
Room Floor Plan Generation on a Project Tango Device

 Vincent Angladon1,2, Simone Gasparini1, and Vincent Charvillat1

1 Université de Toulouse; INPT – IRIT; 118 Route de Narbonne, F-31062 Toulouse, France,

{vincent.angladon, simone.gasparini, vincent.charvillat}@irit.fr,
2 Telequid; Toulouse, France

Abstract. This article presents a method to ease the generation of room floor

plans with a Project Tango device. Our method takes as input range images as

well as camera poses. It is based on the extraction of vertical planar surfaces we

label as wall or clutter. While the user is scanning the scene, we estimate the room

layout from the labeled planar surfaces by solving a shortest path problem. The

user can intervene in this process, and affect the estimated layout by changing the

label of the extracted planar surfaces. We compare our approach with other mo-

bile applications and demonstrate its validity. Index Terms— Floor plan, Mobile

device, RGB-D cameras, 2D/3D mapping

1 Introduction

Floor plan generation is the problem of generating a drawing or a digital model to scale

of an existing room or building. A common workflow consists in taking individual mea-

surements reported on a freehand sketch of the floor, then in using a CAD software to

draw the floor plan. This approach is mostly manual and requires the user to collect

all the measurements, typically with a laser range finder. The task is not trivial, as it

requires the correct use of the measurement tool and the collection of all the necessary

measurements to fully define the floor plan: missing measurements may lead to incom-

plete plans, thus requiring costly do-overs on site. Moreover, the task can be challeng-

ing when dealing with furnished or cluttered environments, preventing, e.g., the direct

measurement of certain distances. In order to provide more automatic and efficient so-

lutions, the use of desktop or mobile applications performing the drawing on-site has

gained a lot of interest over the last years.

With the latest advancement in 3D scanning technologies, 3D scanners placed on

tripods have become an interesting solution for the generation of the floor plan. The

generated 3D point cloud enables to perform Building Information Modeling (BIM) and

floor plan generation in a semi-automatic way, through the use of a dedicated software.

The operating cost is generally higher than the previous method, due to the investment

of the scanner and the scanning time which can be quite long when there are several

small rooms. The automatic creation of floor plans or BIM from such scanners has been

extensively researched for single rooms [1,2] and multiple rooms [3,4,5,6,7,8]. These

methods, are called offline because they start the processing after the scan is complete

and all the data is available.

At the opposite, for handheld scanners, online methods provide results incremen-

tally during the scanning process. Several online approaches have been proposed [9,10,11]



to extract some walls of indoor scenes, but none of them focus on the creation of single

or multiple room floor plans.

On common smartphones, user-driven approaches have been proposed [12,13,14].

Knowing the phone orientation and the vertical distance of the device to the floor (as-

sumed constant and calibrated), they estimate the distances between the user and the

room corners. More recently, as mobile devices started to sport depth sensors, user-

driven approaches have been proposed for the Project Tango mobile devices: the user is

required to manually select the walls with FloorPlanEx [15] or the edge corners of the

indoor scene [16].

In this paper, we propose an online approach for the Tango Tablet Development

Kit(TDK) Fig. 1a, which is a tablet equipped with a depth sensor and a fish eye camera

running on Android. It offers dedicated libraries to perform localization and 3D recon-

structions in the form of 3D textured meshes. Our method can generate a room floor

plan with optional user interaction. We rely on the ability of this device to localize itself

and capture depth maps, in order to have a better understanding of the scene and hence

reduce the user efforts. Given the complexity of the task and the diversity of the scenes,

the user interaction is yet helpful to improve the robustness of the approach: large oc-

clusions, lack of physical separation between rooms, missing data, incorrect depth per-

ception (e.g. glasses and mirrors), and other issues that could be challenging for a fully

automatic system, can be easily solved by the operator. [17] enumerates and classifies

all the issues related to the problem of indoor mapping and modeling. While the Tango

TDK addresses most of the acquisitions and sensors problems (variable lighting con-

ditions, sensor fusion, mobility support), our works also tackles acquisition problems

(variable occupancy support), data structure and modeling issues (real-time modeling,

dynamic abstraction), visualization problems (on mobile visualization, real-time change

visualization) and legal issues (user privacy).

2 Overview of the Method

Hypotheses. We assume the considered rooms are made of a horizontal ceiling and

floor, and vertical planar walls, the latters not necessarily orthogonal w.r.t. each other.

They can contain clutter (furniture, movable objects, . . . ) occluding the walls. With the

Tango TDK, we observed objects located 4.2m away suffer from a depth uncertainty

over 25± 9mm, and lack of texture (e.g. walls and ceiling of uniform color) can lead

to incorrect camera poses from the Tango motion tracking. Therefore, our approach is

limited to rooms with reasonable texture and where all the walls and the ceiling can be

observed by the depth sensor without too many efforts (medium size room with a 5m
ceiling height maximum).

Pipeline. Figure 1b summarizes the proposed pipeline. The Tango Tablet Development

Kit middleware provides at each iteration the depth map of the scene, as well as the

camera pose. The depth map is processed in order to extract sets of 3D points corre-

sponding to candidate walls, what we call planar patches (detailed in Sect. 3). Thanks

to the known camera pose, the planar patches are brought into a global world coordi-

nate system, so that they can be associated and then fused with the existing patches of



(a)

Planar patch

extraction

and fusion

Planar patches

model

Visibility

Polygon creation

Wall/Clutter

labeling

Layout

generation

Depth

map

Camera

pose

User interaction Screen
Labeled

patches

Labeled planar patches

(b)

Fig. 1: (a) Tango Tablet Development Kit image sensors: RGB-IR camera (1), Fisheye

camera (2), IR pattern emitter (3). (b) Our pipeline.

the model (Sect. 4). Whenever the model is updated, the visibility polygon of the dis-

covered area(s) is also updated (Sect. 5), which can be used as a visual feedback for the

user. Furthermore, the visibility polygon is used by the labeling module to automatically

classify the planar patches as wall or clutter (Sect. 6), thus allowing the disambiguation

between actual walls and other objects that may be lying inside the room. This classifier

was trained beforehand against 900 manually labeled vertical planar regions from our

training dataset. This last task can take advantage of the interaction of the user, who

can correct and change the automatic labeling of the vertical planar patches into wall or

clutter (Sect. 7). Finally, the layout generation module computes the room layout from

the labeled vertical planes and the boundary given by the visibility polygon (Sect. 8).

3 Planar Patches Extraction

A planar patch is defined as a list of 3D points associated with the equation of the fitted

infinite plane and the boundaries of this patch. We define the planar patches extraction

problem as a function which takes as input a range image (also called depth map) and

returns a list of planar patches.

The common strategies to extract planar patches are the Hough Transform ap-

proaches [18], the region growing algorithms [19], the normal map segmentation [20]

and the split and merge approaches [21].

In our preliminary tests, we noticed that normal map segmentation approaches were

too sensitive to the data noise and required higher computational time. We chose instead

a region growing approach, similar to the algorithm described by Poppinga et al. [19]. In

this approach, a random seed point and its neighbors are picked and extended by taking

into consideration neighboring points. A plane is estimated on this set of points and a

new point is considered valid when its distance to the plane is small enough. The planar

patch keeps growing iteratively until no valid point can be found in the neighborhood

of the patch. A new seed point is picked until all points have been considered. We

made some modifications to the original algorithm in order to get better results with the

point cloud provided by the Tango TDK. We ignore the 3D points with a distance to the

camera farther to 3.7m as they revealed to be very noisy. To cope with the low density



of the depth map, the neighboring selection is not pixel-wise but performed on a 3× 3
pixel window. In a post-processing step, we remove isolated points of the planar patches

with a neighborhood pixel analysis performed in the segmented depth map. This ensure

our planar patches are more compact. Finally, we perform a validation of the planar

patch with the RANSAC algorithm. Without implementing the optimizations suggested

by [19], we can process 10k points in 47ms with our C++ implementation.

The ceiling and the floor are incrementally estimated with the minimal and max-

imal height of the considered vertical planar patches and validated with the fitting of

horizontal planes at the considered heights. In the following sections, we consider only

the vertical planar patches for which we compute a rectangle boundary.

4 Planar Patches Model Update

We create a model of planar patches in the world coordinates which is initialized with

the patches of the first frame. For each successive frame, we compute planar patches

which are associated with the model with the help of an association function. We update

the associated planar patches of the model with a fusion function.

Planar Patch Association. Given a list of planar patches from the model and a list of

planar patches from the current frame the association function computes a list of planar

patches pairs where each patch appears only once. We consider a distance between

planar patches which takes into account the normal angle difference of the planes and

the mean distance of the points-to-plane distances, using the points of the rectangle

boundary of the planar patches. This distance defines the candidate pairs of associated

patches, which are validated with an overlapping test between the rectangle boundaries.

Planar Patch Fusion After two planar patches have been associated, we need to create

a new planar patch combining the two. We compute and update the covariances ma-

trices of the planes using [22]. The plane equations of the fused patch is updated with

a Principal Component Analysis, in order to avoid the costly storage of the 3D points

associated with the planar patches. We then update the rectangular boundary to include

the two planar patches.

5 Visibility Polygon Computation

During a scan, the user needs to know which parts of the scene he visited or not. We

provide this information with a top-down 2D view representation of the area observed

by the camera in the form of a visibility polygon, similarly to [9], but computed dif-

ferently from the vertical planar patches model and the history of the camera positions.

We denote sv the line segment obtained from the projection of a vertical planar patch

on a horizontal plane. We consider the visibility view polygon P s associated to each

line segment sv, which is formed by the union of all the triangles formed by the camera

position and the two extremities of sv, see Fig. 2. Each triangle is made of one wall

segment and two frustum segments. The geometric union of all the polygons P s forms

the visibility polygon.



w

C1

C2

C3

Fig. 2: Left: the three blue, cyan and green triangles represent the part of the camera

frustum viewing sv and associated with the camera poses c1, c2 and c3 respectively.

Their union form P s: the visibility view polygon associated with the line segment sv.

Right: the visibility polygon is the union of the visibility view polygons P s, here rep-

resented with different colors.

We implemented the computation of the visibility polygon with the help of the

geometry engine GEOS [23].

6 Wall-Clutter Separation

While clutter often consists of irregular shapes, such as plants, sofas, etc., which are

eliminated in planar primitive approaches, it can also consist of piecewise planar shapes

such as cupboards, radiators, etc. In this section, we propose a method to classify the

planar primitive as wall or clutter in order to reduce the number of potential irrelevant

planes considered by the room layout estimations component. The segmentation of the

primitives can be performed individually [6,24,4], i.e. using features on each primitive

considered independently, or globally [7,2], i.e. considering the adjacent primitives,

which provide contextual information.

Our objective is to build the room layout incrementally, during the scan progress,

which means all the adjacencies are only known at the end of the scan. Therefore we

favored a classification with an individual approach. Our features take the form of a

vector (dc, df , l, dv). They include the distances dc between the highest point of the

vertical planar patch and the estimated ceiling and df between the lowest point of the

vertical planar patch and the estimated floor. Intuitively, a planar patch both close to the

ceiling and floor is likely to be a wall. Similarly, a segment sv with a longer length l

has a higher probability to correspond to a wall. We also consider the distance dv =
maxp∈sv d(p, ∂ Pv) between a segment sv and the exterior boundary of the visibility

polygon ∂ Pv. A high distance dv corresponds to a segment with at least one extremity

far from the visibility polygon, which is likely to correspond to clutter.

We compute a wall probability P(sv) for each segment sv of the model with a

Multi-layer Perceptron classifier using one hidden layer and a logistic sigmoid activa-

tion, trained on our dataset. When a new frame is ingested, we compute P(sv) if sv

was modified since the previous frame or the ceiling/floor estimation changed. Our im-

plementation based on the Python Scikit-learn module can label 50 planar patches in

29ms on average.



Fig. 3: Visualization of the scan progress of the scene House2. Planar patches classified

as wall and clutter are represented in green and blue respectively. Intermediate colors

represent intermediate probabilities. Left: augmented view of the device camera with

the detected and classified planar patches. The estimated room layout is displayed with

black lines. Right: visibility polygon in light gray, camera view polygon in black.

7 User Interaction

Automatic approaches for floor plan generation or scan to BIM can be prone to errors.

These errors can come from missing data, clutter, sensor noise or some specificities in

the scene (e.g. small walls, large openings, cavities in the walls, obstacles fully covering

a wall, etc.). Depending on the progress of the scan, it may not be possible for an

algorithm to determine whether a planar patch corresponds to a wall or clutter.

The user interaction schemes proposed in the literature are usually corrective [25,7,26],

where the user intervenes at the end to correct a proposed solution (commonly consid-

ered for offline approaches), or user-driven [14,12,13,16,15] where no solution can be

computed without user interaction (mostly found in online approaches).

We wanted to propose a collaborative interaction scheme where the interaction

would be optional and could be performed at any time. The first way to interact is

to move the Tango TDK to make it observe new parts of the scene. A first view displays

the camera image augmented with the detected planar patches colored relatively to their

wall probability and the estimated layout, while a second view provides a top view of

the scene with the visibility polygon and the estimated layout too. The two views shown

in Fig. 3 are updated at the frame rate of the depth sensor, giving an immediate feed-

back to the user who can decide to visit the area(s) with missing data. The user can

interchange the wall/clutter labels of the detected patches by touching them in the aug-

mented view, which directly affects the room layout estimation component. At the end

of the scan, we let the user perform further editions: suppress forgotten clutter patches

and merge planar patches. At the time of writing, we only designed a desktop prototype

which can replay a recorded scan or process live data transmitted by the application.

The presented results were obtained by performing the interactions on replays of the

scans.



8 Room Layout Estimation

The Room Layout Estimation takes as input the model of line segments sv coarsely

classified as wall or clutter and generates a simplified floor plan (see Fig. 1b). In order

to compute the room layout, we need to retrieve the topological relationships between

the walls, i.e. their adjacencies.

Related Work. A simple approach is to consider the topology of the room can be recov-

ered by connecting adjacent segments [27,2,24], which works well for rooms with low

clutter, and when the walls are well separated from the clutter. The use of cell-complex

is very popular for both single rooms [1,28] and multiple rooms [5,6,7,8] layout esti-

mation. The line segments are replaced by infinite lines which partition the 2D space

into polygonal cells. A graph connecting the adjacent cells is defined: instead of con-

sidering topological information on the segments, adjacency relationship between the

cells is taken into account. The inside/outside label of the cells are computed with a

graph-cut algorithm. This approach is robust to missing data because the extension of

the segments is automatically considered, but it does not simplifies the layout.

Weighted graph construction. In our approach, the visibility polygon provides the

topology, and we try to compute a simple chain of segments sv which explains the

visibility polygon. We create a graph from the adjacency relationships between the

segments. For simplification purpose, the segments with a low wall probability (infe-

rior to 0.5 in practice) are discarded. The remaining segments S are very likely to be

close to the boundary of the visibility polygon, but they might not cover this bound-

ary completely due to missing data. We complete the boundary with segments sc from

the relative complement of S with respect to the visibility polygon. A node is created

at each segment extremity and each segment intersection as illustrated in Fig. 4a. The

nodes belonging to the same segments are linked by an edge. We assign to each edge e

a weight proportional to 1− P(sv), where sv is the segment associated to e. The edges

corresponding to frustum segments and completion segments sc are assigned a penalty

weight. With this design, the shortest path, which minimizes the sum of the weights of

its edges, gives more importance to segments with a high wall probability and favors

solutions with a low number of planar patches.

Solving and discussion. We use the Dijkstra’s algorithm to find a cycle in our graph

which minimizes the sum of our weights. To avoid trivial solutions, we use a start point

on the segment with a high P(sv), an endpoint which is adjacent, and we remove the

edge between them. As shown in Fig. 4a, the graph may contain several cycles which

can lead to incorrect layouts. In order to avoid finding an incorrect cycle, we impose

the segments along the visibility polygon to correspond to directed edges following

a clockwise orientation in the visibility polygon. This method cannot handle the cy-

cles non adjacent to the visibility polygon, which revealed to be non-existent in our

dataset. In a post-processing step, we replace, whenever possible, the chains of frus-

tum/completion segments by lines segments extending their adjacent segments, other-

wise we simply join them. Figure 4b illustrates the solution computed from a simplified

scene. We also apply the Ramer-Douglas-Peucker algorithm [29] with a low threshold



0.9

0.8

0.7

0.1 0.10.1

0.1

0.10.1

1 0.3

0.2
11

(a) Creation of a weighted graph (bottom) from

the set of segments with their probabilities (top).

The visibility polygon is represented by a gray

thick line. Some edges are overlapping, for vi-

sualization purpose, we represented them with a

curved dashed arrow line. Red edges correspond

to segments from s
c (including frustum edges).

(b) Room layout toy example illustrating

various cases: open door on the top, miss-

ing data in the upper right corner, clutter

at the bottom. Orange dashed lines cor-

respond to segments created during the

post-processing step.

Fig. 4: Toy examples illustrating the graph creation and the solving. Faded colors repre-

sent the segments which are not part of the solution. Red edges correspond to frustum

edges, purple for the other edges.

(1 cm) to simplify near parallel adjacent segments. Contrary to the offline approaches

mentioned earlier, ours can deliver an immediate room layout. Our Python implemen-

tation of this component takes 200ms to generate the graph, and 11ms to compute the

shortest path and apply the post-processing steps.

For a satisfying user experience, the layout of previously seen areas should not

change when the user visits a new part of the scene. This behavior cannot be guaran-

teed with an offline approach. When the ceiling and the floor are detected, our method is

suitable for incremental changes of the model: the wall probability P(sv) of the previ-

ously observed segments sv does not change, which means the computed path restricted

to the previously seen segments is the same and has the same cost.

Fig. 5: Four steps of our room layout estimation : the extracted segments, the generated

graph, the shortest path solution, and the layout obtained after post-processing. See

Fig. 3 and Fig. 4 for the signification of the colors.



9 Experimental Results

In this section, we compare –the geometry accuracy of– the room floor plans generated

with our approach, Magic Plan [14] (run on iPad Air 1, prior to ARKit release) and

FloorPlanEx from Google [15].

Evaluation protocol. We considered five indoor scenes Lab1MW, Lab2, House1MW,

House2MW and House3MW, where MW denotes the scenes respecting the Manhattan

World assumption. The ground truth room layouts of these scenes were created with a

Bosh DLE 50 laser ranger finder. We evaluated the geometry accuracy of the obtained

layouts with the ground truth and the reproducibility of the measurements by repeat-

ing the measurements five times. Each estimated layout was aligned with the ground

truth by computing the transformation which minimizes the distances between their

corresponding vertices. The mean of these distances defines our residual error. We also

evaluated the user effort during the use of the considered mobile applications. Magic

Plan and FloorPlanEx are user-driven applications where the user selects the walls and

the corners, respectively. The number of interactions is equal to the number of corners

(plus one for Magic Plan). We did not count the interactions required for Magic Plan

calibration processes. For our approach, we evaluated the number of labels corrections

on the planar patches and the number of post-scan modifications.

Results and analysis. Table 1 and Fig. 6 show the obtained results. Magic Plan esti-

mates the camera-to-corner distances from the device orientation instead of taking ad-

vantage of a localization module or a depth sensor. Consequently, even the best results

of the application are less accurate than the results obtained with the other approaches.

Due to the amount of clutter, most of the corners were captured on the ceiling, which

reduces the accuracy of the measurements. Magic Plan assumes the angle between two

consecutive walls is 90◦ or 45◦, for this reason, the results are unsatisfactory on the

scene Lab2 which does not follow the MW assumption. We can also observe the resid-

ual increases with the area of the room, which is coherent when there is a small error

with the device height estimation.

For selling or renting a property in France, the Alur law defines the maximal error

of the measured area to 5%. The area errors from the FloorPlanEx application and our

approach are inferior or equal to this threshold, which may not be enough for some

official uses. The results show our method is generally more accurate and provides

more repeatable results than FloorPlanEx. One explanation is that we consider the 3D

points from multiple frames to estimate the planes of the walls when the FloorPlanEx

only considers the points from one frame.

The last column of Table 1 describes the degree of interaction. It confirms our ap-

proach generally requires fewer screen interactions than user-driven approaches, except

for the scene House3MW which contained a fireplace, high furnitures and many curtains.

The Lab1MW was also quite challenging because of the presence of a high cupboard and

pillars which were incorrectly labeled as wall.



Scene Method Mean

area err.

Max

area err.

Mean

residual

σresid. Min

residual

Max

residual

Number

Interact.

Lab1MW

(25m2)

Ours 2.3 % 4.2 % 29mm 14mm 14mm 48mm 3.25

FloorPlanEx 2.2 % 4.5% 47mm 26mm 18mm 84mm 4

Magic Plan 12 % 17 % 164mm 52mm 106mm 231mm 5

Lab2

(47m2)

Ours 1.1 % 2.4 % 38mm 3mm 35mm 43mm 0.75

FloorPlanEx 3.3 % 4.3 % 73mm 19mm 45mm 100mm 6

Magic Plan 15 % 24% 264mm 65mm 199mm 329mm 7

House1MW

(11m2)

Ours 1.8 % 2.4 % 30mm 12mm 14mm 44mm 0.5

FloorPlanEx 2.6 % 4.5 % 53mm 9mm 38mm 60mm 6

Magic Plan 4.9 % 8.8 % 66mm 18mm 46mm 87mm 7

House2MW

(13m2)

Ours 3.0 % 5.0 % 29mm 12mm 17mm 49mm 0

FloorPlanEx 3.3 % 4.2 % 41mm 11mm 28mm 58mm 4

Magic Plan 5.4 % 9.2 % 50mm 23mm 22mm 89mm 5

House3MW

(48m2)

Ours 1.9 % 2.3 % 32mm 5mm 27mm 37mm 7.5

FloorPlanEx 2.8 % 4.0 % 105mm 23mm 78mm 144mm 6

Magic Plan 15.4 % 24.9 % 233mm 79mm 163mm 344mm 7

Table 1: Results of the geometry accuracy and reproducibility comparison experiment.

10 Conclusion

We presented an online approach to estimate and measure the room layout of an indoor

scene using a Project Tango mobile device. The various components of our pipeline

were evaluated on a desktop computer, using scans recorded from a Project Tango mo-

bile device. Compared to existing online works, the proposed method relies on scene

understanding to compute the room layout. In order to cope with the complexity of

some rooms, the user can interact in a cooperative way to add or remove walls among

the observed planes. The comparison with other mobile applications demonstrates that

in general, we achieve higher accuracy. In term of efficiency, the number of user in-

teractions depends on the complexity of the scenes, which may contain clutter data

incorrectly classified as walls. Some limitations of the proposed method are implicitly

associated to the Tango TDK: drift of the device pose and surfaces not handled by the

depth sensors, such as mirrors and glasses. Applications of our works include floor plan

generation, area estimation and room reconstruction for virtual reality games.

References

1. Budroni, A., Boehm, J.: Automated 3d reconstruction of interiors from point clouds. Inter-

national Journal of Architectural Computing 8(1) (2010) 55–73

2. Xiong, X., Adan, A., Akinci, B., Huber, D.: Automatic creation of semantically rich 3d

building models from laser scanner data. Automation in Construction 31 (2013) 325–337

3. Xiao, J., Furukawa, Y.: Reconstructing the worlds museums. International journal of com-

puter vision 110(3) (2014) 243–258



Fig. 6: First row: the point clouds and the labeled planar patches (blue: clutter, green:

walls) of the scanned rooms: Lab1MW, Lab2, House1MW, House2MW and House3MW

(from left to right). Second row: comparison of our approach in orange with the ground

truth in blue. Third and fourth row : comparison of the room layout obtained with

FloorPlanEx and Magic Plan in orange and the ground truth in blue.

4. Stambler, A., Huber, D.: Building modeling through enclosure reasoning. In: 3D Vision

(3DV), 2014 2nd International Conference on. Volume 2., IEEE (2014) 118–125

5. Oesau, S., Lafarge, F., Alliez, P.: Indoor scene reconstruction using feature sensitive primitive

extraction and graph-cut. ISPRS Journal of Photogrammetry and Remote Sensing 90 (2014)

68–82

6. Mura, C., Mattausch, O., Villanueva, A.J., Gobbetti, E., Pajarola, R.: Automatic room detec-

tion and reconstruction in cluttered indoor environments with complex room layouts. Com-

puters & Graphics 44 (2014) 20–32

7. Mura, C., Mattausch, O., Pajarola, R.: Piecewise-planar reconstruction of multi-room in-

teriors with arbitrary wall arrangements. In: Proceedings of the 24th Pacific Conference

on Computer Graphics and Applications. PG ’16, Goslar Germany, Germany, Eurographics

Association (2016) 179–188

8. Ochmann, S., Vock, R., Wessel, R., Klein, R.: Automatic reconstruction of parametric build-

ing models from indoor point clouds. Computers & Graphics 54 (2016) 94–103

9. Zhang, Y., Luo, C., Liu, J.: Walk&sketch: create floor plans with an rgb-d camera. In:

UbiComp. (2012)



10. Zhang, Y., Xu, W., Tong, Y., Zhou, K.: Online structure analysis for real-time indoor scene

reconstruction. ACM Transactions on Graphics (TOG) 34(5) (2015) 159

11. Dzitsiuk, M., Sturm, J., Maier, R., Ma, L., Cremers, D.: De-noising, stabilizing and complet-

ing 3d reconstructions on-the-go using plane priors. In: Robotics and Automation (ICRA),

2017 IEEE International Conference on, IEEE (2017) 3976–3983

12. Rosser, J., Morley, J., Smith, G.: Modelling of building interiors with mobile phone sensor

data. ISPRS International Journal of Geo-Information 4(2) (2015) 989–1012

13. Pintore, G., Agus, M., Gobbetti, E.: Interactive mapping of indoor building structures

through mobile devices. In: 3D Vision (3DV), 2014 2nd International Conference on. Vol-

ume 2., IEEE (2014) 103–110

14. Sensopia: MagicPlan, Create a floor plan in just a few minutes. http://www.

magic-plan.com (2012)

15. Google: java_floor_plan_example create a floor plan by using the depth sensor of a Google

Tango device to detect and measure walls in a room. https://goo.gl/3Ns3XY (2016)

16. Google: Measure: augmented reality measurement application for Google Tango devices.

https://goo.gl/2RyPnz (2016)

17. Zlatanova, S., Sithole, G., Nakagawa, M., Zhu, Q.: Problems in indoor mapping and mod-

elling. Acquisition and Modelling of Indoor and Enclosed Environments 2013, Cape Town,

South Africa, 11-13 December 2013, ISPRS Archives Volume XL-4/W4, 2013 (2013)

18. Borrmann, D., Elseberg, J., Lingemann, K., Nüchter, A.: The 3d hough transform for plane

detection in point clouds: A review and a new accumulator design. 3D Res. 2(2) (March

2011) 32:1–32:13

19. Poppinga, J., Vaskevicius, N., Birk, A., Pathak, K.: Fast plane detection and polygonalization

in noisy 3d range images. In: 2008 IEEE/RSJ International Conference on Intelligent Robots

and Systems. (Sept 2008) 3378–3383

20. Holz, D., Holzer, S., Rusu, R.B., Behnke, S.: Robot soccer world cup xv. Springer-Verlag,

Berlin, Heidelberg (2012) 306–317

21. Feng, C., Taguchi, Y., Kamat, V.R.: Fast plane extraction in organized point clouds using

agglomerative hierarchical clustering. In: 2014 IEEE International Conference on Robotics

and Automation (ICRA). (May 2014) 6218–6225

22. Lee, T.K., Lim, S., Lee, S., An, S., Oh, S.Y.: Indoor mapping using planes extracted from

noisy rgb-d sensors. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and

Systems. (2012)

23. OSGeo: GEOS, Geometry Engine, Open Source. http://goo.gl/RqHPM6 (2000)

24. Murali, S., Speciale, P., Oswald, M.R., Pollefeys, M.: Indoor scan2bim: Building information

models of house interiors. In: IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). (2017)

25. Arikan, M., Schwärzler, M., Flöry, S., Wimmer, M., Maierhofer, S.: O-snap: Optimization-

based snapping for modeling architecture. ACM Transactions on Graphics (TOG) 32(1)

(2013) 6

26. Pintore, G., Ganovelli, F., Gobbetti, E., Scopigno, R.: Mobile mapping and visualization

of indoor structures to simplify scene understanding and location awareness. In: European

Conference on Computer Vision, Springer (2016) 130–145

27. Valero, E., Adán, A., Cerrada, C.: Automatic method for building indoor boundary models

from dense point clouds collected by laser scanners. Sensors 12(12) (2012) 16099–16115

28. Previtali, M., Barazzetti, L., Brumana, R., Scaioni, M.: Towards automatic indoor reconstruc-

tion of cluttered building rooms from point clouds. ISPRS Annals of the Photogrammetry,

Remote Sensing and Spatial Information Sciences 2(5) (2014) 281

29. Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Com-

puter graphics and image processing 1(3) (1972) 244–256


