to the simula-
tion of the decay of homogeneous isotropic turbulence
in three dimensions. We combine a Parareal variant
based on explicit time integrators and spatial coars-
ening with the space-parallel Hybrid Navier-Stokes
solver. We analyse the performance of this space-time

parallel solver with respect to speedup and quality of
the solution. The results are compared with reference
data obtained with a classical explicit integration, us-

ing an error analysis which relies on the energetic con-
tent of the solution. We show that a single Parareal

iteration is able to reproduce with high fidelity the
main statistical quantities characterizing the turbu-

lent flow field.
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1 Introduction

The numerical solution of time dependent partial dif-
ferential equations is of interest in many applications

in Computational Science and Engineering. The re-
cent advent of computing platforms with more, but

not faster, processors currently requires the design of

new parallel algorithms that must be able to exploit
more concurrency to provide a fast time-to-solution.

In this respect, parallel-in-time and space-time meth-
ods are considered as promising candidates [10]. In-

deed, such methods enable the exploitation of possi-
bly substantially more computational resources than
purely space-parallel methods with sequential

time stepping.

A popular parallel-in-time method based on a de-

composition of the space-time domain in time is the
Parareal algorithm introduced by Lions, Maday and
Turinici [28]. Parareal relies on the availability of a
cheap coarse time integrator that provides guesses of
the solution at several instants. Given these starting
values, a fine time integrator is applied concurrently.
The results are then used to propagate a correction
to the guesses by using the coarse integrator serially

over the time slices. As shown in [18], Parareal can
be derived as both a multigrid method in time or as a
multiple shooting method along the time axis; see [17]

for further comments and details on the classification

of time parallel methods. Due to its non-intrusiveness,

Parareal is one of the most widely used time-parallel
algorithms. Successful applications have been consid-

ered in Computational Fluid Dynamics (CFD) [6,14],

neutron transport [30], plasma physics [39] and skin
permeation [23] to name a few. While a relative ef-

ficiency has been obtained on diffusive problems [14,
23], the applicability of Parareal to hyperbolic or



advection-dominated problems is still an open issue;
see [36] for a recent analysis and [3,41] for early at-
tempts. Although modifications of Parareal for hy-

perbolic problems have been proposed [9,12,13,16,37],

these enhancements generally imply a significant over-

head that leads to a degradation of the parallel effi-
ciency. Hence this seems to prevent the use of Para-
real for a certain class of important problems in

Computational Fluid Dynamics.
In this manuscript we investigate this critical is-

sue by applying Parareal to the direct numerical
simulation of complex turbulent compressible flows in
three dimensions. We specifically focus on the sim-
ulation of the decay of homogeneous isotropic turbu-

lence, a canonical test case known as the simplest con-
figuration which incorporates fundamental and rele-

vant turbulence mechanisms [31]. As identified in [45],

regarding parallel-in-time integration, interesting fea-

tures of turbulent flows are their chaotic nature and
their strongly unsteady behavior, which typically re-
quires explicit integration methods [7]. This test case

incorporates these issues at a very moderate cost, mak-
ing this model problem an interesting instructional

candidate for time-parallel algorithms. To the best of

our knowledge, the performance of Parareal on such
a test case has not yet been studied. In the follow-

ing, we concentrate on Parareal with spatial coars-
ening [14] and explicit time integrators. We employ

the Hybrid Navier-Stokes solver for the spatial dis-
cretization, for which excellent parallel scaling proper-
ties have been obtained [4]. With this setting, we aim

at investigating if this application could benefit from
time parallelization. For such a purpose, we perform a
numerical study on the role of various parameters on

the convergence of Parareal with spatial coarsening.
This extensive numerical study is the main contribu-

tion of the manuscript.
The manuscript is organized as follows. In Sec. 2

we briefly present the Parareal time-parallel time
integration method. In Sec. 3 we describe the set of
governing time-dependent partial differential equations

and explain the relevance of the canonical test case
concerning the direct numerical simulation of turbu-
lent flows. Then we present detailed numerical experi-

ments to understand the convergence of Parareal in
Sec. 4. Finally, as a conclusion, we draw first lessons
in Sec. 5.

2 Time parallelization using Parareal

We briefly introduceParareal [28], a popular method
for the time parallel solution of nonlinear initial value

problems. Then we describe a variant based on spatial

coarsening first proposed in [14]. Finally, we include a

theoretical model for the expected speedup and par-

allel efficiency of both algorithms.

2.1 General setting

Parareal aims at solving the initial value problem
of the form

dU

dt
= f(U(t), t), U(0) = U0, t ∈ [0, T ], (1)

with f : R
p × R

+ → R
p, U(t) ∈ R

p, U0 ∈ R
p,

p being the total number of degrees of freedom and

T a positive real value. Here, the problem (1) arises
from the spatial discretization of a nonlinear system

of partial differential equations (PDEs) through the

”method-of-lines” [40]. We decompose the global time
interval [0, T ] into N uniform time slices [tn−1, tn],

n = 1, · · · , N , where N is the number of processes
to be considered for the time parallelization only. In

the following, we denote by Un the approximation of
U at time tn, i.e. , Un ≈ U(tn). Let Fδt

tn−1→tn
(Un−1) de-

note the result of approximately integrating (1) on the
time slice [tn−1, tn] from a given starting value Un−1

using a fine time integrator F with time increment
δt. Similarly, we introduce a second time integrator G
(referred to as the coarse propagator, with time in-
crement ∆t), which has to be much cheaper than F
in terms of computational time, with possible reduced

accuracy. Finally, for ease of exposition, we assume in
this analysis that an integer number of both δt and
∆t covers a time slice exactly.

The prediction step of Parareal consists of com-
puting a first guess of the starting values U0

n at the

beginning of each time slice by

U0
n = G∆t

tn−1→tn
(U0

n−1), U0
0 = U0, (2)

with n = 1, · · · , N . A correction iteration is then ap-
plied concurrently on each time slice:

Uk
n = Fδt

tn−1→tn
(Uk−1

n−1)+ G∆t

tn−1→tn
(Uk

n−1)− G∆t

tn−1→tn
(Uk−1

n−1),

(3)

where Uk
n denotes the approximation of U at time tn

at the k-th iteration of Parareal (k = 1, · · · ,K,

n = 1, · · · , N). While the application of F can be per-
formed independently for each time slice Parareal

remains limited by the sequential nature of the coarse
integration (3). Hence, Parareal will bring a reduc-
tion of the total computational time with respect to a

direct time-serial integration, only if the application of



G is cheap enough and if the total number of iterations
K of Parareal is small. We recall that Parareal

converges after N iterations to the approximation of

the exact solution [15].

2.2 Variant of Parareal based on explicit time
integrators and on spatial coarsening

The Parareal parallel in time shooting method [18]
is generally used in combination with implicit time

integrators; see, e.g. , [8,12,23,42] for applications re-
lated to time-dependent PDEs. In this context pro-
cedure, the coarse integrator G is obtained by simply

choosing∆t > δt. However, this strategy is usually not
applicable when explicit time integrators are favored,
since the time step is notably bounded by numerical

stability conditions (such as the Courant-Friedrichs-
Levy (CFL) condition).

As a cure, Ruprecht and Krause [37] have consid-
ered a coarse propagator G with lower accuracies in

both time and space. Using fewer degrees of freedom at
the coarse level is also possible as proposed in [14] for
the numerical solution of the two-dimensional incom-
pressible Navier-Stokes equations. This has been later
investigated in [12] for the Detached Eddy Simulation
of the three-dimensional incompressible Navier-Stokes
equations and for the simulation of two-dimensional
plasma turbulence [39], respectively. In this setting,

we denote by Ĝ the corresponding propagator on the
coarse spatial grid (which now involves p̂ degrees of
freedom with p̂ < p), while R and I represent the

spatial restriction and interpolation operators, respec-
tively. The prediction step of Parareal with spatial

coarsening is now

U0
n = I Ĝ∆t

tn−1→tn
(R(U0

n−1)), U0
0 = U0, (4)

with n = 1, · · · , N . Similarly, the correction iteration
of the Parareal algorithm with spatial coarsening
then becomes

Uk
n = Fδt

tn−1→tn
(Uk−1

n−1) + (5)

I( Ĝ∆t

tn−1→tn
(R(Uk

n−1))− Ĝ∆t

tn−1→tn
(R(Uk−1

n−1))),

with k = 1, · · · , K̂ and n = 1, · · · , N . As noted in [34],
the convergence of Parareal with spatial coarsen-
ing will not only depend on the fine and coarse time

propagators but also on the restriction and interpola-

tion operators. Hence, we expect (5) to obtain a dif-
ferent convergence rate than (3). In this manuscript,
we mostly focus on the variant of Parareal based

on (4) and (5) with explicit time integration for both

the fine and coarse propagators. We next address the

expected performance of such a variant.

2.3 Expected parallel performance of Parareal

In our setting, parallel-in-time integration is consid-
ered as a possibility for additional fine grain paral-
lelism on top of an existing coarse grain spatial de-

composition. In a preliminary phase, we have decided
to simulate the parallelization in time, whereas the

parallelization in space is truly implemented on a dis-

tributed memory passing system using the Message
Passing Interface (MPI) [19]. This allows us to pre-
dict at a very moderate cost if the time parallelization

can be relevant in our study. Hence, modelling the
expected performance of Parareal is of utmost im-

portance. We first analyse the parallel speedup, de-

fined as the ratio of the sequential to the parallel

execution time for a given number of processes. As
pointed out in [1,2,5,35], the Parareal algorithm is
flexible enough to accommodate various implementa-

tions based on different programming paradigms. In
the modeling, we consider a distributed memory im-

plementation to handle the parallelization in time. We

refer the reader to [35] for a discussion and analysis of
other strategies. We consider a total ofNproc processes
for the space-time parallelism with N processes being

devoted to the parallelization in time. In this setting,
each time slice associated to a spatial subdomain is

assigned to a process.

We first consider the standard Parareal algo-

rithm and denote by CF the cost of integrating over
a given time slice using Fδt

tn−1→tn
and by CG the corre-

sponding cost when using G∆t

tn−1→tn
. Since explicit time-

integration schemes are used with uniform time steps,
we expect both CF and CG to be proportional to the
time slice length. Hence CF is equal to TFNδt,F , where
TF and Nδt,F are the computational time related to
the application of the fine integrator over one time

step and the number of time steps done for one time
slice, respectively. A similar expression can be found

for CG (i.e. CG = TGN∆t,G with similar notation).

As advocated in [35], we concentrate on an efficient

implementation of Parareal discussed in both [29,
Sec. 5] and [2, Sec. 4] making use of pipelining, i.e. ,
reducing the costs of the coarse propagation in each
correction iteration (3) fromNCG to CG . The estimate

of the theoretical speedup of the pipelined Parareal



using K iterations is then given by [29]

S(N) =
NCF

NCG +K(CF + CG)
=

1

(1 +
K

N
)
CG
CF

+
K

N

.

(6)
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Fig. 1: Execution diagram of Parareal with pipelining
(top) and with improved pipelining (bottom). Three iter-
ations of Parareal (K = 3) on four time slices (N = 4) are
considered. The end of each Parareal iteration is indicated
by a dotted line. Time-slices are numbered from 0 to 3, each
line corresponds to one process of Parareal.

The projected parallel speedup (6) has been de-
rived by neglecting the time spent communicating be-

tween each time slice, later referred to as communica-
tion in time. For an increased accuracy of the perfor-
mance model, we have decided to include this cost in

the analysis and to propose a modification of pipelined
Parareal, which slightly reduces the cost induced

by the communications in time. Fig. 1(a) sketches
the execution diagram of pipelined Parareal. Since

the prediction step (2) is sequential, N − 1 commu-
nications between time slices are required during this
phase (see the thin rectangles on the left of Fig. 1(a)).

To avoid this offset, we have considered an implemen-
tation shown in Fig. 1(b), in which the solution of the

prediction step is computed concurrently on each time
slice. This removes unnecessary communications be-
tween time slices in the prediction step at the cost of
redundancy in the computation. Let Ct

T denote the
cost to communicate a single global (fine) solution

from a time slice to the next. Hence, the total cost
spent in communications in time for K iterations of
Parareal is then given by

CT ,K = Ct
T

K∑

k=1

(N − k) = Ct
T

K(2N −K − 1)

2
. (7)

Furthermore, the speedup of our implementation of
pipelined Parareal can be obtained as

ST (N) =
1

(1 +
K

N
)
CG
CF

+
K

N
+

CT ,K

N CF

. (8)

Let denote by C
Ĝ

the cost of integrating over a

given time slice using Ĝ∆t

tn−1→tn
. A straightforward adap-

tation of (8) to the case of pipelined Parareal with
spatial coarsening using K̂ iterations yields the follow-

ing projected speedup

ŜT (N) =
1

(1 +
K̂

N
)
C
Ĝ
+ C

R̂
+ C

Î

CF
+

K̂

N
+

C
T ,K̂

N CF

,

(9)

where C
R̂

(C
Î
) represents the cost of application of

the restriction (interpolation) operator to a vector of

appropriate dimension, respectively. Neglecting the com-
munications in time is thus only reasonable if

C
T ,K̂

N CF
≪ (1 +

K̂

N
)
C
Ĝ
+ C

R̂
+ C

Î

CF
+

K̂

N
, (10)

a condition later discussed in Sec. 4.7.

Finally, we deduce the space-time parallel speedup
SS,T (Nproc) as

SS,T (Nproc) = SS(Ns) ŜT (N), (11)

where SS(Ns) is the speedup brought by the paral-
lelization in space of the fine solver F on Ns processes,
i.e. ,

SS(Ns) =
T s
F,serial

T s
F,Ns

. (12)

Hence, we deduce that the space-time parallelization
is only viable if

SS,T (Nproc) > SS(Nproc), (13)

a condition later analysed in Sec. 4.2.

We will rely on the expected speedup of the space-

time parallel method SS,T (Nproc) and on the parallel

efficiency1 to predict the parallel performance of our
model in Sec. 4.2. We next describe our case study

and give details on both the fine and coarse solvers.

1 We define the parallel efficiency as the ratio of the par-
allel speedup over the number of processes involved.



3 Description of the turbulent flow problem

and the CFD solver

We are interested in the simulation of complex turbu-
lent flows and focus on a canonical but relevant test
case, well known from the CFD community. The de-
cay of homogeneous isotropic turbulence (HIT) has
been studied by many authors from moderate [33,44]
to very large scale problems [22]. This case may be
seen as the simplest configuration which incorporates
fundamental and relevant turbulence mechanisms [31].
In the context of Direct Numerical Simulation (DNS),

the problem size is essentially driven by the range of
length scales to resolve, which sets the required grid

resolution. Specifically, increasing the Reynolds num-

ber leads to a wider spectrum of length scales to re-
solve, but also improves the relevance of the simulation

regarding high Reynolds, industrial configurations. In
this setup, synthetically generated turbulence decays

under the action of dissipation mechanisms. A descrip-

tion of the flow field during the simulation is given
in Fig. 2 in terms of turbulent kinetic energy, which

highlights the evolution of energy-carrying turbulent
eddies and the strong nonlinearity of turbulent flows.

Regarding parallel in time integration algorithms,

interesting features of turbulent flows are i) their chaotic
nature ii) their strongly unsteady behavior, which typ-
ically requires explicit integration [7]. Interestingly,

the decay of HIT incorporates these issues at a mod-
erate cost, making this model problem a challenging

candidate for time-parallel algorithms.

0.00

3.00

2.25

1.50

0.75

Fig. 2: Plane cuts of local turbulent kinetic energy
ke,loc/ke,0 for Reλ,0 = 322 (ke,loc = u.u

2
).

3.1 Governing equations

The compressible Navier-Stokes equations read:

∂ρ

∂t
+∇.(ρu) = 0, (14)

∂ρu

∂t
+∇.(ρuu+ pδ) = ∇.τ , (15)

∂ρeT
∂t

+∇.(u(ρeT + p)) = ∇.(u.τ − q), (16)

where ρ is the density, u = (u, v, w) the velocity vec-
tor, p the pressure, δ the unity tensor, eT = e + u.u

2

the total energy, e the specific internal energy, τ the

viscous stress tensor and q the heat flux. e, p and
ρ are linked by the equation of state, obtained for a
calorically perfect gas:

p = (γ − 1)ρe, (17)

with γ the specific heat coefficient ratio, whereas τ

and q are modeled via classical Stokes’ hypothesis:

τ = 2µS − 2

3
µ(∇.u)δ, (18)

q = −kc∇T, (19)

with S =
(
∇u+ (∇u)T

)
/2 the strain-rate tensor, µ

the dynamic viscosity, kc the thermal conductivity,

the temperature T = (γ − 1)e/R and R the gas con-
stant. Temperature dependency for µ is accounted for
through a power-law assumption:

µ/µref = (T/Tref )
3/4

, (20)

and the ratio between µ and kc is set constant through
a constant Prandtl number, which closes the set of

equations.

3.2 Decay of homogeneous isotropic turbulence

The decay of homogeneous isotropic turbulence is stud-

ied using a uniform grid on a 3D periodical box of size
L. Note that all the flow quantities discussed in this
section are time dependent unless otherwise specified.

In particular the 0 subscript refers to the initial state
at t = 0. Because the problem is homogeneous, the
statistical evolution of HIT decay can be reduced to a
temporal evolution using the following spatial averag-

ing:

〈f〉 = 1

L3

y

V

f(x, y, z) dxdydz. (21)

Initial conditions may be obtained by setting the flow
fields (ρ0,u0, T0), and parameters R, γ, Pr, µref and

Tref . These fields are constructed through a random



process that builds a synthetic turbulent flow field
following a prescribed energy spectrum, mostly con-
centrated at large scales. The detailed methodology

associated with the construction of the initial turbu-

lent field is described in Sec. 3.5 and Ap. A of [21],

respectively. This procedure sets the flow conditions,
essentially characterized by two non-dimensional, time
evolving quantities which drive the turbulence evolu-

tion: the Taylor scale Reynolds number2,

Reλ =
〈ρ〉u′λ
〈µ〉 , (22)

and the turbulent Mach number:

Mt =
√
3
u′

〈c〉 , (23)

where u′ =
√
(〈uu〉+ 〈vv〉+ 〈ww〉)/3, and c =

√
γRT

is the speed of sound. λ is the (transverse) Taylor

micro-scale, and provides a length scale associated with
intermediary-sized eddies of the flow field3. Reλ sets
the width of the turbulent kinetic energy spectrum,
and Mt indicates the influence of compressibility ef-

fects, that may trigger discontinuities (e.g. shocklets)

in the solution for high Mt. The turbulent kinetic en-
ergy ke and the dissipation ǫ, are defined as follows:

ke =
3

2
u′

2
, ǫ = 〈µ

ρ
S.S〉. (24)

Because the footprint of ke and ǫ is mostly located at
large and small scales, respectively, these two quanti-

ties are interesting indicators to track the turbulence
behavior during the HIT simulation. We can derive a

transport equation for ke which reduces, using the 3D
homogeneous hypothesis and thus isotropy, to:

dke
dt

= −ǫ. (25)

It has been observed [31] that, after a short tran-
sient phase, both values exhibit a power-law decay,
as shown in Fig. 3. Physically, it illustrates the energy

cascade of the turbulence: energy from the large scale
eddies is continuously transferred to the small scale

2 Since there is no mean flow in this configuration, we can-
not use the classical definition of the Reynolds number. We
rather use Reλ(see e.g. [11,44]), which characterizes the ra-
tio of turbulent eddy viscosity, over the fluid viscosity. This
Reynolds number, at least one order of magnitude lower
than the classical one, has therefore no relevance regarding
laminar to turbulent transition, but instead informs about
the range of length scales present in an already turbulent
flow (see e.g. [31] for a complete description).
3 For isotropic turbulence λ is conveniently expressed as

λ = u′
√

15〈µ〉/(〈ρ〉ǫ) (see, e.g. , [31, Sec. 6.3, p.199]).

Fig. 3: Time-evolution of ke/ke,0 and ǫ/ke,0, with T =
(λ/u′)t=0, NL = 80, Reλ0

= 46.

eddies until the latter dissipate through molecular vis-

cosity. The Kolmogorov length scale characterizes the

smallest, dissipative scales:

η =

( 〈µ〉3
〈ρ〉3ǫ

)1/4

, (26)

which sets the smallest grid cell size to achieve direct

numerical simulation. Smallest length scales must be

accurately resolved on the spatial grid. Considering
the largest wavenumber that can be represented on a
given spatial uniform Cartesian mesh of size N3

L (see

[31, Chap. 9]):

κmax(NL) =
πNL

L
, (27)

we can derive a condition consistent with the correct

resolution of eddies of size η:

∀t, η κmax(NL) ≥ α, (28)

where α is a coefficient dependent of the solver and
specifically the space discretization scheme.

3.3 Massively parallel Navier Stokes solver Hybrid

We use the compressible structured solver Hybrid,
developed in C++ by [25], which aims at studying
fundamental turbulence problems, such as shock-turb-
ulence interaction [24]. In the absence of discontinu-
ities, the code uses a centered 6th-order finite dif-
ference scheme, while time-integration is performed
thanks to a 4th-order explicit Runge-Kutta method
(RK4). Full details on space and time discretizations
are given in [21]. The Hybrid solver uses MPI-based



parallelism which relies on space decomposition. It
shows very good weak scaling results when using up
to 2 million cores [4]. The adopted numerical method-

ology developed in Hybrid (structured mesh, explicit

space-time discretization) also exhibits excellent strong

scaling properties, if the number of cells Nmin
cpc of the

spatial subdomain associated with one MPI process

(and thus a single CPU core) exceeds a few hundreds.

The exact value of Nmin
cpc to maintain parallel effi-

ciency is necessarily architecture dependent, and sets

the lower bound of the operating limit for a sole and
efficient space parallelization. Given its moderate effi-
ciency, time parallelization should be used to extend
the number of usable core for efficient computations,

thus keeping Ncpc > Nmin
cpc .

Once the simulation is properly initialized, an ap-

propriate choice of the time step needs to be consid-

ered to minimize the computational cost of a direct

numerical simulation. Although implicit time stepping
is usually not rewarding because of the limited accu-
racy observed at large time steps [7], smallest physical

time scales are still significantly larger than the max-
imum time step δtCFL authorized by stability consid-

erations. Hence, cost efficient simulations must be car-
ried out with δt ≈ δtCFL. For this specific solver, we
have estimated the CFL number as 1.79. This value

indeed corresponds to the limit of linear stability of
the 6th-order centered finite difference scheme associ-
ated with the RK4 time-integration method.

3.4 Transfer operators for Parareal with spatial

coarsening

We detail next the transfer operators used in the vari-

ant of Parareal based on spatial coarsening as briefly
introduced in Section 2.2. Since the space discretiza-
tion in Hybrid is based on high-order finite difference

schemes on a Cartesian structured mesh, geometric
coarsening in space (known as vertex-centered coars-
ening in multigrid [43]) is adopted to construct the

coarse level of the two-grid hierarchy. In this setting,

the fine mesh is coarsened by simply considering every

other node in the three spatial directions, thus leading
to a cell size ratio of 2 in each direction between the

coarse and the fine mesh.
As restriction operator R̂, we have considered both

the injection and the three-dimensional full-weighting

operator [43, Sec. 2.9]. Due to this coarsening in space,

the time step on the coarse grid is simply set as

∆t = 2δt,

to keep the same CFL condition on both fine and

coarse grids. Concerning Î, we have selected various

interpolations (trilinear [43, Sec. 2.9], tricubic [26],

7th-order or Fourier transformation based [38]). The
7th-order interpolation is based on tensor products

of one-dimensional operator, which makes it simul-

taneously computationally cheap and implementation

friendly. The influence of both restriction and inter-
polation operators on the convergence of Parareal

with spatial coarsening as well as their costs will be

numerically investigated in Sec.s 4.4 and 4.7, respec-
tively.

3.5 Direct Numerical Simulation methodology

In the following subsection, we develop the methodol-
ogy to perform the HIT Direct Numerical Simulation,
with the objective to propose a systematic and repro-

ducible framework for these simulations. The Navier-

Stokes equations (14), (15) and (16) are solved follow-
ing a direct numerical simulation framework. Thus,
the grid requirements need to be adjusted with the
minimum length scale η, which sets the ratio between
the largest scales (i.e. the box size L) and the smallest

scales. Recent DNS of HIT with spectral space dis-
cretization used α = 1 [22]. Taking into account that

Hybrid uses high-order centered space discretization

methods, we choose a more restrictive α = 1.5 cri-
terion in (28) for the simulation with F , consistent

with modified wave numbers expression for 6th-order
schemes in space (e.g. [27] ). This resolution criterion
needs to be satisfied at all times during the decay
of turbulence. As the flow field undergoes a transient
during which it evolves from synthetic to physical tur-
bulence, with a characteristic “eddy turnover” time
scale ke/ǫ, we specifically enforce this criterion after a
transient tφ, i.e. using η = η(tφ) in (28).

In order to propose an estimation of tφ, we first
extract the spectral density of energy E(κ) of the tur-

bulent flow field. It represents the energy content as-
sociated with the norm κ of the related wave vectors,
and is interpreted as so called turbulent eddies of cor-

responding length scale in the study of turbulent flows.
Hence,

ke =
∑

κ

E(κ). (29)

Details on the computation of E(κ) for HIT are pro-
vided in Ap. A.

A representation of energy spectra is given in Fig. 4
at various snapshots of the HIT decay. The spectrum
of the synthetic initial solution has an energy peak
located at the large scales, consistent with the initial-

ization process. After some time, the turbulent energy



Fig. 4: Energy spectra during the decay of HIT, with T =
(λ/u′)t=0, NL = 80, Reλ0

= 46.

cascade takes place, which results in ke being spread
over every length scales of the flow field.

We estimate the end of this transient tφ as the
time for which the spectral density of energy starts

decaying at all scales:

tφ = min {t > 0 | ∀κ, δE(κ) < 0} , (30)

where δE(κ) is the growth rate of E(κ). This criterion
is useful in finding a systematic condition to deter-
mine the maximum Reλ0

that can be simulated using

a mesh of given size N3
L. We choose to define it as the

maximum value of Reλ0 that satisfies condition (28)
at tφ, that is:

Reλ0,max = max {Reλ0
| ∀t > tφ, η κmax(NL) ≥ α} .

(31)

A trial and error procedure is therefore required to

obtain the desired resolved state at time tφ and results
in a well identified initial state, fully characterized by

Reλ0 .

To complete the methodology, an error metric is
defined to estimate the accuracy of the parallel time

integration. As a basis in the application of Parareal
to turbulent flows we analyse the physical relevance of
the solution rather than the strict convergence of the

algorithm. Because the complex flow dynamics of a
turbulent flow is characterized in a statistical sense by

a transfer from the large to the small scales, the qual-
ity of the solution is evaluated through the spectral

density of energy. It may reveal undesired effects such

as nonphysical dissipation or dispersion promoted by
the numerical scheme. The accuracy of the solution

is measured using an error metric developed in Sec-
tion 4.3, which relies on the energy content of the

flow field and characterizes the ability of Parareal

to capture the flow dynamics.

4 Numerical results

This section provides a detailed numerical study of

the different factors influencing the parallel perfor-

mance of Parareal with spatial coarsening, when
considering our test case in Computational Fluid Dy-
namics. In Sec. 4.2, we compare the pure spatial and

space-time parallelizations in terms of speedup and
efficiency. This allows us to determine situations for
which space-time parallelization is meaningful. Then,

in this setting, we examine the numerical quality of
the solutions provided by Parareal in Sec. 4.3. In
Sec. 4.4, 4.5 and 4.6 we investigate the influence of

several parameters on the quality of the solution. Fi-
nally, in Sec. 4.7, we continue investigating the par-

allel efficiency of Parareal with spatial coarsening,
by including in the analysis the costs of the transfer

operators and of the time communications.

4.1 Methodology

The numerical simulations were performed on the EOS

supercomputer at CALMIP, Toulouse, France. This

platform is equipped with 612 compute nodes, each
node hosting two 10 core Intel Ivy Bridge chips (that
run at 2.8 GHz), and 64 GB of system memory. Each

socket was equipped with 25 MB of cache memory.

EOS nodes are connected by a nonblocking fat tree
network, with a network bandwidth of 6.89 Gbytes/s

for sending and receiving data. The code was com-

piled using the Intel 14.0.2.144 compiler, with Intel
MPI 4.1.3.049 library.

As pointed out in Sec. 2.3, the parallel performance

of Parareal is simulated. More precisely, the compu-
tations related to all time slices in Parareal are per-
formed sequentially in time, whereas the applications

of both F and G through the Hybrid code are parallel
in space. To estimate the cost to communicate a sin-
gle global solution Ct

T in Parareal, we have adopted
the following simple strategy. First, we recreate ex-
actly the same spatial decomposition on Nproc/N pro-

cesses as in Hybrid. Secondly, we perform standard
MPI communications of all the relevant physical fields
from one time slice to the next over the N processes
and measure the corresponding wall-clock times on
the EOS supercomputer. This procedure is then re-

peated 20 times to provide a meaningful estimation,
Ct
T being then obtained as the maximum wall-clock



time. We refer the reader to the C++ source code4

for further details. A similar methodology is applied
to obtain estimates of CF and C

Ĝ
.

In the following sections, unless stated otherwise,
we consider the direct numerical simulation of the de-

cay of homogenous isotropic turbulence at Reλ = 46
on a Cartesian mesh of size 803 (i.e. NL = 80). We
have estimated the initial CFL number as 1.79 for each
simulation. Due to the energy decay, the CFL number

is found to slightly decrease as time increases.

4.2 Preliminary analysis of the Parareal parallel
performance

We address the question of the parallel performance of
Parareal based on spatial coarsening. An important
point is to determine whether space-time paralleliza-
tion can be more appropriate than plain spatial par-

allelization in our application. To this end, we operate
the solver with Ncpc < Nmin

cpc to deliberately reach the

limit of the spatial decomposition. Given F and Ĝ
introduced in Section 3.3, we consider the influence of
both N and K̂ (number of time slices and number of

iterations, respectively) on the speedup of Parareal
with spatial coarsening. For ease of exposition, we first
neglect the costs related to both the transfer operators

(C
R̂

and C
Î
) and the communications in time (CT,K̂)

in (9). A refined analysis will be proposed later in
Sec. 4.7.

The strong scalability of F and Ĝ is shown in Fig. 5

(top). The fine solver F exhibits good scalability prop-

erties for a number of processes up to 160. Neverthe-
less, for a larger number of processes, the performance
starts to saturate. Not surprisingly, we also observe a
rather quick deterioration of the parallel performance
of the coarse solver Ĝ. It is important to remark at
this stage that this earlier decrease in performance of

the coarse solver will bound the cost ratio CF/CĜ at
a lower value than the expected one5 (which is equal
to 16, assuming a perfect strong scaling and excluding
communication costs).

Given a number of processes in space fixed to

Nproc/N = 160, we consider the additional paral-

lelization in time with 2, 4, 8 and 16 time slices, re-
spectively. The simulated speedups and parallel effi-
ciencies obtained after one or two iterations of Para-
real with spatial coarsening are then provided in the

4 available at https://gitlab.com/tlunet/parallel-in-time
5 This value of the theoretical ratio of coarse-to-fine exe-

cution is explained by the coarsening in space by a factor
of 2 in each direction and by the choice of the coarse time
step detailed in Sec. 3.4.

Fig. 5: Simulated speedup (top) and parallel efficiency (bot-
tom) of Hybrid (fine and coarse solvers), and of Parareal

with spatial coarsening after (K̂ = 1, 2) iterations.

Fig. 5. The inherent limits of Parareal are indicated
in Fig. 5b. They are obtained by considering an infi-
nite cost ratio CF/CĜ . Performing a single iteration
of Parareal with spatial coarsening does lead to an
increased speedup and parallel efficiency with respect
to the pure spatial parallelization, whatever the num-
ber of time slices. This is a rather satisfactory result.

However, for two or more iterations of Parareal with
spatial coarsening, the success is limited. Indeed, for
Nproc = 320 or Nproc = 640, the speedup of the space-

time parallel algorithm is found to be lower than the
speedup obtained with exclusive space parallelization.

Not surprisingly, the parallel efficiency is maximized
if the number of Parareal iterations is limited. Inter-

estingly, the gap of parallel efficiency between K̂ = 1
and K̂ = 2 reduces as the number of time slices N is
increased. This trend is explained because the reduced

efficiency of the coarse solver is balanced by a larger

number of fine solver computations as K̂ increases.



However, because the considered efficiency levels are
rather low, we mainly favor the application of a single

iteration of Parareal with spatial coarsening in the

rest of this study6.

We now investigate the influence of the Nproc/N

parameter on the performance of the combined space-
time parallelization in our application. Hence, we in-
troduce the relative gain of the space-time paralleliza-

tion as

σS,T =
SS,T (Nproc)− SS(Nproc)

SS(Nproc)
. (32)

A positive value of σS,T thus indicates that the space-

time parallelization is worth considering. We denote
by σ⋆

S,T the relative gain of the space-time paralleliza-
tion when neglecting the costs of communication in

time and transfer operators. Although σ⋆
S,T is an ideal

value, it is worth noting that σS,T ≈ σ⋆
S,T for a suf-

ficiently long time slice, i.e. if CT ,K , C
R̂

and C
Î
are

negligible compared to CF and C
Ĝ
.

Table 1: Relative gain of the space-time parallelization σ⋆
S,T

after one iteration of Parareal with spatial coarsening (ne-
glecting the costs of communication in time and transfer op-
erators). Nproc denotes the total number of processes with
Nproc/N processes being assigned to the parallelization in
space only. The numbers of time slices considered here are
2, 4, 8 and 16, respectively.

Nproc 160 320 640 1280

Nproc/N = 80 -18% -3.9% +10% +49%
Nproc/N = 160 – +0.82% +24% +82%
Nproc/N = 320 – – -1.1% +54%

Tab. 1 collects the values of σ⋆
S,T versus Nproc/N ,

when a single iteration of Parareal with spatial coars-
ening is performed. For a fixed number of processes
devoted to the spatial parallelization, increasing the
number of time slices (N) does improve σ⋆

S,T as ex-
pected. This behavior is indeed in agreement with
Fig. 5 (top). Tab. 1 also reveals that the paralleliza-
tion in space and in time is worth considering when

the total number of processes is large. In this situa-
tion, we rather favor the case of a low number of time
slices (see the bold values in Tab. 1), since the conver-

gence of Parareal is reached in at mostN iterations.
Hence, in what follows, we chooseN = 4 and study the
quality of the solution of the first iterations of Para-

real on a large number of processors (Nproc = 640 or
Nproc = 1280). This is next investigated in Sec. 4.3.

6 We refer the reader to only Sec. 4.3 for numerical exper-
iments using two iterations (K̂ = 2) of Parareal with spatial
coarsening.

4.3 Energy spectra after successive iterations of
Parareal with spatial coarsening

We here analyze the flow solution obtained after suc-
cessive iterations of Parareal with spatial coarsen-

ing. In particular, we focus on the energy spectrum of
the resulting turbulent flow. As described above, we
use trilinear interpolation and injection as transfer op-

erators, and N∆t,Ĝ
= 20. The simulation of the HIT

decay is solved between physical times tφ = 1.4T and

tend = 4.4T , which corresponds to the relevant part
of the energy decay (see Fig. 3). The energy spectrum
is represented on Fig. 6 for Ĝ (coarse integrator with-
out interpolation), F (fine integrator, reference solu-
tion) and the first iterations of Parareal with spatial

coarsening, respectively.

Fig. 6: Energy spectra after K̂ iterations of Parareal with
spatial coarsening at tend (N = 4, N∆t,Ĝ

= 20, trilinear

interpolation and injection as transfer operators).

Because of the insufficient spatial resolution for Ĝ,
an over-estimation of the energy on the small scales

around κ = 0.5κmax. This is a classical observation of
unresolved direct simulation that results from a par-

tial cut off of the physical dissipation mechanisms op-
erating at the smallest scales. The effects of the in-
terpolation are directly highlighted in the case K̂ = 0

for which the middle range scales are significantly dif-
fused, while a peak of energy is observed for the small-
est scales. The first iteration (K̂ = 1) results in a
dampening of this high frequency peak, along with

a significant improvement of the middle range scales.

Interestingly the second iteration (K̂ = 2) does not
bring significant improvements, reinforcing the idea

of using a single iteration of Parareal with spatial

coarsening.



To better quantify the quality of the solution, we
extract the relative error of the energy spectrum erel,
defined as:

erel(κ) =
Ẽ(κ)− EF (κ)

EF (κ)
(33)

where Ẽ(κ) corresponds to the spectrum of an approx-
imate solution, (Ĝ or Parareal iteration) and EF (κ)

the spectrum of the reference solution computed with

F solely. While a negative value for erel(κ) indicates
energy damping, a positive value indicates energy am-

plification. We add quantification on the spectrum er-

ror by looking at the relative error on quantities inte-
grated over all length scales, the energy:

eke
=

k̃e − ke,F
ke,F

, (34)

and the dissipation:

eǫ =
ǫ̃− ǫF
ǫF

. (35)

These two scalars are representative of statistical er-
rors at two levels: eke

characterizes the large length

scales, while eǫ is more a measure of the behaviour at
small length scales. The three error indicators erel, eke

and eǫ will be combined to investigate the influence of
several parameters on the quality of the solution: the
transfer operators in Sec. 4.4, the Reynolds number in
Sec. 4.5 and the time slice length in Sec. 4.6.

4.4 Influence of the transfer operators

The influence of the restriction operator on the rela-

tive energy error is shown in Fig. 7. In agreement with
the developments above, we consider the solution after
one iteration of Parareal to provide a possible com-

parison. Whatever the restriction operators, the abso-
lute value of the relative energy error is found to grow

in the small scale regime. Moreover, the curves related
to the injection and the full-weighting operators look

very similar. Hence, we rather consider the injection
as restriction operator in the rest of the manuscript,
to minimize C

R̂
.

The influence of the interpolation operator on the
relative energy error is shown in Fig. 8. The corre-

sponding relative error indicators on the turbulent ki-
netic energy and on the dissipation respectively are

given in Tab. 2. Fig. 8 reveals that high-order interpo-

lation operators must be rather favored to minimize
the relative error in energy. This is also confirmed in
Tab. 2. Hence, in the following, we consider the 7th-

order interpolation operator as a standard choice.

Fig. 7: Influence of the restriction operator on the relative
energy error after one iteration of Parareal with spatial
coarsening (N = 4, N∆t,Ĝ

= 20, trilinear interpolation).

Fig. 8: Influence of the interpolation operator on the relative
energy error after one iteration of Parareal with spatial
coarsening (N = 4, N∆t,Ĝ

= 20, injection as restriction

operator).

4.5 Influence of the Reynolds number

We consider the simulation of the decay of homoge-

neous isotropic turbulence on two finer grids (1603 and
3203, respectively) associated with larger
Reynolds numbers to analyse the influence of the Rey-

nolds number on the quality of the solution. From a

physical standpoint, the major effect on the simula-

tion is a widening of the range of length scales carried
by the turbulent flow.

The influence of the Reynolds number Reλ on the
relative error on the energy is shown in Fig. 9. The
three curves exhibit a very similar behavior at all
scales for each considered Reynolds number. The cor-

responding relative errors on the turbulent kinetic en-



Table 2: Influence of the interpolation operator on the rel-
ative errors on ke and ǫ after one iteration of Parareal

with spatial coarsening (N = 4, N∆t,Ĝ
= 20, injection as

restriction operator).

Interpolation eke
eǫ

Trilinear -6.6% -17%
Tricubic -1.5% -5.5%

7th-order -0.85% -2.8%
Fourier -0.79% -2.1%

Ĝ alone -0.83% -2.7%

Fig. 9: Influence of the Reynolds number Reλ on the relative
energy error erel after one iteration of Parareal with spa-
tial coarsening (N = 4, N∆t,Ĝ

= 20, injection and 7th-order

interpolation as transfer operators).

Table 3: Influence of the Reynolds number Reλ on the rela-
tive error on ke and ǫ after one iteration of Parareal with
spatial coarsening (N = 4, N∆t,Ĝ

= 20, injection and 7th-

order interpolation as transfer operators). Reλφ
(ReλE

) is
the Reynolds number at the beginning (end) of the parallel
in time simulation.

NL Reλ0
tφ/T tend/T Reλφ

ReλE
eke

eǫ

80 46 1.4 4.4 26 16 -0.85% -2.8%
160 124 2.7 4.1 41 30 -0.68% -2.0%
320 322 3.4 4.1 55 46 -0.60% -1.5%

ergy and on the dissipation are given in Tab. 3. The
low values of both relative errors indicate that per-

forming only one iteration of Parareal is also mean-
ingful when the Reynolds number is increased. This
relative independence to the Reynolds number is at-
tributed to the nature of the coarse integrator. The

spatial coarsening challenges the ability of Parareal
to handle correctly the dissipative scales of the turbu-
lent flow. The grid size being designed to specifically

handle the smallest length scales, this constraint does

not evolve significantly relatively to the cell size, hence

with an increase of the Reynolds number. These en-
couraging results will be the subject of a forthcoming
study. It suggests similar behavior of Parareal in

large scale simulations characterized with significantly

higher Reynolds numbers (e.g. [22]).

4.6 Influence of the time slice length

The increase of the Reynolds number previously devel-
oped is also useful to test the influence of the time slice
size in the simulation, as investigated in [12, Sec.4],

[14, Sec 5.2] and [32, Sec 4.5]. This is indeed a critical
parameter regarding the parallel efficiency of the al-

gorithm as mentioned in Section 2.3. Indeed, for small

Reynolds numbers, the required number of time steps

is reduced. Using large time slices is therefore not rel-
evant as the final stage of the simulation falls into a
low global energy level, which may be correctly han-

dled by the coarse integrator itself. For large Reynolds
numbers instead, a much larger number of time steps

is required and Parareal can be applied with large

time slices, while keeping a global energy level out of
reach (regarding direct simulation constraints) for the

coarse propagator.

We thus investigate the influence of N∆t,Ĝ
on the

energy relative error after one iteration of Parareal
with spatial coarsening. Since changing this parame-

ter will also modify the physical time tend, we have
decided to restart the time parallel algorithm after

its first iteration to complete the full simulation with
tend matching the other choices of N∆t,Ĝ

. We consider

a simulation at Reynolds number Reλ0 = 322 with
several values of N∆t,Ĝ

∈ {10, 20, 40}, which implies
restarting Parareal with spatial coarsening 3, 1 and

0 times, respectively. Hybrid was ran using the same
CFL constraint and a number of time slices of N = 4,
leading to tend = 4.8T .

The main effects of the variation of N∆t,Ĝ
on erel

are represented in Fig. 10. We observe a reduction
of the dampening error at the small scales. We at-

tribute this effect to the dissipation of the small scales
initially affected by injection/interpolation steps. In-
creasing N∆t,Ĝ

does not significantly deteriorate eǫ,

which remains almost independent of N∆t,Ĝ
, although

we observe a slight dampening appearing for the mid-

dle range, more energetic length scales (κ ≈ 0.4κmax).
On the other hand, the latter amplification has an ex-

pected detrimental effect on the level of eke
which in-

creases with N∆t,Ĝ
. Results are summarized in Tab. 4,

together with the results obtained with the coarse in-
tegrator operated solely as a reference. Note that the

apparently small error observed with the coarse inte-



Fig. 10: Influence of N∆t,Ĝ
on the relative error on the en-

ergy spectrum after one iteration of Parareal with spatial
coarsening (N = 4, injection and 7th-order interpolation as
transfer operators).

grator benefits from an error compensation with the
adopted metric.

Table 4: Influence of N
∆t,Ĝ

on the relative errors on ke
and ǫ after one iteration of Parareal with spatial coars-
ening (Reλ0

= 322, injection and 7th-order interpolation as
transfer operators).

N∆t,Ĝ
ek eǫ

10 -0.24% -3.3%
20 -0.36% -2.7%
40 -0.49% -3.4%

Ĝ alone -0.63% -4.2%

4.7 Refined analysis of the speedup of Parareal

Finally, based on (9), we include the costs of both the
communications in time (Ct

τ ) and the transfer opera-

tors (CI and CR) in the analysis of the speedup. We

consider the configuration at Reλ0 = 46 (NL = 80)
with the 7th-order interpolation and the injection as

transfer operators.

The cost related to the restriction operator can
be neglected since no floating operations are involved,
i.e. , CR = 0. Furthermore, we can relate the cost of
the interpolation to the cost of performing one sin-

gle time-step of the coarse solver. Indeed the one-

dimensional formulas for either the 7th-order interpo-
lation or the 6th-order finite difference discretization
in Hybrid involve a similar complexity (15 and 11

floating point operations are required, respectively).

A more precise estimation of the complete computa-
tional complexity7 then leads to

CI ≤
15

39
×

15

11

C
Ĝ

N∆t,Ĝ

. (36)

In the following, we consider the upper bound in (36)
as an accurate estimation of CI . The relative gain of

the space-time parallelization σS,T (see (32)) is then
given in Tab. 5.

Table 5: Influence of CT ,1 and CI on the relative gain of the
space-time parallelization σS,T after one iteration of Para-

real with spatial coarsening (K̂ = 1). Case (a) includes
only CT ,1, whereas case (b) considers both CT ,1 and CI in
relation (32) (N = 4, N∆t,Ĝ

= 20, injection and 7th-order

interpolation as transfer operators).

Nproc Case σS,T σ⋆
S,T

640 (a) 19% 24%
(b) 18% 24%

1280 (a) 47% 54%
(b) 46% 54%

Tab. 5 reveals that the effective relative gains σS,T

are relatively close to the ideal values σ⋆
S,T discussed

in Sec. 4.2. The effective gain can be indeed signifi-

cant (especially when considering a large number of
processors), which is a satisfactory behavior. Finally,
comparing cases (a) and (b) in Tab. 5 reveals that the

influence of CI is found to be marginal.

5 Conclusions

This manuscript investigates the applicability of Para-

real with spatial coarsening to a relevant test case in
Computational Fluid Dynamics related to the simu-
lation of the decay of homogeneous isotropic turbu-

lence. The time parallel simulation of such flows does
actually lead to an instructional test case, since their

main interesting features are both their chaotic na-

ture and their strongly unsteady behavior. In a first
phase, we have decided to simulate the parallelization
in time, whereas the parallelization in space is truly
implemented on a distributed memory passing sys-

tem. Explicit Runge-Kutta time integration methods

7 In Hybrid the computation of the right-hand side of
the Navier-Stokes equations involves 39 gradient evaluations
(3 for (14), 18 for (15), 6 for (16), 9 for (18) and 3 for
(19), respectively). Since the RK4 time integration method
requires 4 evaluations of right-hand sides, the total amount
of gradient evaluations for one time step of the coarse solver
is then 156. Finally, 60 stencil evaluations per coarse point
are required for the interpolation of the 5 different fields.



and high-order finite difference schemes are used for
the temporal and spatial discretizations of the Navier-
Stokes equations.

A methodology related to the computation of the

energy spectrum has been proposed to assess the nu-
merical quality of the iterative solution provided by
the time parallel algorithm. Based on this analysis, we
have found that the solution after a single iteration of

Parareal with spatial coarsening was physically rel-
evant, provided that a high-order interpolation opera-

tor in space is employed. In this setting, the extensive
numerical experiments clearly illustrate the possible
benefits of using parallelization in time. This rather
encouraging result from a physical point of view needs
of course to be confirmed by a detailed convergence
study. This is indeed an important research direction

that we are currently considering.

We are deeply convinced that this test case can
serve as a relevant benchmark for time parallel meth-
ods. Hence, to propose a reproducible framework, we
have carefully described the complete methodology

and plan to make the simulation code freely avail-
able to the community, if a significative interest ap-

pears. Indeed, an instructive next step would be then

to assess the performance of current or emerging time
parallel algorithms on this configuration.

A Computation of the energy spectrum

We briefly describe the computation of the energy spectrum.
More details can be found in the literature (see, e.g. , [20,
Ap. B]). We denote by û(κx, κy, κz) the Discrete Fourier
Transform (DFT) of u(x, y, z), using 1 (1/N3

L) to normalize
the direct (inverse) DFT, respectively. We define κx, κy and
κz the discrete one-dimensional wavenumbers as:

κ[.] =

{
n
2π

L
with n ∈ Z | −

NL

2
+ 1 ≤ n ≤

NL

2

}
, (37)

and the associated vector norm:

κ = ‖κ‖ =
√

κ2
x + κ2

y + κ2
z. (38)

The 3D Fourier space is discretized into three-dimensional
shells of thickness dκ (usually 2πdκ

L
= 1). To deduce the

energy corresponding to the wavenumber κi, a bin count is
then performed using an integer number of shells:

E(κi) =
1

2N6
L

∑

κ∈[κi−
dκ

2
,κi+

dκ

2
[

|û(κx, κy, κz)|
2. (39)
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