Smooth Bias Estimation for Multipath Mitigation Using Sparse Estimation

Lesouple, Julien, Barbiero, Franck, Faurie, Frédéric, Sahmoudi, Mohamed and Tourneret, Jean-Yves (2018) Smooth Bias Estimation for Multipath Mitigation Using Sparse Estimation. In: 21st International Conference on Information Fusion (FUSION 2018), 10-13/07/2018, Cambridge.

[img]
Preview
Text
Download (1MB) | Preview
Official URL: http://oatao.univ-toulouse.fr/20722/

Abstract

Multipath remains the main source of error when using lobal navigation satellite systems (GNSS) in constrained environment, leading to biased measurements and thus to inaccurate estimated positions. This paper formulates the GNSS navigation problem as the resolution of an overdetermined system, which depends nonlinearly on the receiver position and linearly on the clock bias and drift, and possible biases affecting GNSS measurements. The extended Kalman filter is used to linearize the navigation problem whereas sparse estimation is considered to estimate multipath biases. We assume that only a part of the satellites are affected by multipath, i.e., that the unknown bias vector is sparse in the sense that several of its components are equal to zero. The natural way of enforcing sparsity is to introduce an l1 regularization associated with the bias vector. This leads to a least absolute shrinkage and selection operator (LASSO) problem that is solved using a reweighted-l1 algorithm. The weighting matrix of this algorithm is designed carefully as functions of the satellite carrier to noise density ratio and the satellite elevations. The smooth variations of multipath biases versus time are enforced using a regularization based on total variation. An experiment conducted on real data allows the performance of the proposed method to be appreciated.

Item Type: Conference or Workshop Item (Paper)
Language: English
Date: 2018
Additional Information: Thanks to the IEEE (Institute of Electrical and Electronics Engineers). This paper is available at : https://ieeexplore.ieee.org/document/8455340 © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Uncontrolled Keywords: GNSS - Multipath mitigation - Sparse - LASSO - Reweighted-l1 algorithm
Subjects: H- INFORMATIQUE
Divisions: Institut de Recherche en Informatique de Toulouse
Site: UT1
Date Deposited: 16 Jan 2019 08:56
Last Modified: 16 Jan 2019 08:56
URI: http://publications.ut-capitole.fr/id/eprint/28491

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year