
A New Decision-Theory-Based Framework

for Echo Canceler Control

Abstract—A control logic has a central role in many echo can-
cellation systems for optimizing the performance of adaptive fil-
ters, while estimating the echo path. For reliable control, accurate
double-talk and channel change detectors are usually incorporated
to the echo canceler. This work expands the usual detection strat-
egy to define a classification problem characterizing four possible
states of the echo canceler operation. The new formulation allows
the use of decision theory to continuously control the transitions
among the different modes of operation. The classification rule re-
duces to a low-cost statistics, for which it is possible to determine
the probability of error under all hypotheses, allowing the clas-
sification performance to be accessed analytically. Monte Carlo
simulations using synthetic and real data illustrate the reliability
of the proposed method.

Index Terms—Adaptive filters, adaptive signal processing, adap-
tive systems, echo cancellation, channel change, double-talk, clas-
sification, multivariate gamma distribution.

I. INTRODUCTION

E
CHO cancellation is a requirement in modern voice com-

munication systems. Speech echo cancelers (ECs) are

employed in telephone networks (line echo cancelers) or in

hands-free communications (acoustic echo cancelers). Most EC

designs include two main blocks; a channel identification block

and a control logic block. The channel identification block tries

to estimate the echo path, often employing adaptive filtering.

However, the adaptive algorithm tends to diverge in the presence

of near-end signals (double-talk – DT). Hence, adaptation must
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be stopped during DT. On the other hand, abrupt echo channel

changes (CC) require a faster adaptation to improve tracking.

Finally, in the absence of bothDT andCC, a slow adaptation rate

tends to improve channel estimation accuracy. The control logic

is then required to control the transitions among these distinct

modes of adaptive operation.

The EC control may or may not employ DT or CC detectors.

Different approaches have been proposed to deal with DT or

CC in echo cancelers, some of which do not require a DT detec-

tor, aiming at a continuous adaptation of the EC. Blind source

separation strategies based on independent component analysis

(BSS/ICA) were proposed in [1], [2], variable stepsize (VSS)

methods in [3]–[5], and methods based on the prediction of the

near-end signal using a prediction error (PE) framework in [4],

[6], [7]. Frequency domain adaptive filter (FDAF) solutions have

also been proposed, resulting in low computational complexity

and fast convergence at the expense of higher memory usage

and additional end-to-end delay [4], [5], [8].

BSS strategies try to separate the near- and far-end signal

components, adapting the EC only on the far-end component. A

BSS method, based on ICA, led to a weighted recursive least-

squares (RLS) [1], [2] algorithm using aO(N 2) implementation
based on the matrix inversion lemma to guarantee stability. VSS

methods continuously adjust the adaptive filter (AF) stepsize to

cope with different states of a dynamical system. An optimal AF

stepsize is derived in [3] which depends on the non-accessible

undisturbed error signal. This requires further estimation and

detection stages. VSS strategies were also considered in the

frequency domain [4], [5]. An FDAFVSSmethodwas proposed

in [4] in the context of PE framework. The gains of a noise-

reductionWiener filter where used as variable stepsizes for each

frequency bin in the FDAF. In [5], the FDAF at each frequency

bin is derived from a system distance measure as a function of

time and frequency.

The PE framework has been used in [4], [6], [7] to simultane-

ously estimate the echo path and a parametric AR model for the

near-end signal. A low complexity method was proposed for the

near-end modeling that is adequate for speech signals, leading

to the PEM-AFROW algorithm [6], [7]. Although the resulting

cost function is essentially nonconvex, simulations indicate that

the proposed algorithms are robust to double-talk and present

fast convergence under single-talk.

Several works have proposed methods for DT detection in

ECs without considerations regarding CC, such as [9]–[12].

However, DT detection strategies that assume a static channel



Fig. 1. Basic echo canceller structure.

response may yield unpredictable performances in the presence

of CC [13]. The vast majority of the techniques available for

DT or CC detection rely on ad hoc statistics to make the de-

cision, leading to cumbersome design processes. A few works

employ a statistical framework to formulate the detection prob-

lem. For instance, [14] proposes a maximum a posteriori (MAP)

decision rule based on channel output observations and assum-

ing Bernoulli distributed priors for the different hypotheses. A

similar approach is used in [15], but employing a Markov chan-

nel model. In [16], a generalized likelihood ratio test (GLRT)

is proposed using observations from both the channel input

and output signals. DT and CC detection are considered. In

[17] and [18], a first test distinguishes single-talk from DT or

CC, and a second test based on the echo path estimate detects

DT. Though the latter two studies consider DT and CC in a

single formulation, all these aforementioned statistical formu-

lations have been proposed for the conventional adaptive EC

structure [3].

An alternative EC structure has been proposed in [9], which

uses a shadow adaptive filter that operates in parallel with the

actual echo cancellation filter. The shadow filter coefficients are

transferred to the echo cancellation filter when the shadow filter

is a better estimate of the unknown channel response than the

echo cancellation filter. From the authors experience, this struc-

ture allows amuch better control of the EC convergence than the

conventional structure. The EC structure is shown in Fig. 1. The

EC consists of the main echo cancellation filter and the adaptive

shadow filter. The output of the main filter is subtracted from

the echo to obtain the canceled echo z1(n). The shadow filter

weights are adapted continuously. The control logic is designed

such that the shadow filter coefficients are copied to the main

filter when this will improve the EC performance. A likelihood

ratio test (LRT) detector based on the EC structure in Fig. 1

was derived in [19] to detect DT versus CC. A generalized LRT

(GLRT) that could be simplified to a sufficient statistic was

proposed for the same EC structure in [20]. The performance

of the test statistic was evaluated as a function of the system

parameters. The idea developed in [19] and [20] was to use the

detection result 1) to stop adaptation when DT was detected and

2) to adapt fast in the presence of channel change. The speed of

adaptation was controlled by the adaptation stepsize.

The decision theory-based DT and CC detection formulation

in [19], [20] did not include decision theory based formulations

for the exit from a DT or a CC condition. These decisions were

still made in an ad hoc manner.

This paper formulates the echo canceler control logic as a

more general classification problem, with four hypotheses asso-

ciated to the presence or absence of DT and to the presence or

absence of CC1

H0 : no DT and no CC

H1 : no DT and CC

H2 : DT and no CC

H3 : DT and CC. (1)

There are several motivations for identifying these four classes.

These motivations include 1) the possibility to adjust accu-

rately the stepsize of the adaptive filter for long time intervals

when there is no DT and no CC, resulting in smaller residual

errors, 2) the inclusion ofH3 adds an important degree of flexi-

bility to the control logic that can be exploited, as will be shown

in Section V-A, 3) these four classes lead to a simple and low

cost test statistic.

The paper is organized as follows. In Section II we intro-

duce the signal models and derive the classification rules. In

Section III we present the performance analysis of the proposed

classifier. Monte Carlo simulations are presented in Section IV

to validate the theory. SectionV discusses application of the pro-

posed classification strategy and presents illustrative simulation

results. Finally, Section VI discusses the results and presents the

conclusions.

II. DOUBLE-TALK AND CHANNEL CHANGE CLASSIFICATION

A. Signal and Channel Models

The channel input vector x(n) = [x(n), . . . , x(n−N +
1)]⊤ is of dimension N × 1 with covariance matrix E[x(n)
x⊤(n)] = Σx and the channel output is a scalar y(n). The input
signal is stationary within the decision periods and the DT sig-

nal can be modelled by a white Gaussian process for detection

purposes [16]. Also, [y(n),x⊤(n)]⊤ is modelled as a zero-mean

Gaussian vector. Denoting the adaptive shadow filter response

by h0 , the main echo cancellation filter response by h1 , and the

true echo path response by g, the channel output y(n) can be
expressed as follows under the different hypotheses:

H0(no DT, no CC) : h1 = g, y(n) = h⊤1 x(n) + n0(n)

H1(no DT, CC) : h0 = g, y(n) = h⊤0 x(n) + n0(n)

H2(DT, no CC) : h1 = g, y(n) = h⊤1 x(n) + n0(n) + n1(n)

H3(DT, CC) : h0 = g, y(n) = h⊤0 x(n) + n0(n) + n1(n).
(2)

1The acronyms CC and DT are usually employed to signify instantaneous
phenomena. Here, CC and DT are used to define system states following the
onset of channel change or double-talk, which are tested for at regular time
intervals (see Section V).



The H0 hypothesis considers that h0 has converged and has

been recently copied to h1 . HypothesisH1 assumes that h0 has

already converged (or ismuch closer tog thanh1) after a channel

change. Therefore, we consider that the system is at a CC state

whenh0 ≈ g and there exist ameasurablemismatch betweenh0

and h1 . InH2 , a DT signal n1(n) happens after convergence of
h0 and copy to h1 (similar to H0). Finally, a fourth hypothesis

H3 considers that DT happens following a CC after h0 has

already converged to the new channel but has not yet been copied

to h1 . All cases rely on the convergence (or divergence) of h0

and its relation to h1 resulting in several practical implications

concerning the control logic block in Fig. 1. The control strategy

will be addressed in Section V.

The additive noise n0(n) is stationary zero-mean white2

Gaussian, independent of x(n) with E[n2
0(n)] = σ2

0 . The sec-

ond additive noise n1(n), modeling the DT, is zero-mean

white Gaussian, and independent of both x(n) and n0(n) with
E[n2

1(n)] = σ2
1 . Two error signals z0(n) = y(n)− h⊤0 x(n) and

z1(n) = y(n)− h⊤1 x(n) were introduced in [20] to facilitate

the analysis. These error signals can be expressed as follows

under the different hypotheses

H0(no DT, no CC) :

z0(n) = (h1 − h0)
⊤x(n) + n0(n), z1(n) = n0(n)

H1(no DT, CC) :

z0(n) = n0(n), z1(n) = (h0 − h1)
⊤x(n) + n0(n)

H2(DT, no CC) :

z0(n) = (h1 − h0)
⊤x(n) + n0(n) + n1(n)

z1(n) = n0(n) + n1(n)

H3(DT, CC) :

z0(n) = n0(n) + n1(n)

z1(n) = (h0 − h1)
⊤x(n) + n0(n) + n1(n). (3)

B. Classification Rule

1) One-Sample Case: The joint pdf of z(n) = [z0(n),
z1(n)]⊤ is Gaussian under all hypotheses such that

p[z(n)|Hi ] ∼ N (0,Σi1), i = 0, . . . , 3 (4)

where the second subscript in Σi1 (1 in this case) indicates

the 1-sample case. The covariance matrices of z(n) under the
different hypotheses can be written

Σ01 =

(

σ2
0 + c2

x σ2
0

σ2
0 σ2

0

)

Σ11 =

(

σ2
0 σ2

0

σ2
0 σ2

0 + c2
x

)

(5)

2Note here that the whiteness assumption for n0 (n) is not restrictive since it
is always possible to whiten the channel outputs by pre-multiplying consecutive
samples by an appropriate matrix. Of course, this operation assumes that the
covariance matrix of consecutive noise samples is known or can be estimated.

Fig. 2. DT and CC decision regions in the (z2
0 (n), z2

1 (n)) plane.

Σ21 =

(

σ2
0 + σ2

1 + c2
x σ2

0 + σ2
1

σ2
0 + σ2

1 σ2
0 + σ2

1

)

Σ31 =

(

σ2
0 + σ2

1 σ2
0 + σ2

1

σ2
0 + σ2

1 σ2
0 + σ2

1 + c2
x

)

(6)

with

c2
x = (h0 − h1)

⊤
Σx(h0 − h1) (7)

where c2
x can be interpreted as the power at the output of the dif-

ference filter with response h0 − h1 . Assuming all hypotheses

are equiprobable, the classification rule minimizing the average

probability of error decides hypothesisHi is true when

1
√

|Σi1 |
exp

[

−
1

2
z⊤(n)Σ−1

i1 z(n)

]

>
1

√

|Σj1 |
exp

[

−
1

2
z⊤(n)Σ−1

j1 z(n)

]

(8)

for all j 6= i. Equivalently, hypothesisHi will be accepted if

z⊤(n)
(

Σ
−1
j1 −Σ

−1
i1

)

z(n) > ln

(

|Σi1 |

|Σj1 |

)

(9)

for all j 6= i. Straightforward computations (detailed in

Appendix A) allow one to compute the inverses and determi-

nants of the 2× 2 matrices Σi1 and Σj1 yielding the following

classification rule

H0 aif z2
1 (n) < z2

0 (n) and z2
1 (n) < T

H1 aif z2
1 (n) > z2

0 (n) and z2
0 (n) < T

H2 aif z2
1 (n) < z2

0 (n) and z2
1 (n) > T

H3 aif z2
1 (n) > z2

0 (n) and z2
0 (n) > T (10)

where “aif” means “accepted if” and

T =
σ2

0 (σ2
0 + σ2

1 )

σ2
1

ln

(

1 +
σ2

1

σ2
0

)

. (11)

The different decision regions corresponding to (10) are illus-

trated in the (z2
0 (n), z2

1 (n)) plane in Fig. 2.
2) Multiple Samples: The analysis above can be generalized

to the case where multiple time samples z(n− k), for k =
p− 1, . . . , 0, are available. The analysis is performed here for
two samples (i.e., p = 2) for simplicity and is generalized later.



When two samples are observed, the error signals z0(n), z0(n−
1) and z1(n), z1(n− 1) are considered. They can be expressed
as follows under the different hypotheses:

Under H0 :

z0(n) = (h1 − h0)
⊤x(n) + n0(n)

z1(n) = n0(n)

z0(n− 1) = (h1 − h0)
⊤x(n− 1) + n0(n− 1)

z1(n− 1) = n0(n− 1). (12)

Under H1 :

z0(n) = n0(n)

z1(n) = (h0 − h1)
⊤x(n) + n0(n)

z0(n− 1) = n0(n− 1)

z1(n− 1) = (h0 − h1)
⊤x(n− 1) + n0(n− 1). (13)

Under H2 :

z0(n) = (h1 − h0)
⊤x(n) + n0(n) + n1(n)

z1(n) = n0(n) + n1(n)

z0(n− 1) = (h1 − h0)
⊤x(n− 1)

+ n0(n− 1) + n1(n− 1)

z1(n− 1) = n0(n− 1) + n1(n− 1). (14)

Under H3 :

z0(n) = n0(n) + n1(n)

z1(n) = (h0 − h1)
⊤x(n) + n0(n) + n1(n)

z0(n− 1) = n0(n− 1) + n1(n− 1)

z1(n− 1) = (h0 − h1)
⊤x(n− 1)

+ n0(n− 1) + n1(n− 1). (15)

Defining z2d(n) = [z0(n), z0(n− 1), z1(n), z1(n− 1)]⊤,
z2d(n) is a zero-mean Gaussian vector under all hypotheses.

Straightforward computations yield the covariance matrices of

z2d(n) under the different hypotheses. These matrices can be
expressed as

Σ02 =

(

σ2
0I2 + Hx σ2

0I2

σ2
0I2 σ2

0I2

)

Σ12 =

(

σ2
0I2 σ2

0I2

σ2
0I2 σ2

0I2 + Hx

)

(16)

Σ22 =

(

(σ2
0 + σ2

1 )I2 + Hx (σ2
0 + σ2

1 )I2

(σ2
0 + σ2

1 )I2 (σ2
0 + σ2

1 )I2

)

Σ32 =

(

(σ2
0 + σ2

1 )I2 (σ2
0 + σ2

1 )I2

(σ2
0 + σ2

1 )I2 (σ2
0 + σ2

1 )I2 + Hx

)

(17)

where I2 is the 2× 2 identity matrix and Hx is given by Equa-

tion (18).

Hx =

(

h0 − h1 0

0 h0 − h1

)⊤(
Σx R1x

R−1x Σx

)

×

(

h0 − h1 0

0 h0 − h1

)

(18)

In (18), Σx = E[x(n)x⊤(n)], R1x = E[x(n)x⊤(n− 1)], and
R−1x = E[x(n− 1)x⊤(n)]. The determinants and inverses of
these block matrices can be computed following [21, p. 572]

|Σ02 | = |Σ12 | = σ4
0 |Hx |

|Σ22 | = |Σ32 | = (σ2
0 + σ2

1 )2 |Hx | (19)

and

Σ
−1
02 =

(

H−1
x −H−1

x

−H−1
x

1
σ 2

0
I2 + H−1

x

)

Σ
−1
12 =

(

1
σ 2

0
I2 + H−1

x −H−1
x

−H−1
x H−1

x

)

(20)

Σ
−1
22 =

(

H−1
x −H−1

x

−H−1
x

1
σ 2

0 +σ 2
1
I2 + H−1

x

)

Σ
−1
32 =

(

1
σ 2

0 +σ 2
1
I2 + H−1

x −H−1
x

−H−1
x H−1

x

)

. (21)

where H−1
x is assumed to exist.

Performing the same computations shown in Appendix A for

vector z2d(n) andmatrices (16) and (17), the followingmultiple
sample classification rule can then be obtained

H0 aif ‖z1(n)‖2 < ‖z0(n)‖2 and ‖z1(n)‖2 < T2 ,

H1 aif ‖z1(n)‖2 > ‖z0(n)‖2 and ‖z0(n)‖2 < T2 ,

H2 aif ‖z1(n)‖2 < ‖z0(n)‖2 and ‖z1(n)‖2 > T2 ,

H3 aif ‖z1(n)‖2 > ‖z0(n)‖2 and ‖z0(n)‖2 > T2 , (22)

where zi( n ) = [zi( n ), zi( n− 1 )]⊤, ‖zi(n)‖2 = z2
i (n) +

z2
i (n− 1) and

T2 = 2T = 2
σ2

0

(

σ2
0 + σ2

1

)

σ2
1

ln

(

1 +
σ2

1

σ2
0

)

. (23)

The factor 2 multiplying T in (23) results from

ln (|Σi1 |/|Σj1 |) = −2 ln
(

1 + σ2
1/σ2

0

)

. This result can be com-

pared with (10) obtained for the one-sample case. The gen-

eralization to more than two samples is straightforward. In-

deed, in the p-sample case, the covariance matrices Σip of

zpd(n) are defined as in (16) and (17), with I2 replaced with

Ip , and Hx defined differently. However, since Hx cancels

from the difference between the two inverses, the classifi-

cation rule for the p-sample case is expressed by (22) with

‖zi(n)‖2 = zi
⊤(n)zi(n) =

∑p−1
k=0 z2

i (n− k) the squared norm
of zi(n), i = 0, 1, and with T2 = 2T replaced with Tp = pT .



III. PERFORMANCE ANALYSIS

This section studies the probability of classification error for

the classifier proposed in Section II.

A. One-Sample Case

It is clear from the classification rules (10) that d(n) =
[z2

0 (n), z2
1 (n)]⊤ is a sufficient statistic for the classification

problem. Interestingly, the exact distribution of d(n) can be

derived under all hypotheses, allowing for an analytical study

of the classifier performance. First, we note that the elements

of d(n) form the diagonal of the matrix Z = z(n)z⊤(n). Now,
since z(n) = [z0(n), z1(n)]⊤ is jointly distributed according to
a zero-mean Gaussian distribution with covariance matrix Σi1 ,

see (4), it is shown in Appendix B that, under all hypotheses

Hi , i = 0, . . . , 3, d(n) is distributed according to a multivari-
ate gamma distribution denoted G(q, P ) with shape parameter
q = p/2 and scale parameter P = {p1 , p2 , p12}, with

p1 = 2Σi1(1, 1)

p2 = 2Σi1(2, 2)

p12 = 4 [Σi1(1, 1)Σi,1(2, 2)−Σi1(1, 2)Σi1(2, 1)] (24)

where Σi1(1, 1), Σi1(1, 2) = Σi1(2, 1) and Σi1(2, 2) are the
elements of the covariance matrix Σi1 .

B. Multiple-Sample

Once again it is clear that the vector d(n) =
[‖z0(n)‖2 , ‖z1(n)‖2 ]⊤ is a sufficient statistic for solving the

proposed classification problem. Noting that zpd(n) is a re-

arrangement of the p vectors z(n− k), k = 0, . . . , p− 1,
the distribution of d(n) can be obtained following the rea-

soning presented in Appendix B, under the assumption of

independence of vectors z(n− i) and z(n− j), i 6= j, and
stationarity for z(n− k). Assuming the vectors z(n− k),
k = 0, . . . , p− 1, to be distributed according to the same zero-
mean Gaussian distribution with covariance matrix Σi1 , ma-

trixA =
∑p−1

k=0 z(n− k)z⊤(n− k) is distributed according to a
Wishart distributionW2(p,Σi1)with p degrees of freedom [22,

Th. 3.2.4, p. 91]. Thus, d(n) = diag(A) is distributed accord-
ing to a multivariate gamma distribution with shape parameter

q = p/2 and P given by (31).

C. Probability of Error

To simplify the notation, define t0 and t1 such that d(n) =
[‖z0(n)‖2 , ‖z1(n)‖2 ]⊤ = [t0 , t1 ]

⊤. Also consider fj to be the

bivariate gamma density associated with hypothesis Hj . Then,

the probability of error Pij = P (Hi |Hj ), can be computed as:

Pij =

∫∫

Di

fj (t0 , t1) dt0dt1 (25)

where Di represents the integration limits associated with Hi .

A detailed expansion of (25) for all classes is presented in the

supplementary document, also available in [23]. The integral

(25) was implemented using MATLAB function integral2.m.

Figs. 3–5 show the probabilities P (Hi |Hj ) computed us-

ing (25) as functions of c2
x ∈ [0, 10] for different sets of param-

eters. Each row of these figures corresponds to a given true hy-

pothesis Hi , i = 0, . . . , 3. Fig. 3 shows P (Hi |Hj ) for σ2
1 = 1,

σ2
0 = 0.001, and p ∈ {1, 4, 8, 16, 32}. These plots clearly show

that the performance of the classifier improves by increasing c2
x

or p. A large value of p is especially important in distinguishing
between hypotheses H2 and H3 . It is also clear that the classi-

fication error increases significantly for low values of c2
x . As a

limiting situation, the vector d(n) will be placed exactly on the
line ‖z0(n)‖2 = ‖z1(n)‖2 separating the classes H0 and H1 ,

orH2 andH3 (see Fig. 2) for c2
x = 0.

Since p = 32 yielded good classification performance, we

opted for fixing p = 32 in Figs. 4 and 5, while varying the

DT power in Fig. 4 and the noise power in Fig. 5. Although

the DT power has little influence on the classifier performance

under H0 and H1 hypotheses (Fig. 4), a clearer influence is

observable under H2 and H3 . In this case, increasing the DT

power tends to increase P (H2 |H3) and P (H3 |H2) (bottom two

rows of Fig. 4). This behavior is expected as the effect of a

channel change in distinguishing between hypotheses H2 and

H3 diminishes with the increase of DT power. Fig. 5 explores

the effect of the noise power on the classifier performance. It

can be noted that a large noise power increases the probability

of error in detecting the onset of DT (P (H2 |H0), P (H3 |H1),
P (H0 |H2), P (H1 |H3)), as the performance is a function of the
DT to noise ratio σ2

1/σ2
0 . This effect, however, is very small for

ratios larger than 3 dB, which is typical in practice. Simulations

for the one-sample case with different DT and noise powers are

available in the supplementary document of this paper. Although

the results obtained for the one-sample case show (as expected)

a stronger influence of DT and noise power in the classification

performance when compared to the results for p = 32, they
corroborate the above conclusions.

IV. MONTE CARLO SIMULATIONS

In this section Monte Carlo (MC) simulations are performed

and compared with the theoretical expressions derived in the

previous section. These results are also valuable to assess

the effect of the independence approximation on the analysis

accuracy.

To generate the statistics d(n) by sampling the (2p)-
dimensional vectors z2d(n) fromN (0,Σi2), we need to define
the covariance (Σx ) and correlation (Rkx ) matrices. Consider-

ing the input signal to be auto-regressive of order 1 (AR-1),Σx

was chosen as follows [19]:

Σx = σ2
x

















1 ρ · · · ρN−1

ρ 1 · · · ρN−2

...
...

. . .
...

ρN−1 ρN−2 · · · 1

















(26)

where ρ controls the input signal correlation. Thus, the entries

of Rkx = E
[

x(n)x⊤(n− k)
]

can be written as

[Rkx ]ij = σ2
xρ|i−j−k |. (27)

Note that by fixing the vectors h0 and h1 , Hx depends only

on σ2
x , and ρ. Thus, for a given c2

x , σ
2
x can be easily computed



Fig. 3. Theoretical performance curves for single- and multi-sample cases (σ2
1 = 1, σ2

0 = 0.001).

Fig. 4. Theoretical performance curves for different values of DT power (p = 32, σ2
0 = 0.001).

using (26) and (7). The vectors h0 and h1 were assumed to

have 1024 samples, and were constructed using the one-sided

exponential channels (see [19] and [20])

hi(k) =

{

c(0.95)k−∆ i , k ≥ ∆i

0, otherwise
(28)

where∆i is a relative delay of the channel hi and the parameter

c is defined by the filter gain G = h⊤0 h0 = h⊤1 h1 . Two differ-

ent scenarios are studied here corresponding to G = −10 dB

(electrical application) and G = 6 dB (acoustic application).3

3Since the performance of the MC simulations using G = 6 dB are in agree-
ment with the simulations using G = −10 dB we suppressed their results from

Fig. 6 presents the MC simulations obtained by averaging

106 runs for G = −10 dB, with c2
x varied in the range [0, 10],

ρ = 0.5, σ2
1 = 1, and σ2

0 = 0.001, leading to an SNR of 30 dB.

When comparing Fig. 6 with theoretical results (Fig. 3), only

a very small degradation in classification accuracy is noted,

mainly for H2 and H3 , and p > 1. This small difference is

attributed to the use of the independence approximation.

MC simulations for different values of the correlation coeffi-

cient ρ are available in the supplementary document. Although

varying ρ has little impact on the classification performance, it

this manuscript. However, the interested reader can find them in the supplemen-
tary document.



Fig. 5. Theoretical performance curves for different values of noise power (p = 32, σ2
1 = 1).

Fig. 6. MC performance curves assuming AR-1 input signal, zpd (n) sampled from N (0, Σip ), G = −10 dB (electric application), σ2
1 = 1, σ2

0 = 0.001,
ρ = 0.5.

is interesting to notice that increasing ρ slightly improves the

classification performance in all classes, but especially for H2

andH3 . This behavior is expected since, for a given σ2
x , increas-

ing the correlation of the far-end signal tends to emphasize the

effect of the difference (h1 − h0) on the values of ‖z1(n)‖2

and ‖z2(n)‖2 , facilitating detection of hypotheses in (22).

V. APPLICATION TO ECHO CANCELLERS

A. Control Strategy

The classification hypotheses presented in (2) considered that

in each case the adaptive filter had time to converge or diverge.

This becomes a critical point for designing the control block

(see, Fig. 1) since the probabilities of error are high for low val-

ues of c2
x . Two direct consequences related to this characteristic

are the following:

1) (H0/H1) :Whenever h0 is copied to h1 c2
x becomes zero

and the probability of error becomes large between classes

H0 and H1 . In fact, if h0 = h1 the vector d(n) will be
exactly in the frontier between the two classes (see, Fig. 2).

2) (H1/H2 ,H3) : When CC happens, h0 and h1 may as-

sume values very far from the new true filter response

hnew. If this is the case, classification errors (H2 |H1 or



H3 |H1) are expected since both norms ‖zi(n)‖2 , i = 1, 2,
may become larger than T .

To address these problems, we propose a control strategy that

combines tuning of the adaptive stepsize µ, defining an appro-
priate frequency for the realization of the tests, and introducing

a delay before actually changing the system state after each

decision.

Adaptation step

The shadow filter h0 is always adapting, even during DT,

since the difference between h0 and h1 is crucial for improving

classification rates. However, different adaptation stepsizes can

be adopted for each class:

1) DuringH0 , µ = µ0 should be low since the aim is to make

a fine tuning of the filter coefficients.

2) During H1 , µ = µ1 should be set as high as possible to

speed-up convergence of the adaptive algorithm.

3) During H2 , µ = µ2 should be set to a small value so that

h0 can diverge slowly under DT, start to converge once

DT is over or in the occurrence of CC.

4) ClassH3 is critical since it corresponds to the occurrence

of CCwith or without DT signal. Our practical experience

indicates that setting µ = µ3 to a value between µ0 and

µ1 leads to good classification results.

Frequency of tests

The difference filterh0 − h1 plays a central role in classifica-

tion accuracy. Hence, it is advisable to allow aminimum number

Nt of samples between two tests to allow a clear differentiation

of the two responses.

Filter copy

Whenever classes H0 or H1 are detected, the shadow filter

h0 should be copied to h1 if ‖z0(n)‖2 < ‖z1(n)‖2 . To account

for transients occurring after the exit of a given state (especially

when DT stops), it is advisable to consider a delay of Nc < Nt

samples between the decision moment and the actual filter copy.

Decisions in the neighborhood of ‖z0(n)‖2 = ‖z1(n)‖2

Decision between H0 and H1 , and between H2 and H3

are rather arbitrary in practical situations when ‖z0(n)‖2 ≈
‖z1(n)‖2 . To address this issue, we propose to allow changes

between classesH0 andH1 , or betweenH2 andH3 only if

1− ε ≤
‖z0(n)‖2

‖z1(n)‖2
≤ 1 + ε

where ε ∈ [0, 1).

B. Synthetic Data

This section considers the AR-1 (ρ = 0.5) data discussed in
Section IV, and also used in [19], [20]. We considered filter

responses h0 and h1 with N = 1024 samples, and fixed the

parameters p = 32, σ2
0 = 0.001, and σ2

1 = 1. The signal y(n)
consisting of 140K samples (K = 1000) was formulated as

y(n) =































g⊤0 x(n) + n0(n), n ∈ I1

g⊤1 x(n) + n0(n), n ∈ I2

g⊤1 x(n) + n1(n) + n0(n), n ∈ I3

g⊤2 x(n) + n1(n) + n0(n), n ∈ I4

g⊤2 x(n) + n0(n), n ∈ I5

(29)

Fig. 7. Performance of the echo canceller system (G = −10 dB). From top
down, the panels present the evolution of the classification result (top), adap-
tation stepsize µ, SE in dB for h0 and h1 (bottom). σ2

1 = 1, σ2
0 = 0.001,

ε = 0.25, Nt = 1024, Nc = 512.

with intervals I1 = [0, 20K], I2 = (20K, 80K], I3 =
(80K, 100K], I4 = (100K, 120K], and I5 = (120K, 140K],
and gi , i ∈ {1, 2, 3}, being different echo path responses.

Hence, CC occurs at sample 20,001, DT occurs between

samples 80,001 and 120,000, and a second CC occurs during

the DT period at sample 100,001. For comparison, we consider

also the GLRT-based strategy proposed in [20]. The adaptive

algorithm employed for both methods was the Normalized

Least Mean Square (NLMS) algorithm, whose maximum

convergence speed is known to be attained for µ = 1 [24].

The control parameters for the proposed strategy were set to

Nt = 1024, Nc = 512, µ0 = µ2 = 0.1, µ1 = 1, µ3 = 0.3, and
ε was set to 0.25 for G = −10 dB. The GLRT parameters were

set following recommendations in [20], with p = 500, and
the detection threshold γ selected to avoid filter copies during

DT. For both strategies the adaptive filter coefficients were

initialized equal to zero and the adaptation step was initialized

as µ = µ1 (CC). The simulation results for one realization of

the synthetic signal are shown in Fig. 7, where blue curves

correspond to the proposed method and gray curves to the

GLRT. The top panel presents the classes attributed by the

classifier to each sample in time. The second panel presents

the step-size corresponding to each class. The squared excess

errors (SE) e2
i (n) = (y(n)− h⊤i x(n)− n0(n))2 , i = {0, 1},

for h0 and h1 follow in the bottom two panels. Although the

good classification performance is evident in this example, the

H1/H2 ,H3 issue discussed in Section V-A can be noticed

after the CC at sample 20 K. The samples are classified as

H3 before ‖z0(n)‖2 becomes smaller then Tp . Then the

correct class H1 is selected before sample 30 K. However,

since the adaptive filter never stops adapting, this problem is

satisfactorily mitigated without severe deterioration of the echo

canceler performance, as can be verified by the SE results in the

two bottom panels. These results clearly show the performance

improvement resulting from the generalization of the approach

proposed in [19], [20]. The improvement shows especially



Fig. 8. Performance of the echo canceller system for voice over real channels.
From top down, the panels present the evolution of the classification result (top),
adaptation stepsize µ, SE in dB forh0 andh1 (bottom). ε = 0.25,Nt = 1024,
Nc = 512. Results for the proposed method (blue) and using the method in [18]
(gray).

during the single-talk periods. As DT or CC do not occur

during these periods, the proposed solution leads to a reduction

of the stepsize µ, clearly improving the quality of channel

estimation. Note, for instance, that the stepsize reduction that

happens at iteration 35 K due to the acceptance of hypothesis

H0 leads to a drop in SE that reaches 12 dB at iteration 80 K.

A decision threshold could not be found for the GLRT method

that avoided CC classification during DT and at the same

time allowed accurate classification after sample 120 K. Any

threshold leading to the correct classification of this portion of

the signal also led toH1 classification during theH3 periods in

interval I4 . This also shows the benefits of modeling this extra

hypothesis.

Simulations with G = 6 dB yielded similar results, and are

available in the supplementary document [23].

C. Voice Data Over a Real Channel

For the simulation presented in this section we used the same

voice data and channels considered in [19], [20]. The data is

approximately 144 K samples long, with two CC’s occurring

at sample 50 K and 123 K, and an intense DT occurring be-

tween 57–123 K. The simulation results presented in Fig. 8

compare the proposed decision framework (blue) with the se-

quential classification strategy presented in [18] (gray). To deal

with the power fluctuation inherent in speech signals, we used

p = 500 and set the detection threshold Tp = 1× 10−5 chosen

empirically to avoid H0 and H1 errors during DT. The remain-

ing control strategy parameters were kept the same used in the

synthetic simulation presented in Fig. 7. The parameters used

for the method in [18] were set to the same values used by the

authors. Although the detector presented in [18] also considers

different classes, the authors did not consider the influence of

multiple samples nor used a shadow filter configuration, which

clearly impacts the results. The results displayed in Fig. 8 can

be also compared with the result obtained in [20, Fig. 9], which

indicates that the proposed classification and control strategies

perform at least as well as previous echo cancellation systems.

VI. RESULTS AND CONCLUSIONS

In this manuscript we presented a low computational cost

multi-class classifier with a coupling control strategy for the

echo cancellation problem. The proposed classification rule ini-

tially proposed for one-sample was easily extended to the multi-

sample scenario. Error probabilities were also analytically com-

puted under the assumption of independence among vectors

z(n− k). This assumption led to bivariate gamma distributions
for the sufficient statistics d(n) and performance curves that

proved accurate when confronted with Monte Carlo Simula-

tions. The results showed that the greater flexibility provided by

the multi-class approach could be well explored by the control

strategy which considered different step-sizes under each hy-

pothesis. The simulations with synthetic data showed that the

multi-class strategy is viable if accurate double-talk and noise

power can be estimated, improving the filter convergence dur-

ing long periods of single-talk. Simulations in a more realistic

scenario (voice over real channels) showed that the proposed

strategy works as well as other methods in the literature even

ignoring the power fluctuation of speech signals and using a

fixed threshold Tp .

APPENDIX A

CLASSIFICATION RULE

This appendix derives the classification rule (10) for the one

sample case. This rule corresponds to accepting hypothesis

Hi if

z⊤(n)
(

Σ
−1
j1 −Σ

−1
i1

)

z(n) > ln

(

|Σi1 |

|Σj1 |

)

(30)

for all j 6= i. As a consequence hypothesisH0 is accepted if the

three following conditions are satisfied

z⊤(n)
(

Σ
−1
11 −Σ

−1
01

)

z(n) > ln

(

|Σ01 |

|Σ11 |

)

z⊤(n)
(

Σ
−1
21 −Σ

−1
01

)

z(n) > ln

(

|Σ01 |

|Σ21 |

)

z⊤(n)
(

Σ
−1
31 −Σ

−1
01

)

z(n) > ln

(

|Σ01 |

|Σ31 |

)

.

By replacing the matrix inverses and determinants in these

expressions, the following results are obtained

z2
0 (n)− z2

1 (n) > 0

z2
1 (n)

(

1

σ2
0 + σ2

1

−
1

σ2
0

)

> ln

(

1 +
σ2

1

σ2
0

)

z2
0 (n)

σ2
0 + σ2

1

−
z2
1 (n)

σ2
0

> − ln

(

1 +
σ2

1

σ2
0

)

.

These three conditions are equivalent to

z2
1 (n) < z2

0 (n) and z2
1 (n) <

σ2
0 (σ2

0 + σ2
1 )

σ2
1

ln

(

1 +
σ2

1

σ2
0

)

.



Hypothesis H1 is accepted if the three following conditions

are satisfied

z⊤(n)
(

Σ
−1
01 −Σ

−1
11

)

z(n) > ln

(

|Σ11 |

|Σ01 |

)

z⊤(n)
(

Σ
−1
21 −Σ

−1
11

)

z(n) > ln

(

|Σ11 |

|Σ21 |

)

z⊤(n)
(

Σ
−1
31 −Σ

−1
11

)

z(n) > ln

(

|Σ11 |

|Σ31 |

)

.

Equivalently

z2
1 (n)− z2

0 (n) > 0

z2
1 (n)

σ2
0 + σ2

1

−
z2
0 (n)

σ2
0

> − ln

(

1 +
σ2

1

σ2
0

)

z2
0 (n)

(

1

σ2
0 + σ2

1

−
1

σ2
0

)

> − ln

(

1 +
σ2

1

σ2
0

)

.

These three conditions are equivalent to

z2
1 (n) > z2

0 (n) and z2
0 (n) <

σ2
0 (σ2

0 + σ2
1 )

σ2
1

ln

(

1 +
σ2

1

σ2
0

)

.

Hypothesis H2 is accepted if the three following conditions

are satisfied

z⊤(n)
(

Σ
−1
01 −Σ

−1
21

)

z(n) > ln

(

|Σ21 |

|Σ01 |

)

z⊤(n)
(

Σ
−1
11 −Σ

−1
21

)

z(n) > ln

(

|Σ21 |

|Σ11 |

)

z⊤(n)
(

Σ
−1
31 −Σ

−1
21

)

z(n) > ln

(

|Σ21 |

|Σ31 |

)

.

Equivalently

z2
1 (n) >

σ2
0 (σ2

0 + σ2
1 )

σ2
1

ln

(

1 +
σ2

1

σ2
0

)

z2
1 (n)

σ2
0 + σ2

1

−
z2
0 (n)

σ2
0

< − ln

(

1 +
σ2

1

σ2
0

)

z2
0 (n) > z2

1 (n).

These three conditions are equivalent to

z2
1 (n) < z2

0 (n) and z2
1 (n) >

σ2
0 (σ2

0 + σ2
1 )

σ2
1

ln

(

1 +
σ2

1

σ2
0

)

.

Hypothesis H3 is accepted if the three following conditions

are satisfied

z⊤(n)
(

Σ
−1
01 −Σ

−1
31

)

z(n) > ln

(

|Σ31 |

|Σ01 |

)
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)
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.
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σ2
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−
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σ2
0 + σ2

1

> ln

(
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σ2

1

σ2
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1 )

σ2
1

ln

(
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1
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1 (n) > z2
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0 (n) >
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0 + σ2
1 )

σ2
1

ln

(

1 +
σ2

1

σ2
0

)

.

APPENDIX B

MULTIVARIATE GAMMA DISTRIBUTION

Define p independent random vectors of R
2 denoted as

vk (ℓ) = [v0(ℓ− k), v1(ℓ− k)]⊤ ∼ N (0,Σ), k = 0, . . . , p−
1, and the 2× p matrix V (ℓ) = [v0(ℓ),v1(ℓ), . . . ,vp−1(ℓ)].
Then, the 2× 2 matrix A = V (ℓ)V ⊤(ℓ) is known to be dis-

tributed according to a Wishart distribution W2(p,Σ) with p
degrees of freedom and covariance matrix Σ [22, Th. 3.2.4, p.

91]. Now, define the vector d composed by the elements of the

main diagonal of A. Then, it was shown in Proposition 1.3.3

in [25, p. 32] that d is distributed according to a multivari-

ate gamma distribution denoted G(q, P ) with shape parameter
q = p/2 and scale parameter P = {p1 , p2 , p12}, with

p1 = 2Σ(1, 1)

p2 = 2Σ(2, 2)

p12 = 4 [Σ(1, 1)Σ(2, 2)−Σ(1, 2)Σ(2, 1)] (31)

whereΣ(1, 1),Σ(1, 2) = Σ(2, 1) andΣ(2, 2) are the elements
of the covariance matrix Σ.

Now, making vk (n) = z(n− k) = [z0(n− k), z1(n−
k)]⊤ ∼ N (0,Σip), k = 0, . . . , p− 1, for each hypoth-

esis Hi , and assuming the independence of z(n− i)
and z(n− j) for i 6= j4, the above results show that

d(n) = [‖z0(n)‖2 , ‖z1(n)‖2 ]⊤ is distributed according to a

multivariate gamma distribution with shape parameter q = p/2
and scale parameter P = {p1 , p2 , p12} evaluated from (31)

with Σ = Σip .
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d’Électrotechnique, d’Informatique et d’Hydraulique
of Toulouse (ENSEEIHT), University of Toulouse,
Toulouse, France, in 1989, and the Ph.D. degree
from the National Polytechnic Institute of Toulouse,
Toulouse, in 1992. He is currently a Professor with
ENSEEIHT and a member of the IRIT Laboratory
(UMR 5505 of the CNRS). His research activities
have centered around statistical signal processing

with a particular interest to Markov chain Monte Carlo methods. He was the
program chair of EUSIPCO, Toulouse, in 2002. He was also a member of the or-
ganizing committee for the 2006 IEEE International Conference on Acoustics,
Speech, and Signal Processing, Toulouse. He has been a member of differ-
ent technical committees including the Signal Processing Theory and Methods
Committee of the IEEE Signal Processing Society (from 2001 to 2007 and since
2010). He is an Associate Editor for the IEEE TRANSACTIONS ON SIGNAL PRO-
CESSING.

Neil J. Bershad (F’88) received the B.E.E. degree
from the Rensselaer Polytechnic Institute, Troy, NY,
USA, in 1958, the M.S. degree in electrical engi-
neering from the University of Southern California,
Los Angeles, CA, USA, in 1960, and the Ph.D. de-
gree in electrical engineering from the Rensselaer
Polytechnic Institute in 1962. In 1966, he joined the
Faculty of the Henry Samueli School of Engineering,
University of California, Irvine, CA, where he is cur-
rently an Emeritus Professor of electrical engineering
and computer science. His research interests have in-

volved stochastic systems modeling and analysis. His recent research interests
have been in the area of stochastic analysis of adaptive filters, including the
statistical learning behavior of adaptive filter structures for echo cancellation,
active acoustic noise cancellation, and variable gain (mu) adaptive algorithms.
He was an Associate Editor for the IEEE TRANSACTIONS ON COMMUNICA-
TIONS in the area of phase-locked loops and synchronization and for the IEEE
TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING in the area
of adaptive filtering.


