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Abstract

This thesis is about financial risks and high frequency data, with a particular focus on

financial systemic risk, the risk of high dimensional portfolios and market microstructure

noise. It is organized on three chapters.

The first chapter provides a continuous time reduced-form model for the propagation of

negative idiosyncratic shocks within a financial system. Using common factors and mutually

exciting jumps both in price and volatility, we distinguish between sources of systemic failure

such as macro risk drivers, connectedness and contagion. The estimation procedure relies on

the GMM approach and takes advantage of high frequency data. We use models’ parameters

to define weighted, directed networks for shock transmission, and we provide new measures

for the financial system fragility. We construct paths for the propagation of shocks, firstly

within a number of key US banks and insurance companies, and secondly within the nine

largest S&P sectors during the period 2000-2014. We find that beyond common factors,

systemic dependency has two related but distinct channels: price and volatility jumps.

In the second chapter, we develop a new factor-based estimator of the realized covolatil-

ity matrix, applicable in situations when the number of assets is large and the high-frequency

data are contaminated with microstructure noises. Our estimator relies on the assumption of

a factor structure for the noise component, separate from the latent systematic risk factors

that characterize the cross-sectional variation in the frictionless returns. The new estimator

provides theoretically more efficient and finite-sample more accurate estimates of large-scale

integrated covolatility, correlation, and inverse covolatility matrices than other recently de-

veloped realized estimation procedures. These theoretical and simulation-based findings are

further corroborated by an empirical application related to portfolio allocation and risk min-

imization involving several hundred individual stocks.

The last chapter presents a factor-based methodology to estimate microstructure noise

characteristics and frictionless prices under a high dimensional setup. We rely on factor
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assumptions both in latent returns and microstructure noise. The methodology is able to

estimate rotations of common factors, loading coefficients and volatilities in microstructure

noise for a huge number of stocks. Using stocks included in the S&P500 during the period

spanning January 2007 to December 2011, we estimate microstructure noise common factors

and compare them to some market-wide liquidity measures computed from real financial

variables. We obtain that: the first factor is correlated to the average spread and the average

number of shares outstanding; the second and third factors are related to the spread; the

fourth and fifth factors are significantly linked to the closing log-price. In addition, volatili-

ties of microstructure noise factors are widely explained by the average spread, the average

volume, the average number of trades and the average trade size.



Résumé

Le sujet général de cette thèse est le risque financier dans un contexte de disponibilité des

données à hautes fréquences, avec un accent particulier sur le risque systémique, le risque

des portefeuilles de grande dimension et le bruit de microstructure. Elle s’articule en trois

principaux chapitres.

Le premier chapitre propose un modèle de forme réduite, à temps continu, afin de car-

actériser la propagation des chocs idiosyncratiques négatifs à l’intérieur d’un ensemble de

plusieurs entités financières. En utilisant un modèle à facteurs avec des sauts mutuellement

excités, à la fois sur les prix et la volatilité, nous distinguons différentes sources de transmis-

sion de chocs financiers telles que la correlation, la connectivité et la contagion. La stratégie

d’estimation repose sur la méthode des moments généralisés et tire profit de la disponibil-

ité des données à très haute fréquence. Nous utilisons certains paramètres spécifiques du

modèle pour définir des réseaux pondérés pour la transmission des chocs. Aussi, nous four-

nissons de nouvelles mesures de fragilité du système financier. Nous construisons des cartes

de propagation des chocs, d’abord pour certaines banques et compagnies d’assurance clés

aux USA, et ensuite pour les neuf plus grands secteurs de l’économie américaine. Il en sort

qu’au-delà des facteurs communs, les chocs financiés se propagent via deux canaux distincts

et complémentaires: les prix et la volatilité.

Dans le deuxième chapitre, nous développons un nouvel estimateur de la matrice de co-

volatilité réalisée, applicable dans les situations où le nombre d’actifs est grand et les données

à haute fréquence sont contaminées par des bruits de microstructure. Notre estimateur repose

sur l’hypothèse d’une structure factorielle de la composante du bruit, distincte des facteurs

de risque systématiques latents qui caractérisent la variation transversale des rendements.

Le nouvel estimateur fournit des estimations théoriquement plus efficientes et plus précises

en échantillon fini, relativement aux autres méthodes d’estimation récentes. Les résultats

théoriques et basés sur des simulations sont corroborés par une application empirique liée
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à l’allocation de portefeuille et à la minimisation du risque impliquant plusieurs centaines

d’actions individuelles.

Le dernier chapitre présente une méthodologie permettant d’estimer les caractéristiques

du bruit de microstructure et les rendements latents dans une configuration à grande dimen-

sion. Nous nous appuyons sur des hypothèses factorielles tant sur les rendements latents que

sur le bruit de microstructure. La procédure est capable d’estimer les rotations des facteurs

communs, les coefficients de charge et les volatilités du bruit de microstructure pour un grand

nombre d’actifs. En utilisant les actions incluses dans le S & P500 au cours de la période

allant de janvier 2007 à décembre 2011, nous estimons les facteurs communs du bruit de mi-

crostructure et les comparons à certaines mesures de liquidité à l’échelle du marché, calculées

à partir de variables financières réelles. Il en résulte que: le premier facteur est corrélé au

spread moyen et au nombre moyen d’actions en circulation; les deuxième et troisième facteurs

sont uniquement liés au spread; les quatrième et cinquième facteurs varient significativement

avec le prix moyen des actions à la fermeture. De plus, les volatilités des facteurs du bruit

de microstructure s’expliquent largement par le spread moyen, le volume moyen, le nombre

moyen de transactions et la taille moyenne desdites transactions.
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General Introduction

During the last decades, there has been a huge increase in the amount of observations on

financial variables. Data are now recorded at an intraday time scale, and are often irregu-

larly spaced over time. Advances in computer technology and storage have facilitated the

availability of such high frequency financial data to researchers. They most often contain

information about transactions and quotes for stocks, bonds, currencies, options, and other

financial instruments. Taking advantage of the availability of such huge amount of data has

lead to important developments in the financial econometrics literature. A non-exhaustive

list of hot topics during last decades includes: modeling price dynamics through stochastics

volatility models, volatiliy/covolatility estimation, realized regressions, volatility forecast-

ing, jump detection, modeling shock transmission or financial contagion, measuring liquidity

through the size of the market microstructure noise, etc.

The probabilistic theory that supports these studies was initiated by Jacod (1994), Jacod

and Protter (1998), and Aït-Sahalia and Jacod (2014) and the econometrics theory pioneered

by Andersen, Diebold, and Labys (2001) and Barndorff-Nielsen and Shephard (2002). Ap-

plications are in the field of risk management, hedging, execution of transactions, portfolio

allocation, algorithm trading and forecasting.

Using high frequency data, this thesis contributes to the debates on three important

topics in financial econometrics: i) modeling shock transmission within financial institutions;

ii) volatiliy/covolatility estimation; iii) understanding the market microstructure noise.

Since the global financial crisis of 2007-2009, financial shock propagation is of a huge

importance in financial economics. Regulators want to contain it, and investors want to be

hedged again such type of global market risk when they carry out their optimal portfolio

allocations. To achieve their goals, regulators need information about which firms are shock

providers, which ones are shock receivers, or what is the origin of shocks (common factor or

idiosyncratic). From the answer of this last question the type of regulation policy to carry

1
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out is going to depend. If the shock originates from a common factor, stabilization macro

policies need to be carried out, but if shocks are idiosyncratic, then interbank exposure need

to be reduced. In the investor side, the portfolio allocation is going to be optimal if they have

information about different types of dependency between constituents of their portfolio, and

information about patterns through which shocks propagate. The first chapter of this thesis

provides such useful information.

Information on the propagation of shocks within a financial system is present both in

balance sheets as well as transaction prices of related assets. However, balance sheets’ infor-

mation is complex and difficult to access. Prices are the best alternative source of information

to model shock transmission patterns. This is the approach we use in this thesis.

As it is common in the financial econometrics literature, we assume throughout this thesis

that the vector of log-prices Xt is a multidimensional semimartingale process during calm

periods; it is defined on a complete probability space (Ω, ℑ, P); the information filtration

is an increasing family of σ-fields, (ℑt)t≥0, and satisfies P-completeness and right continuity.

Log-prices are ℑt measurable such that

dXt = µdt+
√
VtdBt (1)

where Vt (sometime called σ2
t ) is the spot volatility, Bt is a Wiener processes.

When we are interested in shocks transmission, it is well established that during periods

of crisis, the previous representation can’t explain large drops in asset markets, nor trans-

mission patterns of idiosyncratic shocks over time and across assets, with volatility variables

calibrated to realistic values. Eraker (2004) documented that a better fit of the observed

data is obtained when the model contains stochastics volatility and jumps both in price as

well as in volatility. Thus, our model for shock transmission will be a reduced-form model

such that:
dXt = µdt+

√
VtdBt + ZtdNt

dVt = κ (θ − Vt) dt+ ηρ
√
VtdBt + Z

v

t
dN

v

t

(2)

where Zt is the jump size and Nt a poisson point process with rate λt. The same notation

holds for the volatility equation using Zv
t , N v

t and λvt .

Most often, financial shocks tend to cluster serially and cross-sectionnally: a large shock

to a given asset at a given time t predicts future large shocks to this asset, and increases the

probability of large shocks to other assets. Allowing a time varying jump intensity λt is a
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natural technic to model this propagation phenomenon. To be more precise, for a stock i,

jump intensity of price and volatility, respectively λit and λvit, will be defined by:

dλit = αi (λi∞ − λit) dt+
m∑

j=1

βijdNjt (3)

dλvit = αvi (λvi∞ − λvit) dt+
m∑

j=1

βvijdN
v
jt (4)

From the previous equations, it comes out that a jump in the stock j at time t increases

the probability of further jump in the stock i between time t and t+1. The use of this type of

jumps is justified by some empirical evidences: during periods of distress, jumps are clustered

serially and cross-sectionnally. This property is observed both in price and volatility. The

usual poisson point processes are not able to reproduce these types of clustering. A point

proces with jump intensity defined as previously is called a Hawkes point process.

Our model decomposes the semimartingale representation of the price equation into a

common component and an idiosyncratic component. It permits to account for different

mechanisms of systemic failure such as: correlation effect (through common factors) and

connectedness/contagion effects (through mutually exciting jumps both in price and volatil-

ity).

Our model is more general than existing models of financial contagion (e.g. Aït-Sahalia,

Cacho-Diaz, and Leaven (2015) and Maneesoonthorn, Forbes, and Martin (2016)): we control

for the systematic risk (through common factors); our model is multidimensional with no

restriction on the number of stocks; we have less restriction on the model (more specifically

on excitation matrices β and βv). Aït-Sahalia, Cacho-Diaz, and Leaven (2015) proposed

a model for two assets, constant volatity and restriction on the excitation matrix (some

sparsity assumptions). It cannot address the question of connection within a set of more

than 2 assets. Maneesoonthorn, Forbes, and Martin (2016)) has stochastic volatility, jump

in price and volatility, but their model is uni-dimensional. None of their approaches controls

the co-movement due to common factors.

Our entire model is estimated using a multi-step GMM approach: In the step 1, we

remove all the jumps present into the data, and estimate the resulting diffusion model;

in step 2, coefficients of the first step are kept fixed while we estimate parameters of the

discontinuous part of the model; in the step 3, coefficients obtained in steps 1 and 2 are used



4

as starting values for the estimation of the global model. The identification of parameters

is facilitated by a combination of moments of returns and moments of volatility measures

constructed using high frequency data. Once centered, moment of order 3 and 4 of returns

isolate parameters of the jump component up-to the factor loading vector b, while moment

of order 2 places the contributions from the diffusive and jump components of the model on

the same order. Moments of volatility measures facilitate the identification of parameters of

the volatility (both factor and idiosyncratic volatility parameters).

Within the set of estimated parameters, there are excitation parameters (β and βv) which

contain information about the strength of links between stocks. We use these excitation

parameters to construct new measures of the financial system fragility, and network maps

for the propagation of different types of shocks. Excitation matrices of prices and volatility

are used as adjacency matrices for network constructions. An edge is drawn between an

asset i and an asset j if and only if the corresponding excitation parameter is significantly

different from zero. Our measures permit to know which stocks are shock providers, which

one are shock receivers, and what is the level of the financial system fragility. Our measures

have similar intuitions as the Marginal Expected Shortfall by Acharya, Pedersen, Philippe,

and Richardson (2017), or the Co-VaR by Adrian and Brunnermeier (2016). The popular

measure of the financial system connectedness of Diebold and Yilmaz (2015a) is not able to

identify the type of connection we emphasize here. Applied to our setup, it produces a lot

of self-excitation.

We use our methodology to track associations within a number of key US banks and

insurance companies as well as within nine S&P500 largest economic sectors. We find that

shoch transmission has three related but distinct channels: common factors, price and volatil-

ity jumps. Also, the risk of volatility shocks to propagate throughout this financial system is

bigger than the one of price shocks. Concerning financial institutions, we found that BAC,

WFC, ACE and MET are main contributors to systemic risk. For S&P500 sectors, Distress

in energy, financial, health care, and consumer staples sectors have the highest negative im-

pacts on the economic system fragility. Our network maps and fragility measures provide

important information to market participants to reduce the adverse selection risk, and to

regulators to design a stable financial system.

Relying on high frequency data, the aim of the second chapter of this thesis is to estimate

the covolatility matrix of a huge number of assets, when data are contaminated by market

microstructure noise. Considered as one measure of the financial risk, volatility is of a
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particular interest in financial econometrics. Estimating the integrated volatility/covolatility

matrix has been an active topic. Over a trading time of length T = 1, the integrated

covolatility of a p-dimensional process of latent frictionless log-price X∗t = (X∗1t, ..., X
∗
pt)

satisfying the equation 1.1, is the p× p matrix defined by,

ICV =

1∫

0

σsσ
′

sds. (5)

where σs =
√
Vs. ICV is a daily measure of the co-movement between assets. It is of a huge

importance in the areas of risk management, portfolio allocation, hedging and asset pricing.

When p = 1, this object is called the integrated volatility.

By the theory of quadratic variation, ICV may be consistently estimated by the realized

variance,

RCV =
∑

ti

(X∗ti+1
−X∗ti)(X

∗
ti+1

−X∗ti)
′, (6)

where X∗t is the latent frictionless log-price, 0 ≤ ti ≤ 1 refer to the within day sampling

times, ti − ti−1 → 0.

The realized variance is a consistent estimator of ICV under the assumption of friction-

less markets. However, this assumption is not realist, because in practice, high frequency

data on returns contain market microstructure noise coming from: bid-ask bounds, transac-

tion prices, non-trading periods or price discreteness, trades occurring on different markets

or networks, rounding errors, etc. Thus, the recorded log-price vector Xt is noisy such that:

Xt = X∗t + εt (7)

It is now accepted in the literature that this noise plays an essential role when studying

financial data. The presence of such noise renders inconsistent the realized variance. To

provide some solutions to this inconsistency under microstructure noise, for p = 1, some

estimators have been proposed. The subsampling and averaging approach of Zhang, Mykland,

and Ait-Sahalia (2005) provides the Averaging and Two Scales estimators. The intuition of

the averaging estimator is the following: The initial full grid containing all observation points

is partitioned into K nonoverlapping subgrids, and K sub-realized variances are computed

over each subgrid. The estimator is obtained by taking the average of the K sub-realized

variances. The Two Scales estimator is a consistent and unbiased adjustment of the averaging
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estimator. Another approaches are the realized kernel of Barndorff-Nielsen, Hansen, and

Shephard (2008a) and the pre-averaging estimator of Jacod, Li, Mykland, Podolskijc, and

Vetter (2009a). The realized kernel is a weighting average of realized autocoviance. The idea

of the pre-averaging approach is to choose a window of length kn, a weigthing function g, and

to construct from the initial return series a new one by averaging returns over consecutive

and overlapping blocs of length kn. It is with this latter series that the pre-averaging realized

variance is construted. The two second approaches (Kernel and Pre-averaging) provide good

finite sample and convergence properties. The subsampling and averaging approach has many

others advantages : a) this device is model-free ; b) it takes advantage of the rich sources in

tick-by-tick data while preserving the continuous time assumption on the underlying returns

; c) to a great extent it corrects for the adverse effects of microstructure noise on volatility

estimation (Zhang, Mykland, and Ait-Sahalia (2005)).

These estimators have been extended to the multivariate case, when observations of all

the different assets were synchronous, it means recorded exactly at the same time, and when

the number of assets was small relatively to the sample size. However, very often, high

frequency data of different assets are rarely simultaneous. Thus, estimating the covolatility

matrix in this asynchronous framework with market microstructure noise is challenging. In

this case, there are at least three types of problems to deal with: the non-synchronicity of

observations, the epps-effect, and market microstructure noise. When these problems exist,

the usual estimators of the covolatility matrix are seriously biased. The asynchronicity often

leads to some undesirable features as the Epps-effect (see, e.g., Epps (1979)), meaning that

correlation estimates tend to become lower when the sampling frequency increases.

To provide a solution to the non-synchronicity problem when estimating the covolatility

matrix, Hayashi and Yoshida (2005) propose an estimator of the covariation of two diffusion

processes when they are observed only in discrete time. Their estimator is based on overlap

intervals and is free of any synchronization process of the original data. However, the estima-

tor of Hayashi and Yoshida (2005) doesn’t deal with the microstructure noise. Thanks to the

multivariate realized kernel estimator of Barndorff-Nielsen, Hansen, and Shephard (2008a).

These authors construct the first estimator which guarantees simultaneously: consistency,

positive semi-definiteness, robust to microstructure errors, and handles non-synchronous

trading. The non-synchronicity issue is resolved using the refresh time approach. Also,

Christensen, Kinnebrock, and Podolskij (2010a) propose another estimator of the covolatil-

ity matrix of continuous Itô semimartingales, observed with noise. His Modulated Realized

Covariance estimator is a multivariate extension of the pre-averaging estimator of Jacod, Li,
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Mykland, Podolskijc, and Vetter (2009a).

These estimators perform well when the number of assets is small relatively to the sam-

ple size. However, in realistic situations, the number of assets can be huge. In this case,

the previous estimators perform poorly because of the lack of accuracy in estimating high-

dimensional matrices. One solution popular in the literature is to impose a structure in

that matrix. Two main approaches have been proposed in the high dimensional framework:

sparsity or decay assumptions and the use of factor structures.

Estimators that rely on sparsity and decay assumptions include Wang (2010) and Zheng

and Li (2011). They postulate that the covolatility matrix is comprised of only a small number

of non-zero block diagonal matrices, or that the absolute magnitude of the elements in the

matrix somehow decay away from the diagonal. The blocking and regularization approach of

Hautsch and Podolskij (2013), in which assets with similar observation frequency are grouped

together in order to reduce the data loss stemming from the use of refresh-time sampling,

also implicitly builds on similar ideas. As does the composite realized kernel estimator of

Lunde, Shephard, and Sheppard (2016), in which bivariate realized kernel estimators for all

pairs of assets is combined and regularized in the construction of an estimator for the full

high-dimensional covolatility matrix for all assets.

When the problem concerns the stock returns, a factor representation seems natural

(see, e.g., Ross (1976), Chen, Roll, and Ross (1986), Sharpe (1994), and Ledoit and Wolf

(2003)). The idea is to deal with the curse of dimensionality and to force the estimator to

be well-conditioned, meaning that estimation error is not amplified by inverting. The use

of a factor structure to estimate the covolatility is not recent. Fan, Fan, and Lv (2008)

examine how the dimensionality impact the estimation of the covariance matrices. They use

a multi-factor model for the vector of excessive returns of p assets to resolve the problem

due to the dimensionality and to estimate the covariance matrix. Their factors are assumed

to be observable. Tao, Wang, and Chen (2011) propose an approach which combines low-

frequency and high-frequency data in order to estimate the integrated covolatility matrix in

the high dimension framework. Bannouh, Martens, Oomen, and van Dijk (2012) introduce a

Mixed-Frequency Factor Model to estimate the vast covolatility matrix of asset returns. They

consider as factors highly liquid assets such as exchange traded funds (ETFs) and use these

very high-frequency data to estimate the covolatility matrices of the observed factors and

regressions to estimate loadings and the idiosyncratic risk covolatility matrix. Fan, Liao, and

Mincheva (2011) through their approximate factor models, assume observable factors and
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allow the presence of the cross-sectional correlation in a sparse error covariance matrix. Ait-

Sahalia and Xiu (2016) propose an approach based on the principal component analysis for

the estimation of a high dimensional factor models. Fan, Liao, and Mincheva (2013) introduce

the Principal Orthogonal Complement Thresholding Estimator (Henceforth, POET). They

assume a sparse error covariance matrix in an approximate factor model, and allow for

the presence of some cross-sectional correlation, after taking out common but unobservable

factors. Dai, Lu, and Xiu (2017) rely on the pre-averaging method with refresh time to solve

the microstructure problems, while using three different specifications of factor models, and

their corresponding estimators, respectively, to battle against the curse of dimensionality.

This thesis contributes to this exciting literature on high-dimensional covolatility matrix

estimation. We provide a new factor-based estimator of the covolatility matrix, applicable in

situations when the number of assets is large and the high-frequency data are contaminated

by market microstructure noise (noise coming from the way the market is organized: bid-ask

spread, rounding errors, transaction prices, etc.). Our estimation strategy takes advantage

of a factor structure for the noise component with different features than the factor structure

in the latent returns. We showed that the new estimator is theoretically more efficient and

more accurate in finite-sample than other recently developed realized estimation procedures.

These findings are corroborated by an empirical application related to portfolio allocation

and risk minimization involving several hundred individual stocks.

As it is usually the case in the literature, our estimation methodology consists on reduc-

ing the impact of market microstructure noise prevalent at high frequency, while accurately

estimating volatility of the latent log-price. In general, understanding microstructure noise is

not the main purpose when estimating volatility. In the empirical literature on microstruc-

ture noise, existing procedures are most often limited to estimate only the noise volatility.

Nevertheless, useful information can be extracted from this noise component for a better

understanding of its behavior.

The objective of the last chapter of this thesis is to contribute to the growing literature

which consists on studying the information contain of microstructure noise. Considering a

huge number of stocks, our aim is firstly to estimate microstructure noise components through

a factorial decomposition. Secondly, we want to study the information contain of the factor

component of this noise by relating it to some liquidity measures. Thirdly, we are interested

on approximating frictionless prices.

Our contribution on this topic is closely related to the ones by Aït-Sahalia and Yu (2009),
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Li, Xie, and Zheng (2016), Jacod, Li, and Zheng (2017) and Chaker (2017). Aït-Sahalia

and Yu (2009) study the nature of the information contained in high frequency statistical

measurements of microstructure noise volatility and relate them to observable financial char-

acteristics of the underlying assets and, in particular, to different financial measures of their

liquidity. Li, Xie, and Zheng (2016) consider a setting where market microstructure noise is a

parametric function of trading information, possibly with a remaining noise component, and

show that higher efficiency can be obtained by modeling and removing the noise component

caused by trading and then applying existing estimators to the estimated log-prices. Jacod,

Li, and Zheng (2017) study the non-parametric estimation of autocovariances and autocor-

relations of microstructure noise based on high frequency data. Chaker (2017) explicitly

models microstructure noise and removes it from observed prices to obtain an estimate of

the frictionless price.

Nevertheless, our approach presents important differences with the existing literature.

Firstly, our methodology relies on factor assumptions both in latent returns and microstruc-

ture noise. Thus, variables that explain microstructure noise are unobservable latent common

factors. They will be estimated through the process. Contrary to the existing literature, when

specifying noise equations, our approach will not suffer for the misspecification or missing

explanatory variables issues. Secondly, our approach is high dimensional in term of number

of stocks: microstructure noise characteristics and frictionless prices are estimated jointly

for a huge number of stocks. As it is common in this literature, we compare the extracted

common factors of microstructure noises to some liquidity measures. Here, liquidity measures

are not stock specific, but are averages or principal components of individual stock liquidity

measures.

Our methodology is able to estimate rotations of common factors, loading coefficients

and volatilities of microstructure noise for a huge number of stocks. Using stocks included

in the S&P500 during the period spanning January 2007 to December 2011, we estimate

microstructure noise common factors and compare them to some market-wide liquidity mea-

sures computed from real financial variables. We obtain that: the first factor is correlated

to the average spread and the average number of shares outstanding; the second and third

factors are related to the spread; the fourth and fifth factors are significantly linked to the

closing log price. In addition, volatilities of those microstructure noise factors are widely

explained by the average spread, the average volume, the average number of trades and the

average trade size.



Chapter 1

A Factor Model for Systemic Risk

Using Mutually Exciting Jump

Processes

Serge Nyawa1

Abstract

We provide a reduced-form model for the propagation of negative idiosyncratic shocks

from any specific economic unit to the entire financial system. This phenomenon is referred

as systemic risk. Our continuous time model generalizes popular existing econometric models

for financial contagion. Using common factors and mutually exciting jumps both in price

and volatility, we distinguish between sources of systemic failure such as macro risk drivers,

connectedness and contagion. The estimation procedure relies on the GMM approach and

takes advantage of high frequency data. We use models’ parameters to define weighted,

directed networks for shock transmission, and we provide new measures for the financial

system fragility. We construct paths for the propagation of shocks, firstly within a number

of key US banks and insurance companies, and secondly within the nine largest S&P sectors

1We are very grateful to Nour Meddahi and Tim Bollerslev for helpful comments that significantly im-
proved the paper. We have also benefited comments by Jihyun Kim, Yacine Aït-Sahalia, Bruno Biais, Kamil
Yilmaz, Rene Garcia, Jean-Pièrre Florens, Eric Gautier, Jia Li, Thierry Magnac, Christian Bontemps, Pièrre
Dubois, Wilfried Sand-Zantman, Sophie Moinas, as well as workshop participants at Toulouse School of Eco-
nomics and IAE Toulouse. We acknowledge financial support of the grant ERC POEMH. We are grateful to
Dacheng Xiu for providing us a part of the dataset.
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during the period 2000-2014. We find that beyond common factors, systemic dependency

has two related but distinct channels: price and volatility jumps.

1.1 Introduction

1.1.1 Motivation

In the aftermath of the global financial crisis of 2007-2009, designing a stable financial system

has become one of the biggest challenges for regulators and policy makers. The primary goal

is to reduce the possible propagation of negative idiosyncratic shocks to the entire financial

system, a phenomenon referred as systemic risk. The losses tend to spread across financial

institutions, thus threatening the whole financial system as well as potentially adverse conse-

quences for the supply of credit to the real economy. Market participants pay much attention

to systemic risk and choose their strategies to reduce its impact on their future investments.

The systemic risk is ascribed to one of the following three mechanisms (See, e.g., Rauch and

Litan (1998) and Scott (2010) and Jenkins (2011)):

(i) Correlation effect, wherein a severe downturn in the economy results in insolvency of

financial institutions mainly due to the devaluation of assets widely held, price corre-

lations or exposures to common factors. Hellwig (2009) refers to this as Domino effect

through asset prices. The bubble in housing prices that preceded the financial crisis of

2007-09 was a source of correlation risk that caused the collapse of several major banks,

which were exposed to the U.S. real estate sector.

(ii) Connectedness effect, wherein a chain of domino-like failures of institutions occur be-

cause of their connections through financial claims to insolvent institutions. This sys-

temic risk channel is also called Domino effect through contractual relations. Intercon-

nectedness can arise through a variety of discrete channels, e.g., interbank deposits,

derivative contracts, etc.

(iii) Contagion effect, wherein a response to the failure or disruption of a financial institu-

tion, risk averse investors with limited information, decide to liquidate their positions

from this institution as well as from other similar firms2. This phenomenon has been

observed in september 2008, after the failure of Lehman Brothers: the liquidation of the

2Firms with investments in the same asset classes.
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Reserve Primary Fund, a Lehman Brothers debt securities’ holder, generated investor

fears and decrease the market value of others money market funds.

It follows that information on the propagation of shocks within a financial system is

present both in balance sheet as well as prices of related assets. However, due to prolifer-

ation of derivatives and securitization, balance sheets’ information is complex and difficult

to access. Prices are the best alternative source of information to model shock transmission

patterns. The primary focus of this paper is to provide a reduced-form model for shock

transmission within financial institutions, during periods of distress. The model will high-

light various sources of systemic risk, as well as different and complementary channels for

shock transmission. It relies on price and volatility dynamics. We model price dynamic by a

jump diffusion factor model with time varying jump intensity both in prices and volatilities.

In the absence of arbitrage, jump diffusion models with jumps both in price and volatility

are increasingly used to capture price dynamic during period of turmoil. Stock price crisis

data exhibit much higher volatility as well as sudden jumps which the standard model is

unable to capture.

Figure 1.1. Periods of distress: sudden jumps as well as higher volatility.
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Figure 1.1 provides such evidence for two stocks namely the American International

Group (AIG) and the Bank of America Corporation (BAC). As it is a common pratice, we

consider as jumps, observed absolute returns greater than 2 × standard deviation. During

the 2006-2008 financial crisis, these stocks experienced respectively 68 and 76 sudden price

jumps. Their volatility jumped at least 50 and 75 times respectively.

Standard Diffusion models with stochastic volatility assume that asset log-returns follow a

semimartingale dynamics and instantaneous variance follows a Heston (1993) model

dXt = µdt+
√
VtdBt

dVt = κ (θ − Vt) dt+ ηρ
√
VtdWt

(1.1)

where Xt is the log-price, Vt spot the volatility, Bt and Wt are Wiener processes. This model

can’t explain large drops in asset markets with volatility variables calibrated to realistic

values. Even more unlikely would be to generate crashes that happen in not just one, but

multiple markets around nearly the same time and its propagation in time like aftershock

effects.

In order to match the crisis data, the first approach proposed in literature was to add a

jump component to the diffusion model. However, Eraker (2004) documented that a Poisson

jump-diffusion model with stochastic volatility explains neither the large increases observed

in the implied volatility following a crisis, nor the systematic variation observed in prices.

They concluded that a significantly better fit of the observed data is obtained when the model

contains jumps both in price as well as volatility. In an extension of model (1.1), we allow

jump component both in price and volatility.

dXt = µdt+
√
VtdBt + ZtdNt

dVt = κ (θ − Vt) dt+ ηρ
√
VtdBt + Z

v

t
dN

v

t

(1.2)

where Zt is the jump size and Nt a poisson point process with rate λ. However, fitting

individual crisis data is not the only interesting property a good jump diffusion model must

have. It should also be able to model transmission patterns of idiosyncratic shock over time

and across assets. We want to emphasize this latter property throughout this paper.

At a portfolio level, shocks tend to cluster serially and cross-sectionnally. A large shock

to a given asset at a given time t predicts future large shocks to this asset (known as time

series clustering in Polson and Scott (2012), or self-excitation in Aït-Sahalia, Cacho-Diaz,

and Leaven (2015)). In addition, an initial large idiosyncratic shock increases the probability
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of large shocks to other assets (referred as "mutual excitation" in Aït-Sahalia, Cacho-Diaz,

and Leaven (2015)). The figure 1.2 exhibits a mutual excitation originated from Lehman

Brothers, and oriented to AIG and Morgan Stanley.

Figure 1.2. Price dynamics of Lehman Brothers, AIG and Morgan Stanley during the
year 2008.

 

March 17, 2008 Morning: Lehman shares fell as much as 

48% following the near-collapse of Bear Stearns. 

March 17, 2008 Afternoon: AIG, MS

and other financial companies fell 

almost immediately. 

September 15, 2008 Morning: Lehman declares bankruptcy. Its 

shares tumbled over 90% by the end of the day. 

September 15, 2008 Afternoon: AIG, 

MS and other financial companies 

ended the day with huge losses. 

Notes: Mutual excitation originated from Lehman Brothers and was transmitted to

AIG, MS and others financial institutions.

Using poisson point processes with constant rates, a jump diffusion model with jumps

both in price and volatility can’t replicate serial and mutual excitations. However, mutually

exciting jump processes with time varying rates, known as Hawkes processes, are natural can-

didates for modeling this "contagion" phenomenon. To more formally, let Xt = (X1t, ..., Xmt)

be a m-dimensional vector of log-price processes as in equation (1.2). The jump intensity λit

of the point process Nit is now defined by:

dλit = αi (λi∞ − λit) dt+
m∑

j=1

βijdNjt (1.3)

In order for the asset return process to be stationary, we assume that the degree of excitation

of various jumps, or jump intensities, mean revert until the next jump with speed αi. λi∞

is the long term jump intensity. Nit is called a Hawkes point process (for more details see

Hawkes (1971a), Hawkes (1971b) or Hawkes and David (1974)). Here, the jump intensity

of the asset i is affected by its own idiosyncratic jump as well as jump in another asset j.
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Since parameters (βij)1≤i,j≤N are assumed to be positive, any jump in the asset j at time

t increases the jump intensity λit of the asset i by βij. Thus, after a jump in the asset j

at time t, the likelihood of further jumps in the asset i within the time interval [t; t + ∆]

increases by βij∆, where ∆ is the sampling frequency. This specification mostly encompasses

the intuition for connectedness and contagion effects, while the common factors are used

to model the risk of a failure of the entire system arising from a severe downturn of the

economy i.e. correlation effect. Hence, a jump diffusion factor model with Hawkes point

processes, provides an ideal framework to model the systemic risk. For future reference, we

call βij, 1 ≤ i, j ≤ N , excitation parameters.

When a negative jump is observed in a stock price, there are three potential sources:

a discontinuous and sudden fall of the price, a sudden explosion of the volatility, or a huge

drop in a common factor. The existing literature is unclear whether systemic dependency,

during the periods of financial distress, is an evidence of idiosyncratic jump dependencies

in price, in volatility, in common factors, or both. For policy decisions, it is important to

distinguish between these different sources of systemic risk, as emphasized in De Vries (2005).

If the source of systemic risk is the idiosyncratic jump dependency, then interbank exposures

must be reduced, but if the causes come from common factors, stabilization macro policies

must be carried out. Aït-Sahalia, Cacho-Diaz, and Leaven (2015) showed that a part of the

jump transmission dynamic on large stock index returns around the five world regions was

explained by Hawkes dynamic in jump price intensity. They didn’t allow jumps in volatility.

However, volatility is also subject to sudden and explosive movements during the crisis.

Maneesoonthorn, Forbes, and Martin (2016) argued that volatility jump intensity is much

more informative than the jump price intensity when we are interested in impending financial

crisis. In addition, Polson and Scott (2012) pointed that mutually exciting volatility shocks

explain an important part of the correlation increase during a crisis. Thus, jump dynamic in

volatility channel reveal important feature and must be incorporated into the model.

After controlling for common effects, the incorporation of price and volatility channels

for shock transmission permits us to disentangle two different and complementary channels.

Through price jump dynamics, we primarily focus on the transmission of market expectation

shocks or the propagation of negative market perception (see Diebold and Yilmaz (2015b)):

a big decrease in the price of one asset is perceived by investors as having pessimistic infor-

mation about its future profitability as well as values of similar or correlated assets. As a

consequence, it generates a decline in prices of all similar assets. The price jump is trans-

mitted through a common anticipation or through a rational expectation (by investors) of
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the future price movements. Secondly, the price jump transmission scheme also shed some

light on the transmission path of liquidity micro-crises induced by order flow fluctuations

(see Joulin, Lefevre, Grunberg, and Bouchaud (2008)) and liquidity shocks: after a sudden

loss faced by a given asset, investors use fire sales in other assets to raise cash in order to

rebalance their portfolios. The drop in price moves from this asset to others.

On the volatility side, modeling the jump transmission helps to understand how a sudden

and large increase in fear, or uncertainty about future profitably, or a huge deterioration of

the market expectation of future risks of investors is transmitted. Clements and Todorova

(2016) described the volatility jumps as the transmission of behavioral shocks or information

flow. Clark (1973) showed from the mixture of distribution hypothesis that return volatility is

related to the flow of information into the market. Polson and Scott (2012) describes volatility

jumps as a proxy for investor behavior and for changes in the informational efficiency of

equity markets. Hence, modeling the volatility jump transmission allows us to study how

new information flow propagates through related assets, a point of view also shared by

Fernandez-Rodriguez and Sosvilla-Rivero (2016)).

The importance of studying the systemic risk through common factors and jumps both

in price and volatility is twofold. Firstly, it provides information to contain the global market

risk, defined as the risk associated with the change in the market value of a portfolio. The

global market risk inherently depends on the interdependence between constituents of this

portfolio. In order to minimize the global portfolio risk, the effective diversification must

incorporate different type of linkages between underlying assets, including the tail dependency

through jump intensities. The aim of this paper is to provide such useful information in order

to optimize market activities such as portfolio allocation, risk management or asset pricing.

Secondly, modelling systemic risk is important for the real time monitoring (see Diebold

and Yilmaz (2015b)) because it provides strategic information on how news, investor fear,

or common expectational behaviour spread and cluster across assets and time. It allows us

to also know net receivers or transmitters of different shocks. When formulating economic

policy, all this information is essential.

1.1.2 Main Contribution

The existing literature of shock transmission among connected objects are usually modeled

through either returns or volatilities (see Diebold and Yilmaz (2015b)). In this paper, we
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allow connections through their returns as well as their volatilities. This paper is closely

related to Aït-Sahalia, Cacho-Diaz, and Leaven (2015) and Maneesoonthorn, Forbes, and

Martin (2016), but with several distinctions. We extend their perspectives to the multidi-

mensional setup, without any restriction on the number of assets, fewer structure on jump

intensity dynamics, mutually exciting jumps both in price and volatility, and controlling for

the systematic risk.

We adopt a factor-modelling approach used in Polson and Scott (2012). By introducing a

factor component in the log-price equation, we control co-movements related to fundamentals

or the correlation-based risk. It permits us to focus on the two other forms of systemic risk,

namely connectedness and financial contagion. Polson and Scott (2012) argued that an

increase of the co-movement among asset returns does not necessarily provide evidence of

contagion or connectedness, common factors need to be firstly controlled for. Our main

contributions are described as follow:

• We provide a reduced-form model for financial systemic risk ;

• We construct a model which distinguishes among different sources of systemic failure

such as macro risk drivers or correlation effect (using common factors), connectedness

and contagion effects (through mutually exciting jumps both in price and volatility);

• We generalize existing econometric models for financial contagion:

– Our model has similarities with Maneesoonthorn, Forbes, and Martin (2016), but

we are multidimensional with the additional feature of controlling for the system-

atic risk through common factors;

– We don’t restrict the structure of the excitation matrix and also allow jumps

in volatility which is more general than specification considered in Aït-Sahalia,

Cacho-Diaz, and Leaven (2015) and it also resolves misspecification and missing

variable issues due to imposed restrictions. We also allow additional channels of

the shock transmission: volatility jumps and common factors.

• We propose an estimation methodology based on high frequency data for our "doubly3

Hawkes" jump-diffusion model with factors.

• We contribute to the growing literature which uses partial information to reconstruct

networks: we use excitation parameters to define weighted, directed networks for the

3Jumps both in price and volatility based on hawkes point processes



18

shock transmission. Our methodology is applied to a number of key US banks, insurance

companies, and the nine largest S&P sectors during the period 2000-2014. We find

that systemic risk has three related but distinct channels: common factors, price and

volatility jumps.

1.2 The Continuous Time Model

We model the shock transmission using a doubly-Hawkes jump-diffusion model with common

factors, which is a generalization of the models considered in Maneesoonthorn, Forbes, and

Martin (2016) and Aït-Sahalia, Cacho-Diaz, and Leaven (2015) as we don’t restrict the

number of assets in the model and also allow "Hawkes-jump" both in prices and volatility.

Now, we will introduce each component of our model.

• Prices dynamics: Let Xt = (X1t, ..., Xmt) be the log-price vector at time t > 0. We

assume that Xt follows a Itô semimartingale with jumps and factors. It is defined on a

complete probability space (Ω, ℑ, P). The information filtration is an increasing family of

σ-fields, (ℑt)t≥0, and satisfies P-completeness and right continuity. Prices are ℑt measurable

and follows the dynamics: ∀i = 1, ...,m,

dXit = bidFt + dEit =
K∑

k=1

bikdFkt + dEit (1.4)

dFkt = µ
F k
dt+

√
VFktdBFkt + ZFktdNFkt (1.5)

dEit = µ
Ii
dt+

√
VIitdBIit + ZIitdNIit (1.6)

where K is the number of factors. The role of common factors dFt is to control for the

correlation risk, the failure of the entire system arising from a severe downturn of the economy

or drops in fundamentals. Since systemic risk is more about the increase of the co-movement

above and beyond levels purely justified by fundamentals. After controlling for the correlation

risk, our main focus will be on the idiosyncratic part of the model dEit. The log-price dynamic

of the asset i can be summarized as

dXit =

(
K∑

k=1

bikµF k
+ µ

Ii

)
dt+

K∑

k=1

bik
√
VFktdBFkt

+
√
VIitdBIit +

K∑

k=1

bikZFktdNFkt + ZIitdNIit (1.7)
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The randomness in the price dynamic has two different sources: the diffusion component
∑K
k=1 bik

√
VFktdBFkt +

√
VIitdBIit and the jump component

∑K
k=1 bikZFktdNFkt + ZIitdNIit.

The former is responsible of small movements observed in the price dynamic, while large

drops come from the jump component. In the model (1.7), a jump at time t (dNFkt = 1 or

dNIit = 1) is felt at time t. But depending on the nature of point processes (NFt and NIt),

clustered high or low values of returns can be observed.

• Volatility: We allow jumps in stochastic volatility processes. The presence of jumps in

volatility improves the fit of crisis data relatively to a simple stochastic volatility model (See,

e.g., Eraker (2004)). Let VFkt and VIit be respectively the volatilities of the factor Fkt and

the idiosyncratic component Eit. By the Feller (1951) representation, we assume that

dVFkt = κ
F k

(θ
F k

− VFkt) dt+ η
F k
ρ

F k

√
VFktdBFkt

+ η
F k

√
(1 − ρ2

F k
)VFktdWFkt + Zv

FktdN
v
Fkt (1.8)

dVIit = κ
Ii

(θ
Ii

− VIit) dt+ η
Ii
ρ

Ii

√
VIitdBIit

+ η
Ii

√
(1 − ρ2

Ii
)VIitdWIit + Zv

IitdN
v
Iit (1.9)

whereBFkt, WFkt, BIit, WIkt are standard Wiener processes, such thatBFkt⊥WFkt, BIit⊥WIit;

ZFkt, ZIit, Z
v
Fkt, Z

v
Iit are respectively random jump sizes of: the price factor component, the

price idiosyncratic component, the volatility of the factor component and the volatility of

the idiosyncratic component.

A positive jump affecting the volatility at time t mean-reverts with a rate κ. Thus,

the volatility remains high in subsequent periods that leads to large variation in prices.

Depending on the nature of point processes (N v
F t or N v

It), we can generate clusters (time

series and cross-sectional clusterings) of high volatility values. Our model also allows for the

leverage effect: a large drop coming from the diffusion part of the model is associated to a

large increase of the volatility. Leverage effects are present both in factor and idiosyncratic

components, through parameters ρ
F k

and ρ
Ii

.

• Jump sizes. The theoretical model doesn’t need to impose any restriction on the distri-

bution of jump sizes of prices and volatility: the estimation approach can be a function of

these jump size moments. Nevertheless, to move to the data, we need additional information

about these jump sizes. As in Maneesoonthorn, Forbes, and Martin (2016), we assume that
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only positive jumps are observed in the volatility, such that

Zv
Fkt ∼ Exp

(
µv

F k

)

Zv
Iit ∼ Exp

(
µv

Ii

)

The choice of the exponential distribution to model the volatility jump size is common in

the literature (see Eraker (2004) or Todorov and Tauchen (2011)). The probality distribu-

tion functions of the price jump sizes ZFkt and ZIit satisfy the following equations, as in

Aït-Sahalia, Cacho-Diaz, and Leaven (2015) and Kou and G. (2002):

FZF k
(x) =




p

F k
e−γF k1

(−x),−∞ < x ≤ 0

p
F k

+ (1 − pFk)(1 − e−γF k2
(−x)), 0 < x ≤ ∞

, ∀k = 1, ..., K (1.10)

FZIi
(x) =




p

Ii
e−γIi1

(−x),−∞ < x ≤ 0

p
Ii

+ (1 − p
Ii

)(1 − e−γIi2
(−x)), 0 < x ≤ ∞

, ∀i = 1, ...,m (1.11)

where p
Ii

and (1−p
Ii

) represent the probabilities of downward and upward jumps (The same

explanation holds for p
F k

and (1 − p
F k

)). γ
Ii1

and γ
Ii2

can be interpreted as follow: for the

jump size ZIi,

ZIi =d





−ξ1, with probability pIi

ξ2, with probability (1 − pIi)

such that ξ1, and ξ2 are exponential random variables with means 1/γ
Ii1

and 1/γ
Ii2

, respec-

tively. In others words, the size of downward jumps follows the opposite of an exponential

distribution with rate γ
Ii1

and the probability distribution of the size of upward jumps follows

an exponential distribution with ate γ
Ii2

. The same interpretation holds, of course, for γ
F k1

and γ
F k2

. As a result, the moments of these jump sizes satisfy

E[Z l
Fk] = (−1)l

l!pFk
γlFk1

+
l!(1 − pFk)

γlFk2

, l = 1, 2, ... (1.12)

E[Z l
Ii] = (−1)l

l!pIi
γlIi1

+
l!(1 − pIi)

γlIi2
, l = 1, 2, ... (1.13)

• Homogeneous poisson point processes. In the factor component, we assume that

jumps in price and volatility are compounded poisson processes. This is a simplifying as-

sumption as we are more focused on the contagion and connectedness effects. Thus, we
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assume that NFkt and N v
Fkt are homogeneous poisson point processes, with rates λFk and

λvFk, such that:

dNFkt ∼ Poisson (λFkdt) (1.14)

dN v
Fkt ∼ Poisson (λvFkdt) (1.15)

• Hawkes processes. The model must replicate types of clusterings observed in the real

data: time series clustering (or self-excitation) and cross-sectional clustering (or mutual ex-

citation). To achieve this important feature, we emphasize on the dynamic of jump intensity

which is just a measure of the probability of observing a jump per unit of time interval.

The systemic risk is summarized as follow: a jump in a firm j increases the probability of

observing a jump in any other firm i in the nearest future, i.e increases the jump intensity of

any other firm i. Thus, idiosyncratic point processes NIit and N v
Iit, must have time varying

jump intensities λit and λvit defining by

P [Nit+∆ −Nit = 0|ℑt] = 1 − λIit∆ + o(∆) (1.16)

P [Nit+∆ −Nit = 1|ℑt] = λIit∆ + o(∆) (1.17)

P [Nit+∆ −Nit > 1|ℑt] = o(∆) (1.18)

P
[
N v
it+∆ −N v

it = 0|ℑt

]
= 1 − λvIit∆ + o(∆) (1.19)

P
[
N v
it+∆ −N v

it = 1|ℑt

]
= λvIit∆ + o(∆) (1.20)

P
[
N v
it+∆ −N v

it > 1|ℑt

]
= o(∆) (1.21)

where ∆ is the sampling frequency or the time between two observations. Jump intensities λit

and λvit can also be interpreted as the average number of jumps per unit of time interval. We

assume that they are time-varying and path-dependent respectively on the point processes

Nit and N v
it, with the following mean-reverting dynamics

dλIit = αi (λIi∞ − λIit) dt+
m∑

j=1

βijdNIjt (1.22)

dλvIit = αvIi (λ
v
Ii∞ − λvIit) dt+

m∑

j=1

βvijdN
v
jt (1.23)

Under the mean-reverting assumption of jump intensities λit and λvit, asset returns process
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will be stationary. The jump intensity λIit (respectively λvIit) of the asset i also increases

with his own jumps as well as jump in other related asset j. More specifically, any price

(repectively volatility) jump affecting j at time t, i.e, dNjt = 1 (respectively dN v
jt = 1),

increases the probability of furthers jumps in i by βij∆ (respectively βvij∆) within the time

interval [t; t+ ∆].

The parameters (βij)16i,j6m (respectively
(
βvij
)

16i,j6m
) are called "excitation parameters"

and will be of a particular interest for the construction of network maps for shock trans-

mission. For instance, if we consider two assets i and j, βij (respectively βvij) summarizes

information about the tail dependence between i and j. When βij 6= 0 (respectively βvij 6= 0)

a shock to j significantly affects i. Thus, there exists an edge between i and j summarizing

the shock transmission pattern. The type of dependency summarizes by βij (respectively

βvij) is far beyond and above the correlation at least for three reasons. Firstly, it is a tail

dependency, since the link between i and j is captured only for extreme events. Secondly,

returns are allowed to have fat tails, and the direct consequence is the failure of the nor-

mality assumption of asset returns and the useless of the correlation as a measure of the

dependency between assets. Thirdly, correlation measures the dependency between only two

assets, but the excitation parameters (βij)16i,j6m and (βvij)16i,j6m will provide information on

the dependence structure between m assets (m is unrestricted). This matrix doesn’t need to

be symmetric, since the impact of the asset i on j is not necessary the same than the one of

j on i. As an example, Aït-Sahalia, Cacho-Diaz, and Leaven (2015) found that: "When the

US stock market jumps, there is a strong increase in the probability of a consecutive jump

in other regions of the world...There is no evidence for the reverse transmission".

• Assumptions on factors. Conditional on the information set ℑt available at time t,

factors are assumed to be uncorrelated with each other, and uncorrelated to the idiosyncratic

component. More precisely, we assume that

Corr (dBFkt, dBFk′t|ℑt) = 0, ∀k 6= k′; (1.24)

Corr (dBFkt, dBIit|ℑt) = 0, ∀k, ∀i; (1.25)

Corr (dBIit, dBIjt|ℑt) = 0, ∀i 6= j; (1.26)

same assumptions hold for dWFkt and dWIit.

• Additional assumptions. We further assume that for factors and idiosyncratic compo-
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nents, B, N and Z are mutually independent:

B ⊥ N ⊥ Z (1.27)

Our model is a multidimensional model which combine into the same framework a fac-

tor structure and a multivariate Hawkes jump-diffusion model with jumps both in price

and volatility. Throughout the paper, we will refer to our model as "doubly Hawkes" jump-

diffusion model with factors. With this machinary, we are able to take into account different

channels for systemic risk. All the information about the network maps of the systemic

risk is contained into the excitation parameters (βij)16i,j6m and (βvij)16i,j6m. These excita-

tion paramters will be used to construct network maps for shock transmission. The main

challenges now is to estimate the entire model and in particular get consistent estimates of

excitation parameters.

Notation: Let u = (u1, ..., up) be a vector. Throughout the paper, we callDg(u) the diagonal

matrix with u as the diagonal:

Dg(u) =




u1 ... 0
. . .

0 ... up


 (1.28)

If b is a m×K matrix, we call bi the row number i of b, and b′i the transpose of bi.

1.3 Estimation of the Model

1.3.1 Parameters

The model is high-dimensional in term of parameters to estimate. Without any restriction,

there are 2m2 +mK + 13m+ 11K parameters, where m is the number of assets and K the

number of factors. Parameters of the model are summarized into the following table

Table 1.1. Parameters

b
ik

µ
F k

η
F k

µIi κ
F k

θ
F k

γIi2 ρ
F k

κ
Ii

θ
Ii

µvIi ρ
Ii

λ
F k

λvFk

αIi λ
Ii∞

βij αvIi λvIi∞ βvij γIi1 γFk2 pIi γFk1 µvFk pFk η
Ii
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The model is estimated via GMM as in Aït-Sahalia, Cacho-Diaz, and Leaven (2015): we

compute a set of moment equations incorporating all the parameters, including parameters

of the latent equations (volatility and jump intensity parameters). The moment equations

are derived in closed forms. Thus, it is easy to find good estimators for the moments and

optimization routine is fast. The choice of the GMM estimation approach is justified by the

stationary assumption of the model, and the infeasibility of other procedures as the MLE.

Since the model is highly parametric (large number of parameters), we need large num-

ber of moment conditions for the estimation. To achieve this goal, our estimation equations

incorporate both moments of returns, moments of integrated volatity and quadratic vari-

ation (Henceforth, IV and QV), and their autocorrelation functions. Since the integrated

volatity and quadratic variation are unobserved variables, we rely on high frequency data

for consistent estimations. They are approximated using realized power variation measures.

The underlying assumption is that, the sample of high frequency data available is sufficiently

large in order to approximate the integrated volatity and the quadratic variation by their

respective realized power variation estimators.

1.3.2 Moment Conditions

The estimation strategy is based on moments relevant in financial studies: the variance,

the skewness, the kurtosis, autocovariance of returns, autocovariance of squared returns,

mean of integrated volatilities, mean of quadratic variations, mean of the squared integrated

volatilities, mean of the squared quadratic variation, autocovariance of integrated volatilities

and autocovariance of quadratic variations. Due to large number of parameters, there is

a need of a lot of relevant moment conditions in order to render the estimation procedure

feasible. Integrated moments provide those additional relevant moments and the availability

of high frequency data gives us the possibility to accurately estimate intergrated moments.

In general, the first moment provides information about drift parameters. Centered mo-

ment of order 3 and 4 isolate parameters of the jump component up-to the factor loading

vector b, while moment of order 2 places contributions from the diffusive and jump compo-

nents of the model on the same order. Diffusive parameters are identified by the moment

of the integrated volatility E [IVi], while jump parameters are isolated by considering differ-

ences: E [QVi] − E [IVi], E[QVitQVit+τ ] − E[IVitIVit+τ ], ∀i = 1, ...,m and ∀τ > 0. Here is

quick summary of moments used:
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• E [∆Xit] ,∀i = 1, ...,m;

• E[ (∆Xi,t − E[∆Xi,t])
r ],∀i = 1, ...,m; r = 2, 3, 4;

• E[ (∆Xi,t − E[∆Xi,t])
r (∆Xj,t − E[∆Xj,t])

s ],∀i 6= j; r + s ≤ 4;

• E[(∆Xr
it − E[∆Xr

it])(∆X
r
jt+τ − E[∆Xr

jt+τ ])], ∀i, j = 1, ...,m; r = 1, 2;

• E [IVi] ,E [QVi] − E [IVi] ,∀i = 1, ...,m;

• E[QCovij],E[ICovij],∀i 6= j;

• E[IV2
i ],E

[
QV2

i

]
,∀i = 1, ...,m;

• E[QVitQVjt+τ ] − E[IVitIVjt+τ ],∀i 6= j, τ = 1, ..., 6.

1.3.3 Estimation Methodology

Let’s denote, θ0 the set of model parameters, ∆0 the sampling frequency, Xn0∆0
the stock

price vector at time n0∆0 ∈ [0, T ], s.t., n0 = 1, ..., N0, N0∆0 = T . Each price vector Xn0∆0

is observed N0 times at a high frequency ∆0. As {Xn0∆0
, n0 = 1, ..., N0} is also used to

compute estimators of the integrated volatility (IV) and the quadratic variation (QV), ∆0

should be to be sufficiently small such that errors coming from approximations of integrated

quantities by realized measures are neglected. It appears that Xn0∆0
and IV (or QV) may

have different frequencies. We take as final frequency ∆, the smallest one. Let N be the

number of observations for each variable at the frequency ∆; Un∆, n = 1, ..., N , the value

at time n∆ ∈ [0, T ] of the vector of variables available for the estimation , s.t. N∆ = T

(Un∆ contains stock prices, and realized measures). Then, we can summarazie our moment

condition as

E[f(Un∆, θ0)] = 0 (1.29)
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where function f is just the vector with all moment conditions mentioned in previous sub-

section. Let’s define

fN(θ0) =
1

N

N∑

n=1

f(Un∆, θ0) (1.30)

The GMM estimator θ̂ of θ0 is given by

θ̂ = arg min
θ∈Θ

fN(θ)ŴfN(θ) (1.31)

where Ŵ is a positive definite weight matrix such that Ŵ
p→ W , and W is a positive definite

matrix. The choice of Ŵ is irrelevant when the number of moment equations is exactly equal

to the number of parameters to estimate. In other cases, Ŵ need to be chosen optimally.

Since moment conditions are persistent in the presence of stochastic volatility, some care is

needed for Ŵ . Following Aït-Sahalia, Cacho-Diaz, and Leaven (2015), Ŵ is chosen using the

following steps:

(i) Set Ŵ = I, with I the identity matrix.

(ii) Consider θ̃ the solution of (1.31) corresponding to Ŵ = I.

(iii) Define ŜN = Γ̂0,N +
∑q
ν=1

(
1 − ν

q+1

) (
Γ̂ν,N + Γ̂

′

ν,N

)
, the Newey-West covariance estima-

tor with Γ̂
′

ν,N = 1
N

∑N
n=ν+1 f(Un∆, θ̃)f(Un∆, θ̃)

′.

(iv) Ŝ−1
N is an optimal estimator of Ŵ .

The equation (1.31) doesn’t admit an analytical solution. We need to rely on numerical

optimization to resolve this problem. Also, the objective function fN(θ)ŴfN(θ) is highly

non-linear and not necessary a convex function: local minimums are possible. Thus, there

is a dependency to the initial value when minimizing this objective function. To overcome

this issue, a minimization procedure with a multiplicity and clever choices of starting points

should be carried out. In order to estimate the diffusion and the jump part of the model, we

will use a three-steps procedure as in Aït-Sahalia, Cacho-Diaz, and Leaven (2015):

Setp 1 Remove all the jumps present into the data, and estimate the resulting diffusion

model;

Setp 2 Coefficients of the first step are kept fixed while estimating the parameters of the

discontinuous part of the model;
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Setp 3 Coefficients obtained in steps 1 and 2 are used as starting values for the estimation

of the global model.

Aït-Sahalia, Cacho-Diaz, and Leaven (2015) provided evidence that this three-steps esti-

mation procedure delivers parameter estimates with sufficient degree of precision in a realistic

context.

1.3.4 Moment Equations

In this sub-section, we provide closed form expressions of our moment equations. As a

preliminary step, we need to derive explicit expressions for the first and second unconditional

moment of volatilities: E[VFk], E[VIi], and E[V 2
Fk] as most of our moment equations are

function of these quantities.

Lemma 1.3.1 Under assumptions (1.4) - (1.27) of the model, the following equations hold:

E[VFk] = θFk +
E[Zv

Fk]λ
v
Fk

κFk
(1.32)

E[VIi] = θIi +
E[Zv

Ii]E[λvIi]

κIi
(1.33)

E[V 2
Fk] = θFkE[VFk] +

η2
FkE[VFk]

2κFk
+

E[VFk]E[Zv
Fk]λ

v
Fk

κFk
+

E[(Zv
Fk)

2]λvFk
2κFk

(1.34)

where E[λvIi] is the solution of the following equation




E [λvI1]
...

E [λvIm]


 =

[
Dg (αvI) − βv

]−1




αvI1λ
v
I1∞

...

αvINλ
v
IN∞


 (1.35)

Since Zv
Fkt ∼ Exp (µvFk) and Zv

Iit ∼ Exp (µvIi), we have E[(Zv
Fkt)

l] = l!
(µv

F k
)l and E[(Zv

Iit)
l] =

l!
(µv

Ii)
l .

Due to the presence of a jump component in the volatility (both for factor and idiosyn-

cratic volatilities), its unconditional first and second moments contain two components: a

continuous part, and a jump term. The later is a function of the volatility jump size, the

average jump intensity and the volatility mean-reversing parameter. When we focus on the
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unconditional moments of the idiosyncratic volatility VIi, we observe that excitation param-

eters βvij appear through the first moment of its jump intensity, E[λvIi].

Another unavoidable quantity in the computation of moment equations in closed forms

is the covariance density matrix of a stationary m− variate point process.

Definition 1.3.1 Let’s consider a stationary m-variate point process NIt, where NIit repre-

sents the cumulative number of jumps in the ith asset price idiosyncratic component up to

time t. Its covariance density matrix is defined by

RI(τ) = E

[
dNIt+τ

dt

dNT
It

dt

]
− E[λIt]E[λIt]

T , ∀τ > 0 (1.36)

where MT is the transpose of M and RI(−τ) = RI(τ)T . Since there is an atom at 0, RI

is not defined on the whole R. Hawkes(1971) extended this function to R by defining the

complete covariance density

RI(τ)(c) = Dδ(τ) +R(τ) (1.37)

With D = Dg (E[λI1], ...,E[λIm]), δ(τ) the Dirac delta function (it takes the value 1 at 0 and

0 elsewhere). RI(0) is such that RI()
(c) is continuous everywhere.

When jump point processes are homogeneous poisson point processes, the covariance

density matrix is null, since poisson point processes have independent increment by definition.

But, with Hawkes point processes, this matrix is non null. Due to its omnipresence in our

moment equations, it need to be computed in closed form. The following theorem provides

such results.

Theorem 1.3.1 Let NIt be a stationary m-variate point process. We assume that jumps

cannot occur multiply such that E[dN2
it] = E[dNit], ∀i = 1, ...,m. Under the assumptions

(1.4) - (1.27) of the model, the covariance density matrix RI is given by

RI(τ) = e(β−α)τ
(
Λ̄∞ + βD

)
, ∀τ > 0 (1.38)

and RI(−τ) = RI(τ)T , ∀τ > 0, where Λ̄∞ is the solution of the Lyapounov matricial

equation given by

(β − α)Λ̄∞ + Λ̄∞(β − α)T + βDβ = 0 (1.39)
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With β = (βIij)16i,j6m the matrix of excitation parameters, α = Dg (αI1, ..., αIm) and D =

Dg (E[λI1], ...,E[λIm]).

Similar results hold for the stationary m-variate point process N v
It, where N v

Iit represents the

cumulative number of jumps in the ith asset price idiosyncratic volatility component up to

time t.

Closed form expression of the covariance density matrix provided in the Theorem 1.3.1

is derived using results from Fonseca and Zaatour (2015). They provided a methodology

for computing moments and autocorrelation functions of the number of jumps over a time

period. Their approach relies on the infinitesimal generator of the process and Dynkin’s

formula. They extend results in Hawkes (1971b) by relaxing restrictions on the excitation

matrix β. Expressions of moment conditions contain the previous covariance density matrix

through some double integrals. We need to compute them in closed-forms. The following

corollary provides these useful formulae.

Corollary 1.3.1 Under assumptions (1.4) - (1.27) of the model, following equalities hold

∫ ∆

0

∫ s

0
RI(t− s)dtds =

[
Λ̄∞ + βD

]T ∆2

2
(1.40)

∫ ∆

0

∫ ∆+τ

τ
RI(s− t)dtds =

[
e(β−α)τ

(
Λ̄∞ + βD

)]T
∆2 (1.41)

∫ t+1

t

∫ t+τ+1

t+τ
RI(u− s)dsdu =

[ (
I − e−(β−α)

)
(β − α)−2

(
e(β−α)(τ+1) − e(β−α)τ

) (
Λ̄∞ + βD

) ]T
(1.42)

From the corollary 1.3.1, the first, second and third integrals are used to compute respec-

tively moments of returns, autocovariance functions of returns and autocovariance functions

of integrated measures. They have a central contribution in the identification and estimation

of the jump intensity parameters, namely: the matrix β of excitation parameters, the vector

of mean-reversing parameters α, and the vector of long term jump intensities λ∞.

Moment equations based on returns we use in this paper are derived using the Itô’s

Lemma for jump-diffusion processes. We recall this lemma.
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Definition 1.3.2 Let Ut, t ≥ t0 be a jump-diffusion process with the following dynamic

Ut = Ut0 +
∫ t

t0
b(s, Us−)ds+

∫ t

t0
σ(s, Us−)dWs +

N(t)∑

n=1

∆Un (1.43)

where b(t, Ut−) and σ(t, Ut−) are two non-anticipating processes (adapted to a filtration) with

Et0

[∫ t
t0
σ(s, Us−)2ds

]
< ∞, ∆Un = UTn − UTn−

and Tn, n = 1, ..., N(t) are the jump times,

Ut = lim
s↓t

Us and Ut− = lim
s↑t

Us. Then, for any C1,2 function f : [0,∞) × R −→ R

f(t, Ut) = f(t0, Ut0) +
∫ t

t0

[
∂f

∂s
(s, Us−) +

∂f

∂U
(s, Us−)b(s, Us−)

]
ds

+
∫ t

t0

∂f

∂X
(s, Us−)σ(s, Us−)dWs +

∫ t

t0

1

2

∂2f

∂X2
(s, Us−)σ2(s, Us−)ds

+
N(t)∑

n=1,Tn≤t

[
f
(
Tn, UTn−

+ ∆Un
)

− f
(
Tn, UTn−

)]
(1.44)

For more material about the Itô lemma for jump-diffusion process, the reader can rely

on Crosby (2012). The Itô lemma is applied on the return process defined for the asset i

within [0,∆] by

ri,∆ =

(
K∑

k=1

bikµFk + µIi

)
∆ +

K∑

k=1

bik

∫ ∆

0

√
VFktdBFkt

+
∫ ∆

0

√
VIitdBIit +

K∑

k=1

bik

∫ ∆

0
ZFktdNFkt +

∫ ∆

0
ZIitdNIit (1.45)

Moment equations are provided in closed forms up to the order ∆2 (∆ is the sampling

frequency or the time between two observations) for moments of log-returns, and in complete

close form for integrated moments.

Theorem 1.3.2 Under assumptions (1.4) - (1.27), our model implies the following moment
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equations of log-returns up to the order ∆2:

E [∆Xi,t] =
{

biµF + µIi + biE[Dg(ZF )]λF + E[ZIi]E[λIi]
}

∆ + o(∆2) (1.46)

E[ (∆Xi,t − E [∆Xi,t])
2 ] =

{
biE[Dg(VF )]b

′

i + E[VIi] + biE[Dg(ZF )2]Dg(λF )b
′

i

}
∆

+ E[Z2
Ii]E[λIi]∆ + 2E[ZIi]

2
∫ ∆

s=0

∫ s

t=0
RIii(t − s)dtds + o(∆2) (1.47)

E[ (∆Xi,t − E [∆Xi,t])
3 ] =

{
biDg(bi)E[Dg(ZF )3]Dg(λF )b

′

i + E[Z3
Ii]E[λIi]

}
∆

+
3

2
biDg(bi)Dg(ηF )Dg(ρF )Dg(E[VF ])b

′

i∆
2 +

3

2
ηIiρIiE[VIi]∆

2

+ 6E[Z2
Ii]E[ZIi]

∫ ∆

s=0

∫ s

t=0
RIii(t − s)dtds + o(∆2) (1.48)

E[ (∆Xi,t − E [∆Xi,t])
4 ] =

{
biDg(bi)

2E[Dg(ZF )4]Dg(λF )b
′

i + E[Z4
Ii]E[λIi]

}
∆ + 3

{
E[VIi]

+ biE[Dg(VF )]b
′

i + biE[Dg(ZF )2]Dg(λF )b
′

i + E[Z2
Ii]E[λIi]

}2
∆2

+ 3
{

biDg(bi)Var[Dg(VF )]b
′

i + E[V 2
Ii] − E[VIi]

2
}

∆2

+
{

6E[Z2
Ii]

2
+ 4E[ZIi]E[Z3

Ii]
}∫ ∆

s=0

∫ s

t=0
RIii(t − s)dtds + o(∆2) (1.49)

where Var of a matrix is component wise. Some moments of VI and VF are given by the lemma

1.3.1, explicit formula of E[V 2
Ii] is available in the appendix, equation 1.71;

∫∆
s=0

∫ s
t=0 RIij(t − s)dtds

is the element in row i and column j of the matrix
∫∆
s=0

∫ s
t=0 RI(t − s)dtds as defined in corollary

1.3.1.

Rare and extreme movements dominate the higher-order moments of the unconditional

return distribution. More specifically, once centred, moment of order 3 and 4 isolate parame-

ters of the jump component up-to the factor loading vector b, while moment of order 2 places

the contributions from the diffusive and jump components of the model on the same order.

This feature will facilitate the identification of parameters of the model. Under our specifi-

cation, each moment equation can be disentangle into two components: a factor component

and an idiosyncratic one. Since excitation parameters β are contained only in the idiosyn-

cratic component of moment equations, this separation facilitates their estimation which is

primary parameters for network mapping.

In the next result, we provide closed-form formulae of covariance functions of log-returns

which will help identification of factor compenents.

Theorem 1.3.3 Up to the order ∆2, and under assumptions (1.4) - (1.27), our model im-
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plies the following formalae for covariances of log-returns: ∀i 6= j

E [(∆Xi,t − E[∆Xi,t]) (∆Xj,t − E[∆Xj,t])]

=
{
biE[Dg(VF )]b

′

j + biE[Dg(ZF )2Dg(λF )]b
′

j

}
∆

+ 2E[ZIi]E[ZIj]
∫ ∆

s=0

∫ s

t=0
RIji(t− s)dtds+ o(∆2) (1.50)

E
[
(∆Xi,t − E[∆Xi,t]) (∆Xj,t − E[∆Xj,t])

2
]

=
{
biE[Dg(ZF )3]Dg(λF )Dg(bj)b

′

j

}
∆ +

3

2
biDg(ηF )Dg(ρF )E[Dg(VF )]Dg(bj)b

′

j∆
2

+ 2E[ZIi]E[Z2
Ij]
∫ ∆

s=0

∫ s

t=0
RIij(t− s)dtds+ o(∆2) (1.51)

Moments of VF are given by the lemma 1.3.1 and
∫∆
s=0

∫ s
t=0 RIij(t−s)dtds is the element in row

i and column j of the matrix
∫∆
s=0

∫ s
t=0 RI(t− s)dtds as defined in corollary 1.3.1. (expression

for E[ (∆Xi,t − E[∆Xi,t]) (∆Xj,t − E[∆Xj,t])
3 ] and E[ (∆Xi,t − E[∆Xi,t])

2 (∆Xj,t − E[∆Xj,t])
2 ]

are provided in the appendix equation (1.74) and (1.73)).

From the previous theorem, it appears that leading terms of covariance functions come

from the factor component of the model. Specifically, for covariance functions of order 3 and 4,

leading terms are jump components of the factors. Once again, in the covariance functions of

order 2, contributions of diffusion and jump parts of factors are of the same order. Covariance

functions of log-returns facilitate the identification and estimation of parameters of the factor

component.

Next, we compute the autocorrelation functions of log-returns. From the stochastic

dynamic of volatility processes, additional quantities are needed in closed-forms, such as:
∫∆

0

∫∆+τ
τ E[VFksVFkt]dtds and

∫∆
0

∫∆+τ
τ E[VIisVIjt]dtds. Their expressions are provided in the

appendix by the lemma 1.8.1. Next result provide closed-forms for autocovariance functions

of log-returns and squared log-returns.

Theorem 1.3.4 Up to the order ∆2, and under assumptions (1.4) - (1.27), our model im-
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plies the following autocovariance equations of log-returns and squared log-returns: ∀τ > 0,

E [∆Xit∆Xjt+τ ] − E[∆Xit]E[∆Xjt]

= E[ZIi]E[ZIj]
∫ ∆

0

∫ ∆+τ

τ
RIij(s− t)dtds+ o(∆2) (1.52)

E
[
∆X2

it∆X
2
jt+τ

]
− E

[
∆X2

it]E[∆X2
jt+τ

]

=
K∑

k=1

b2
ikb

2
jk

∫ ∆

0

∫ ∆+τ

τ
(E[VFksVFkt] − E[VFks]

2)dtds+
∫ ∆

0

∫ ∆+τ

τ
Cov[VIis, VIjt]dtds

+ E[Z2
Ii]E[Z2

Ij]
∫ ∆

0

∫ ∆+τ

τ
RIij(s− t)dtds+ o(∆2) (1.53)

where RIij is the element in row i and column j of the covariance density matrix RI , as

defined in Definition 1.3.1;
∫∆

0

∫∆+τ
τ RIij(s − t)dtds is given by the corollary 1.3.1. To save

the space, closed-form expressions of
∫∆

0

∫∆+τ
τ E[VFksVFkt]dtds, and

∫∆
0

∫∆+τ
τ E[VIisVIjt]dtds

are given by the lemma 1.8.1.

Autocovariance of log-returns doesn’t include parameters of the prices’s diffusive com-

ponent. Autocovariances of volatilities and jump components generate the autocorrelation

of squared log-returns.

Our framework assume the availability of high frequency data. Those data are used to

consistently estimate daily volatility measures. The next paragraph provides some definitions

of these quantities.

Definition 1.3.3 Under the model (1.7), let’s take δ as the sampling frequency. We have

following definitions:

• The integrated volatility of the asset i during a trading time [t; t+ 1]

IV
it,t+1

=
K∑

k=1

b2
ik

∫ t+1

t
VFksds+

∫ t+1

t
VIisds (1.54)

It represents the share of the total variation of the asset i within a trading time [t; t + 1],

which is due to the diffusive component of the model. Using high frequency data, IV
it,t+1

is

estimated using the realized bipower variation defined by

ÎV
it,t+1

= µ−2
1

⌊ 1

δ
⌋∑

l=2

|∆Xit+lδ||∆Xit+(l−1)δ| (1.55)
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Where

µ1 = E[|u|] =
√

2/
√
π; and u ∼ N(0; 1) (1.56)

The choice of this estimator is motivated by the presence of jumps in returns. Barndorff-

Nielsen and Shephard (2003) provide the asymptotic theory of this estimator.

• The quadratic variation of the asset i during a trading time [t; t+ 1]

QV
it,t+1

= lim
δ→0

⌊ 1

δ
⌋∑

l=1

∆X2
it+lδ (1.57)

It provides a measure of the total variation of the asset i during the trading time [t; t + 1].

Here, the variation is due both to continuous and jump parts. It is well established in the

literature that QV
it,t+1

is consistently estimated by the realized quadratic variation defined

below

Q̂V
it,t+1

=

⌊ 1

δ
⌋∑

l=1

∆X2
it+lδ (1.58)

• The integrated covariation between assets i and j provides information on diffusive

components comovement of two assets i and j during a trading time [t; t + 1]. From our

setup, it is defined by

ICov
ijt,t+1

=
∫ t+1

t

(
K∑

k=1

bikbjkVFks

)
ds (1.59)

According to Barndorff-Nielsen and Shephard (2003), a consistent estimator is given by

ÎCov
ijt,t+1

=
µ−2

1

4

⌊ 1

δ
⌋∑

l=2

[
(∆Xit+lδ + ∆Xjt+lδ)

(
∆Xit+(l−1)δ + ∆Xjt+(l−1)δ

)

− (∆Xit+lδ − ∆Xjt+lδ)
(
∆Xit+(l−1)δ − ∆Xjt+(l−1)δ

) ]
(1.60)

• The quadratic covariation between assets i and j during a trading time [t; t+ 1]

QCov
ijt,t+1

= lim
δ→0

⌊ 1

δ
⌋∑

l=1

∆Xit+l∆∆Xjt+l∆ (1.61)

It measures the total comovement between assets i and j explained by diffusive and jump
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components. It is consistently estimated using the realized quadratic covariation

Q̂Cov
ijt,t+1

=

⌊ 1

δ
⌋∑

l=1

∆Xit+lδ∆Xjt+lδ (1.62)

Assuming these quantities are observable, their moments are useful for the accurate

estimation of parameters of the volatility process. We need to provide first and second

moments of the previous volatility-based quantities. The following theorem contains these

explicit formulae.

Theorem 1.3.5 Under assumptions (1.4) - (1.27) and the stationary assumption of IVt,t+1

, the following equations hold

E[IVit,t+1] = biE[Dg(VF )]b′i + E[VIi], ∀i = 1, ...,m (1.63)

E[QVit,t+1] − E[IVit,t+1] = biE[Dg(ZF )2]Dg(λF )b′i + E[Z2
Ii]E[λIi], ∀i = 1, ...,m

(1.64)

E[ICovijt,t+1] = biE[Dg(VF )]b′j, ∀i 6= j (1.65)

E[QCovijt,t+1] − E[ICovijt,t+1] = biE[Dg(ZF )2]Dg(λF )b′j, ∀i 6= j (1.66)

and

E[QV2
it,t+1] − E[IV2

it,t+1] = 2
{
biE[Dg(VF )]b′i + E[VIi]

} {
biE[Dg(ZF )2]Dg(λF )b′i + E[Z2

Ii]E[λi]
}

+ E
{
[biDg(ZF )2Dg(λF )b′i]

2}
+ biDg(bi)

2E[Dg(ZF )2]
2
Dg(λF )2b′i

+ 2E[Z2
Ii]E[λi]biDg(bi)E[Dg(ZF )2]Dg(λF )b′i + E[Z4

Ii]E[λi]

+ E[Z2
Ii]

2
E[λi]

2 + E[Z2
Ii]

2
∫ t+1

t

∫ t+1

t
RIii(s− u)duds (1.67)

where
∫ t+1
t

∫ t+1
t RIii(s−u)duds is the element in row i and column i of the matrix

∫∆
s=0

∫ s
t=0 RI(t−

s)dtds as defined in corollary 1.3.1.

Price jump parameters are neither the part of the integrated volatility first and second

moments, nor the integrated covolatility. Thus, in the estimation process, E[IVit,t+1] and

E[ICovit,t+1] will focus on the identification of diffusive component parameters. To be more

precise, they will facilitate the estimation of parameters of the volatility (both diffusive and

jump parameters of the volatility). On contrary, E[QVit,t+1] − E[IVit,t+1], E[QCovijt,t+1] −
E[ICovijt,t+1] and E[QCov2

ijt,t+1] − E[ICov2
ijt,t+1] will identify price jump parameters.
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In last moment conditions, we compute autocovariance functions of the integrated volatil-

ity and the quadratic variation. In order to facilite the identification, our interest will be on

E[QVit,t+1QVjt+τ,t+τ+1]−E[IVit,t+1IVjt+τ,t+τ+1]. Its expression is given by the next theorem.

Theorem 1.3.6 Let’s call
∫ t+1
t

∫ t+τ+1
t RIij(s− u)duds the element in row i and column j of

the matrix
∫ t+1
t

∫ t+τ+1
t RI(s− u)duds as defined in corollary 1.3.1. Then, differences between

autocorrelation functions of integrated volatility and quadratic variation are given by the

following expressions, under assumptions (1.4) - (1.27): ∀τ > 1

E[QVit,t+1QVit+τ,t+τ+1] − E[IVit,t+1IVit+τ,t+τ+1]

=
{
biE[Dg(ZF )2]Dg(λF )b′i

}2
+ E[Z2

Ii]
2
E[λIi]

2 + E[Z2
Ii]

2
∫ t+1

t

∫ t+τ+1

t+τ
RIii(u− s)dsdu

+ 2biE[Dg(ZF )2]Dg(λF )b′iE[Z2
Ii]E[λIi] + 2E[IVit,t+1]

{
biE[Dg(ZF )2]Dg(λF )b′i + E[Z2

Ii]E[λIi]
}

(1.68)

E[QVit,t+1QVjt+τ,t+τ+1] − E[IVit,t+1IVjt+τ,t+τ+1]

= E[IVit,t+1](bjE[Dg(ZF )2]Dg(λF )b′j + E[Z2
Ii]E[Z2

Ij]
∫ t+1

t

∫ t+τ+1

t+τ
RIij(u− s)dsdu

+ E[Z2
Ij]E[λIj]) + E[IVjt+τ,t+τ+1]

{
biE[Dg(ZF )2]Dg(λF )b′i + E[Z2

Ii]E[λIi]
}

+
{
biE[Dg(ZF )2]Dg(λF )b′j

}2
+ bjE[Dg(ZF )2]Dg(λF )E[Z2

Ii]E[λIi]b
′
j

+ E[Z2
Ij]E[λIj]biE[Dg(ZF )2]Dg(λF )b′i + E[Z2

Ii]E[Z2
Ij]E[λIi]E[λIj] (1.69)

where
∫ t+1
t

∫ t+τ+1
t+τ RIii(s−u)duds is the ij element of the matrix

∫∆
s=0

∫ s
t=0 RI(t−s)dtds defined

in corollary 1.3.1.

As expected, autocorrelation functions of the integrated volatility E[IVit,t+1IVjt+τ,t+τ+1]

contain only diffusion parameters (mainly volatility parameters). Contrary to the previ-

ous results, diffusion parameters are also present in expression E[QVit,t+1QVjt+τ,t+τ+1] −
E[IVit,t+1IVjt+τ,t+τ+1], through the expected volatility of the idiosyncratic term.

1.4 Monte Carlo study

The aim of this section is to study the finite sample properties of our estimation procedure.

More specifically, we want to know firstly how accurate are approximated moments of the

order ∆2 relatively to empirical moments. Secondly, we want to know how moments of



37

realized measures perform in the approximation of moments of integrated quantities. Thirdly,

we want to assess the accuracy of the estimation procedure.

1.4.1 Simulation design

We run two simulation experiments. The first is based on a few number of assets (m = 3) and

the second mimic our empirical study with m = 12 stocks. We focus on one factor models

(K = 1). As described in our framework, the price vector is simulated such that it follows

an Itö-semimartingale process with one factor, jumps in price and volatility. More precisely:

• The factor loadings bi, ∀i = 1, ...,m, is generated by a standard normal law:

bi ∼ N(0, 1) (1.70)

• The factor component in the latent return representation is generated by the following

equation

dFt = µFdt+
√
VFtdBFt + ZFtdNFt

with BFt a brownian motion and VFt following a GARCH diffusion model:

dVFt = κF (θF − VFt) dt+ ηFρF
√
VFtdBFt + ηF

√
(1 − ρ2

F )VFtdWFt + Zv
F tdN

v
F t

with dBF⊥dWF , and parameters set as in Maneesoonthorn, Forbes, and Martin (2016):

µF = 0.097, ρF = −0.5, κF = 0.5, θF = 0.0083, ηF = 0.1
√

2κF θF , VF0 = θF , µFv = 45,

Zv
F ∼ Exp(µFv), λF = 0.032, λvF = 0.0064, dN v

F t ∼ Poiss(λvFdt), dNFt ∼ Poiss(λFdt),

ZFt ∼ FZF
as described in equation (1.10) with 1/γF1 = 1/γF2 = 0.028, and pF = 1

• The idiosyncratic error term in the factor representation is assumed to satisfy

dEit = µIidt+
√
VIitdBIit + ZIitdNIit

with

dVIit = κIi (θIi − VIit) dt+ ηIiρIi
√
VIitdBIit + ηIi

√
(1 − ρ2

Ii)VIitdWIit + Zv
IitdN

v
Iit

dλIit = αi (λIi∞ − λIit) dt+
∑m
j=1 βijdNIjt
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dλvIit = αvIi (λ
v
Ii∞ − λvIit) dt+

∑m
j=1 β

v
ijdN

v
jt

We generate the idiosyncratic component as follow:

– The continuous part of the volatility follows a Nelson GARCH diffusion limit model

as in Barndorff-Nielsen, Hansen, and Shephard (2008a): θI = 0.0083, ηI = 0.1
√

2κIθI ,

µI = 0.097, ρI = −0.6, κI = 0.5, with dBIi⊥dWIi;

– As in Aït-Sahalia, Cacho-Diaz, and Leaven (2015), after annualization, the price jump

is such that: λI∞ = 0.00992; βI is generated by choosing randomly m values within

the set {0.378, 0.452, 0.044, 0.039, 0.057, 0.094, 0.079, 0.044}; similarly, values of αI are

chosen randomly within the set {0.456, 0.463, 0.390, 0.312}; ZI ∼ FZI
as described in

equation (1.11) with 1/γI1 = 1/γI2 = 0.028, pI = 1;

– The volatility jump satisfies: λvI∞ = 0.00992; βvI is generated by choosing randomly m

values within the set {0.378, 0.452, 0.044, 0.039, 0.057, 0.094, 0.079, 0.044}; similarly, val-

ues of αvI are chosen randomly within the set {0.456, 0.463, 0.390, 0.312}; Zv
I ∼ Exp(µvI)

with µvI = 45.

1.4.2 Simulation results

Moment accuracy

Based on the previous simulation design, we study the accuracy of moment conditions in-

volved in the estimation procedure. Since closed-form expressions of moment’s returns are

derived up to the order ∆2, we want to check that this approximation generates negligible

errors. Also, moments of realized measures are used to approximate moments of integrated

quantities. The current simulation exercise provides evidence of the closeness between these

two types of moments.

For each asset, we simulate 10000 paths and compute for each path sample counterparts

of each moment. Then, for each moment condition, we compute the mean and the standard

deviation over the 10000 replications. These means are then compared with close form

formulae of each moment condition. The following table summarizes these comparison results.

For each moment, we compute the theoretical expectation using moment’s closed-form

expressions and parameter values. We compare this value to the simulated expectation
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derived from the sample counterparts of each moment. The closeness between these two

moments is an evidence of the accuracy of our moment equations. The same exercise is

done for integrated measures, but with a small difference: in sample counterparts, integrated

measures are replaced by their daily realized estimators. As a result of this simulation-based

check, it appears that moments are accurately computed.

Table 1.2. Accuracy of moment conditions

Moments E[ri] E[r2
i ] E[r3

i ]

Theoretic expectation 0.00182 0.00110 -5.79E-06

Simulated expectation 0.00180 0.00111 -5.67E-06

(Standard deviation) (4.94E-05) (7.59E-05) (1.08E-06)

Moments E[r4
i ] E[rirj ] E[r2

i r2
j ]

Theoretic expectation 4.55E-06 -0.00016 3.85E-07

Simulated expectation 4.60E-06 -0.00015 4.68E-07

(Standard deviation) (9.80E-07) (3.05E-06) (2.87E-07)

Moments E[rirjt+2] E[r2
i r2

jt+2] E[IVit]

Theoretic expectation 1.94E-06 6.60E-08 0.01122

Simulated expectation 1.95E-06 3.88E-08 0.01118

(Standard deviation) (5.47E-07) (2.06E-09) (0.00097)

Moments E[QVit] E[ICovijt] E[QCovijt]

Theoretic expectation 0.01124 -0.001420 -0.00168

Simulated expectation 0.01135 -0.001424 -0.00142

(Standard deviation) (0.00098) (5.77E-05) (5.77E-05)

Finite sample properties of the excitation parameters

Since excitation parameters (β and βv) are our primary interest, we study their finite sample

properties. The others parameters are fixed throughout this simulation exercise. We simulate

10000 paths of price processes, and for each path, we estimate the excitation coefficients using

our GMM procedure. The following moment conditions are used: E[ri], E[r2
i ], E[r3

i ], E[r4
i ],

E[rirj], E[r2
i r

2
j ], E[IVit], E[QVit], and E[QVit+2QVjt]−E[IVit+2IVjt], i = 1, ...,m, and ∀i 6= j.

The table below summarizes our findings for m = 3 assets. To save the space, monte carlo

results corresponding to m = 12 are reported in the appendix (See tables 1.20 to 1.23). We

also run a simulation exercise in which we study properties of all parameters in the global
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model for m = 3 and m = 12. Those results can be obtain upon request.

From these Monte Carlo exercises, it appears that parameters of our model can be

recovered with a fairly good level of precision. If the accuracy of the estimation procedure

is not as good as the case of usual stochastic volatility processes, it is because of the latency

of some processes as the volatility or the jump intensity. Also, jump events do not happen

frequently (See the supplement of Aït-Sahalia, Cacho-Diaz, and Leaven (2015) for more

details on this issue).

Table 1.3. Finite sample properties of the excitation coefficients

True parameters Average Estimates

(Standard deviation)

0.039 0.058 0.039 0.043 0.061 0.044

(0.012) (0.012) (0.014)

β 0.453 0.039 0.079 β̂ 0.391 0.042 0.068

(0.130) (0.015) (0.015)

0.039 0.044 0.039 0.042 0.051 0.044

(0.011) (0.019) (0.023)

0.039 0.044 0.094 0.043 0.050 0.082

(0.014) (0.009) (0.008)

βv 0.079 0.044 0.039 β̂v 0.068 0.052 0.044

(0.011) (0.015) (0.007)

0.039 0.044 0.379 0.029 0.039 0.314

(0.014) (0.014) (0.013)

1.5 Empirical study

In this section, we outline the estimation of our "doubly hawkes" jump-diffusion model with

factors, first within a number of key US banks & insurance companies, and secondly among

the nine largest S&P sectors during the period 2000-2014. Also, we are interested in con-

structing network maps through which the following shocks could propagate: i) negative

market perception, liquidity shocks; ii) volatility shocks or panic. We want to assess the

system fragility by studying the contagiousness and vulnerability of institutions and sectors.

Our data base comes from the Wharton Research Data Services. Concerning stocks, we

rely on intraday data from the Trade and Quote (TAQ) database. We are interested on 12
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major financial stocks included in the S&P 500 index, namely: ACE, AIG, AXP , BAC, BK,

C, GS, JPM , MET , PNC, USB, and WFC. Our stocks are sufficiently liquid and traded

more than 195 times during a given day. We further clean the data following procedures

advocated in Barndorff-Nielsen, Hansen, and Shephard (2008a). Sector’s intraday data are

extracted from SDPR ETF’s for the concerned nine largest S&P sectors: Energy (XLE), Ma-

terials (XLB), Industrials (XLI), Consumer Discretionary (XLY), Consumer Staples (XLP),

Health Care(XLV), Financial(XLF), Information Technology (XLK), and Utilities (XLU).

The sampling period spans January 2000 to December 2014.

Figure 1.3. Return dynamics.
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Notes: This figure shows the time series of 12 stock returns traded on NYSE, from january 2006 to december

2011. Jumps are identified when the observed return absolute value is bigger than 2 × standard deviation.

Observations out of the two horizontal red dashed lines correspond to jumps in returns.

Looking at the graphical representation of log-returns (Figure 1.3) and the estimated
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spot volatility (Figure 1.5) below, we observe a lot of turmoil episodes both in prices and

volatilities. Also, self-excitation and cross-sectional clustering are omni-present. To be more

convincing about the presence of jumps both in prices and volatility, jump tests need to be

carried out.

We run the test of Lee and Mykland (2008) to validate the presence of jumps in log-prices.

The intuition of this jump test is the following: the jump detection statistic is the ratio of

the last return in a window of length, says, K, to the instantaneous volatility, estimated by

bipower variation using returns in the same window. We obtain that, on average, there are

around 15 jumps in log-price series per year. Most of jumps on stock returns occur in close

succession, both serially and cross-sectionally.

Testing for the presence of jumps in the volatility is more tricky. We rely on the procedure

of Todorov and Tauchen (2011) to validate the presence of these jumps. The different steps

are as follows: i) We apply the test of Lee and Mykland (2008) to the daily series of the

CBOE Volatility Index (V IX). We obtain the list of days with jumps in the V IX; ii) For

each of these days, and for each stock estimated spot volatility, we run the jump test of

Lee and Mykland (2008) to validate the presence of jumps in the volatility of the considered

stock.

Figure 1.4. VIX dynamics.
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Notes: This figure shows the time series of the CBOE Volatility Index, from

january 2006 to december 2011.
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This test gives us also the time at which the jump occures. Through this procedure, we

obtain that there is on average 10 jumps per years in the volatility of each stock, and these

jumps cluster both serially and cross-sectionally.

Figure 1.5. Volatility dynamics.
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Notes: This figure represents the time series of estimated volatilities of 12 stocks traded on NYSE, from

january 2006 to december 2011. Volatility is estimated using the local realized bipower variation esti-

mator as in Lee and Mykland (2008). Jumps are identified when the estimated volatility is bigger than

2 × standard deviation. Values above the horizontal red dashed line correspond to jumps.

Before focusing on the estimation results of our model, let’s recall two main points.

Firstly, our model encompenses the approach of Maneesoonthorn, Forbes, and Martin (2016)

by allowing m > 1 assets, and we allow common factors. By restricting the loading matrix to

0, we obtain their model as a sub-case. Their approach is based on MCMC, while we rely on

a GMM estimation strategy. Based on our strategy, tables 1.11 and 1.12 provide estimation
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results of their model for one sector, namely the sector of materials (XLB). Secondly, our

model is more general than the financial contagion model of Aït-Sahalia, Cacho-Diaz, and

Leaven (2015). Contrary to their approach: i) we don’t restrict the structure of the excitation

matrix; ii) we model the volatility as a stochastic process with mutually exciting jumps; iii)

we allow additional channels for shock transmission: volatility jumps and common factors; iv)

excitation parameters are estimated all at the same time. In order to illustrate the importance

of introducing those additional components, we estimate the model of Aït-Sahalia, Cacho-

Diaz, and Leaven (2015) for two sectors: the financial sector (XLF ) and the industrial sector

(XLI). Then, we compare those results with estimation results of our double-hawkes jump

diffusion model. Tables 1.13 and 1.14 contain those results. It appears from our model

that loadings coefficients, stochastic volatility parameters, volatility excitation parameters

are significantly different from 0. Thus, those elements matter and must be introduced into

the model.

We now focus on setups with more than 2 assets. In a first part, we estimate the model

for 12 financial stocks, namely: ACE, AIG, AXP , BAC, BK, C, GS, JPM , MET , PNC,

USB, and WFC. The following table presents estimation results of this first setup. We esti-

mate parameters using the proposed three steps estimation procedure described previously,

and the following moments: E[ri], E[r2
i ], E[r3

i ], E[r4
i ], E[rirj], E[r2

i r
2
j ], E[IVt], E[QVt], and

E[QVt+2QVt]−E[IVt+2IVt]. The choice of τ = 2 is dictated by autocorrelograms of processes

IVt and QVt.

Estimation results in tables 1.4-1.7 reveal that the global specification of our model is

valid. Since loading coefficients are significantly different from 0, we have a factor structure.

Parameters reflecting leverage effects, stochastic volatility, mutually exciting jump both in

prices and volatility, are significant. Excitation parameters of the volatility jump are at

least at the same level than the ones of price jump. Hence, data validate the presence of a

jump component in the volatility, and this volatility jump component must have a hawkes

specification. Comparing to the specification in Aït-Sahalia, Cacho-Diaz, and Leaven (2015),

they completely ignore the volatility channel for the jump transmission. But data are in favor

of the introduction of mutually exciting jumps in price and volatility. The volatility channel

is different and complementary to the price channel. It provides information on how the

fear/panic, or uncertainty about future profitability is transmitted from one stock to others.
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Table 1.4. Parameters estimates: continuous part of the model.

ACE AIG AXP BAC BK C

b 0.141 0.368 0.244 0.354 0.255 0.400

(0.010) (0.029) (0.012) (0.023) (0.014) (0.028)

ρ - 0.269 - 0.342 - 0.074 - 0.377 - 0.202 - 0.250

(0.003) (1.715) (0.018) (0.049) (0.019) (0.331)

θ 0.042 0.278 0.057 0.068 0.052 0.119

(0.004) (0.057) (0.007) (0.012) (0.007) (0.023)

η 0.572 0.951 0.758 0.664 0.733 0.816

(0.000) (0.484) (0.001) (0.011) (0.003) (0.094)

κ 3.866 1.716 5.067 3.237 5.140 2.844

3.7E-05 (0.500) (0.001) (0.005) (0.001) (0.049)

µ - 0.160 - 0.869 - 0.034 - 0.616 - 0.308 - 0.973

(0.085) (0.224) (0.097) (0.111) (0.093) (0.160)

GS JPM MET PNC USB WFC

b 0.242 0.275 0.279 0.279 0.244 0.317

(0.013) (0.012) (0.016) (0.019) (0.014) (0.019)

ρ - 0.006 - 0.219 - 0.151 - 0.373 - 0.332 - 0.310

(0.014) (0.010) (0.028) (0.034) (0.010) (0.028)

θ 0.059 0.047 0.061 0.059 0.044 0.055

(0.008) (0.007) (0.010) (0.009) (0.006) (0.009)

η 0.557 0.511 0.603 0.694 0.630 0.507

(0.000) (0.001) (0.003) (0.008) (0.002) (0.004)

κ 2.636 2.754 2.987 4.087 4.461 2.351

(0.001) (2.8E-04) (0.002) (0.002) (0.000) (0.001)

µ - 0.110 - 0.192 - 0.253 - 0.190 - 0.123 - 0.235

(0.118) (0.089) (0.104) (0.095) (0.094) (0.112)

Notes: The estimation relies on 12 stocks traded on NYSE between january 2006 and december 2011.

Parameters are idiosyncratic, meaning they are stock specific. Standard errors are in parenthesis.

Table 1.5. Parameters estimates (Cont’d): the factor component of the continuous part of
the model.

ρ
F

θ
F

η
F

κ
F

µ
F

Estimates - 0.065 0.900 0.172 2.004 0.348

(s.e) (0.466) (0.032) (0.057) (0.053) (0.201)

Notes: Standard errors are in parenthesis.



46

Table 1.6. Parameter estimates (cont’d): excitation parameters of price jump intensities
(The matrix β).

ACE AIG AXP BAC BK C GS JPM MET PNC USB WFC

ACE 0.28* 0.12* 0.36* 0.21* 0.25* 0.17* 0.08 0.34* 0.59* 0.05 0.80* 0.52*

AIG 0.19* 0.39* 0.29* 0.85* 0.21* 0.22* 0.64* 0.13* 0.65* 0.32* 0.59* 0.95*

AXP 0.47* 1.06* 0.29* 0.39* 0.70* 0.27* 0.30* 0.29* 0.08 0.62* 0.66* 0.68*

BAC 0.64* 0.56* 0.22* 0.16* 0.67* 0.84* 0.61* 0.27* 0.00 0.77* 0.000 0.29*

BK 0.14* 0.17* 0.42* 0.60* 0.29* 0.11* 0.34* 0.87* 0.43* 0.62* 0.00 0.739

C 0.00 0.20* 0.18* 0.57* 0.86* 0.14* 0.18* 0.65* 0.32* 0.43* 0.00 0.03

GS 0.75* 0.16* 0.62* 0.46* 0.21* 0.29* 0.14* 0.62* 0.61* 0.06 0.00 0.46*

JPM 0.08 0.93* 0.79* 0.43* 0.68* 0.68* 0.14* 0.24* 0.27* 0.20* 0.67* 0.37*

MET 0.65* 0.19* 0.32* 0.22* 0.31* 0.47* 0.37* 0.78* 0.65* 0.00 0.74* 0.00

PNC 0.76* 0.00 0.85* 0.16* 0.00 0.52* 0.58* 0.00 0.87* 0.67* 0.17* 0.76*

USB 0.05 0.07 0.62* 0.92* 0.38* 0.62* 0.00 0.48* 0.12* 0.08 0.89* 0.53*

WFC 0.09 0.37* 0.00 0.66* 0.54* 0.76* 0.17* 0.22* 0.56* 0.42* 0.92* 0.61*

Notes: The estimation relies on 12 stocks traded on NYSE between january 2006 and december 2011.

Estimates of βij significantly higher than zero at the 5 family-wise significance levels are indicated by *.

Table 1.7. Parameter estimates (cont’d): excitation parameters of volatility jump
intensities (The matrix βv).

ACE AIG AXP BAC BK C GS JPM MET PNC USB WFC

ACE 0.53* 0.84* 0.84* 0.21* 0.08* 0.00 0.66* 0.82* 0.00 0.09 0.39* 0.89*

AIG 0.94* 0.77* 0.30* 0.31* 0.69* 0.39* 0.53* 0.53* 0.71* 0.14* 0.89* 0.10*

AXP 0.58* 0.56* 0.48* 0.29* 0.70* 0.31* 0.10* 0.99* 0.29* 0.48* 0.28* 0.83*

BAC 0.34* 0.19* 0.08 0.87* 0.74* 0.78* 0.58* 0.26* 0.87* 0.02 0.58* 0.37*

BK 0.73* 0.14* 0.75* 0.35* 0.81* 0.19* 0.49* 0.52* 0.87* 0.85* 0.33* 0.003

C 0.29* 0.04 0.74* 0.67* 0.00 0.50* 0.88* 0.55* 0.95* 0.75* 0.77* 0.49*

GS 0.71* 0.72* 0.39* 0.13* 0.73* 0.11* 0.09 0.27* 0.71* 0.24* 0.78* 0.19*

JPM 0.66* 0.67* 0.75* 0.83* 0.21* 0.00 0.55* 0.29* 0.35* 0.08 0.76* 0.07

MET 0.17* 0.16* 0.48* 1.01* 0.44* 0.28* 0.45* 0.09 0.87* 0.50* 0.26* 0.47*

PNC 0.42* 0.56* 0.44* 0.74* 0.63* 0.17* 0.56* 0.004 0.85* 0.49* 0.43* 0.28*

USB 0.59* 0.76* 0.41* 0.26* 0.92* 0.12* 0.36* 0.21* 0.013 0.32* 0.61* 0.90*

WFC 0.60* 0.08 0.21* 0.37* 0.64* 0.64* 0.55* 0.90* 0.43* 0.59* 0.27* 0.076

Notes: The estimation relies on 12 stocks traded on NYSE between january 2006 and december 2011.

Estimates of βv
ij significantly higher than zero at the 5 family-wise significance levels are indicated by *.
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Table 1.8. Parameters estimates (Cont’d). The table provides estimates of others
parameters present in the jump part of the model. Standard errors are in parenthesis.

λF λF v µF v µIv 1/γF 1 1/γF 2

Estimates 0.144 1.0E-04 1.066 0.544 0.010 0.010

(s.e.) (9.5E-02) (1.4E-01) (1.3E-05) (1.2E-02) (2.5E+00) (5.4E+00)

1/γ1 1/γ2 αI αv
I λI∞ λv

I∞

Estimates 0.010 0.010 1.993 1.308 0.001 0.826

(s.e.) (9.4E-02) (7.9E-02) (1.3E-02) (7.0E-03) (1.6E+00) (7.7E-03)

Notes: The estimation relies on 12 stocks traded on NYSE between january 2006 and december 2011.

Estimates of βv
ij significantly higher than zero at the 5 family-wise significance levels are indicated by *.

We now turn to the use of excitation parameters to construct network maps for shock

transmission.

1.5.1 On network construction

There is a rich literature on tracking association between individual firms and proposing

different measures for financial fragility. Despite of being widely spread, correlation measures

only focus on pairwise associations. They strongly depend on linear Gaussian assumptions,

which constitutes a departure from financial market data. As a consequence, they focus only

on the dependency in the center and relevant information in the tail area are neglected. The

equi-correlation approach of Engle and Kelly (2012) is an example. As a measure of the global

interdependence, they propose to average correlations across all pairs. Weakly dependent

on Gaussian methods, the CoVaR approach of Adrian and Brunnermeier (2016) and the

marginal expected shortfall approach of Acharya, Pedersen, Philippe, and Richardson (2017)

are also some popular methods to adress firm interdependency. But according to De Vries

(2005), the Gaussian based correlation measures don’t adequately capture the dependency

structure within firms when the marginal distributions are non-normal. Our approach takes

into account dependency structure in the tail.

Our systemic risk features are exclusively based on excitation parameters βij and βvij

for ∀i, j = 1, ...,m. To develop some intuition for these parameters as a device for studying

dependence during periods of financial turmoil, recall that: A jump in the price of asset j

at time t, increases by βij∆ the likelihood of further jumps in the price of asset i within the
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time interval [t; t + ∆]. Hence, βij summarizes the information about the tail dependency

between assets i and j. The bigger it is, the stronger will be the tail link between i and j.

We use estimates of price and volatility jump excitation parameters βij and βvij to provide

characteristics of the systemic risk within a set of financial firms/sectors. Firstly, we construct

two different type of graphs: a graph for the propagation of negative market perception or

liquidity schock, and a graph for the propagation of fear/panic or uncertainty about the

future profitability. Secondly, excitation parameters are used to define a new measure of the

systemic risk during times of crisis. These different elements provide useful information about

the tail interdependency structure of considered stocks/sectors. Graphs are constructed using

the network methodology.

A network map constitutes of nodes and edges, representing connections between these

nodes. We rely on Diebold and Yilmaz (2015a) methodology to construct network associated

measures. It requires the specification of three main elements: objects to be connected,

variables whose connection is to be examined, a model from which the connection concept

will be defined. These objects are respectively called: vertices, the reference universe and

the approximating model. Throughout this section, the approximating model will remain the

same. But depending on the reference universe or connected objects, we will obtain different

network maps. We make the following choices:

– Connected objects or vertices: financial firms or sectors;

– The Reference Universe: returns and volatility;

– The Approximating Model: "Doubly hawkes" jump-diffusion model with factors, as

defined in section 2.

The next step consists on setting the adjacency matrix and measures of network fragility.

The adjacency matrix is a matricial representation which contains all information about the

network. For a simple graph, the adjacency matrix is a matrix of ones (if there is a link

between two nodes) and zeros (otherwise). But when we want to highlight on strength of

links, elements of the adjacency matrix are weigths of the corresponding connections. Since

excitation parameters measure strengths of the tail dependency between assets, they will

constitute elements of our adjacency matrices. Also, the way one asset i impacts another

asset j is not necessary the same than the effect of j on i. Thus, the adjacency matrix need

not be symmetric. The output of this network construction is a graph for shock transmission.
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Therefore, edges must have a direction, pointing from one stock to another. An edge is drawn

from j to i as soon as βij is significantly different from 0.

– Network adjacency matrices: excitation matrices β = (βij)i,j≤m and βv = (βvij)i,j≤m.

– Edge from j to i iff: βij is significantly different from 0.

Knowing details of the network structure through adjacency matrices, we can compute di-

rectional relatives. They provide information about the system fragility and vulnerability of

nodes. We now define such measures:

• Pairwise directional connectivity, measures the strength of the connection of the firm i to

the firm j:

βi←j = βij

• Net pairwise directional connectivity, i.e, a balance of the effects between two stocks:

βi←j − βj←i

Depending on its sign, it provides information about which stock is the net provider or the

net receiver of a bilateral impact.

• Total directional connectivity from others to i:

βi←• =
∑m
j=1,j 6=i βij

As the Marginal Expected Shortfall (MES), this quantity provides a measure of the sensi-

tivity of the node i to extreme events. It is also interpreted as a market stress test of firm i

fragility.

• Total directional connectivity to others from j:

β•←j =
∑m
i=1,i 6=j βij

It measures how a shock to j impacts others financial institutions. It provides a measure

of the contribution of j to systemic risk. This value is similar in spirit to the Co-Value at

Risk (CoVar). Indeed, CoVar(j) is a measure of the financial sector fragility conditional on

institution j being in distress.
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• Net total directional connectivity of i, a balance of the interaction of the asset i with the

market:

β̄i = β•←i − βi←•

• Connectivity Index, a measure for system fragility. The bigger it is, the more vulnerable is

the system to propagation of shocks:

β̄ = 1
m

∑m
i,j=1 βij

In terms of measures for the financial system fragility, several points of distinction arise

between our approach and some popular ones. First, even if we use the same tools as

Diebold and Yilmaz (2015a), our approximating model is different as their approach is based

on variance decomposition. The element (i, j) of their adjacency matrix is the fraction of

the i′s H-step forecast error variance due to shock to j, which is quite different from our

excitation parameters βij. Their approach is not able to capture the connectivity concept we

outline in this paper. As an illustration, we consider the previous simulation design. With

simulated data, we apply the connectedness theory of Diebold and Yilmaz (2015a), and we

compare the obtained network to the one derived using true excitation coefficients. The

figure 1.6 contains the output of this comparison exercise. It appears that the connectedness

approah of Diebold and Yilmaz (2015a) can’t reproduce our contagion concept. It isolates

some nodes, and generates a lot of self-connexion.
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Figure 1.6. Network map based on Excitation parameters VS network maps derived from
the forecast error variance decomposition of Diebold and Yilmaz

 

 

 

Notes: Based on simulations, the first row contains network maps generated by excitation parameters and

the second row, network maps derived from the forecast error variance decomposition of Diebold and Yilmaz

(returns in the left and volatility in the right).

Secondly, Dungey and Gajurel (2014) consider a factor model. But they emphasize

more on testing for contagion than measuring. They measure contagion as a deviation of

the idiosyncratic covariance matrix from the diagonal matrix. Third, comparing to the

CoVar of Tobias and Brunnermeier (2016) or the MES of Acharya, Pedersen, Philippon,

and Richardson (2010), their approaches are different even if they share same intuitions than

total directional impacts "from others" and "to other" respectively, as defined above.

Relying on estimated adjacency matrices β̂ and β̂v, the first part of our empirical exercise

consists on studying the connectivity within a financial system of 12 major institutions. More

specificaly, we want to assess contagiousness and vulnerability of these financial assets, given

the estimated excitation matrices. We compute directionnal indicators useful for the study

of system fragility’s. Tables 1.9 summarize these findings.

Banks and insurance companies contribute at the same level to shock transmissions.
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From the row "From others to i" of the table 1.9, it appears that AIG, AXP and JPM

returns are the most sensitive to extreme market events. Togheter with C, their volatilities

are the most vulnerable. Distresses of BAC, WFC, ACE and MET have the highest

negative impact on the financial system fragility (They present highest values of the variable

"To others from j", for prices or volatility). They are the biggest contributors to systemic

risk.

Table 1.9. System fragility indicators: 12 financial institutions.

Negative market perception
or liquidity shock transmission

ACE AIG AXP BAC BK C
From others to i 3.49 5.04 5.54 4.89 4.45 3.44
To others from j 3.83 3.84 4.68 5.49 4.81 4.93
Net total directional 0.34 -1.19 -0.86 0.61 0.36 1.49

GS JPM MET PNC USB WFC
From others to i 4.23 5.26 4.03 4.67 3.87 4.72
To others from j 3.42 4.66 4.50 3.58 4.54 5.33
Net total directional -0.81 -0.60 0.47 -1.09 0.67 0.61
Connectivity Index 0.41

Volatility shock or fear transmission

ACE AIG AXP BAC BK C
From others to i 4.84 5.54 5.44 4.82 5.26 6.14
To others from j 6.03 4.73 5.40 5.17 5.80 3.00
Net total directional 1.19 -0.81 -0.04 0.35 0.54 -3.14

GS JPM MET PNC USB WFC
From others to i 5.00 4.93 4.32 5.08 4.85 5.28
To others from j 5.72 5.17 6.05 4.07 5.75 4.60
Net total directional 0.72 0.24 1.73 -1.01 0.90 -0.68
Connectivity Index 0.47

Notes: Coefficients in this table are directional relatives computed from
adjacency matrices β and βv, as described in the section 1.5.1.

Between banks and insurance companies, there is not one group which is completely

dominated by the other by being always the net receiver. Nevertheless, three financial insti-

tutions (two banks and one insurance company) are net receivers both for price and volatility

shocks: AIG, AXP and PNC. Those companies are small in term of market capitalization.

Concerning the shock instigation, independently on whether we are interested on liquidity

shock or fear transmission, ACE, BAC, BK, MET , and USB are net shock providers.

They should be main instigators of systemic risk. The City Bank has a particular behavior:

it is the biggest shock provider in term of market expectation/liquidity shocks, but also the

most important shock receiver in term of volatility shocks.
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On average, the connectivity index is bigger for volatility shock/fear transmission than

for Market expectation/liquidity shock transmission (respectively 0.47 and 0.41). Thus, the

risk of volatility shocks to propagate throughout this financial system is bigger than the one

of price shocks. This finding is in line with Maneesoonthorn, Forbes, and Martin (2016) who

argued that volatility jump intensity is much more informative than the jump price intensity.

Hence, the volatility contribution to the tail dependency between considered stocks is most

important than the price contribution.

The main important outputs of these shock transmission analysis are network maps for

negative market perception/liquidity shock transmission and network for volatility shock/fear

transmission. Based on the considered financial institutions, following graphs display how a

shock originating from one specific financial asset could spread through the network.

In order to interpret the network map in figure 1.7, let’s consider the bank Wells Fargo

(WFC). It is one of the five biggest banks in US. For a risk exposure diversification purpose,

the following financial institutions are share holders of WFC: AIG, BK, and PNC. The av-

erage numbers of shares held in 2016 were respectively (in millions): 1.5, 42, and 10. Assume

that, due to some reasons, WFC becomes unable to meet demands for immediate payment.

By the time information about the insolvency of WFC will be released to the market, its

price will experience a negative jump. This price drop contains pessimistic market expecta-

tion of its future profitability. Traders will fire sale this stocks, generating mark-to-market

losses to AIG, BK, and PNC4. Combined with connectedness mechanisms and contagion

effects, these mark-to-market losses will generate drops of these latter stock prices with a

strictly positive probability. The transmission process of this negative market perception

will continuous through edges of the network map drawn in figure 1.7. Black edges are the

more likely to be realized, followed in a decreasing order by red and green edges.

4The underlying assumption is that those banks value their assets at the current market prices.
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Figure 1.7. Network map for the propagation of negative market perceptions/liquidity
shock.

ACE

AIG

AXP

BAC

BK
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JPM
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Notes: Each vertex represents a financial stock. We draw the most significant directional connec-

tions among pairs of assets. Black links (respectively red and green links) correspond to stongest

links (respectively the second strongest and less strong links). The node size indicates stock market

capitalization. Edge widths are proportionnal to the link’s weights..

Let’s now consider a different scenario. Assume that WFC face a liquidity shock, such

that there is an unexpected reduction of its funding. It needs to reduce its assets, for example

by decreasing its lending. By the figure 1.7, the most affected banks by this measure will be

AIG, BK, and PNC. Those financial institutions will also reduce their lendings to others,

generating a transmission of this liquidity shock through the network.

The network map in figure 1.7 puts in light not only connections arising from the existence

of financial claims, but also links coming from contagion effects.

Interpretation of the network map in figure 1.8 is quite similar to the previous one.

The only difference is the nature of signal which is transmitted: here, it is the investor

panic which propagates through the network. Let’s go back to the example related to the

bank WFC. Assume that there are widespread rumors of an eventual bankruptcy of this

financial institution. Risk averse investors will liquidate their positions from this bank and

customers will ask for immediate payment. As a consequence, its stock price will decline

rapidly, increasing tensions and panic of shares holders. Since investors, with limited amount
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of information, have into their portfolios similar assets, they will proceed to their fire-sales.

Corresponding prices will jump down and their variances will increase. Thus, fear about

the future profitability of those similar stocks will increase. Hence, through this mechanism,

investor fear is likely to propagate from WFC to a set of similar stocks, but with different

probabilities of occurrence. The more likely transmission paths of investors stress are in

black. In red and green are connexions less likely to happen.

Figure 1.8. Network map for the propagation of volatility shocks/panic transmission.
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Notes: Each vertex represents a financial stock. We draw the most significant directional connec-

tions among pairs of stocks. Black links (respectively red and green links) correspond to stongest

links (respectively the second strongest and less strong links). Node size indicates stock market

capitalization. Edge widths are proportionnal to link’s weights.

The second part of our empirical study concerns the nine largest economic’s sectors in the

US: Energy (XLE), Materials (XLB), Industrials (XLI), Consumer Discretionary (XLY), Con-

sumer Staples (XLP), Health Care (XLV), Finance (XLF), Information Technology (XLK),

and Utilities (XLU). As in the first part, we use the dataset of those sectors to estimate the

model, then we focus on construction and properties of resulting networks. We want to know

how connected are economic sectors, and how a shock originating from one specific sector

can be amplified and transmitted to others economic sectors. Those informations are helpful

to contain the collapse of the economic system. They are also useful for the minimization of

investment risk through a sector diversification of the portfolio.

Table 1.10 presents some directionnal relatives. They are computed using as adjacency
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Table 1.10. System fragility indicators: 9 largest S&P500 economic’s sectors.

Negative market perception or liquidity shock transmission

XLB XLV XLP XLY XLE XLF XLI XLK XLU
From others to i 3.90 4.16 3.14 4.36 3.29 3.84 3.45 5.10 4.37
To others from j 3.07 5.22 3.09 4.27 3.80 4.22 4.63 2.90 4.41
Net total directional -0.83 1.06 -0.05 -0.09 0.51 0.39 1.18 -2.20 0.04
Connectivity Index 0.44

Volatility shock or fear transmission

XLB XLV XLP XLY XLE XLF XLI XLK XLU
From others to i 5.26 3.70 4.43 4.06 4.96 5.16 4.24 4.98 4.21
To others from j 3.94 4.96 5.48 4.63 5.49 5.28 2.59 3.99 4.64
Net total directional -1.32 1.26 1.05 0.57 0.53 0.12 -1.65 -1.00 0.43
Connectivity Index 0.51

Notes: Coefficients in this table are directional relatives computed from adjacency matrices β and
βv, as described in the section 1.5.1.

matrices β̂ and β̂v, estimated using sectors’ data. From this table, we observe that while

health care, energy, finance, industry and utilities sectors are net instigators of liquidity

shocks, other sectors are net receivers. In term of volatility shocks, materials, industry and

technology sectors are net receivers. Also, XLK, XLU and XLY returns on the one hand,

materials, finance and technology sectors volatilities on the other hand are the most sensitive

to extreme market events. Distresses of XLV , XLP , XLE, and XLF have the highest

negative impacts on the economic system fragility.

Depending on the type of shock we care about, the role played by some sectors changes.

While the industry sector is instigator of liquidity shocks (With positive net total direction-

als), it is a net receiver of volatility shocks. Futher, consumer discretionary and consumer

staples are net receivers of liquidity shocks but net providers of volatility shocks. Neverthe-

less, health care, energy and finance are always net providers of shocks, while, materials and

information technology are shock receivers independently on the nature of the signal. If the

health care sector is resilient to shocks coming from others sectors, it is because people are

reluctant to reduce their health expenditure even if their income become tight.

In term of shock transmission, it is well known that "it is better to give than to receive".

Hence, investors should be more attracted by stocks within health care, energy and financial

sectors than others. On contrary, regulators should have a particular look to these sectors’

stocks in order to carry out effective and efficient stabilization policies.
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Figure 1.9. Sectors: Network map for the propagation of negative market
perceptions/liquidity shock transmission.
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Notes: Each vertex represents a S&P500 sector. Black links (respectively red and green links) correspond

to stongest links (respectively the second strongest and less strong links). The node size indicates the sector

capitalization. Edge widths are proportionnal to link’s weights.

The financial sector plays a central role in modern economies. It provides credit and

generates equities for firms: it eases the flow of capital. Network maps of figures 1.9 and 1.10

are evidences of such centrality. From these maps, it comes out that returns and volatility of

the financial sector are highly connected to those of others sectors. After a negative market

perception of the financial sector, figure 1.9 stipulates that, with a high probability, next

affected sectors will be industry and utilities. Once investors reduce their shares in these

sectors, contagion will move to technology, materials, energy and health care. Suppose now

that the financial sector faces a panic episod. The map to consider is given by figure 1.10.

The panic movement is more likely to move firstly to the industry, technology, consumer

discretionary and health care sectors. From those latter sectors, the shock will be amplified

and transmitted to others.
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Figure 1.10. Sectors: Network map for the propagation of volatility shocks/panic
transmission. Each vertex represents a S&P500 sector.
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Notes: Black links (respectively red and green links) correspond to stongest links (respectively the second

strongest and less strong links). The node size indicates the sector capitalization. Edge widths are propor-

tionnal to link’s weights.
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1.6 Conclusion

This paper provides a general reduced-form model for the propagation of negative idiosyn-

cratic shocks from any specific economic unit to the entire economic system, namely the

systemic risk. The vector of returns is modeled as a multidimensional hawkes jump-diffusion

process with a factor component, and mutually exciting jumps both in price and volatility.

We account for different sources of systemic failure such as macro risk drivers or common ex-

posures (Through common factors), connectedness and contagion effects (Through mutually

exciting jumps both in price and volatility).

We rely on the GMM approach to estimate the model. We take advantage of high fre-

quency data. Using estimates of both jump price excitation parameters β̂ and volatility

excitation parameters β̂v, we track associations within a number of US key banks and insur-

ance companies. We also estimate the model for the nine S&P500 largest economic sectors.

We construct a network map for the transmission of negative market perceptions or liquidity

schocks, and a network map for the transmission of volatility shocks, fear or uncertainty

about the future profitability. Futher, we provide information about contagiousness and

vulnerability. We find that systemic risk has three related but distinct channels: common

factors, price and volatility jumps.

We derive that returns of the technology, utilities and consumer discretionary sectors on

the one hand, volatilities of materials, financial and technology sectors on the other hand are

more sensitive to extreme market events. Distresses of health care, consumer staples, energy

and financial sectors have the highest negative impacts on the economic system fragility.

Concerning financial institutions, BAC, WFC, ACE and MET are bigger contributors to

systemic risk. Propagation of volatility shocks throughout the system is more likely than

price shock transmission.

Our network’s maps and fragility measures provide new information to market partici-

pants, useful to reduce the adverse selection risk. Since firms know their positions on these

network maps, they should adjust their business strategies to account for all this information.

Tail dependence structures derived from returns and volatility lead to two different network

maps: investors should base their investment strategies on the appropriate network map,

depending on the type of risk they want to be edged. We come out with central firms and

sectors. Thus, regulators have additional tools for their monitoring, in order to garantee a

good trading environment.
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1.7 Tables

1.7.1 Some empirical results

Table 1.11. Maneesoonthorn, Forbes, and Martin (2016), 1 sector (Materials, XLB),
diffusion part

ρI θI ηI κI µI

Estimates -0.116 5.4E-05 0.036 12.31 0.039
(t-Stat) (2.633) (23.84) (196.9) (1.4E+05) (1.490)

Table 1.12. Maneesoonthorn, Forbes, and Martin (2016), 1 sector (Materials, XLB), jump
part

βI βv
I αI αv

I λInf λv
Inf µI γ1 γ2

Estimates 0.491 0.0001 1.188 1.433 0.0001 0.01 0.5 0.104 0.072
(t-Stat) (2E+06) (2.6E+01) (9E+06) (6E+09) (5E-01) (2E+01) (5E+04) 2E+02 (3E+01)

Table 1.13. Aït-Sahalia, Cacho-Diaz, and Leaven (2015), 2 assets

Financial Sector Industrial Sector
(XLF) (XLI)

θI 1.1E-04 4.9E-05
(15.67) (15.52)

µI -0.016 0.076
(0.337) (2.326)

β1 0.189 0.414
(2.366) (31.24)

β2 0.000 0.139
(0.002) (4.984)

αI 0.821 0.821
(45.36) (45.36)

λInf 0.605 0.605
(7.477) (7.477)

γ1 0.010 0.010
(0.209) (0.209)

γ2 0.015 0.015
(0.196) (0.196)
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Table 1.14. Double-Hawkes jump diffusion model, 2 assets

Financial Sector Industrial Sector Financial Sector Industrial Sector
(XLF) (XLI) (XLF) (XLI)

b 0.083 0.020 β1 0.089 0.000
(18.06) (0.059) (7.818) (0.008)

ρI -0.702 -0.499 β2 0.422 0.000
(3.0E+02) (7.6E+02) (37.04) (0.010)

θI 1.10E-04 1.37E-04 βv
1 0.000 0.673

(13.17) (0.670) (0.060) (569.7)
ηI 0.041 0.036 βv

2 0.000 0.000
(6.2E+02) (3.0E+03) (0.060) (0.085)

ρF -0.172 -0.172 αI 1.059 1.059
(1.5E+02) (1.5E+02) (295.7) (295.7)

θF 0.015 0.015 αv
I 1.640 1.640

(50.02) (50.02) (3.4E+03) (3.4E+03)
ηF 0.251 0.251 λInf 0.004 0.004

(5.3E+03) (5.3E+03) (0.606) (0.606)
κI 7.488 4.783 λv

Inf 1.00E-04 1.00E-04

(1.2E+06) (3.8E+06) (1.565) (1.565)
κF 2.103 2.103 λF 0.843 0.843

(1.4E+06) (1.4E+06) (15.59) (15.59)
µI 0.020 0.085 λv

F 0.003 0.003
(0.417) (0.568) (0.503) (0.503)

µF -0.440 -0.440 µv
F 1.130 1.130

(5.613) (5.613) (8.4E+04) (8.4E+04)
γF 1 0.014 0.014 µv

I 1.576 1.576
(0.013) (0.013) (4.1E+08) (4.1E+08)

γF 2 0.183 0.183 γ1 0.010 0.010
0.884 (0.884) (0.035) (0.035)

γ2 0.144 0.144
(1.976) (1.976)

Table 1.15. Parameters estimates for sectors: the continuous part of the model.

XLB XLV XLP XLY XLE XLF XLI XLK XLU

b 0.181 0.098 0.084 0.159 0.169 0.207 0.003 0.190 0.090
8.2E-03 5.2E-03 5.1E-03 8.1E-03 9.4E-03 9.9E-03 4.0E-03 8.9E-03 5.7E-03

ρ -0.894 -0.894 -0.894 -0.894 -0.894 -0.894 -0.894 -0.894 -0.894
5.6E-02 9.9E-03 7.4E-03 4.4E-02 1.3E-01 1.7E-01 3.7E-02 1.8E-01 2.1E-02

θ 0.014 0.010 0.010 0.011 0.021 0.017 0.017 0.017 0.013
7.2E-04 4.4E-04 3.7E-04 5.0E-04 1.1E-03 1.2E-03 8.3E-04 1.5E-03 5.4E-04

η 0.210 0.153 0.161 0.192 0.246 0.236 0.189 0.218 0.184
1.0E-02 1.3E-03 1.1E-03 7.5E-03 2.9E-02 3.5E-02 6.2E-03 3.5E-02 3.5E-03

κ 1.590 1.136 1.352 1.652 1.408 1.640 1.078 1.426 1.320
4.1E-04 4.0E-05 1.7E-05 3.4E-04 2.0E-03 1.2E-03 2.0E-04 1.7E-03 6.1E-05

µ -0.033 0.005 0.050 0.006 -0.022 -0.105 0.075 -0.141 0.050
3.4E-02 2.5E-02 2.3E-02 3.1E-02 4.4E-02 4.5E-02 3.3E-02 4.6E-02 3.0E-02

Notes: The estimation relies on 12 stocks traded on NYSE between january 2006 and december 2011.
Parameters are idiosyncratic, meaning they are stock specific. Standard errors are in parenthesis.

61



Table 1.16. Parameters estimates for sectors (Cont’d): the factor component of the
continuous part of the model.

Estimates

(s.e.)

ρF - 0.8936

(0.1321)

θF 0.3592

(0.0182)

ηF 0.5735

(0.0670)

κF 0.4686

(0.001)

µF 0.4266

(0.0258)

Notes: Standard errors are in parenthesis.

Table 1.17. Parameter estimates for sectors (cont’d): excitation parameters of price jump
intensities (The matrix β).

XLB XLV XLP XLY XLE XLF XLI XLK XLU

XLB 0.099 0.486 0.365 0.419 0.302 0.147 0.899 0.222 0.964

0.010 0.012 0.007 0.008 0.014 0.014 0.008 0.005 0.011

XLV 0.133 0.057 0.391 0.533 0.873 0.214 0.914 0.229 0.820

0.019 0.006 0.008 0.011 0.018 0.028 0.020 0.008 0.016

XLP 0.608 0.426 0.155 0.581 0.034 0.327 0.253 0.289 0.472

0.009 0.012 0.008 0.007 0.011 0.013 0.017 0.004 0.008

XLY 0.249 0.802 0.464 0.595 0.227 0.483 0.601 0.277 0.659

0.018 0.011 0.009 0.005 0.016 0.027 0.015 0.007 0.017

XLE 0.079 0.408 0.034 0.275 0.438 0.621 0.774 0.487 0.179

0.007 0.018 0.011 0.013 0.013 0.013 0.017 0.009 0.021

XLF 0.687 0.785 0.273 0.929 0.164 0.134 0.165 0.291 0.409

0.011 0.027 0.019 0.021 0.023 0.014 0.030 0.016 0.035

XLI 0.078 0.882 0.108 0.077 0.592 0.849 0.043 0.094 0.727

0.008 0.016 0.007 0.009 0.012 0.018 0.027 0.005 0.013

XLK 0.558 0.758 0.603 0.470 0.192 0.574 0.982 0.932 0.028

0.033 0.013 0.016 0.014 0.023 0.042 0.020 0.008 0.029

XLU 0.581 0.620 0.697 0.388 0.980 0.875 0.000 0.078 0.152

0.014 0.012 0.006 0.009 0.009 0.017 0.014 0.005 0.012

Notes: The estimation relies on 12 stocks traded on NYSE between january 2006 and december 2011.

Standard errors are in parenthesis.
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Table 1.18. Parameter estimates (cont’d): excitation parameters of volatility jump
intensities (The matrix βv).

XLB XLV XLP XLY XLE XLF XLI XLK XLU

XLB 0.547 0.918 0.894 0.448 0.285 0.207 0.177 1.001 0.783

5.0E-04 1.0E-03 4.4E-04 2.9E-05 7.4E-04 1.1E-03 1.2E-03 1.1E-03 2.5E-04

XLV 0.364 0.143 0.608 0.690 0.327 1.041 0.118 0.100 0.306

2.0E-04 4.3E-04 1.8E-04 1.4E-05 3.0E-04 4.4E-04 5.0E-04 4.6E-04 1.0E-04

XLP 0.079 0.233 0.886 0.674 0.777 0.405 0.239 0.167 0.972

2.2E-04 4.6E-04 1.9E-04 1.8E-05 3.3E-04 4.8E-04 5.4E-04 5.0E-04 1.1E-04

XLY 0.702 0.615 0.106 0.366 0.840 0.726 0.205 0.420 0.077

4.5E-04 9.3E-04 3.9E-04 2.5E-05 6.6E-04 9.7E-04 1.1E-03 1.0E-03 2.3E-04

XLE 0.278 0.646 0.810 0.808 0.543 0.623 0.248 0.609 0.395

5.7E-04 1.2E-03 5.0E-04 3.5E-05 8.5E-04 1.2E-03 1.4E-03 1.3E-03 2.9E-04

XLF 0.467 0.392 0.986 0.414 0.901 0.542 0.219 0.518 0.721

6.6E-04 1.4E-03 5.8E-04 4.5E-05 9.8E-04 1.4E-03 1.6E-03 1.5E-03 3.4E-04

XLI 0.550 0.607 0.485 0.790 0.340 0.673 0.543 0.088 0.168

2.3E-04 4.7E-04 2.0E-04 1.5E-05 3.4E-04 4.9E-04 5.5E-04 5.1E-04 1.1E-04

XLK 0.952 0.554 0.557 0.205 0.573 0.662 0.809 0.328 0.343

5.6E-04 1.2E-03 4.9E-04 3.8E-05 8.3E-04 1.2E-03 1.4E-03 1.3E-03 2.8E-04

XLU 0.000 0.855 0.151 0.232 0.908 0.399 0.035 0.755 0.872

2.8E-04 5.8E-04 2.4E-04 1.6E-05 4.1E-04 6.0E-04 6.8E-04 6.2E-04 1.4E-04

Notes: The estimation relies on 12 stocks traded on NYSE between january 2006 and december 2011.

Standard errors are in parenthesis.

Table 1.19. Parameters estimates (Cont’d): the factor component of the jump part of the
model.

Estimates Estimates
(t-Stat) (t-Stat)

λF 6.91E-02 1/γ1 1.00E-02
4.86E-01 1.99E-01

λF v 1.00E-04 1/γ2 3.46E-02
1.25E-02 1.34E-01

µF v 1.46E+00 αI 1.07E+00
9.80E-07 3.44E-02

µIv 1.00E+00 αv
I 9.39E-01

3.03E-04 1.11E-03
1/γF 1 2.03E-02 λI∞ 3.64E-01

2.52E+00 2.37E-02
1/γF 2 2.22E-01 λv

I∞ 1.24E-01
2.31E-01 2.48E-03

Notes: Standard errors are in parenthesis.
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1.7.2 Monte Carlo result for m = 12

Table 1.20. True excitation matrix β

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A1 0.040 0.040 0.453 0.044 0.040 0.058 0.379 0.094 0.044 0.058 0.379 0.453
A2 0.079 0.044 0.094 0.040 0.058 0.044 0.094 0.453 0.058 0.058 0.040 0.044
A3 0.044 0.044 0.094 0.040 0.044 0.044 0.453 0.379 0.044 0.453 0.040 0.044
A4 0.040 0.379 0.453 0.079 0.079 0.079 0.453 0.453 0.044 0.079 0.453 0.040
A5 0.379 0.058 0.044 0.044 0.094 0.453 0.453 0.040 0.040 0.453 0.079 0.079
A6 0.094 0.040 0.044 0.058 0.094 0.453 0.453 0.044 0.058 0.044 0.044 0.453
A7 0.453 0.044 0.044 0.094 0.044 0.044 0.453 0.453 0.044 0.094 0.094 0.044
A8 0.453 0.044 0.044 0.044 0.040 0.044 0.044 0.044 0.079 0.044 0.044 0.453
A9 0.379 0.044 0.379 0.379 0.094 0.379 0.040 0.079 0.040 0.044 0.044 0.079
A10 0.079 0.044 0.040 0.040 0.379 0.044 0.379 0.379 0.379 0.453 0.044 0.044
A11 0.079 0.040 0.044 0.379 0.044 0.058 0.379 0.379 0.044 0.040 0.079 0.044
A12 0.044 0.044 0.379 0.379 0.058 0.079 0.094 0.453 0.044 0.058 0.079 0.044
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Table 1.21. Excitation matrix: Average estimate. Standard deviations are in italic.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A1 0.036 0.036 0.354 0.037 0.035 0.047 0.302 0.073 0.037 0.043 0.296 0.356
0.000 0.001 0.028 0.001 0.000 0.004 0.022 0.009 0.002 0.005 0.028 0.030

A2 0.068 0.037 0.083 0.044 0.055 0.039 0.077 0.361 0.052 0.060 0.039 0.041
0.007 0.001 0.009 0.010 0.011 0.004 0.006 0.027 0.008 0.014 0.007 0.005

A3 0.037 0.038 0.073 0.036 0.038 0.038 0.364 0.303 0.038 0.357 0.036 0.038
0.002 0.002 0.008 0.000 0.002 0.002 0.027 0.022 0.002 0.030 0.000 0.002

A4 0.039 0.302 0.368 0.068 0.069 0.062 0.365 0.364 0.041 0.073 0.361 0.039
0.008 0.023 0.026 0.016 0.009 0.007 0.028 0.025 0.009 0.011 0.029 0.006

A5 0.298 0.047 0.037 0.038 0.068 0.361 0.360 0.036 0.036 0.349 0.062 0.060
0.023 0.004 0.001 0.001 0.012 0.027 0.027 0.000 0.000 0.029 0.006 0.008

A6 0.076 0.037 0.039 0.049 0.077 0.364 0.363 0.038 0.049 0.041 0.039 0.360
0.007 0.004 0.003 0.008 0.008 0.026 0.028 0.002 0.007 0.007 0.005 0.027

A7 0.355 0.038 0.038 0.073 0.037 0.039 0.359 0.358 0.037 0.067 0.074 0.037
0.030 0.002 0.002 0.009 0.001 0.002 0.028 0.027 0.001 0.011 0.010 0.002

A8 0.361 0.038 0.040 0.038 0.037 0.037 0.038 0.038 0.063 0.041 0.038 0.360
0.028 0.001 0.003 0.003 0.002 0.001 0.002 0.002 0.007 0.004 0.002 0.029

A9 0.302 0.038 0.298 0.296 0.071 0.303 0.036 0.063 0.035 0.037 0.038 0.061
0.022 0.002 0.023 0.024 0.009 0.022 0.000 0.005 0.000 0.002 0.002 0.007

A10 0.060 0.038 0.035 0.035 0.286 0.039 0.302 0.298 0.289 0.339 0.038 0.037
0.007 0.002 0.000 0.000 0.035 0.002 0.024 0.024 0.035 0.041 0.002 0.001

A11 0.066 0.036 0.041 0.305 0.041 0.046 0.306 0.302 0.040 0.042 0.063 0.040
0.006 0.002 0.004 0.025 0.005 0.004 0.022 0.022 0.005 0.007 0.008 0.004

A12 0.038 0.038 0.298 0.293 0.046 0.063 0.074 0.359 0.038 0.046 0.062 0.038
0.002 0.002 0.024 0.034 0.004 0.007 0.007 0.028 0.002 0.004 0.007 0.002

Table 1.22. True excitation matrix βv

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A1 0.094 0.453 0.040 0.044 0.044 0.379 0.094 0.044 0.379 0.453 0.044 0.044
A2 0.453 0.094 0.040 0.044 0.040 0.044 0.094 0.044 0.044 0.079 0.094 0.379
A3 0.044 0.453 0.044 0.044 0.044 0.058 0.453 0.044 0.079 0.453 0.044 0.453
A4 0.094 0.379 0.094 0.079 0.044 0.079 0.094 0.044 0.044 0.044 0.044 0.044
A5 0.040 0.453 0.044 0.079 0.044 0.453 0.094 0.379 0.040 0.379 0.453 0.058
A6 0.379 0.379 0.044 0.040 0.040 0.094 0.379 0.379 0.044 0.044 0.044 0.044
A7 0.040 0.044 0.044 0.044 0.058 0.453 0.040 0.040 0.058 0.044 0.094 0.453
A8 0.044 0.079 0.094 0.379 0.058 0.079 0.044 0.044 0.044 0.044 0.040 0.379
A9 0.094 0.044 0.044 0.453 0.079 0.453 0.044 0.453 0.044 0.094 0.044 0.044
A10 0.379 0.094 0.044 0.379 0.058 0.044 0.079 0.094 0.058 0.040 0.079 0.044
A11 0.044 0.044 0.058 0.079 0.453 0.379 0.044 0.044 0.044 0.040 0.094 0.094
A12 0.044 0.079 0.453 0.044 0.044 0.044 0.094 0.079 0.040 0.044 0.044 0.044
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Table 1.23. Excitation matrix βv: Average estimate. Standard deviations are in italic.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A1 0.054 0.346 0.037 0.037 0.053 0.276 0.053 0.033 0.280 0.350 0.050 0.036
0.024 0.030 0.003 0.003 0.011 0.033 0.020 0.004 0.027 0.028 0.011 0.003

A2 0.369 0.082 0.042 0.050 0.046 0.048 0.089 0.045 0.047 0.070 0.086 0.310
0.024 0.006 0.006 0.012 0.007 0.008 0.011 0.008 0.009 0.005 0.008 0.022

A3 0.048 0.348 0.043 0.037 0.061 0.053 0.322 0.033 0.061 0.348 0.058 0.337
0.007 0.031 0.004 0.003 0.020 0.005 0.040 0.003 0.013 0.029 0.019 0.034

A4 0.127 0.337 0.139 0.103 0.104 0.118 0.127 0.059 0.083 0.057 0.085 0.072
0.035 0.030 0.044 0.028 0.042 0.038 0.038 0.018 0.034 0.015 0.030 0.026

A5 0.027 0.314 0.029 0.062 0.027 0.276 0.072 0.264 0.029 0.264 0.285 0.046
0.001 0.039 0.003 0.006 0.001 0.062 0.007 0.040 0.002 0.034 0.046 0.004

A6 0.302 0.301 0.036 0.037 0.031 0.076 0.305 0.305 0.039 0.036 0.033 0.038
0.022 0.022 0.005 0.007 0.005 0.008 0.021 0.022 0.006 0.004 0.005 0.004

A7 0.059 0.052 0.063 0.052 0.087 0.386 0.053 0.040 0.066 0.048 0.108 0.378
0.014 0.009 0.016 0.013 0.018 0.029 0.015 0.008 0.014 0.007 0.015 0.027

A8 0.042 0.068 0.084 0.309 0.050 0.072 0.044 0.042 0.043 0.039 0.038 0.310
0.009 0.008 0.010 0.021 0.011 0.010 0.009 0.005 0.007 0.005 0.006 0.022

A9 0.055 0.039 0.039 0.321 0.066 0.326 0.038 0.343 0.038 0.060 0.047 0.037
0.023 0.003 0.003 0.037 0.022 0.037 0.003 0.030 0.003 0.015 0.010 0.003

A10 0.299 0.075 0.035 0.306 0.046 0.036 0.063 0.077 0.045 0.033 0.065 0.035
0.022 0.008 0.006 0.020 0.014 0.005 0.007 0.007 0.005 0.004 0.012 0.004

A11 0.044 0.040 0.050 0.082 0.352 0.313 0.048 0.048 0.048 0.039 0.070 0.084
0.009 0.008 0.010 0.016 0.027 0.023 0.011 0.008 0.012 0.007 0.013 0.009

A12 0.070 0.086 0.394 0.061 0.091 0.069 0.105 0.075 0.058 0.053 0.081 0.054
0.015 0.010 0.028 0.017 0.020 0.018 0.019 0.013 0.017 0.008 0.018 0.013
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1.8 Technical proofs

Proof of Lemma 1.3.1

From the equation 1.8, the variance at time t is given by

VFkt = e−κF k
tV

F k0
+ θ

F k
(1 − e−κF kt) + η

F k
ρ

F k

∫ t
0 e
−κ

F k
(t−u)

√
VFkudBu +

η
F k

√
1 − ρ2

F k

∫ t
0 e
−κ

F k
(t−u)dWu +

∫ t
0 e
−κ

F k
(t−u)Zv

FkudNFku

By taking the mean and assuming t → ∞, we obtain the unconditional mean E[VFk]. We

compute E[VIi] using the same trick.

V 2
Fkt is obtained by applying the Itö Lemma in definition 1.3.2 to the differential equation

1.8, and using the function f(x) = x2:

V 2
Fkt − V 2

Fk0 = 2κ
F k

∫ t
t0

(θ
F k
VFks − V 2

Fks)ds+ ηFk
2
∫ t
t0
E[VFks]ds

+
∫ t
t0

[2VFksZ
v
FksdN

v
Fks + (Zv

Fks)
2dN v

Fks]

We derive E[V 2
Fkt] by taking the expectation of both sides of the equation and setting the

left hand side to 0.

Proof of Theorem 1.3.1

The covariance density matrix is defined by

RI(τ)dt2 = E[dNIt+τdN
T
It] − E[dNIt+τ ]E[dNT

It], ∀τ > 0

= E[(NIt+τ −NIt−dt+τ (NIt −NIt−dt)
T ] − E[(NIt+τ −NIt−dt+τE[(NIt −NIt−dt)

T ]
Let’s assume that t− dt < t < t+ τ − dt < t+ τ . From the lemma 5 of Fonseca and Zaatour

(2015), it comes out that

RI(τ)dt2 = c2(dt)c0(τ − dt)c2(dt)
(
Λ̄∞ + βD

)

where c2(dt) = (β − α)−1
[
e(β−α)dt − I

]
; c0(τ − dt) = e(β−α)(τ−dt); I is the m × m identity

matrix; Λ̄∞ is the solution of the Lyapounov matricial equation given by

(β − α)Λ̄∞ + Λ̄∞(β − α)T + βDβ = 0

With β = (βIij)16i,j6m the matrix of excitation parameters, α = Dg (αI1, ..., αIm) and D =

Dg (E[λI1], ..., E[λIm]).

It can be checked that c2(dt)c0(τ − dt)c2(dt) = e(β−α)τdt2. Then, we derive that
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RI(τ) = e(β−α)τ
(
Λ̄∞ + βD

)

Proof of Corollary 1.3.1∫∆
0

∫ s
0 RI(t− s)dtds =

∫∆
0

∫ s
0 RI(s− t)Tdtds

=
[∫∆

0

∫ s
0 e

(β−α)(s−t)
(
Λ̄∞ + βD

)
dtds

]T

=
[∫∆

0 −(β − α)−1
(
I − e(β−α)s

)
ds
(
Λ̄∞ + βD

)
dtds

]T

≈
[∫∆

0 −(β − α)−1 (−(β − α)s) ds
(
Λ̄∞ + βD

)
dtds

]T

=
(
Λ̄∞ + βD

)T ∆2

2
∫∆

0

∫∆+τ
τ RI(s− t)dtds =

∫∆
0

∫∆+τ
τ RI(t− s)Tdtds

=
[∫∆

0

∫∆+τ
τ e(β−α)(t−s)

(
Λ̄∞ + βD

)
dtds

]T

=
[∫∆+τ
τ e(β−α)tdt · ∫∆

0 e−(β−α)sds
(
Λ̄∞ + βD

)]T

= [(β − α)−1
[
e(β−α)(∆+τ) − e(β−α)τ

]
(β − α)−1

[
I − e−(β−α)∆

]

×
(
Λ̄∞ + βD

)
]T

≈
[
e(β−α)τ

(
Λ̄∞ + βD

)]T
∆2

∫ t+1
t

∫ t+τ+1
t+τ RI(s− t)dsdu =

∫ t+1
t

∫ t+τ+1
t+τ e(β−α)(s−u)

(
Λ̄∞ + βD

)
dsdu

=
∫ t+1
t e−(β−α)udu · ∫ t+τ+1

t+τ e(β−α)sds
(
Λ̄∞ + βD

)

= −(β − α)−1
(
e−(β−α) − I

)
(β − α)−1

(
e(β−α)(τ+1) − e(β−α)τ

)

×
(
Λ̄∞ + βD

)

=
(
I − e−(β−α)

)
(β − α)−2

(
e(β−α)(τ+1) − e(β−α)τ

) (
Λ̄∞ + βD

)

Closed form expressions of second moment of VIi

By resolving the differential equation 1.9, we obtain

VIit = e−κIitV
Ii0

+ θ
Ii

(1 − e−κIi) + η
Ii
ρ

Ii

∫ t
0 e
−κ

Ii
(t−u)

√
VIiudBu +

η
Ii

√
1 − ρ2

Ii

∫ t
0 e
−κ

Ii
(t−u)dWu +

∫ t
0 e
−κ

Ii
(t−u)Zv

IiudN
v
Iiu

Let’s consider s ≥ t, and V ∗Iit = VIit − θ. By the Itö calculus, it comes out that

E[V ∗IisV
∗
Iit] = e−κIi

(s+t)[E[V ∗2Ii0] + E[VIi0]E[Zv
Ii]E[λvIi]

eκIit−1
κIi

+ η2
Ii(E[V ∗Ii] + θIi)(e

2κIit − 1)

+ E[VIi0]E[Zv
Ii]E[λvIi]

eκIis−1
κIi

+
∫ s

0

∫ t
0 e

κ
Ii

(u+v)E[ZIiuZIiv]E
[
dNv

Iiu

du

dNv
Iiv

dv

]
dudv]

Let’s recall that RIii(v− u)v = E
[
dNv

Iiu

du

dNv
Iiv

dv

]
−E

[
dNv

Iiu

du

] [
dNv

Iiv

dv

]
. Since Rv

Iii is not defined at
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0, we consider the complete density matrix RIii(v − u)v(c) = RIii(v − u)v + δii(v − u)E[λvIi],

with δii the Dirac function. We show that

∫ s
0

∫ t
0 e

κ
Ii

(u+v)E[ZIiuZIiv]E
[
dNIiu

du
dNIiv

dv

]
dudv

=
∫ s

0

∫ t
0 e

κ
Ii

(u+v)E[ZIiuZIiv](RIii(v − u)v(c) + E[λvIi]
2)dudv

=
∫ s

0

∫ t
0 e

κ
Ii

(u+v)E[ZIiuZIiv]RIii(v − u)vdudv +
∫ s

0

∫ t
0 e

κ
Ii

(u+v)E[ZIiuZIiv]δii(v − u)E[λvIi]dudv

+
∫ s

0

∫ t
0 e

κ
Ii

(u+v)E[ZIiuZIiv]δii(v − u)E[λvIi]
2dudv

= E[ZIi]
2
∫ s

0

∫ t
0 e

κ
Ii

(u+v)RIii(v − u)vdudv + E[Z2
Ii]E[λvIi]

(e2κ
Ii

t−1)
2κ

Ii

+E[ZIi]
2E[λvIi]

2 (eκ
Ii

t−1)
κ

Ii

(eκ
Ii

s−1)
κ

Ii

Then, ∀s > t:

E[VIisVIit] = e−κIi
(s+t)[E[V 2

Ii0 − θIiE[VIi] + θ2
Ii + E[ZIi]

2E[λvIi]
2 (eκ

Ii
t−eκ

Ii
s−2)

κ
Ii

+ η2
IiE[VIi]

((e2κ
Ii

t−1)
2κ

Ii
+ E[Z2

Ii]E[λvIi]
(e2κ

Ii
t−1)

2κ
Ii

+ E[ZIi]
2E[λvIi]

2 (eκ
Ii

t−1)
κ

Ii

(eκ
Ii

s−1)
κ

Ii

+ E[ZIi]
2
∫ s

0

∫ t
0 e

κ
Ii

(u+v)RIii(v − u)vdudv] + 2θIiE[VIi] − θ2
Ii

The result is obtained by setting s = t and t → ∞:

E[V 2
Ii] − E[VIi]

2 =
η2
IiE[VIi]

2κIi
+
E[(Zv

Ii)
2]E[λvIi]

2κIi
+ E[(Zv

Ii)
2]Π∞ (1.71)

with Π∞ = lim
t→∞

e−2κIit
∫ t

0

∫ t
0 e

κIi(u+v)Rv
ii(v − u)dudv. Using the same tricks, we establish

∀i 6= j that

E[(VIi − θIi)(VIj − θIj)] = [
E[λvIi]E[λvIj]

κIiκIj
+ Φ∞]E[Zv

Ii]E[Zv
Ij], ∀i 6= j (1.72)

with Φ∞ = lim
t→∞

e−(κIi+κIj)t
∫ t

0

∫ t
0 e

(κIiu+κIjv)Rv
ii(v − u)dudv.
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Closed form expressions of others covariances of log-returns

E
[
(∆Xi,t − E[∆Xi,t]) (∆Xj,t − E[∆Xj,t])

3
]

=
[
biE[Dg(ZF )4]Dg(λF )Dg(bj)

2b
′

j

]
∆

+
3

2

[
biE[Dg(ZF )2]Dg(λF )b

′

j + biE[Dg(VF )]b
′

j

]

×
[
E[VIi] + E[VIj] + 2bjE[Dg(VF )]bj

′ + 2bjE[Dg(ZF )2]Dg(λF )bj
′ + 2E[Z2

Ij]E[λIj]
]

∆2

− 3

2
E[Z2

Ij]E[λIj]biE[Dg(ZF )2]Dg(λF )bj
′∆2

+
3

2

[
bjDg(bj)

2E[Dg(ZF )3]λF + E[Z3
Ij]E[λIj]

] [
E[ZIj]E[λIj] + bjE[Dg(ZF )]λF

]

+
3

2
biE[Dg(ZF )3]Dg(λF )Dg(bj)b

′

j

[
E[ZIj]E[λIj] + bjE[Dg(ZF )]λF

]
∆2

+ E[ZIi]E[Z3
Ij]

[
2
∫ ∆

s=0

∫ s

t=0
RIji(t− s)dtds+

∫ ∆

s=0

∫ s

t=0
RIij(t− s)dtds

]

(1.73)

E
[
(∆Xi,t − E[∆Xi,t])

2 (∆Xj,t − E[∆Xj,t])
2
]

=
[
biDg(bi)E[Dg(ZF )4]Dg(λF )Dg(bj)b

′

j

]
∆

+ 2
[
biE[Dg(VF )]b

′

j + biE[Dg(ZF )2]Dg(λF )b
′

j

]2
∆2

+ 3biDg(bi)
[
E[Dg(VF )2] −Dg(E[VF ])2

]
Dg(bj)b

′

j∆
2

+
[
biE[Dg(VF )]b

′

i + biE[Dg(ZF )2]Dg(λF )b
′

i

]

×
[
bjE[Dg(VF )]b

′

j + bjE[Dg(ZF )2]Dg(λF )b
′

j

]
∆2

+
[
bjE[Dg(VF )]b

′

j + bjE[Dg(ZF )2]Dg(λF )b
′

j

] [
E[VIi] + E[Z2

Ii]E[λIi]
]

∆2

+
[
biE[Dg(VF )]b

′

i + biE[Dg(ZF )2]Dg(λF )b
′

i

] [
E[VIj] + E[Z2

Ij]E[λIj]
]

∆2

+
[
E[VIi] + E[Z2

Ii]E[λIi]
] [
E[VIj] + E[Z2

Ij]E[λIj]
]

∆2 + (E[VIiVIj] − E[VIi]E[VIj]) ∆2

+
[
bjE[Dg(ZF )]λF + E[ZIj]E[λIj]

]
biDg(bi)E[Dg(ZF )3]Dg(λF )b

′

j∆
2

+
[
biE[Dg(ZF )]λF + E[ZIi]E[λIi]

]
bjDg(bj)E[Dg(ZF )3]Dg(λF )b

′

i∆
2

+ E[Z2
Ii]E[Z2

Ij]

[∫ ∆

s=0

∫ s

t=0
RIij(t− s)dtds+

∫ ∆

s=0

∫ s

t=0
RIji(t− s)dtds

]

(1.74)

Lemma 1.8.1 Let ∆ be the sampling frequency, and τ a strictly positive real number. Under
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assumptions (1.4) - (1.27), the following closed-form formulae hold:

∫ ∆

0

∫ ∆+τ

τ
E[VFksVFkt]dtds = E[(VFk0 − θFk)

2]
e−κk∆ − 1

κk

e−κkτ − e−κk(∆+τ)

κk

+
E[(VFk0 − θFk)]E[Zv

Fk]λ
v
F l

κk

[
e−κkτ − e−κk(∆+τ)

κk
∆ − 1 − e−κk∆

κk

e−κkτ − e−κk(∆+τ)

κk

]

+
E[(VFk0 − θFk)]E[Zv

Fk]λ
v
F l

κk

[
1 − e−κk∆

κk
∆ − 1 − e−κk∆

κk

e−κkτ − e−κk(∆+τ)

κk

]

+

(
η2
FkE[VFk]

2κk
+
E[(Zv

Fk)
2]λvF l

2κk

)[
eκk∆ − 1

κk

e−κkτ − e−κk(∆+τ)

κk
− 1 − e−κk∆

κk

e−κkτ − e−κk(∆+τ)

κk

]

+

(
E[Zv

Fk]λ
v
Fk

κk

)2 [
1 +

e−κk∆ − 1

κk

] [
∆ +

e−κk(∆+τ) − e−κkτ

κk

]

+
(
+2θFkE[(VFk] − θ2

Fk

)
∆2

(1.75)

Let Rv
Iij be the element in row i and column j of the volatility covariance density matrix Rv

I ,

as defined in Definition 1.3.1. Then, ∀i 6= j

∫ ∆

0

∫ ∆+τ

τ
E[VIisVIjt]dtds = E[(VIi0 − θIi)(VIj0 − θIj)]

[
1 − e−κj∆

κj

] [
e−κiτ − e−κi(∆+τ)

κi

]

+
E[(VIi0 − θIi)]E[Zv

Ij]E[λvIj]

κj

[
e−κiτ − e−κi(∆+τ)

κi
∆ −

(
1 − e−κj∆

κj

)(
e−κiτ − e−κi(∆+τ)

κi

)]

+
E[(VIj0 − θIj)]E[Zv

Ii]E[λvIi]

κi

[
1 − e−κj∆

κj
∆ −

(
1 − e−κj∆

κj

)(
e−κiτ − e−κi(∆+τ)

κi

)]

+

(
E[Zv

Ii]E[Zv
Ij]E[λvIi]E[λvIj]

κiκj

)[
∆ +

e−κj∆ − 1

κj

] [
∆ +

e−κi(∆+τ) − e−κiτ

κi

]

+ E[Zv
Ii]E[Zv

Ij]
∫ ∆

0

∫ ∆+τ

τ

∫ s

0

∫ u

0
e−κi(s−y)e−κj(u−x)Rv

Iij(y − x)dxdydsdu

+ (θIjE[VIi] + θIiE[(VIj] − θIiθIj) ∆2

(1.76)

∫∆
0

∫∆+τ
τ

∫ s
0

∫ t
0 e

κixeκjyRv
Iij(y − x)dxdydtds is numerically computed, since we know the close

form of the function Rv
Iij() (cf Theorem 1.3.1)

Proof of lemma 1.8.1

From the equation 1.8 and 1.9, variances at time t are given by
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VFkt = e−κF k
tV

F k0
+ θ

F k
(1 − e−κF kt) + η

F k
ρ

F k

∫ t
0 e
−κ

F k
(t−u)

√
VFkudBu +

η
F k

√
1 − ρ2

F k

∫ t
0 e
−κ

F k
(t−u)dWu +

∫ t
0 e
−κ

F k
(t−u)Zv

FkudNFku

VIit = e−κIi
tV

Ii0
+ θ

Ii
(1 − e−κIit) + η

Ii
ρ

Ii

∫ t
0 e
−κ

Ii
(t−u)

√
VIiudBu +

η
Ii

√
1 − ρ2

Ii

∫ t
0 e
−κ

Ii
(t−u)dWu +

∫ t
0 e
−κ

Ii
(t−u)Zv

IiudNIiu

Let s and t be two positive numbers, s ≥ t. We use the Itö calculus to compute VFksVFkt

and VIisVIit, and then, we take expectations of both sides to get

E[VFksVFkt] = e−(s+t)[E[(VFk0 − θ
F k

)2] + E[VFk0 − θ
F k

]E[Zv
Fk]λ

v
Fk

(eκF k
t − 1)

κ
F k

+ η2
F k
E[VFk]

(e2κ
F k
t − 1)

2κ
F k

+ E[VFk0 − θ
F k

]E[Zv
Fk]λ

v
Fk

(eκF k
s − 1)

κ
F k

+
∫ s

0

∫ t

0
eκF k

(u+v)E[Zv
FkuZ

v
Fkv]E[dN v

FkudN
v
Fkv]] + 2θ

F k
E[VFk] − θ2

F k

(1.77)

and

E [VIisVIit] = e−κIi
s−κ

Ij
t[E[(VIi0 − θ

Ii
)(VIj0 − θ

Ij
)] + E[VIi0 − θ

Ii
]E[Zv

Ij]E[λvIj]
(eκIj

t − 1)

κ
Ij

+ E[VIj0 − θ
Ij

]E[Zv
Ii]E[λvIi]

(eκIi
s − 1)

κ
Ii

+ E[Zv
Ii]E[Zv

Ij]
∫ s

0

∫ t

0
eκIi

veκIj
uE[dN v

IiudN
v
Ijv]]

+ θ
Ij
E[VIi] + θ

Ii
E[VIj] − θ

Ii
θ

Ij

(1.78)

Since N v
Fk is a point process with constant rate, we get

E[VFksVFkt] = e−(s+t)[E[(VFk0 − θ
F k

)2] + E[VFk0 − θ
F k

]E[Zv
Fk]λ

v
Fk

(eκF k
t − 1)

κ
F k

+ η2
F k
E[VFk]

(e2κ
F k
t − 1)

2κ
F k

+ E[VFk0 − θ
F k

]E[Zv
Fk]λ

v
Fk

(eκF k
s − 1)

κ
F k

+ E[(Zv
Fk)

2]λvFk
(e2κ

F k
t − 1)

2κ
F k

+ (E[Zv
Fk]λ

v
Fk)

2

(
(eκF k

s − 1)

κ
F k

)(
(eκF k

t − 1)

κ
F k

)
]

+ 2θ
F k
E[VFk] − θ2

F k

(1.79)

N v
Iiu is a hawkes proces, to compute E [VIisVIit] we need to use the corresponding covari-

ance density matrix defined by
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RIij(v − u)v = E
[
dNv

Iiu

du

dNv
Iiv

dv

]
− E

[
dNv

Iiu

du

] [dNv
Ijv

dv

]

It follows that

E [VIisVIit] = e−κIi
s−κ

Ij
t[E[(VIi0 − θ

Ii
)(VIj0 − θ

Ij
)] + E[VIi0 − θ

Ii
]E[Zv

Ij]E[λvIj]
(eκIj

t − 1)

κ
Ij

+ E[VIj0 − θ
Ij

]E[Zv
Ii]E[λvIi]

(eκIi
s − 1)

κ
Ii

+ E[Zv
Ii]E[Zv

Ij]
∫ s

0

∫ t

0
eκIi

veκIj
uRIij(v − u)vdudv

+ E[Zv
Ii]E[Zv

Ij]E[λvIi]E[λvIj]
(eκIi

s − 1)

κ
Ii

(eκIj
t − 1)

κ
Ij

] + θ
Ij
E[VIi] + θ

Ii
E[VIj] − θ

Ii
θ

Ij

(1.80)

Closed-form expressions of
∫∆

0

∫∆+τ
τ E[VFksVFkt]dtds and

∫∆
0

∫∆+τ
τ E[VIisVIjt]dtds are deduced

by integrating the previous equations.

Proof of Theorem 1.3.5

E[IVit,t+1] =
K∑

k=1

b2
ikE[VFk] + E[VIi], ∀i = 1, ...,m (1.81)

E[QVit,t+1] − E[IVit,t+1] =
K∑

k=1

b2
ikE[Z2

Fk]λFk + E[Z2
Ii]E[λIi], ∀i = 1, ...,m (1.82)

E[ICovijt,t+1] =
K∑

k=1

bikbjkE[VFk], ∀i 6= j (1.83)

E[QCovijt,t+1] − E[ICovijt,t+1] =
K∑

k=1

bikbjkE[Z2
Fk]λFk, ∀i 6= j (1.84)

E[QV2
it,t+1] − E[IV2

it,t+1] = 2
(∑K

k=1 b2
ikE[VFk] + E[VIi]

) (∑K
k=1 b2

ikE[Z2
Fk]λFk + E[Z2

Ii]E[λi]
)

+
∑K
k=1 b4

ik

(
λFkE[Z4

Fk] + λ2
FkE[Z2

Fk]
2
)

+
∑K
k=1

∑K
l 6=k b2

ikb
2
ilE[Z2

Fk]E[Z2
Fl]λFkλFl

+ 2E[Z2
Ii]
∑K
k=1 b2

ikE[Z2
Fk]E[λi]λFk + E[Z4

Ii]E[λi] + E[Z2
Ii]

2E[λi]
2

+ E[Z2
Ii]

2
∫ t+1
t

∫ t+1
t RIii(s − u)duds

(1.85)

Proof of Theorem 1.3.2

E [∆Xit] is derived from the equation 1.7 by taking the expectation of the two sides. Moment

equations of log-returns of order 2, 3, and 4 are derived using the Itö lemma in definition
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1.3.2 and assumptions (1.4) - (1.27).

We now present how E [∆X2
it] is derived. Others moments are computed using the same

tricks. By the Itö lemma applied to the jump-diffusion process ri∆ in equation 1.45 and the

function f(x) = x2, we get:

r2
i∆ =

∫∆
0 (
∑K
k=1 bikµFk + µIi) × 2ris−

ds+
∑K
k=1 2bik

∫∆
0 ris−

√
VFks−

dBFks +

2
∫∆

0 ris−

√
VIis−

dBIis +
∑K
k=1 b

2
ik

∫∆
0 VFksds+

∫∆
0 VIisds+

∑
0≤s≤∆

(∑K
k=1 bikZFksdNFks

)2
+

∑
0≤s≤∆ Z

2
IisdN

2
Iis + 2

∑
0≤s≤∆ ris−

∑K
k=1 bikZFksdNFks + 2

∑
0≤s≤∆ ris−

ZIisdNIis +

2
∑

0≤s≤∆

(∑K
k=1 bikZFksdNFks

)
(ZIisdNIis)

We take the expectation of the previous equation. From the Itö calculus, up to the order

∆2, we obtain:

E[r2
i∆] =

2
∫∆

0 E
[
(
∑K
k=1 bikµFk + µIi) × ris−

]
ds+

∑K
k=1 b

2
ikE[VFk]∆ +E[VIi]∆ +

∑K
k=1 b

2
ikE[Z2

Fk]λFk∆ +

E[Z2
Ii]E[λIi]∆ + 2

∑K
k=1 bik

∑
0≤s≤∆ E

[
ris−

ZFksdNFks

]
+ 2

∑
0≤s≤∆ E

[
ris−

ZIisdNIis

]
+ o(∆2)

Then, we establish that:

2
∑K
k=1 bik

∑
0≤s≤∆ E

[
ris−

ZFksdNFks

]
= 2E[ri∆]

∑K
k=1 bikE[ZFk]λFk∆

Also:

E
[
ris−

ZIisdNIis

]
= (

∑K
k=1 bikµFk + µIi)

∫ s−

0 E[ZIisdNIis]dt+
∑K
k=1 bikE[ZFk]E[ZIi]λFkE[λIi]sds+

∫ s−

0 E[ZIitZIis]E
[
dNIit

dt
× dNIis

ds

]
dtds

It comes out that:

2
∑

0≤s≤∆ E
[
ris−

ZIisdNIis

]
= (

∑K
k=1 bikµFk + µIi)E[ZIi]E[λIi]∆

2 +
∑K
k=1 bikE[ZFk]E[ZIi]λFkE[λIi]∆

2 + 2
∫∆

0

∫ s−

0 E[ZIitZIis]E
[
dNIit

dt
× dNIis

ds

]
dtds

Using the covariance density matrix as in Definition 1.3.1, we have:

2
∫∆

0

∫ s−

0 E[ZIitZIis]E
[
dNIit

dt
× dNIis

ds

]
dtds = 2

∫∆
0

∫ s−

0 E[ZIitZIis][RIii(t− s) + E[λIi]
2]dtds

= 2E[ZIi]
2
∫∆

0

∫ s−

0 RIii(t− s)dtds+ E[ZIi]
2E[λIi]

2∆2
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Putting things together, and setting ri∆ = ∆Xit we get

E [∆X2
it] =

[∑K
k=1 b

2
ikE[VFkt] + E[VIit] +

∑K
k=1 b

2
ikE[Z2

Fk]λFk + E[Z2
Ii]E[λIi]

]
∆

+
(∑K

k=1 bikµFk + µIi
) [∑K

k=1 bikµFk + µIi +
∑K
k=1 bikE[ZFk]λFk + E[ZIi]E[λIi]

]
∆2

+
[∑K

k=1 bik
∑K
l=1 bilµFlE[ZFk]λFk +

∑K
k=1 bikµIiE[ZFk]λFk

]
∆2

+
[∑K

k=1 bik
∑K
l 6=k bilE[ZFk]E[ZFl]λFkλFl +

∑K
k=1 b

2
ikE[ZFk]

2λ2
Fk

]
∆2

+
[∑K

k=1 bikE[ZFk]E[ZIi]E[λIi]λFk +
∑K
k=1 bikµFkE[ZIi]E[λIi] + µIiE[ZIi]E[λIi]

]
∆2

+
[∑K

k=1 bikE[ZFk]E[ZIi]λFkE[λIi] + E[ZIi]
2E[λIi]

2
]

∆2

+ 2E[ZIi]
∫∆

0

∫ s
0 RIii(t− s)dtds

Using the same steps, we compute moments of order 3 and 4. Their explicit formulae are the

followings:

E [∆X3
it] =

[∑K
k=1 b

3
ikE[Z3

Fkt]λFk + E[Z3
Ii]E[λIi]

]
∆

+ 3
(∑K

k=1 bikµFk + µIi
) [∑K

k=1 b
2
ikE[VFkt] + E[VIit] + E[Z2

Ii]E[λIi]
]

∆2

2

+ 3
∑K
k=1 b

2
ik

[∑K
l=1 bilµFlE[VFk] +

∑K
l=1 bilE[ZFl]λFlE[VFk] + E[ZIi]E[λIi]E[VFk]

]
∆2

2

+ 3
∑K
k=1 b

2
ik [bikηFkρFkE[VFkt]]

∆2

2

+
[
3
(∑K

k=1 bikµFk + µIi
)

+ 3ηIiρIiE[VIi] + 3
∑K
k=1 bikE[ZFk]λFkE[VIi]

]
∆2

2

+ 3E[ZIi]E[λIi]E[VIit]
∆2

2

+ 3
∑K
k=1 bik

[∑K
l=1 b

2
ilE[VFl]E[ZFk]λFk + E[VIi]E[ZFkt]λFk

]
∆2

2

+ 3
∑K
k=1 bik

[∑K
l=1 b

2
ilE[Z2

Fl]λFlE[ZFk]λFk + E[Z2
Ii]E[λIi]E[ZFk]λFk

]
∆2

2

+ 3
∑K
k=1 b

2
ik [E[VFk]E[ZIi]λIi + E[VIi]E[ZIi]E[λIi] + E[Z2

Fk]λFkE[ZIi]E[λIi]]
∆2

2

+ E[Z2
Ii]E[λIi]E[ZIi]E[λIi]

∆2

2
+ 3E[Z2

Ii]E[ZIi]
∫∆

0

∫ s
0 RIii(t− s)dtds

+
[
3
(∑K

k=1 bikµFk + µIi
)∑K

k=1 b
2
ikE[Z2

Fkt]λFk +
∑K
k=1

∑K
l=1 bikb

2
ilE[ZFk]E[Z2

Fl]λFkλFl
]

∆2

2

+
∑K
l=1 b

2
ilE[Z2

Fl]λFlE[ZIi]E[λIi]
∆2

2

+
[
3
(∑K

k=1 bikµFk + µIi
)
E[Z2

Ii]E[λIi] + 3
∑K
k=1 bikE[ZFkt]λFkE[Z2

Ii]E[λIi]
]

∆2

2

+ 3E[ZIi]E[λIi]
2E[Z2

Ii]
∆2

2
+ 2E[ZIi]E[ZIi]

∫∆
0

∫ s
0 RIii(t− s)dtds
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E [∆X4
it] =

[∑K
k=1 b

4
ikE[Z4

Fkt]λFk + E[Z4
Ii]E[λIi]

]
∆

+ 4
(∑K

k=1 bikµFk + µIi
) [∑K

k=1 b
3
ikE[Z3

Fkt]λFk + E[Z3
Ii]E[λIi]

]
∆2

2

+ 6
∑K
k=1 b

2
ik

[∑K
l 6=k b

2
ilE[VFk]E[VFl] + b2

ikE[V 2
Fk] + E[VFk]E[VIi]

]
∆2

2

+ 6
[
E[VFk]

∑K
l=1 b

2
ilE[Z2

Fl]λFl + E[VFk]E[Z2
Ii]E[λIi]

]
∆2

2

+
[
6
∑K
l=1 b

2
ilE[VFl]E[VIi] + 6E[V 2

Ii] + 6E[VIi]
∑K
k=1 b

2
ikE[Z2

Fk]λFk
]

∆2

2

+ 6
[
E[Z2

Ii]E[λIi]E[VIi] +
∑K
l=1 b

2
ilE[VFl]

∑K
k=1 b

2
ikE[Z2

Fkt]λFk
]

∆2

2

+ 6
[∑K

k=1 b
2
ikE[Z2

Fkt]λFkE[VIi] +
∑K
k=1 b

4
ikE[Z2

Fkt]
2λ2

Fk

]
∆2

2

+ 6
[∑K

k=1 b
2
ikE[Z2

Fk]λFkE[Z2
Ii]E[λIi]

]
∆2

2

+ 6
[∑K

k=1

∑
l 6=k b

2
ikb

2
ilE[Z2

Fk]E[Z2
Fl]λFkλFl

]
∆2

2

+ 6
[∑K

l=1 b
2
ilE[Z2

Ii]E[λIi]E[VFl] + E[Z2
Ii]E[λIi]E[VIi]

]
∆2

2

+ 6
[∑K

k=1 b
2
ikE[Z2

Fkt]
2λFkE[Z2

Ii]E[λIi]
]

∆2

2

+ E[Z2
Ii]

2
∫∆

0

∫ s
0 RIii(t− s)dtds+ E[Z2

Ii]
2E[λIi]

2 ∆2

2

+ 4
[∑K

k=1 b
4
ikE[ZFk]E[Z3

Fk]λ
2
Fk +

∑K
k=1

∑
l 6=k bikb

3
ilE[ZFk]E[Z3

Fl]λFkλFl
]

∆2

2

+ 4
∑K
k=1 bikE[ZFk]λFkE[Z3

Ii]E[λIi]
∆2

2

+ 4
[
E[ZIi]E[λIi]

∑K
l=1 b

3
ilE[Z3

Fl]λFl + E[ZIi]E[Z3
Ii]E[λIi]

2
]

∆2

2

+ +4E[ZIi]E[Z3
Ii]
∫∆

0

∫ s
0 RIii(t− s)dtds

+ 4
[(∑K

k=1 bikµFk + µIi
) (∑K

k=1 b
3
ikE[Z3

Fk]λFk
)]

∆2

2

+ 4
[
sumK

k=1b
4
ikE[ZFk]E[Z3

Fk]λ
2
Fk +

∑K
k=1

∑
l 6=k bikb

3
ilE[ZFk]E[Z3

Fl]λFkλFl
]

∆2

2

+ 4
[
E[ZIi]E[λIi]

∑K
k=1 b

3
ikE[Z3

Fk]λFk +
(∑K

k=1 bikµFk + µIi
)
E[Z3

Ii]E[λIi]
]

∆2

2

+ 4
[∑K

k=1 bikE[ZFk]λFkE[Z3
Ii]E[λIi] + E[ZIi]E[Z3

Ii]E[λIi]
2
]

∆2

2

Proof of Theorem 1.3.3

We want firstly to compute E [∆Xit∆Xjt]. Let’s call: ∆Xit = ri∆ and ∆Xjt = rj∆. We

apply the multidimensionnal Itö lemma to the function f(ri∆, rj∆) = ri∆rj∆ and we obtain

ri∆rj∆ =
∫∆

0 rjs−

[(∑K
k=1 bikµFk + µIi

)
ds+

∑K
k=1

√
VFksdBFks +

√
VIisdBIis

]

+
∫∆

0 ris−

[(∑K
k=1 bjkµFk + µIj

)
ds+

∑K
k=1

√
VFksdBFks +

√
VIjsdBIjs

]

+
[(∑K

k=1 bjkµFk + µIj
)
ds+

∑K
k=1

√
VFksdBFks +

√
VIjsdBIjs

]

×
[(∑K

k=1 bjkµFk + µIj
)
ds+

∑K
k=1

√
VFksdBFks +

√
VIjsdBIjs

]

+
∑

0≤s≤∆[
(
ris−

+
∑K
k=1 bikZFksdNFks + ZIisdNIis

)

×
(
rjs−

+
∑K
k=1 bjkZFksdNFks + ZIjsdNIjs

)
− ris−

rjs−
]

After taking the expectation of both sides, it follows that

76



E[ri∆rj∆] =
(∑K

k=1 bikµFk + µIi
)
E[rj]∆ +

(∑K
k=1 bjkµFk + µIj

)
E[ri]∆ +

∑K
k=1 bikbjkE[VFk]∆

+
∑K
k=1 bjk

[∑
0≤s≤∆ E[ZFksdNFksris−

]
]

+
∑

0≤s≤∆ E[ZIjsdNIjsris−
]

+
∑K
k=1 bik

[∑
0≤s≤∆ E[ZFksdNFksrjs−

]
]

+
∑K
k=1 bikbjkE[Z2

Fk]λFk∆

+
∑

0≤s≤∆ E[ZIisdNIisrjs−
]

It can be easilly shown that

∑
0≤s≤∆ E[ZFksdNFksris−

] = E[ZFk]λFkE[ri]∆

Using the covariance density matrix as in Definition 1.3.1, and the Itö calculus, we derive

that

∑
0≤s≤∆ E[ZIjsdNIjsris−

] =
(∑K

k=1 bikµFk + µIi
)
E[ZIj]E[λIj]

∆2

2

+
∑K
k=1 bikE[ZFk]E[ZI2]λFkE[λIj]

∆2

2

+ E[ZIi]E[ZIj]E[λIi]E[λIj]
∆2

2
+ E[ZIi]E[ZIj]

∫∆
0

∫ s
0 RIij(t− s)dtds

To obtain the others terms, i and j are permuted. After replacing
∑

0≤s≤∆ E[ZIjsdNIjsris−
],

∑
0≤s≤∆ E[ZFksdNFksris−

], E[ri] and E[ri] by their values, we get

E [∆Xit∆Xjt] =
[∑K

k=1 bikbjkE[VFk] +
∑K
k=1 bikbjkE[Z2

Fk]λFk
]

∆

+
(∑K

k=1 bikµFk + µIi
) [∑K

k=1 bjkµFk + µIj +
∑K
k=1 bjkE[ZFk]λFk

]
∆2

2

+
(∑K

k=1 bikµFk + µIi
)
E[ZIj]E[λIj

∆2

2

+
(∑K

k=1 bjkµFk + µIj
) [∑K

k=1 bikµFk + µIi +
∑K
k=1 bikE[ZFk]λFk

]
∆2

2

+
(∑K

k=1 bjkµFk + µIj
)
E[ZIi]E[λIi]

∆2

2

+
∑K
k=1 bjk

[∑K
l=1 bilµFlE[ZFk]λFk + µIiE[ZFk]λFk

]
∆2

2

+
∑K
k=1 bjk

∑K
l 6=k bilE[ZFl]E[ZFk]λFlλFk

∆2

2

+
∑K
k=1 bjk [bikE[ZFk]

2λ2
Fk + E[ZIi]E[ZFk]E[λIi]λFk]

∆2

2

+
∑K
k=1 bik

[∑K
l=1 bjlµFlE[ZFk]λFk + µIjE[ZFk]λFk

]
∆2

2

+
∑K
k=1 bik

∑K
l 6=k bjlE[ZFl]E[ZFk]λFlλFk

∆2

2

+
∑K
k=1 bik [bjkE[ZFk]

2λ2
Fk + E[ZIj]E[ZFk]E[λIj]λFk]

∆2

2

+
[(∑K

k=1 bikµFk + µIi
)
E[ZIj]E[λIj] +

∑K
k=1 bikE[ZFk]λFkE[ZIj]E[λIj]

]
∆2

2

+ E[ZIi]E[ZIj]E[λIi]E[λIj]
∆2

2
+ E[ZIj]E[ZIi]

∫∆
0

∫ s
0 RIij(t− s)dtds

+
[(∑K

k=1 bjkµFk + µIj
)
E[ZIi]E[λIi] +

∑K
k=1 bjkE[ZFk]λFkE[ZIi]E[λIi]

]
∆2

2

+ E[ZIj]E[ZIi]E[λIj]E[λIi]
∆2

2
+ E[ZIi]E[ZIj]

∫∆
0

∫ s
0 RIji(t− s)dtds
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The final expression of E [∆Xit∆Xjt] −E[∆Xit]E[∆Xjt] is deduced after using the matricial

representation.

E
[
∆Xit∆X

2
jt

]
, E

[
∆Xit∆X

3
jt

]
and E

[
∆X2

it∆X
2
jt

]
are computed using the same ap-

proach. We provide below their explicit formulae.

E
[
∆Xit∆X

2
jt

]
=

∑K
k=1 bikb

2
jkE[Z3

Fk]λFk∆

+
(∑K

k=1 bikµFk + µIi
) [∑K

k=1 b
2
jkE[Z2

Fk]λFk + E[Z2
Ij]E[λIj]

]
∆2

2

+
(∑K

k=1 bikµFk + µIi
) [∑K

k=1 b
2
jkE[V 2

Fk] + E[VIj
]

∆2

2

+ 2
(∑K

k=1 bjkµFk + µIj
) [∑K

k=1 bikbjkE[VFk] +
∑K
k=1 bikbjkE[Z2

Fk]λFk
]

∆2

2

+ 2
∑K
k=1 bikbjk

[∑K
l=1 bjlµFlE[VFk] + µIjE[VFk] +

∑K
l=1 bjlE[ZFl]λFlE[VFk]

]
∆2

2

+ 2
∑K
k=1 bikbjk [E[ZIj]E[λIj]E[VFk] + bjkηFkρFkE[VFk]]

∆2

2

+
∑K
k=1 b

2
jk

[∑K
l=1 bilµFlE[VFk] + µIiE[VFk] +

∑K
l=1 bilE[ZFl]λFlE[VFk]

]
∆2

2

+
∑K
k=1 b

2
jk [E[ZIi]E[λIi]E[VFk] + bikηFkρFkE[VFk]]

∆2

2

+
[(∑K

k=1 bikµFk + µIi
)∑K

k=1 b
2
jkE[Z2

Fk]λFk
]

∆2

2

+
[∑K

k=1

∑K
l 6=k bilb

2
jkE[ZFk]E[Z2

Fl]λFkλFl +
∑K
k=1 bikb

2
jkE[ZFk]E[Z2

Fk]λ
2
Fk

]
∆2

2

+ E[ZIi]E[λIi]
∑K
k=1 b

2
jkE[Z2

Fk]λFk
∆2

2

+
[(∑K

k=1 bikµFk + µIi
)
E[Z2

Ij]E[λIi] +
∑K
k=1 bikE[ZFk]λFkE[Z2

Ij]E[λIi]
]

∆2

2

+ E[ZIi]E[Z2
Ij]
∫∆

0

∫ s
0 RIij(t− s)dtds+ E[ZIi]E[Z2

Ij]E[λIi]E[λIj]
∆2

2

+ 2
∑K
k=1 bjk

[
sumK

l=1bilbjlE[VFl]λFkE[ZFk] +
∑K
l 6=k bilbjlE[Z2

Fl]E[ZFk]λFlλFk
]

∆2

2

+ 2
∑K
k=1 bikb

2
jkE[Z2

Fk]E[ZFk]λ
2
Fk

∆2

2

+
[
2
∑K
l=1 bilbjlE[VFl]E[λIj]E[ZIj] + 2

∑K
l=1 bilbjlE[Z2

Fl]E[ZIi]λFlE[λIi]
]

∆2

2

+
∑K
k=1 bik

[∑K
l=1 b

2
jlE[VFl]E[ZFk]λFk + E[VIj]E[ZFk]λFk

]
∆2

2

+
∑K
k=1 bik

[∑K
l=1 b

2
jlE[Z2

Fl]E[ZFk]λFkλFl + E[Z2
Ij]E[λIj]E[ZFk]λFk

]
∆2

2

+ 2
∑K
k=1 bikbjkE[Z2

Fk]λFk
[(∑K

k=1 bjkµFk + µIj
)

+ E[ZIj]E[λIj]
]

∆2

2

+
[
2
∑K
k=1

∑K
l 6=k bjkbilbjlE[ZFk]E[Z2

Fl]λFkλFl + 2
∑K
k=1 b

2
jkbikE[ZFk]E[Z2

Fk]λ
2
Fk

]
∆2

2

+
[∑K

k=1 b
2
jkE[VFk]E[ZIi]E[λIi] + E[VIj]E[ZIi]E[λIi]

]
∆2

2

+
[∑K

k=1 b
2
jkE[Z2

Fk]λFkE[ZIi]E[λIi] + E[Z2
Ij]E[ZIi]E[λIi]E[λIj]

]
∆2

2

+ E[Z2
Ij]E[ZIi]

∫∆
0

∫ s
0 RIij(t− s)dtds

+
[(∑K

k=1 bikµFk + µIi
)
E[VIj] +

∑K
k=1 bikE[ZFk]λFkE[VIj]

]
∆2

2

+ E[ZIi]E[λIi]E[VIj]
∆2

2
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E
[
∆Xit∆X

3
jt

]
=

∑K
k=1 bikb

3
jkE[Z4

Fk]λFk∆

+
(∑K

k=1 bikµFk + µIi
) [∑K

k=1 b
3
jkE[Z3

Fk]λFk
]

∆2

2

+
(∑K

k=1 bikµFk + µIi
)
E[Z3

Ii]E[λIi]
∆2

2

+
[∑K

k=1 bikb
3
jkE[ZFk]E[Z3

Fk]λ
2
Fk +

∑K
k=1

∑K
l 6=k bikb

3
jkE[ZFk]E[Z3

Fl]λFkλFl
]

∆2

2

+
[∑K

k=1 bikE[ZFk]λFkE[Z3
Ij]E[λIj] + E[ZIi]E[λIi]

∑K
k=1 b

3
jkE[Z3

Fk]λFk
]

∆2

2

+ E[ZIi]E[Z3
Ij]E[λIj]E[λIi]

∆2

2
+ E[ZIi]E[Z3

Ij]
∫∆

0

∫ s
0 RIji(t− s)dtds

+ 3
(∑K

k=1 bjkµFk + µIj
) (∑K

k=1 bikb
2
jkE[Z3

Fk]λFk
)

∆2

2

+
[
3
∑K
k=1 bjk

∑K
l 6=k bilb

2
jlE[Z3

Fl]E[ZFk]λFlλFk + 3
∑K
k=1 b

3
jkbikE[Z3

Fk]E[ZFk]λ
2
Fk

]
∆2

2

+ 3
∑K
k=1 bikb

2
jkE[Z3

Fk]E[ZIj]E[λIj]λFk
∆2

2

+ 3
∑K
k=1 b

2
jk

[∑K
l 6=k bilbjlE[VFk]E[VFl] + bikbjkE[V 2

Fk]
]

∆2

2

+ 3
∑K
k=1 b

2
jk

∑K
l=1 bilbjlE[Z2

Fl]λFlE[VFk]
∆2

2

+
[
3
∑K
k=1 bikbjkE[VFk]E[VIi] + 3

∑K
k=1 bikbjkE[Z2

Fk]λFkE[VIi]
]

∆2

2

+ 3
∑K
k=1 bikbjk

[
E[VFk]E[VIj] + E[VFk]

∑K
l=1 b

2
jlE[Z2

Fl]λFl
]

∆2

2

+ 3
∑K
k=1 bikbjkE[VFk]E[Z2

Ij]E[λIj]
∆2

2

+ 3
∑K
k=1 bikbjk

[∑K
l 6=k b

2
jlE[VFk]E[VFl] + b2

jkE[V 2
Fk]
]

∆2

2

+
[(∑K

k=1 b
3
jkE[Z3

Fk]λFk
) (∑K

k=1 bikµFk + µIi
)]

∆2

2

+
(∑K

k=1 bikE[ZFk]λFk
) (∑K

k=1 b
3
jkE[Z3

Fk]λFk
)

∆2

2

+ E[ZIi]E[λIi]
(∑K

k=1 b
3
jkE[Z3

Fk]λFk
)

∆2

2

+
[(∑K

k=1 bikµFk + µIi
)

+
∑K
k=1 bikE[ZFk]λFkE[Z3

Ij]E[λIj]
]

∆2

2

+ E[ZIi]E[Z3
Ij]E[λIi]E[λIj]

∆2

2
+ E[ZIi]E[Z3

Ij]
∫∆

0

∫ s
0 RIij(t− s)dtds

+
[
3
(∑K

k=1 bikbjkE[VFk]
) (∑K

k=1 b
2
jkE[Z2

Fk]λFk
)

+ 3
∑K
k=1 bikb

3
jkE[Z2

Fk]
2λ2

Fk

]
∆2

2

+ 3
∑K
k=1

∑K
l 6=k bikbjkb

2
jlE[Z2

Fk]E[Z2
Fl]λFkλFl

∆2

2

+
[
3
∑K
k=1 bikbjkE[VFk]E[Z2

Ij]E[λIj] + 3
∑K
k=1 bikbjkE[Z2

Fk]λFkE[Z2
Ij]E[λIj]

]
∆2

2

+ 3
(∑K

k=1 bikbjkE[Z2
Fk]λFk

) (∑K
k=1 b

2
jkE[VFk]

)
∆2

2

+ 3
(∑K

k=1 bikbjkE[Z2
Fk]λFk

)
E[VIj]

∆2

2

+
[
3
∑K
k=1 b

3
jkbikE[Z2

Fk]
2λFk +

∑K
k=1

∑K
l 6=k b

2
jkbilbjlE[Z2

Fk]E[Z2
Fl]λFkλFl

]
∆2

2

+ 3
(∑K

k=1 bikb
2
jkE[Z3

Fk]λFk
) (∑K

k=1 bjkµFk + µIj
)

∆2

2

+ 3
∑K
k=1 b

3
jkbikE[Z3
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Chapter 2

High-Dimensional Multivariate

Realized Volatility Estimation

With Tim Bollerslev and Nour Meddahi1

Abstract

We provide a new factor-based estimator of the realized covolatility matrix, applicable in

situations when the number of assets is large and the high-frequency data are contaminated

with microstructure noises. Our estimator relies on the assumption of a factor structure for

the noise component, separate from the latent systematic risk factors that characterize the

cross-sectional variation in the frictionless returns. The new estimator provides theoretically

more efficient and finite-sample more accurate estimates of large-scale integrated covolatility,

correlation, and inverse covolatility matrices than other recently developed realized estima-

tion procedures. These theoretical and simulation-based findings are further corroborated

by an empirical application related to portfolio allocation and risk minimization involving

several hundred individual stocks.

1We have benefited from comments by Kevin Sheppard, Jia Li, Andrew Patton, George Tauchen, as
well as seminar and conference participants at Toulouse School of Economics, Duke University, the 2016
European Meeting of the Econometric Society, the 2016 Meeting of the International association of Applied
Econometrics, and the 2016 Financial Econometrics Conference in Toulouse. The authors acknowledge
financial support of the grant ERC POEMH.
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2.1 Introduction

We contribute to the literature on the estimation of large-dimensional integrated covolatility

matrices from high-frequency intraday data. The covolatility matrix plays a crucial role in

many financial applications including risk management, portfolio allocation, hedging and as-

set pricing, and as such, accurate and well conditioned estimates of the integrated covolatility

matrix, its inverse, and the correlation matrix are of great practical import.

Our new covolatility estimator is specifically designed to work in situations when the

the number of assets is large and the high-frequency data used in the estimation might be

contaminated with microstructure noises. It relies on the assumption of a factor structure

for characterizing the microstructure noise component, separate from the factor structure

that characterizes the latent genuine returns. The efficiency of the new estimator compares

favorably to other recently developed procedures. These theoretical results, derived under

the assumption of increasingly finer sampled intraday returns and an increasing number of

assets, carry over to more accurate estimates of large-scale integrated covolatility, correlation,

and inverse covolatility matrices in empirically realistic situations with hundreds of assets

and finitely sampled intrday returns. On applying the new estimator in the construction

of minimum variance portfolios with a sample comprised of almost four-hundred individual

stocks, it also results in systematically lower ex-post risks than other competing realized

covolatility estimation procedures.

To more formally set out the ideas, let X∗t =
(
X∗1t, ..., X

∗
pt

)′
denotes the latent p-

dimensional frictionless vector log-price process of interest. Importantly, we allow for p to be

“large” and possibly in excess of the number of intraday price observations. Consistent with

the lack of arbitrage, we will further assume that Xt follows a continuous Itô semimartigale

process,

dX∗t = µtdt + σtdBt, 0 ≤ t ≤ 1, (2.1)

where the unit time-interval corresponds to a day, Bt =
(
B

(1)
t , ..., B

(p)
t

)′
is a p-dimensional vec-

tor of standard independent Brownian motions, and µt =
(
µ

(1)
t , ..., µ

(p)
t

)′
and σt =

(
σ

(1)
t , ..., σ

(p)
t

)′

denote a p-dimensional predictable locally bounded drift process and a càdlàg p× p spot co-

volatility process, respectively. The object of interest is the p × p integrated covolatility
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matrix,2

ICV =

1∫

0

σsσ
′

sds. (2.2)

This ex-post measure of the true daily covariation is, of course, latent. By the theory of

quadratic variation, it may be consistently estimated by the summation of increasingly finer

sampled cross-products of the high-frequency frictionless vector return process,

RCV =
∑

ti

(X∗ti+1
−X∗ti)(X

∗
ti+1

−X∗ti)
′, (2.3)

where 0 ≤ ti ≤ 1 refer to the within day sampling times, ti − ti−1 → 0. In practice, of course,

the X∗t process is not directly observable. Instead, the actually observed price process, is

subject to “noise” stemming from a host of market microstructure complications, including

bid-ask spreads, non-trading, price discreteness, trades occurring on different markets or

networks, rounding errors, among others (see, e.g., Hansen and Lunde (2006) and Diebold

and Strasser (2013)),

Xt = X∗t + ut. (2.4)

This in turn renders the estimator for ICV based on RCV with the actually observed Xt

price process in place of X∗t inconsistent.

Several competing estimators that remain consistent in the presence of market mi-

crostructure noise have been proposed in the univariate case (p = 1), including the sub-

sampling and averaging approach of Zhang, Mykland, and Ait-Sahalia (2005), the realized

kernel of Barndorff-Nielsen, Hansen, and Shephard (2008a), and the pre-averaging (hence-

forth PRV ) approach of Jacod, Li, Mykland, Podolskijc, and Vetter (2009a). These estima-

tors are naturally extended to the multivariate case (p > 1), provided that the observation

times of all the assets are synchronous, and the number of assets is smaller than the number

of intraday observations. In practice, of course, prices are generally not recorded at the same

time for all assets, which can cause naive estimators of the covolatility matrix that pretend

the data are synchronous to be seriously biased.3

One solution to the non-synchronicity problem is provided by Hayashi and Yoshida

(2005), who propose including all overlapping (in time) intraday returns based on the ac-

2Following the literature, we will also interchangeably refer to this as the integrated covariance, integrated
volatility, or integrated covariation matrix.

3This effect was first noted empirically for sample correlation matrices by Epps (1979), and it is now
commonly referred to as the Epps-effect.
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tually observed price series in the calculation of RCV . However, the estimator of Hayashi

and Yoshida (2005) doesn’t deal with the microstructure noise that plagues the use of high-

frequency data more generally. The multivariate realized kernel estimator of Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2011a) (henceforth MRker4) simultaneously guar-

antee consistency, positive semi-definiteness, robustness to microstructure noise, while also

accounting for non-synchroneity of observations. The non-synchronicity issue, in particular,

is resolved using so-called refresh-time sampling. The modulated realized covariance esti-

mator (henceforth MRC) of Christensen, Kinnebrock, and Podolskij (2010a), based on a

multivariate extension of the univariate pre-averaging approach, also works in the presence

of market microstructure noise. However, the MRC estimator assumes synchronous data,

and it is not guaranteed to be positive semi-definite. Christensen, Kinnebrock, and Podolskij

(2010a) introduced the adjusted modulated realized covariance (henceforth MRCδ) and the

pre-averaged Hayashi-Yoshida estimator, in order to ensure the positive semi-definiteness,

the noise-robustness and to resolve the non-synchronous data problem.

The covolatility estimators discussed above were explicitly designed for situations in

which the number of assets is small relative to the number of intraday return observations, or

the sample size available for the estimation. Of course, in many practical portfolio allocation,

risk measurement and management decisions, the number of assets is often of the same order

of magnitude or even larger than the sample size, entailing a curse of dimensionality type

problem for any direct estimation of ICV matrix.5 Two main approaches has emerged in the

literature for dealing with this problem: (i) sparsity or decay assumptions pertaining directly

to the different entries in the covolatility matrix; and (ii) the use of factor structures.

4The realized kernel is defined by:

K(Y ) =

n∑

h=−n

k(
h

H + 1
)Γh, (2.5)

Γh =
n∑

j=h+1

yjy
′

j−h, for h > 0; Γh = Γ
′

−h, for h < 0,

where n is the number of synchronized returns per asset, Γh is the hth realized auto-covariance; yj = Yj −Yj−1

for j = 1, 2, ..., n; with Y0 = 1

m

m∑
j=1

Y (τp,j); Yn = 1

m

m∑
j=1

Y (τp,p−m+j); Yj = Y (τp,j+m) for j = 1, ..., n − 1;

{τp,j} is the series of refresh time ; and k is a non-stochastic weighting function. The rate of convergence of
this estimator is n−1/5

5This mirrors the problem in parametric GARCH and stochastic volatility models, for which the dimen-
sionality of parameter space in unrestricted versions of the models grow at the rate of p4; see, e.g., Andersen,
Bollerslev, Christoffersen, and Diebold (2006).
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Estimators that rely on sparsity and decay assumptions include Wang (2010) and Zheng

and Li (2011). These estimators typically postulate that the covolatility matrix is comprised

of only a small number of non-zero block diagonal matrices, or that the absolute magnitude

of the elements in the matrix somehow decay away from the diagonal.6 The blocking and

regularization approach of Hautsch and Podolskij (2013), in which assets with similar obser-

vation frequency are grouped together in order to reduce the data loss stemming from the

use of refresh-time sampling, also implicitly builds on similar ideas. As does the composite

realized kernel estimator (henceforth Σ̂comp) of Lunde, Shephard, and Sheppard (2016), in

which bivariate realized kernel estimators for all pairs of assets is combined and regularized

in the construction of an estimation for the full high-dimensional covolatility matrix for all

assets.

The use of factor structures that underly the second approach for high-dimensional re-

alized covolatility matrix estimation, is, of course, omnipresent in finance (see, e.g., Ross

(1976), Chen, Roll, and Ross (1986), Sharpe (1994), and Ledoit and Wolf (2003)). The use

of this approach in the context of high-frequency data realized covolatility estimation was

pioneered by Fan, Fan, and Lv (2008). It has the obvious advantages that it guarantees a pos-

itive semi-definite and, under weak conditions, invertible estimate of the covolatility matrix.

Fan, Fan, and Lv (2008) further examine how the dimensionality of the problem favorably

impact the accuracy of the estimator compared to other procedures. Other related factor-

based approaches include Tao, Wang, and Chen (2011) and Bannouh, Martens, Oomen, and

van Dijk (2012), who rely on mixtures of high-frequency intraday data and daily date for esti-

mating the covolatility matrix implied by a factor structure, Fan, Liao, and Mincheva (2011)

through their approximate factor models7 for the estimation of high-dimensional covariance

matrix, Fan, Liao, and Mincheva (2013) introduce the Principal Orthogonal Complement

Thresholding Estimator (Henceforth, POET) 8, as well as the principal component analysis

for the estimation of high dimensional factor models recently explored by Ait-Sahalia and

Xiu (2016) and Dai, Lu, and Xiu (2017) 9.

Building on these ideas, we propose a new high dimensional covolatility matrix estimator

6The decay assumption is often somewhat arbitrary, since there is not a natural ordering of the assets.
7They assume observable factors and allow the presence of the cross-sectional correlation in a sparse error

covariance matrix
8They assume a sparse error covariance matrix in an approximate factor model, and allow for the presence

of some cross-sectional correlation, after taking out common but unobservable factors.
9They rely on the pre-averaging method with refresh time to solve the microstructure problems, while

using three different specifications of factor models, and their corresponding estimators, respectively, to battle
against the curse of dimensionality
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under the assumption that the true dynamics of the returns may be described by a latent

factor model. In contrast to the factor-based estimators discussed above, we explicitly allow

for the possibility of market microstructure noise in the actually observed price series. Mo-

tivated by Hasbrouck and Seppi (2001a), we assume that the cross-sectional dependencies

in the market microstructure noise component may be described by its own factor model,

resulting in two separately identified factor structures: a latent component of order Op(
√

∆)

accounting for the genuine cross-sectional dependencies in the returns, which becomes in-

creasingly less important for discretely sampled observations over diminishing time-intervals

of length ∆, and another component of order Op(1) for describing the noise, which remains

invariant to the sampling frequency. Exploiting these differences in the orders of magni-

tude, and appropriately combining noise-robust MRker and PRV -based estimates of the

rotated return factors and their integrated volatilities, along with the corresponding loadings

and integrated idiosyncratic volatility components, in turn allows for consistent noise-robust

estimation of the full covolatility matrix in large dimensions.

The rest of the paper is organized as follow. Section 2.2 presents the theoretical setup and

formally defines the new estimator. Section 2.3 derives the convergence rate of the new and

other competing estimators. This section also presents the results from a set of finite-sample

simulations involving both synchronous and asynchronous high-frequency prices. Section 2.4

presents the results from an empirical application involving a large cross-section of individual

stocks. Section 2.5 concludes. The details of the proofs and other more specific materials are

deferred to Appendixes.

2.2 Theoretical setup

2.2.1 The benchmark model

We assume that the continuous Itô semimartingale process Xt in (2.1) follows a factor model

of the form,

dX∗t = bdFt + dEt, (2.6)

where b = (bik)1≤i≤p,1≤k≤K denotes the p × K matrix of factor loadings, Ft = (F1t, ..., FKt)
′

refers to the latent factor vector, K is supposed to be asymptotically finite and known, and

Et = (E1t, ..., Ept)
′ denotes the vector of idiosyncratic errors. The use of factor models in

asset pricing finance is, of course, quite standard and traces back to the seminal work by
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Ross (1976) and Gary and Rothschild (1983). The factor Ft is supposed to represent general

influences which tend to affect all assets. Following standard assumptions in the literature,

we assume that factor loadings b are time invariant and do not depend on t.

We further assume that the Ft and Et vectors and the individually components therein

are uncorrelated and driven by their own standard Brownian motions,

dFkt = σfktdB
F
kt,

dEit = σǫitdB
E
it .

Integrating both sides of the resulting latent factor price process above over a time interval

of length ∆, it readily follows that

∫ t
t−∆ dX

∗
s = b · ∫ tt−∆ σfs

dBF
s +

∫ t
t−∆ σǫsdB

E
s .

Defining the corresponding returns, factors, and errors over the time-interval ∆,

r∗t ≡ r∗t,∆ ≡ ∫ t
t−∆ dX

∗
s

ft ≡ ft,∆ ≡ ∫ t
t−∆ σfs

dBF
s

εt ≡ εt,∆ ≡ ∫ t
t−∆ σǫsdB

E
s

allows for following standard discrete-time factor representation,

r∗t = bft + εt (2.7)

where r∗t = (r∗1t, ..., r
∗
pt)
′, ft = (f1t, ..., fKt)

′, and εt = (ε1t, ..., εpt)
′, respectively.

We make the additional assumptions directly pertaining to this representation, where

It−∆ refers to information set available at time t− ∆.

Assumption 1 ∀t, ∀i, j, k, k′ ∈ {1, ..., p}, i 6= j, k 6= k′:

• Cov (fkt, εit|It−∆) = 0;

• Cov (fkt, fk′t|It−∆) = 0;

• Cov(εit, εjt|It−∆) = 0;
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• E (εit|It−∆) = 0.

The latent X∗it prices for each of the p individual assets are not directly observable.

Instead, the actually observed prices are contaminated with market microstructure noise,

Xit = X∗it + uit. (2.8)

We assume that this noise component has has its own separate factor representation,

uit = cigt + ηit, (2.9)

where the K ′ × 1 gt vector accounts for the cross-sectional dependence in the noise, and the

1×K ′ ci vector denotes the corresponding factor loadings. We make the following additional

assumptions about this structure.

Assumption 2 ∀t, ∀i, k, k′ ∈ {1, ..., p}, k 6= k′:

• Cov (gkt, fk′t|It−∆) = 0;

• Cov (gkt, εit|It−∆) = 0;

• Cov (ηit, fkt|It−∆) = 0, Cov (ηit, gkt|It−∆) = 0, Cov (ηit, εit|It−∆) = 0;

• V ar(ηit) = σ2
ηi, ∀i ∈ {1, ..., p};

• V ar(gkt) = σ2
gk

;

• gkt, ηit are independent across assets and time.

Two main types of factors models are present in the existing literature: strict factor

models and approximated factor models. The main difference between these models is the

assumption on the covariance matrix of idiosyncratic components. In a strict factor model,

this matrix is assumed to be diagonal while its terms can be weakly correlated in an ap-

proximated factor model. For an identification purpose, following assumptions are widely

made:
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• Pervasiveness: factors influence a large number of assets. Loading vectors b are

bounded and ‖1
p
b′b − D‖ −→ 0 as p −→ ∞, where D is a K × K positive definite

matrix;

• Factors: the fourth moment of factors exists and serial auto-covariance functions of

factors converge to definite positive matrices as n −→ ∞;

• Time and cross-section dependence and heteroscedasticity of idiosyncratic terms (for

approximated factor models).

Our model is a strict factor model with some normalization assumptions: i) the perva-

siveness assumption holds with D = Ip; ii) fourth moments of factors exist and the serial

auto-covariance function of factors converges to a diagonal matrix without loss of generality,

as n goes to infinity; iii) the case of time and cross-section dependence and heteroscedasticity

of idiosyncratic terms is left for future research.

As discussed further below, the assumption of a separate factor representation for the

microstructure noise makes it possible to disentangle the estimation of the covolatility matrix

into two parts: a traditional factor-based approach for the estimation of the latent component

of orderOp(
√

∆) associated with the traditional factor structure in the returns, and a separate

estimation of the factor noise components of order Op(1).

The use of a factor structure for the microstruture noise is directly motivated by Has-

brouck and Seppi (2001a), who document strong commonalities in various liquidity proxies

such as the bid-ask spread. To further corroborate the dominance of common factors in the

noise, we run two empirical exercises.

Firstly, we construct the signature plot of the cross-sectional average return, computed

from a sample of 384 individual stocks analyzed in the empirical section below. Under a cross-

sectional uncorrelation of microstructure noise, the noise component is supposed to vanish

by the law of large numbers. As a consequence, the resulting signature plot is supposed to

be flat. However, as presented in figure 2.1, we obtain a strictly decreasing curve. This is an

evidence that the cross-sectional average return still contain a microstructure term. Thus,

microstructure noises must be cross-sectionally correlated and common factors may capture

this cross-sectional correlation.
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Figure 2.1. Signature plot of the cross-sectional average return

Secondly, we estimated the covariance matrix for the market microstructure noise for

the same sample. Decomposing the resulting covariance matrix estimates for each day in the

sample, strongly supports the idea that the cross-sectional dependencies may be adequately

captured by a few factors. Further details concerning these results are provided in Appendix

2.9.

Figure 2.2 depicts the average shares of the total variability in the observed returns which

can be explained by the first six factors. The analysis is done for various frequencies: 5, 15,

30, 60 and 300 seconds. It is well-known that the variance of the market microstructure

is better estimated at the highest frequency. Thus, the higher the sampling frequency, the

more accurate is the estimation of the shares of the total variability of microstructural noise

that can be explained by factors. However, when one increases the frequency, one has less

assets. Estimations based on 15, 30 and 60 seconds are robust and corroborate the factor

structure of the noise. At the 300 seconds frequency, the observed factor structure concerns

latent returns. Clearly, Figure 2.2 supports the factor structure of the noise, especially at

the 5-seconds frequency, even if the number of assets is relatively small.10

10At the 5 seconds frequency, the number of stocks involved drops drastically (only 28 assets remain in
the sample in contrast to the others cases where we have more than 282 assets involved). Factor are better
understood when the number of stocks is huge. the case 60s, 30s, and 15s are more approprieted in order to
understand the factor structure of microstructure noise. Ratios don’t need necessarily to be monotonically
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Figure 2.2. Ratio of largest eigenvalues relative to the total variation

2.2.2 Estimation methodology

The general setup and assumptions outlined in the previous section implies that the integrated

covolatility matrix of interest may be succinctly expressed as,

Σ = bDiag
[∫ 1

0
σ2
f1udu, ...,

∫ 1

0
σ2
fKudu

]
b′ +Diag

[∫ 1

0
σ2
ε1udu, ...,

∫ 1

0
σ2
εpudu

]
. (2.10)

We rely on traditional factor analysis together with the pre-averaging approach for con-

veniently estimating the different components of Σ. As usual, the factors and the factor

loadings are only determined up to a rotation.11 Correspondingly, our estimation strategy is

comprised of four separate steps for estimating:

• The rotated factors f̃ .

• The integrated volatilities of f̃ .

• The rotated loadings b̃.

• The integrated volatility of the idiosyncratic component.

decreasing with the sampling frequency since the object whose factor structure is investigated varies with the
sampling frequency (Latent returns for 300s and microstructure noise for others frequencies)

11Let H denote a K × K orthogonal H matrix such that H ′H = IK . The Σ matrix defined by the rotated
factors f̃t = Hft and rotated factor loadings b̃ = bH ′, is then identical to the matrix in (2.10).
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We will discuss each of these four steps in turn. We will begin by assuming that all of

the high-frequency returns used in the estimation span the same time-interval of length ∆,

with ∆ → 0 corresponding to continuous-time case. However, we will also subsequently

consider the empirically more realistic case with unevenly spaced non-synchronous discrete-

time observations.

Estimation of f̃

Following the Principal Component Analysis (henceforth PCA) of Connor and Korajczyk

(1988), fj∆ is chosen to minimize the scaled sum of squared values of the idiosyncratic

component,




Min
fj∆,b

1
p

⌊1/∆⌋∑
j=1

(r∗j∆ − bfj∆)′(r∗j∆ − bfj∆)

s.t 1
p
b′b = IK

It follows readily from the solution to this optimization problem that

f̂k∆ = 1
p
W ′r∗k∆, ∀k = 1, ..., ⌊1/∆⌋,

where W denotes the matrix of ordered eigenvectors of
⌊1/∆⌋∑
j=1

[
r∗j∆r

∗′

j∆

]
. Taking ∆ → 0, we

obtain the continuous time expression,

f̂t =
1

p
W ′r∗t , (2.11)

in which the columns of W correspond to the ordered eigenvectors of Σ.

The estimator defined by equation (2.11) is not feasible because r∗t and Σ are latent. In

order to obtain a feasible estimator, we need consistent estimates of the ordered eigenvectors

W of Σ. Let Ŵ denote the matrix of K ordered eigenvectors of an estimator Σ̂ of Σ that is

robust to microstructure noise. The simulation results in Appendix 2.11 shows that MRker

provides a good candidate.12 Hence, we propose as feasible estimator:

f̂t =
1

p
Ŵ ′rt, (2.12)

12This approach mirrors the "Linear Shrinkage" estimator of the covariance matrix of Ledoit and Wolf
(2003). In order to improve the covariance matrix estimator in large dimensions, a "Linear Shrinkage" estima-
tor is obtained from the spectral decomposition of the sample covariance matrix by keeping the eigenvectors,
while transforming the eigenvalues.
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where rt is the p× 1 vector of observed returns, Ŵ =
(
Ŵ 1, ..., ŴK

)
is a consistent estimator

of the p×K matrix W of ordered eigenvectors of Σ provided by MRker.

We need to verify that the resulting f̂ consistently estimates a rotation f̃ of f plus a

microstruture noise component. To do so, we express f̂ as a function of the true factor f ,

the idiosyncratic component ǫt, and the factor representation of the microstructure noise

component ut

f̂t = 1
p
Ŵ ′bft + 1

p
Ŵ ′ǫt + 1

p
Ŵ ′c(gt − gt−∆) + 1

p
Ŵ ′(ηt − ηt−∆)

The consistency result in the estimation of a rotation f̃ of f contaminated by a microstructure

noise component is given in the following theorem inspired by the paper of Stock and Watson

(2002).

Lemma 2.2.1 There exists an orthogonal matrix S such that Sf̂ consistently estimates f

up to a microstruture noise component, so that for ∆ → 0 and p → ∞:

• 1
p
SŴ ′bft

p→ ft.

• 1
p
SŴ ′ǫt

p→ 0.

• 1
p
SŴ ′(ηt − ηt−∆)

p→ 0.

Proof: See Appendix 2.6.

Estimation of
∫ 1

0 σ
2
f̃ku
du

Consider the following decomposition of f̂t,

f̂kt = 1
p
W ′
kr
∗
t + 1

p
W ′
k(ut − ut−∆) + 1

p
W ǫ′

k r
∗
t + 1

p
W ǫ′

k (ut − ut−∆),

where W ǫ′

k is the error term in the estimation of W . We assume that 1
p
W ǫ′

k r
∗
t and 1

p
W ǫ′

k (ut −
ut−∆) are of orders smaller than max(n, p)(−1/2).13 Since 1

p
W ′
kǫt = Op(n

−1/2p−1/2) and
1
p
W ′
k(ηt − ηt−∆) = Op(p

−1/2), it follows that

13The intuition is that p and n are suffiently large such that error components 1

p W ǫ′

k r∗
t and 1

p W ǫ′

k (ut−ut−∆)

are dominated by their latent counterparts, 1

p W ′
kr∗

t and 1

p W ′
k(ut − ut−∆) respectively . Those two latent

components are respectively of orders n−1/2 and p−1/2. The simulation exercise in the appendix 2.11 shows
that errors in the estimation of W are very small and decreases with p and n.
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f̂kt = f̃kt + 1
p
W ′
kc(gt − gt−∆) +Op(p

−1/2)

For n and p sufficiently large,

f̂kt ≈ f̃kt + 1
p
W ′
kc(gt − gt−∆)

Note that f̂ is effectively a rotation of the latent factor f contaminated by microstruc-

ture noises. Hence, by the literature on the estimation of integrated volatility using data

contaminated by microstructure noise,
∫ 1

0 σ
2
f̃ku
du can be estimated by,

̂∫ 1

0
σ2
f̃ku
du = PRV (f̂k), (2.13)

where the PRV estimator is defined in Appendix 2.7.

Estimation of b̃ik

Since the factors are pairwise independent and also independent of the idiosyncratic compo-

nent, it follows that the integrated covolatility matrix for r∗i and f̃k equals b̃ik.IV (f̃k). Thus,

b̃ik = ICV (r∗i , f̃k)/IV (f̃k), so that an estimate for b̃ik is naturally obtained by,

b̂ik =
MRC(ri, f̂k)

PRV (f̂k)
. (2.14)

with the MRC estimator formally defined in Appendix 2.7.

Estimation of
∫ 1

0 σ
2
εiudu

Define ǫ̂it = rit −∑K
k=1 b̂ik · f̂kt. It is easy to show that

ǫ̂it = ǫit + (ut − ut−∆) −
K∑
k=1

b̃ikf̃
ǫ
kt −

K∑
k=1

b̃ǫikf̃kt −
K∑
k=1

b̃ǫikf̃
ǫ
kt − 1

p

∑K
k=1

∑K
l=1 b̃ikW

′
l c(gt − gt−∆) −

1
p

∑K
k=1

∑K
l=1 b̃

ǫ
ikW

′
l c(gt − gt−∆)

where f̃ ǫkt and b̃ǫik denote the estimation errors in the estimation of f̃kt+
1
p

∑K
k=1 W

′
kc(gt−gt−∆)

and b̃ik, respectively. Since f̃ ǫkt = Op(p
−1/2) and b̃ǫik = Op(n

−1/4), let’s assume that n and p are

both sufficiently large such that
K∑
k=1

b̃ikf̃
ǫ
kt,

K∑
k=1

b̃ǫikf̃kt,
K∑
k=1

b̃ǫikf̃
ǫ
kt and 1

p

∑K
k=1

∑K
l=1 b̃

ǫ
ikW

′
l c(gt −

gt−∆) can be neglected. Then,
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ǫ̂it ≈ ǫit + (ut − ut−∆) − 1
p

∑K
k=1

∑K
l=1 b̃ikW

′
l c(gt − gt−∆),

it follows that ǫ̂it equals the idiosyncratic component ǫit contaminated with microstruture

noise. Thus,
∫ 1

0 σ
2
εiudu may be consistently estimated by,

̂∫ 1

0
σ2
εiudu = PRV (ǫ̂i). (2.15)

Putting the pieces together

Our covolatility matrix estimator is defined by plugging the different estimators discussed

above into the expression for Σ̂ in equation (2.10),

Σ̂ =




b̂11 · · · b̂1K

...
...

b̂p1 · · · b̂p1







̂∫ 1
0 σ

2
f1udu

. . .

̂∫ 1
0 σ

2
fKudu







b̂11 · · · b̂p1

...
...

b̂1K · · · b̂pK




+




̂∫ 1
0 σ

2
ε1udu

. . .

̂∫ 1
0 σ

2
εpudu




=




MRC(r1,f̂1)

PRV (f̂1)
· · · MRC(r1,f̂K)

PRV (f̂K)
...

...
MRC(rp,f̂1)

PRV (f̂1)
· · · MRC(rp,f̂K)

PRV (f̂K)







PRV (f̂1)
. . .

PRV (f̂K)







MRC(r1,f̂1)

PRV (f̂1)
· · · MRC(rp,f̂1)

PRV (f̂1)
...

...
MRC(r1,f̂K)

PRV (f̂K)
· · · MRC(rp,f̂K)

PRV (f̂K)




+




PRV (ǫ̂1)
. . .

PRV (ǫ̂p)


 .

Or, more succinctly,

Σ̂ij =
K∑

k=1

MRC(ri, f̂k).MRC(rj, f̂k)

PRV (f̂k)
; Σ̂ii =

K∑

k=1

MRC(ri, f̂k)
2

PRV (f̂k)
+ PRV (ǫ̂i), (2.16)

for i, j = 1, ..., p14.

14Due to the factor structure of our estimator Σ̂ = b̂Σ̂f b̂′+Σ̂ε and since Σ̂f and Σ̂ε are diagonal matrices with

positive elements, the positive semi-definiteness is guarantee. It can be easily shown that: ∀X, X ′Σ̂X ≥ 0.
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Remark: Our estimator is constructed using the pre-averaging estimator PRV and

the modulated realized covariance estimator MRC. Since those two estimators have been

adapted to account for serially correlated microstructure noises (see, e.g., Jacod, Li, Mykland,

Podolskijc, and Vetter (2009a) and Hautsch and Podolskij (2013)), our estimator can easily

be adapted into this specific setting. Our setup can also be easily adapted to account for

semi-martingale processes with jumps. Tools used in this paper for the estimation strategy

(MRKer, MRC and PRV ) have extensions to the case of semi-martingale processes with

jumps. Additionally, as in Pelger (2016), the model can also be split into two sub-models:

i) a factor representation for small movement of returns; ii) and a factor representation for

big movements using a threshold to identify jumps. Only the first model can be used for the

estimation of integrated volatility. Moreover, our model can be extended to the approximate

factor model. In that case, factors will be extracted using the procedure in Bai and Ng

(2002); loadings and idiosyncratic terms will be estimated using the same procedure as in

section 2. Additional parameters to estimate will be covolatility between idiosyncratic terms,

and this will be handled using MRC(ε̂i, ε̂j).

2.3 Comparing different estimators

2.3.1 Convergence rates

Our new estimator defined in (2.16) consistently estimates Σ for ∆ → 0 and p → ∞. It

is instructive to more formally assess how the values of n = 1/∆ and p impact the estima-

tion errors. The following lemma provides the specific convergence rates for the integrated

volatilities, the loadings of the rotated factors, and the integrated covolatility matrix of the

idiosyncratic errors, where ‖.‖F denotes the Frobenius norm.15

Lemma 2.3.1 Under Assumptions 1-2, for n → ∞ and p → ∞:

•
∣∣∣Σ̂f̃

kk − Σf̃
kk

∣∣∣ = Op

(
n−1/4

)
.

•
∥∥∥b̂k − bk

∥∥∥
F

=
∥∥∥b̂k − bk

∥∥∥
2

= Op

(
p1/2n−1/4

)
.

•
∥∥∥Σ̂ǫ − Σǫ

∥∥∥
F

= Op(p
1/2n−1/4).

15The Frobenius norm for the matrix A = (aij)1≤i,j≤p is formally defined by ‖A‖F =
√∑p

i=1

∑p
j=1

|aij |2.
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Proof: See Appendix 2.6.

Appropriately combining these convergence rates for the individual components, it is

possible to deduce the overall rate of convergence of Σ̂. In order to compare this rate to other

competing large dimensional realized covolatility estimators, the following Theorem provides

the convergence rate for Σ̂ along with the rates for the adjusted modulated realized covariance

estimator MRCδ of Christensen, Kinnebrock, and Podolskij (2010a), the multidimensional

kernel estimator MRker of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011a), and

the composite realized kernel Σ̂comp of Lunde, Shephard, and Sheppard (2016).

Theorem 2.3.1 Under Asumptions 1-2, for n → ∞ and p → ∞:

•
∥∥∥Σ̂ − Σ

∥∥∥
F

= Op(pn
−1/4).

•
∥∥∥MRCδ − Σ

∥∥∥
F

= Op(pn
−1/5).

• ‖MRker − Σ‖F = Op(pn
−1/5).

•
∥∥∥Σ̂comp − Σ

∥∥∥
F

= Op(
√
p(p− 1)n−1/5).

Proof: See Appendix 2.6.

The results in Theorem 2.3.1 suggest that under the Frobenius norm, the dimensionality

of the covolatility matrix reduces the speed of convergence for the new Σ̂ estimator by an

order of p. Of course, this is also the case for all of the other estimators. Meanwhile, the

speed of convergence of Σ̂ exceeds that of MRCδ, MRker or Σ̂comp.

The next theorem derives the convergence rate of Σ̂−1.

Theorem 2.3.2 Under Asumptions 1-2, for n → ∞ and p → ∞:

∥∥∥Σ̂−1 − Σ−1
∥∥∥
F

= Op(p
2n−1/4)

Proof: See Appendix 2.6.

The simulation results discussed in the next section confirm that this superior asymptotic

performance carries over to empirically realistic finite-sample settings.
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2.3.2 Finite-sample simulations: synchronous prices

We simulate artificial high-frequency prices from a K-factor(s) continuous-time stochastic

volatility model in which the actually observed prices are contaminated by noise. While K

is allowed to vary from 1 to 5, we only report in this section results for the case K = 2.

Others simulation results are provided in the appendix. We add as competitors, two PCA-

based estimators of the covolatility matrix, namely: the POET estimator of Fan, Liao,

and Mincheva (2013) and the PCA-based estimator of Dai, Lu, and Xiu (2017)(Henceforth,

PCA-PRV ). Specific details concerning the simulation design are provided in Appendix 2.10.

We begin by simulating frictionless price vectors of length p = 50, p = 100, p = 300

and p = 500 based on the true covolatility matrix Σ. We then generate noisy prices by

adding market microstructure noise to the vectors of frictionless prices. Each path of the

noisy price vector is comprised of n+ 1 observations. We start by assuming that all of prices

are synchronously recorded, with one observation every five minutes and a trading day of 6.5

hours, resulting in 79 prices per day.16 We also have simulation results for others sampling

frequencies such as: one observation every minute and one observation every 30 seconds (cf.

appendix). We consider three different levels of noise in the simulation setup, corresponding

to three values of the signal-to-noise ratio parameter ξ2: 0.001, 0.005, and 0.01. Due to a

space constraint, we only report the results for K = 2, ξ2 = 0.005 and 79 prices per day.

Results of others cases are reported in appendix.

We evaluate the performance of the same four estimators of Σ analyzed in Theorem 2.3.1

by computing the errors relative to the true integrated covolatility matrix (columns labeled

Covariance in the tables), the integrated correlation matrix (columns labeled Correlation),

and the inverse of the integrated covariance matrix (columns labeled Inverse). We rely on

the scaled Frobenius norm for assessing the difference between the estimates and the true

matrices.17

Tables 2.1 presents the average values based on 1, 000 Monte Carlo replications, with the

standard errors across the simulations reported in parentheses. The new Σ̂ estimator system-

atically outperforms all of the five alternative estimators Σ̂comp, MRker, MRCδ, PCA−PRV
and POET , in terms of most accurately estimating the true covolatility matrix. This holds

16This closely mirrors Lunde, Shephard, and Sheppard (2016), who report around 100 observations on
average per day after the synchronization of 473 liquid stocks.

17The scaled Frobenius norm is defined by diving the usual Frobenius norm with
√

p. As discussed in
Hautsch, Kyj, and Oomen (2012), this scaling allows for a more meaningful comparison across different
values of p.
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Table 2.1. Covolatility estimators, synchronous prices

Signal-to-Noise ratio ξ2 = 0.005, K = 2
Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 2.492 1.299 4.567 21.09 377.687
(0.729) (0.316) (0.360)

MRker 2.645 1.472 5667 23.88 412.6
(0.714) (0.170) (93231)

MRCδ 2.607 1.499 1050 22.09 385.3
(0.605) (0.170) (4936)

Σ̂comp 2.625 1.431 4.120 40.92 392.6
(0.733) (0.172) (0.694)

PCA− PRV 2.587 1.454 7.164 22.09 383.3
(0.623) (0.173) (10.32)

POET 5.663 2.922 402.6 209.0 1449
(0.382) (0.229) (22.68)

Number of assets: N=100
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 3.554 1.792 4.734 41.93 1500
(1.261) (0.394) (27.54)

MRker 3.865 2.124 NA 41.63 1701
(0.927) (0.238) NA

MRCδ 3.811 2.161 NA 39.152 1589.271
(0.771) (0.229) NA

Σ̂comp 3.809 2.061 5.008 63.44 1639
(0.942) (0.242) (0.833)

PCA− PRV 3.732 2.067 6.038 39.15 1536
(0.800) (0.236) (10.29)

POET 7.653 4.371 596.0 364.6 5648
(0.516) (0.334) (130.2)

Number of assets: N=300
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 5.642 3.035 9.304 137.048 12669.290
(2.120) (0.724) (0.247)

MRker 6.313 3.707 NA 110.6 13623
(1.546) (0.413) NA

MRCδ 6.204 3.761 NA 102.1 12685
(1.250) (0.398) NA

Σ̂comp 6.251 3.649 6.821 146.0 13365
(1.557) (0.417) (1.260)

PCA− PRV 5.991 3.508 5.586 102.123 11884
(1.300) (0.415) (1.877)

POET 12.17 7.681 NA 981.0 44653
(0.853) (0.559) NA

Number of assets: N=500
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 6.940 3.856 14.87 218.2 31870
(2.678) (0.824) (61.76)

MRker 7.937 4.765 NA 174.6 36191
(1.905) (0.490) NA

MRCδ 7.915 4.871 NA 165.1 33994
(1.417) (0.471) NA

Σ̂comp 7.878 4.716 18.82 221.2 35703
(1.911) (0.494) (1.960)

PCA− PRV 7.598 4.601 15.68 165.1 31669
(1.471) (0.477) (11.87)

POET 14.94 10.08 NA 1498 111142
(0.977) (0.717) NA
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true across all of the different noise levels and the two values of p. As a whole, the estimation

errors systematically increase with the dimensionality of the matrix and the magnitude of

the market microstructure noise. These results, of course, are consistent with the theoretical

predictions from Theorem 2.3.1. Looking at columns five and six, which report the separate

(unscaled) norms for estimating the diagonal and the off-diagonal elements in Σ, it does not

appear that the more accurate estimates afforded by the new Σ̂ estimator come solely from

one or the other. Interestingly, the Σ̂comp estimator of Lunde, Shephard, and Sheppard (2016)

appears to perform especially poorly for estimating the diagonal variance elements.

This superior performance of the Σ̂ estimator carries over to the estimation of the cor-

relation matrix implied by the true covolatility matrix. It also holds true for estimating Σ−1

for low noise levels. However, Σ̂−1
comp performs slightly better than Σ̂−1 for estimating Σ−1 for

higher levels of market microstructure noise. Also, whereas Σ̂comp and Σ̂ are both guaranteed

to be positive semi-definite, the inverse of both MRker and MRCδ fails to exist when p > n,

and MRker−1 and
(
MRCδ

)−1
generally also perform very poorly for estimating the inverse

when p = 50 and close to n = 78.

Remark: We checked the good finite sample properties of our estimator under correlated

microstructure noise. In this specific case, the higher order dependence is considering by

assuming that factors in microstructure noise are the sum of an iid process and an AR(1) as

in Aït-Sahalia, Mykland, and Zhang (2011). Table 2.10 provides such simulation results.

2.3.3 Finite-sample simulations: asynchronous prices

The simulation results discussed above were based on synchronous prices. This section eval-

uates the performance of the same four estimators in the more realistic situation when the

prices for different assets are not necessarily recorded at the same time and therefore first

have to be synchronized.18

To accommodate this feature within the simulations, we augment the previously dis-

cussed two factor setup by dividing the assets into three separate groups of differing observa-

tion frequencies. For assets in the first group, an observation is available on average every 30

seconds, in the second group every 90 seconds, and in the final third group every 150 seconds.

All of the observation times for each of the individual assets within each of the three groups

18This issue is especially acute for the MRker and MRCδ estimators, which require that the synchroniza-
tion process is applied to full p-dimensional price vector. By comparison, the computation of Σ̂ only needs
for the prices to be synchronized on a pairwise basis, in turn resulting less of a loss of observations.
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Table 2.2. Covolatility estimators, asynchronous prices

Signal-to-Noise ratio ξ2 = 0.01, K = 2
Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 4.914 2.374 3.788 49.88 1182.1
(0.470) (0.173) (7.871)

MRker 5.207 2.732 4960.934 44.54 1332
(0.515) (0.205) (13222)

MRCδ 5.180 2.689 1594 43.08 1316
(0.497) (0.200) (6580)

Σ̂comp 5.047 2.646 4.430 42.70 1271
(0.482) (0.179) (0.258)

PCA− PRV 5.155 2.617 7.187 43.08 1292
(0.498) (0.206) (10.49)

POET 6.233 3.312 385.8 168.5 1841
(0.512) (0.189) (415.6)

Number of assets: N=100
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 5.430 3.141 4.041 94.92 2878
(0.438) (0.209) (12.03)

MRker 5.768 3.702 NA 71.747 3294.052
(0.411) (0.182) NA

MRCδ 5.757 3.655 NA 66.73 3283
(0.410) (0.178) NA

Σ̂comp 5.619 3.565 4.622 60.35 3155
(0.403) (0.153) (0.325)

PCA− PRV 5.657 3.485 8.110 66.73 3150
(0.422) (0.203) (41.32)

POET 6.306 4.386 319.9 248.7 3834
(0.428) (0.176) (4848)

Number of assets: N=300
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 10.35 5.426 7.315 473.2 32356
(0.825) (0.327) (30.27)

MRker 11.15 6.595 NA 295.0 37950
(0.809) (0.307) NA

MRCδ 11.11 6.493 NA 281.7 37699
(0.797) (0.353) NA

Σ̂comp 10.97 6.126 8.568 512.4 36548
(0.912) (0.374) (3.578)

PCA− PRV 10.87 6.094 8.225 281.7 35987
(0.811) (0.346) (8.580)

POET 12.57 7.468 NA 1000 46936
(0.892) (0.321) NA

Number of assets: N=500
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 12.46 6.842 9.780 357.2 78228
(1.554) (0.351) (80.61)

MRker 13.61 8.443 NA 416.6 93282
(0.923) (0.335) NA

MRCδ 13.58 8.265 NA 396.6 92472
(0.914) (0.381) NA

Σ̂comp 13.45 8.159 10.854 754.2 89258
(0.932) (0.298) (5.365)

PCA− PRV 13.22 7.742 8.570 396.6 87690
(0.930) (0.372) (10.67)

POET 15.096 9.419 NA 1461 114468
(1.039) (0.398) NA
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are drawn from Poisson distributions.

The results from these augmented simulations are reported in Table 2.2. To conserve

space we only report the results for the case corresponding to ξ2 = 0.01. As expected, all of the

estimators perform worse in an absolute sense compared to the situation with synchronously

observed prices in Table 2.119. However, the relative performance of the different estimators

is entirely in line with the previously discussed results in Table 2.2, underscoring the superior

overall performance of the new Σ̂ estimator. The empirical application discussed in the next

section also further corroborates this.

2.4 Empirical application

Our empirical application is based on a large cross-section of individual stocks. It closely

follows Lunde, Shephard, and Sheppard (2016) in assessing the performance of the different

covolatility estimators by comparing the resulting risk minimizing portfolios.

2.4.1 Data

We rely on intraday data from the TAQ database. Our original sample is comprised of all of

the stocks included in the S&P 500 during the period spanning January 2007 to December

2011. Following Lunde, Shephard, and Sheppard (2016), we remove stocks that trade less

than 195 times during a given day. We further clean the data following the procedures

advocated in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011a). All-in-all, this leaves

us with a total of 384 stocks.

2.4.2 Risk minimization

Our comparison of the different covolatility estimators rely on their ability to minimize port-

folio risks. Specifically, let Ω̂t denote a covolatilty estimate for day t. We will assume that

Ω̂t follows a random walk, and use it as the forecast for the day t + 1 covolatility matrix.

19The estimation error increases when incorporating the asynchronous sampling times because of the loss
of data during the synchronization process. The error size is still acceptable. The consistency of Σ̂ is the
consequence of the consistency of MRC under asynchronous sampling times. Theoretical assumptions about
the irregularity and asynchronicity of the sampling times are the same than in Christensen, Kinnebrock, and
Podolskij (2010a).
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Correspondingly, the portfolio weights ŵt+1 that minimize the day t + 1 risk, subject to a

cross exposure constraint, may be found by solving:





Min w
′

t+1Ω̂twt+1

s.t. w
′

t+11 = 1 and
p∑
i=1

|wi,t+1| ≤ 1 + 2s.
(2.17)

The gross exposure parameter s represents the share of the stocks in the portfolio that can be

held short.20 Setting s = 0 restricts the portfolio to long positions only, while higher values

of s allow for increasingly larger short positions. We will consider values of s ranging from 0

to 1. The gross exposure constraint also ensures that the optimization problem has a unique

solution, even if Ω̂t is not positive semi-definite.21 It also serves to moderate the impact of

estimation errors in the covolatility matrices used in place of Ω̂t more generally (see, e.g., the

discussion Fan, Li, and Yu (2012)).

We evaluate the performance of the different covolatility estimators, by calculating,

ŵ
′

t+1RCovt+1ŵt+1 (2.18)

where RCovt+1 denotes the day t+1 realized covariance matrix constructed from five-minute

returns. This approach closely mirrors that of Lunde, Shephard, and Sheppard (2016). In

addition to the results for the four specific covolatility estimators discussed above, we also

report the results for a naive equally weighted portfolio ŵt+1 = 1
p
Ip, as recently advocated

by DeMiguel, Garlappi, and Uppal (2009).

Consistent with the simulation results for the asynchronous price series discussion above,

we rely the refresh-time sampling approach of Barndorff-Nielsen, Hansen, Lunde, and Shep-

hard (2011a) to synchronize the data used in the actual implementation of the estimators.22

The practical implementation of the new Σ̂ estimator further requires a choice for the number

of systematic risk factors, K. We use the information criteria IC advocated by Bai and Ng

20The classical Markowitz portfolio problem corresponds to s = ∞.
21This is especially useful for the MRker and MRCδ estimators, which are not guaranteed to be positive

semi-definite.
22Applying the synchronization to all of the stocks results in an average of 104.4 intraday observations.
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(2002) for choosing the value of K that minimizes23,

IC = log


1

p

⌊1/∆⌋∑

j=1

(r∗j∆ − bfj∆)′(r∗j∆ − bfj∆)


+K × g(p, ⌊1/∆⌋), (2.19)

with the penalty function define by g(p, ⌊1/∆⌋) = p+⌊1/∆⌋
p⌊1/∆⌋

× log
[
p⌊1/∆⌋
p+⌊1/∆⌋

]
. In order to reduce

the impact of market microstructure noise, IC is applied in the dataset sampled at the 5-

minutes frequency. The number of factors chosen by this criteria range between one and four

for each of the different days, with an average value of 3.277 over the full sample.

Table 2.3. Minimum variance portfolios

s=0 s=0.01 s=0.05 s=0.1 s=0.15 s=0.20 s=0.25 s=0.5 s=1

Σ̂ 0.334 0.298 0.287 0.261 0.256 0.252 0.245 0.24 0.241

Σ̂comp 0.409 0.343 0.31 0.32 0.308 0.303 0.301 0.325 0.326

MRker 0.399 0.351 0.335 0.313 0.305 0.302 0.278 0.263 0.258

MRCδ 0.412 0.368 0.352 0.334 0.331 0.323 0.362 0.343 0.319

EqualWeight 0.636 0.636 0.636 0.636 0.636 0.636 0.636 0.636 0.636

PCA− PRV 0.395 0.355 0.339 0.318 0.31 0.302 0.319 0.317 0.327

POET 0.401 0.338 0.311 0.287 0.277 0.266 0.289 0.278 0.286

Looking across the different rows of the table 2.3, the portfolios constructed based on

the new Σ̂ estimator systematically result in the lowest ex-post variation. This dominance

holds true for all of the different values of the gross exposure constraint s. Meanwhile, the

portfolios that rule out short positions reported in the first column (s = 0) unambiguously

perform the worst. The differences observed across the other values of s are generally small

and not always monotonic. All of the realized volatility-based portfolios also convincingly

beat the 1
p

naively diversified portfolios. In contrast to the simulation-based comparisons

discussed above, where the Σ̂comp systematically outperformed MRker and MRCδ that is

not the case here.

23Since the number of stocks p and the intraday observations n diverge, we implement the Bai and Ng
(2002) estimator of K using intraday observations sampled at 5 minutes frequency. There is an underlining
assumption that the number of factors is asymptotically bounded by a fix positive number kmax.
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2.5 Conclusion

We provide a new realized covolatility estimator that is guaranteed to be positive semi-

definite in large dimensions and also works in the presence of market microstructure noise.

The estimator relies on two separate factor structures: one of order Op(
√

∆) for describing

the cross-sectional variation in the systematic risks, and another of order Op(1) for describing

the noise. The practical implementation of the estimator relies on traditional factor anal-

ysis together with already existing procedures for consistently and robustly estimating the

different components of the covolatility matrix.

The convergence rate of the new estimator compares favorably to other recently devel-

oped procedures, including the adjusted modulated realized covariance estimator MRCδ of

Christensen, Kinnebrock, and Podolskij (2010a), the multivariate kernel estimator MRker of

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011a), and the composite realized kernel

Σ̂comp of Lunde, Shephard, and Sheppard (2016). Simulations confirm that the theoretical

results derived under the assumption of synchronous prices observed over increasingly finer

time intervals carry over to empirically realistic settings with a finite number of asynchronous

intraday observations. Applying the new estimator in the construction of ex-ante minimum

variance portfolios from a set comprised of several hundred individual equities also produces

the lowest ex-post variation among other competing covolatility estimators.
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Appendix

2.6 Technical proofs

Proof of Lemma 2.2.1

The proof proceeds by establishing that 1
p
SŴ ′bft

p→ ft and 1
p
SŴ ′ǫt

p→ 0.

A) Proof of: 1
p
SŴ ′bft

p→ ft

This proof consists on 12 steps inspired from the paper of Stock and Watson (2002).

Step 1 : 1
p

∑p
i=1 ǫ

2
it ∼ Op(1)

We assume that:

• A1) lim
p−→∞

Sup
t

1
p

∑p
i=1

∑p
j=1 |E(ǫitǫjt)| < ∞;

• A2) lim
p−→∞

Sup
t,s

1
p

∑p
i=1

∑p
j=1 |Cov(ǫisǫit, ǫjsǫjt)| < ∞

Since

1
p

∑p
i=1 ǫ

2
it = 1

p

∑p
i=1 E [ǫ2

it] + 1
p

∑p
i=1 [ǫ2

it − E (ǫ2
it)]

we just need to prove that

1
p

∑p
i=1 E [ǫ2

it] ∼ O(1) and 1
p

∑p
i=1 [ǫ2

it − E (ǫ2
it)] ∼ op(1)

The following inequalities hold:

1
p

∑p
i=1 E [ǫ2

it] ≤ 1
p

∑p
i=1

∑p
j=1 |E(ǫitǫjt)| ≤ Sup

t

1
p

∑p
i=1

∑p
j=1 |E(ǫitǫjt)|

Since Sup
t

1
p

∑p
i=1

∑p
j=1 |E(ǫitǫjt)| converges, it is bounded. Thus 1

p

∑p
i=1 E [ǫ2

it] is bounded, it

means O(1). In addition

E
[(

1
p

∑p
i=1 [ǫ2

it − E (ǫ2
it)]
)2
]

= 1
p2

∑p
i=1

∑p
j=1 E

[
(ǫ2
it − E(ǫ2

it))(ǫ
2
jt − E(ǫ2

jt))
]

= 1
p2

∑p
i=1

∑p
j=1 Cov

(
ǫ2
it, ǫ

2
jt

)

≤ 1
p2

∑p
i=1

∑p
j=1

∣∣∣Cov
(
ǫ2
it, ǫ

2
jt

)∣∣∣
≤ Sup

t,s

1
p2

∑p
i=1

∑p
j=1 |Cov (ǫitǫis, ǫjtǫjs)|
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Since Sup
t,s

1
p

∑p
i=1

∑p
j=1 |Cov (ǫitǫis, ǫjtǫjs)| is bounded, it follows that

Sup
t,s

1
p2

∑p
i=1

∑p
j=1 |Cov (ǫitǫis, ǫjtǫjs)| −→ 0

We deduce that 1
p

∑p
i=1 [ǫ2

it − E (ǫ2
it)] converges in 2 −mean to 0. Hence

1
p

∑p
i=1 [ǫ2

it − E (ǫ2
it)]

p→ 0

Step 2 : Let Γ = {γ ∈ ℜp/γ′γ/p = 1}. We want to prove that Sup
γ∈Γ

1
p2γ
′IV (ǫ)γ −→ 0 as

p −→ ∞, with IV (ǫ) = Diag(IV (ǫ1), ..., IV (ǫp)). We make the additional assumption that

∀ i = 1, ..., p, the quadratic variation of the idiosyncratic component ǫi is bounded by a

scalar M . Thus, we can write

1
p2γ
′IV (ǫ)γ = 1

p2

∑p
i=1 γ

2
i .IV (ǫi)

≤
[

1
p2

∑p
i=1 γ

4
i

]1/2 [
1
p2

∑p
i=1 IV (ǫi)

2
]1/2

≤
[

1
p2 (

∑p
i=1 γ

2
i )

2
]1/2 [

1
p2

∑p
i=1 IV (ǫi)

2
]1/2

≤
(

1
p
γ′γ

)
.
[

1
p2

∑p
i=1 IV (ǫi)

2
]1/2

≤
[

1
p2

∑p
i=1 IV (ǫi)

2
]1/2

≤
(
M2

p

)1/2

We deduce that Sup
γ∈Γ

1
p2γ
′IV (ǫ)γ −→ 0 as p −→ ∞.

Step 3 : If
∫ 1

0 E(q2
t )dt ∼ O(1) then Sup

γ∈Γ

∣∣∣1
p

∫ 1
0 E(qt.γ

′ǫt)dt
∣∣∣ −→ 0 as p −→ ∞

1
p

∫ 1
0 E(qt.γ

′ǫt)dt ≤ ∫ 1
0 [E(q2

t )]
1/2
[
E
(
(1
p
γ′ǫt)

2
)]1/2

dt

≤
[∫ 1

0 E(q2
t )dt

]1/2
.
[∫ 1

0 E
(
(1
p
γ′ǫt)

2
)
dt
]1/2

≤ O(1).
[

1
p2

∫ 1
0 γ
′E(ǫtǫ

′

t)γdt
]1/2

≤ O(1).
[

1
p2γ
′IV (ǫ)γ

]1/2

The first inequality comes from the Cauchy-Schwarz inequality and the second from the

Holder inequality. From the last inequality, the result is deduced using the step 2.

Step 4 : Sup
γ∈Γ

∣∣∣1
p

∫ 1
0 E(fkt.γ

′ǫt)dt
∣∣∣ −→ 0 as p −→ 0, ∀k = 1, ..., K

This result is obtained from the step 3 by taking qt = fkt. Indeed,
∫ 1

0 E(f 2
kt)dt = IV (fk) < ∞

by assumption.
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Step 5 : Assume that A3) b′b
p

−→ IK as p −→ 0. Then Sup
γ∈Γ

1
p
γ′b

∫ 1
0 E(ft.γ

′ǫt)dt −→ 0 as

p −→ 0

1
p
γ′b

∫ 1
0 E(ft.γ

′ǫt)dt =
∑K
k=1 γ

′ bk

p
.
∫ 1

0 E(fkt.
γ′

p
ǫt)dt

=
∑K
k=1

(
γ′
bk

p

)
.
∫ 1

0 E
(
fkt.

(
1
p

∑p
i=1 γiǫit

))
dt

≤ ∑K
k=1

∣∣∣γ′ bk

p

∣∣∣ .
∣∣∣
∫ 1

0 E
(
fkt.

(
1
p

∑p
i=1 γiǫit

))
dt
∣∣∣

Sup
γ∈Γ

1
p
γ′b

∫ 1
0 E(ft.γ

′ǫt)dt ≤
[
Max
k

Sup
γ∈Γ

∣∣∣γ′ bk

p

∣∣∣
]
.
∑K
k=1 Sup

γ∈Γ

∣∣∣
∫ 1

0 E
(
fkt.

(
1
p

∑p
i=1 γiǫit

))
dt
∣∣∣

≤
{
Sup
γ∈Γ

(γ′γ/p)1/2

}
.
{
Max
k

(b′kbk/p)
1/2
}

×∑K
k=1 Sup

γ∈Γ

∣∣∣
∫ 1

0 E
(
fkt.

(
1
p

∑p
i=1 γiǫit

))
dt
∣∣∣

From the definition of Γ and assumption A3), as p −→ ∞,

Sup
γ∈Γ

(γ′γ/p)1/2 −→ 1 and Max
k

(b′kbk/p)
1/2 −→ 1

In addition, from step 4, as p −→ ∞,

∑K
k=1 Sup

γ∈Γ

∣∣∣
∫ 1

0 E
(
fkt.

(
1
p

∑p
i=1 γiǫit

))
dt
∣∣∣ −→ 0

Then Sup
γ∈Γ

1
p
γ′b

∫ 1
0 E(ft.γ

′ǫt)dt −→ 0 as p −→ ∞.

Step 6 : Define ∀γ ∈ Γ, R(γ) = 1
p2γ
′Σγ and R∗(γ) = 1

p2γ
′b.IV (f).b′γ.

Then Sup
γ∈Γ

|R(γ) −R∗(γ)| −→ 0 as p −→ ∞.

|R(γ) −R∗(γ)| =
∣∣∣ 1
p2γ
′Σγ − 1

p2γ
′b.IV (f).b′γ

∣∣∣
=

∣∣∣ 1
p2γ
′ [b.IV (f).b′ + IV (ǫ)] γ − 1

p2γ
′bIV (f)b′γ

∣∣∣
=

∣∣∣ 1
p2γ
′IV (ǫ)γ

∣∣∣
≤ Sup

γ∈Γ

1
p2γ
′IV (ǫ)γ

Hence, Sup
γ∈Γ

|R(γ) −R∗(γ)| ≤ Sup
γ∈Γ

1
p2γ
′IV (ǫ)γ. Since Sup

γ∈Γ

1
p2γ
′IV (ǫ)γ −→ 0 as p −→ ∞ by

the step 2, we deduce that Sup
γ∈Γ

|R(γ) −R∗(γ)| −→ 0 as p −→ ∞.

Step 7 :

∣∣∣∣∣Supγ∈Γ
R(γ) − Sup

γ∈Γ
R∗(γ)

∣∣∣∣∣ −→ 0 as p −→ ∞
From the properties of the Sup
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∣∣∣∣∣Supγ∈Γ
R(γ) − Sup

γ∈Γ
R∗(γ)

∣∣∣∣∣ ≤ Sup
γ∈Γ

|R(γ) −R∗(γ)|

Since Sup
γ∈Γ

|R(γ) −R∗(γ)| −→ 0 as p −→ ∞ from the step 7, the result is obtained.

Step 8 : Sup
γ∈Γ

R∗(γ) −→ IV (f)11 as p −→ ∞, with IV (f)11 the element in the first line

and first column of IV (f)

We consider the following Choleski decomposition of b′b/p

b′b
p

=
(
b′b
p

)1/2 (
b′b
p

)1/2′

There exist two vectors δ and V such that γ can be represented in the following way

γ = b (b′b/p)−1/2 δ + V , with V ′b = 0 and δ′δ ≤ 1

From the previous specification, we derive the following expression of R∗(γ)

R∗(γ) = 1
p2γ
′bIV (f)b′γ

= 1
p2

[
b
(
b′b
p

)−1/2
δ + V

]′
b.IV (f).b′

[
b
(
b′b
p

)−1/2
δ + V

]

=
[
δ′
(
b′b
p

)−1/2
b′ + V ′

]
b
p
.IV (f). b

′

p

[
b
(
b′b
p

)−1/2
δ + V

]

=
[
δ′
(
b′b
p

)1/2
+ V ′b

p

]
.IV (f).

[(
b′b
p

)1/2
δ + b′V

p

]

= δ′
(
b′b
p

)1/2
.IV (f).

(
b′b
p

)1/2
δ

Then,

Sup
γ∈Γ

R∗(γ) = Sup
δ,δ′δ≤1

{
δ′
(
b′b
p

)1/2
.IV (f).

(
b′b
p

)1/2
δ
}

= Largest eigenvalue of
(
b′b
p

)1/2
.IV (f).

(
b′b
p

)1/2

≡ σ̂11

Since b′b
p

−→ IK as p −→ ∞, we have

(
b′b
p

)1/2
IV (f)

(
b′b
p

)1/2 p→ IV (f)

By the continuity of eigenvalues, σ̂11 −→ IV (f)11 as p −→ ∞. This leads to Sup
γ∈Γ

R∗(γ) −→
IV (f)11.
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Step 9 : Sup
γ∈Γ

R(γ) −→ IV (f)11

Since Sup
γ∈Γ

R∗(γ) −→ IV (f)11 from the step 8, and since

∣∣∣∣∣Supγ∈Γ
R(γ) − Sup

γ∈Γ
R∗(γ)

∣∣∣∣∣ −→ 0 as

p −→ ∞ from the step 7, we conclude that Sup
γ∈Γ

R(γ) −→ IV (f)11 as p −→ ∞.

Step 10 : If b̂1 = Arg Sup
γ∈Γ

R(γ) then R∗(b̂1) −→ IV (f)11 as p −→ ∞

If b̂1 = Arg Sup
γ∈Γ

R(γ), then R(b̂1) = Sup
γ∈Γ

R(γ). We derive from the step 9 that R(b̂1) −→
IV (f)11 as p −→ ∞. In addition,

∣∣∣R(b̂1) −R∗(b̂1)
∣∣∣ ≤ Sup

γ∈Γ
|R(γ) −R∗(γ)| −→ 0 as p −→ ∞

Hence,
∣∣∣R(b̂1) −R∗(b̂1)

∣∣∣ −→ 0 as p −→ ∞. This latter result together withR(b̂1) −→ IV (f)11

leads to R∗(b̂1) −→ IV (f)11 as p −→ ∞.

Step 11 : Let W 1 denotes the first column of W (the matrix of ordered eigenvectors of Σ).

W 1 is the eigenvector of Σ associated to its largest eigenvalue. We also define the variable

S1 by: S1 = 1 if W ′
1b1 ≥ 0 and S1 = −1 if W ′

1b1 ≤ 0, with b1 the first column of the loading

matrix b. Then S1
W ′

1b

p

p→ l′1, with l1 = (1, 0, ..., 0)′.

There exist δ̂ and V̂ such that W 1 = b
(
b′b
p

)−1/2
δ̂ + V̂ , with V̂ ′b = 0 and δ̂′δ̂ ≤ 1. Let’s take

CNT =
(
b′b
p

)1/2
.IV (f).

(
b′b
p

)1/2
. It follows that R∗(W 1) = δ̂′.CNT .δ̂. Thus

R∗(W 1) − IV (f)11 = δ̂′ (CNT − IV (f)) δ̂ + δ̂′.IV (f).δ̂ − IV (f)11

= δ̂′ (CNT − IV (f)) δ̂ + (δ̂2
1 − 1).IV (f)11 +

∑K
k=2 δ

2
kIV (f)kk

Since CNT −→ IV (f) as p −→ ∞ and since δ̂ is bounded (δ̂′δ̂ ≤ 1), δ̂′ (CNT − IV (f)) δ̂ is

op(1). Because R∗(W 1) − IV (f)11 −→ 0 as p −→ ∞ (this result comes from the step 10, by

taking b̂1 = W 1) and δ̂′ (CNT − IV (f)) δ̂
p→ 0, we deduce that

(δ̂2
1 − 1).IV (f)11 +

∑K
k=2 δ̂

2
k.IV (f)kk

p→ 0

The previous convergence result is obtained whatever IV (f) is. Because ∀k = 1, .., K

IV (f)kk > 0, we conclude that δ̂2
1 −→ 1 and δ̂2

k −→ 0 ∀k = 2, .., K. Hence
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S1
W ′

1b1

p
=

∣∣∣W
′

1b1

p

∣∣∣

=
∣∣∣∣
[
b
(
b′b
p

)−1/2
δ̂ + V̂

]′
b1

p

∣∣∣∣

=
∣∣∣∣
[
δ̂′
(
b′b
p

)−1/2
b′ + V̂ ′

]
b1

p

∣∣∣∣

=
∣∣∣∣δ̂′
(
b′b
p

)−1/2 ( b′b1

p

)
+ V̂ ′

b1

p

∣∣∣∣

Since V̂ ′b = 0,
b′b1

p
−→ (1, 0, ..., 0)′ and b′b

p
−→ IK as p −→ ∞,

Plim S1
W ′

1b1

p
= Plim δ̂1

Because
(
δ̂2

1, ..., δ̂
2
K

)
p→ (1, 0, ..., 0), it follows that S1

W ′

1b1

p
−→ 1.

We use the same tricks to prove that for k ∈ {2, ..., K}, Plim S1
W ′

1bk

p
= 0.

We conclude that S1
W ′

1b

p
−→ (1, 0, ..., 0) ≡ l′1

Step 12 : We assume that the columns of W are formed by the K ordered eigenvectors of

Σ, and is normalized as W ′W
p

= IK . We define the matrix S = Diag [sign(W ′
1b1), ..., sign(W ′

KbK)],

where Ak is the kth column of the matrix A. Then SW ′b
p

p→ IK .

To prove this result, we need to prove that for each columnW k ofW , S
W ′

kb

p
−→ (0, ..., 1, 0, ..., 0),

with 1 corresponding to the position k. The result for the case of k = 1 is given by the step

11. The results for k = 2, ..., K are based on steps 8 to 11, and consist on maximizing R(.)

and R∗(.) in a sequential way, using orthonormal subspaces of Γ. For example, for the column

W k of W , we can write W k = b
(
b′b
p

)−1/2
δ̂k + V̂k, with V̂ ′kb = 0 and

V̂ ′

kV̂k

p

p→ 0 and δ̂2
kl

p→ 0,

∀ l 6= k and δ̂2
kk

p→ 1.

Steps 1 to 12 establish that SW ′b
p

p→ IK . This leads to SW ′b
p
ft

p→ ft. This result

corresponds to the case where Σ is known. If Σ is unknown and is consistently estimated

by Σ̂, and if Ŵ is the matrix of ordered eigenvectors of Σ̂ (Ŵ consistently estimates W ), we

deduce that S Ŵ ′b
p
ft

p→ ft.

B) Proof of: 1
p
SŴ ′ǫt

p→ 0

S is defined as in the previous subsection. Note that for k ∈ {1, ..., K}

1
p
SkŴ

′
kǫt = 1

p

∑p
i=1 SkŴ

′
ikǫit

= 1
p

∑p
i=1

(
SkŴik − bik

)
ǫit + 1

p

∑p
i=1 bikǫit

We are going to prove that 1
p

∑p
i=1

(
SkŴik − bik

)
ǫit

p→ 0 and 1
p

∑p
i=1 bikǫit

p→ 0. By the Holder

inequality
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∣∣∣1
p

∑p
i=1

(
SkŴik − bik

)
ǫit
∣∣∣ ≤

[
1
p

∑p
i=1

(
SkŴik − bik

)2
]1/2

.
[

1
p

∑p
i=1 ǫ

2
it

]1/2

In addition,

1
p

∑p
i=1

(
SkŴik − bik

)2
= S2

k
1
p
Ŵ
′

kŴ k + 1
p

∑p
i=1 b

2
ik − 2.1

p
SkŴ

′

kbk

The convergence in probability to 0 of 1
p

∑p
i=1

(
SkŴik − bik

)2
is deduced because

S2
k

1
p
Ŵ
′

kŴ k
p→ 1, 1

p

∑p
i=1 b

2
ik

p→ 1 and 1
p
SkŴ

′

kbk
p→ 1.

Since 1
p

∑p
i=1 ǫ

2
it ∼ Op(1), it follows that 1

p

∑p
i=1

(
SkŴik − bik

)
ǫit

p→ 0.

In other hand,

E
[(

1
p

∑p
i=1 bikǫit

)2
]

= 1
p2

∑p
i=1

∑p
j=1 bikbjkE(ǫitǫjt)

≤ B2

p2

∑p
i=1

∑p
j=1 E(ǫitǫjt) −→ 0

with B the bound of loadings. The last convergence result is justified by the fact that

the loadings and 1
p

∑p
i=1

∑p
j=1 |E(ǫitǫjt)| are bounded. Since the mean-squared convergence

implies the convergence in probability, we conclude that 1
p

∑p
i=1 bikǫit

p→ 0. Using the same

arguments as in the previous subsection, it follows that 1
p
SŴ ′(ut − ut−∆)

p→ 0.

Proof of Lemma 2.3.1

Our estimator of the rotated factor is defined by:

f̂kt = 1
p
W ′
kr
∗
t + 1

p
W ′
k(ut − ut−∆) + 1

p
W ǫ′

k r
∗
t + 1

p
W ǫ′

k (ut − ut−∆)

Assume that 1
p
W ǫ′

k r
∗
t and 1

p
W ǫ′

k (ut − ut−∆) are at most of the order Op(p
−1/2). Then, for p

and n are sufficiently large, 1
p
W ǫ′

k r
∗
t and 1

p
W ǫ′

k (ut − ut−∆) can be neglected. We deduce that

f̂kt = 1
p
W ′
kr
∗
t + 1

p
W ′
k(ut − ut−∆) + 1

p
W ǫ′

k r
∗
t + 1

p
W ǫ′

k (ut − ut−∆)

= 1
p
W ′
kr
∗
t + 1

p
W ′
k(ut − ut−∆) +Op(p

−1/2)

= 1
p
W ′
kbft + 1

p
W ′
kǫt + 1

p
W ′
kc(gt − gt−∆) + 1

p
W ′
k(ηt − ηt−∆) +Op(p

−1/2)

= 1
p
W ′
kbft + 1

p
W ′
kc(gt − gt−∆) +Op(p

−1/2)

≈ f̃kt + 1
p
W ′
kc(gt − gt−∆)
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The fourth equality is a consequence of 1
p
W ′
kǫt = Op(n

−1/2p−1/2) and 1
p
W ′
k(ηt − ηt−∆) =

Op(p
−1/2).

Since f̂kt ≈ f̃kt+
1
p
W ′
kc(gt−gt−∆), E

[
1
p
W ′
kc(gt − gt−∆)|W ′

k, c, g
]

= 0 and 1
p
W ′
kc(gt−gt−∆)⊥1

p
W ′
kc(gs−

gs−∆) ∀s 6= t, we deduce from the properties of the pre-averaging estimator of the integrated

volatility (Jacod, Li, Mykland, Podolskijc, and Vetter (2009a)) that PRV (f̂kt) is an estima-

tor of the integrated volatility of f̃kt with the rate of convergence of n−1/4. We deduce that[
f̃kt
]ǫ ≡ PRV (f̂kt) −

[
f̃kt
]

= Op(n
−1/4).

Next, let k ∈ 1, ..., K and i ∈ 1, ..., p. The estimator of the loading of asset i on factor k is

defined by b̂ik = MRC(ri,f̂k)

PRV (f̂k)
. We are going firstly to establish the convergence rate of b̂ik − bik.

Let’s consider the two following notations:

MRC(ri, f̂k) =
[
r∗i , f̃k

]
+
[
r∗i , f̃k

]ǫ

PRV (f̂k) =
[
f̃k
]

+
[
f̃k
]ǫ

where [X] is the covariation of the process X, θǫ is the estimation error in the estimation of

θ. Using these notations, we obtain

b̂ik =
[r∗

i ,f̃k]+[r∗

i ,f̃k]
ǫ

[f̃k]+[f̃k]
ǫ

=
(

[r∗

i ,f̃k]+[r∗

i ,f̃k]
ǫ

[f̃k]

)(
1 +

[f̃k]
ǫ

[f̃k]

)−1

=
(

[r∗

i ,f̃k]
[f̃k]

+
[r∗

i ,f̃k]
ǫ

[f̃k]

)(
1 +

[f̃k]
ǫ

[f̃k]

)−1

Since
[
f̃k
]ǫ

is the error in the estimation of
[
f̃k
]

using the pre-averaging estimator PRV (f̂k),

we can assume that
[f̃k]

ǫ

[f̃k]
is closed to 0, such that the following Taylor expansion holds

(
1 +

[f̃k]
ǫ

[f̃k]

)−1

= 1 − [f̃k]
ǫ

[f̃k]
+Op

((
[f̃k]

ǫ

[f̃k]

)2
)

Then

b̂ik =
(

[r∗

i ,f̃k]
[f̃k]

+
[r∗

i ,f̃k]
ǫ

[f̃k]

)(
1 − [f̃k]

ǫ

[f̃k]
+O

((
[f̃k]

ǫ

[f̃k]

)2
))

=
[r∗

i ,f̃k]
[f̃k]

− [r∗

i ,f̃k]
[f̃k]

· [f̃k]
ǫ

[f̃k]
+

[r∗

i ,f̃k]
[f̃k]

·O
((

[f̃k]
ǫ

[f̃k]

)2
)

+
[r∗

i ,f̃k]
ǫ

[f̃k]
− [r∗

i ,f̃k]
ǫ
·[f̃k]

ǫ

[f̃k]
2 +

[r∗

i ,f̃k]
ǫ

[f̃k]
·O

((
[f̃k]

ǫ

[f̃k]

)2
)
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It follows that

b̂ik − b̃ik = − [r∗

i ,f̃k]
[f̃k]

· [f̃k]
ǫ

[f̃k]
+

[r∗

i ,f̃k]
[f̃k]

·O
((

[f̃k]
ǫ

[f̃k]

)2
)

+
[r∗

i ,f̃k]
ǫ

[f̃k]
− [r∗

i ,f̃k]
ǫ
·[f̃k]

ǫ

[f̃k]
2 +

[r∗

i ,f̃k]
ǫ

[f̃k]
·O

((
[f̃k]

ǫ

[f̃k]

)2
)

Then

∣∣∣b̂ik − b̃ik
∣∣∣ ≤

∣∣∣∣∣
[r∗

i ,f̃k]
[f̃k]

2

∣∣∣∣∣ ·
∣∣∣
[
f̃k
]ǫ∣∣∣+

∣∣∣∣
[r∗

i ,f̃k]
[f̃k]

∣∣∣∣ ·O
((

[f̃k]
ǫ

[f̃k]

)2
)

+ 1

[f̃k]
·
∣∣∣
[
r∗i , f̃k

]ǫ∣∣∣+ 1

[f̃k]
2 ·
∣∣∣
[
r∗i , f̃k

]ǫ∣∣∣ ·
∣∣∣
[
f̃k
]ǫ∣∣∣+ 1

[f̃k]
·
∣∣∣
[
r∗i , f̃k

]ǫ∣∣∣ ·O
((

[f̃k]
ǫ

[f̃k]

)2
)

By properties of the pre-averaging estimator,
[
f̃k
]ǫ

= Op(n
−1/4). In addition, ri = r∗i + (ut −

ut−∆) and f̂kt ≈ f̃kt+
1
p
W ′
k(ut−ut−∆). It follows from the pre-averaging estimator of the inte-

grated covariation of Kim Christensen et Al.(2010) that
∣∣∣
[
r∗i , f̃k

]ǫ∣∣∣ ≡
∣∣∣MRC(ri, f̂k) −

[
r∗i , f̃k

]∣∣∣ =

Op(n
−1/4). Hence

∣∣∣b̂ik − b̃ik
∣∣∣ ≤ Op(n

−1/4) +Op(1)O(Op(1)Op(n
−1/4)2) +Op(1)Op(n

−1/4)

+Op(1)Op(n
−1/4)Op(n

−1/4) +Op(1)Op(n
−1/4)O(Op(1)Op(n

−1/4)2)

≤ Op(n
−1/4) +Op(n

−1/2) +Op(n
−1/4) +Op(n

−1/2) +Op(n
−1/4)Op(n

−1/2)

≤ Op(n
−1/4)

Hence
∣∣∣b̂ik − b̃ik

∣∣∣ = Op

(
n−1/4

)
, ∀k = 1, ..., K, ∀i = 1, ..., p.

Using the Frobenius norm, we obtain

∥∥∥b̂k − b̃k
∥∥∥

2

F
=

∑p
i=1

∣∣∣b̂ik − b̃ik
∣∣∣
2

=
∑p
i=1 Op(n

−1/2)

= Op(pn
−1/2)

We conclude that
∥∥∥b̂k − b̃k

∥∥∥
F

=
∥∥∥b̂k − b̃k

∥∥∥
2

= Op(p
1/2n−1/4)

We define the estimator of the integrated volatility of the idiosyncratic error terms by,

∀i = 1, ..., p, Σ̂ǫ
ii = PRV (ǫ̂i),

with ǫ̂it = rit − b̂if̂t.

It can be easily established that
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ǫ̂it = ǫit + (ut − ut−∆) −
K∑
k=1

b̃ikf̃
ǫ
kt −

K∑
k=1

b̃ǫikf̃kt −
K∑
k=1

b̃ǫikf̃
ǫ
kt − 1

p

∑K
k=1

∑K
l=1 b̃ikW

′
l c(gt − gt−∆) −

1
p

∑K
k=1

∑K
l=1 b̃

ǫ
ikW

′
l c(gt − gt−∆)

Since f̃ ǫkt = Op(p
−1/2) and b̃ǫik = Op(n

−1/4), let’s assume that n and p are both sufficiently large

such that
K∑
k=1

b̃ikf̃
ǫ
kt,

K∑
k=1

b̃ǫikf̃kt,
K∑
k=1

b̃ǫikf̃
ǫ
kt and 1

p

∑K
k=1

∑K
l=1 b̃

ǫ
ikW

′
l c(gt − gt−∆) can be neglected.

Then,

ǫ̂it ≈ ǫit + (ut − ut−∆) − 1
p

∑K
k=1

∑K
l=1 b̃ikW

′
l c(gt − gt−∆),

It follows that

PRV (ǫ̂i) = [ǫi] +Op(n
−1/4)

Hence

∣∣∣Σ̂ǫ
ii − Σǫ

ii

∣∣∣ = Op(n
−1/4)

Under the Frobenius norm

∥∥∥Σ̂ǫ − Σǫ
∥∥∥

2

F
=

p∑
i=1

∣∣∣Σ̂ǫ
ii − Σǫ

ii

∣∣∣
2

=
p∑
i=1

Op(n
−1/2)

= Op(pn
−1/2)

We conclude that
∥∥∥Σ̂ǫ − Σǫ

∥∥∥
F

= Op(p
1/2n−1/4).

Proof of Theorem 2.3.1

By Lemma 2.3.1, it follows that:
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∥∥∥Σ̂ − Σ
∥∥∥ =

∥∥∥∥∥
K∑
k=1

(
b̂kb̂
′
kΣ̂

f
kk − bkb

′
kΣ

f
kk

)
+ Σ̂ǫ − Σǫ

∥∥∥∥∥

≤
∥∥∥∥∥
K∑
k=1

(
b̂kb̂
′
kΣ̂

f
kk − bkb

′
kΣ

f
kk

)∥∥∥∥∥+
∥∥∥Σ̂ǫ − Σǫ

∥∥∥

≤
K∑
k=1

[∥∥∥∥
(
b̂k − bk

) (
b̂k − bk

)′∥∥∥∥+
∥∥∥
(
b̂k − bk

)
b′k
∥∥∥+

∥∥∥∥bk
(
b̂k − bk

)′∥∥∥∥
]

·
∣∣∣Σ̂f

kk − Σf
kk

∣∣∣

+
[∥∥∥∥
(
b̂k − bk

) (
b̂k − bk

)′∥∥∥∥+
∥∥∥
(
b̂k − bk

)
b′k
∥∥∥+

∥∥∥∥bk
(
b̂k − bk

)′∥∥∥∥
]

· Σf
kk +

∥∥∥Σ̂ǫ − Σǫ
∥∥∥

≤
K∑
k=1

∥∥∥b̂k − bk
∥∥∥

2 ·
∣∣∣Σ̂f

kk − Σf
kk

∣∣∣+ 2
K∑
k=1

∥∥∥b̂k − bk
∥∥∥ · ‖b′k‖ ·

∣∣∣Σ̂f
kk − Σf

kk

∣∣∣

+
K∑
k=1

‖bk‖2 ·
∣∣∣Σ̂f

kk − Σf
kk

∣∣∣+
K∑
k=1

∥∥∥b̂k − bk
∥∥∥

2
Σf
kk

+2
K∑
k=1

∥∥∥b̂k − bk
∥∥∥ · ‖bk‖ Σf

kk +
∥∥∥Σ̂ǫ − Σǫ

∥∥∥

≤
K∑
k=1

Op(pn
−1/4)Op(n

−1/4) +
K∑
k=1

Op(p
1/2n−1/4)Op(p

1/2)

+
K∑
k=1

Op(p
1/2)Op(p

1/2n−1/4)Op(n
−1/4) +

K∑
k=1

Op(p)Op(n
−1/4)

+
K∑
k=1

Op(pn
−1/2)Op(1) +

K∑
k=1

Op(p
1/2n−1/4)Op(p

1/2)Op(1)

+
K∑
k=1

Op(p
1/2)Op(p

1/2n−1/4)Op(1) +Op(p
1/2n−1/4)

≤ Op(Kpn
−1/4).

The convergence rates for the pre-averaging estimator of Christensen, Kinnebrock, and

Podolskij (2010a) and the kernel estimator of Barndorff-Nielsen, Hansen, Lunde, and Shep-

hard (2011a) may be established by similar arguments, based on the results that ∀i, j =

1, ..., p,
∣∣∣MRCδ

ij − Σij

∣∣∣ = Op

(
n−1/5

)
and ∀i, j = 1, ..., p, |MRkerij − Σij| = Op

(
n−1/5

)
.

Proof of Theorem 2.3.2

Due to the factor representation,

Σ̂ = b̂Σ̂f b̂′ + Σ̂ε

By the Sherman-Morrison-Woodbury formula:

Σ̂−1 = (Σ̂ε)−1 − (Σ̂ε)−1b̂
[
(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂

]−1
b̂′(Σ̂ε)−1

and
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Σ−1 = (Σε)−1 − (Σε)−1b
[
(Σf )−1 + b′(Σε)−1b

]−1
b′(Σε)−1

Under the Frobenius norm, it follows that:

∥∥∥Σ̂−1 − Σ−1
∥∥∥
F

6

∥∥∥(Σ̂ε)−1 − (Σε)−1
∥∥∥
F

+
∥∥∥∥
(
(Σ̂ε)−1 − (Σε)−1

)
b̂
[
(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂

]−1
b̂′(Σ̂ε)−1

∥∥∥∥
F

+
∥∥∥∥(Σ̂ε)−1b̂

[
(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂

]−1
b̂′
(
(Σ̂ε)−1 − (Σε)−1

)∥∥∥∥
F

+
∥∥∥∥(Σε)−1(b̂− b)

[
(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂

]−1
b̂′(Σε)−1

∥∥∥∥
F

+
∥∥∥∥(Σε)−1b

[
(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂

]−1
(b̂− b)′(Σε)−1

∥∥∥∥
F

+
∥∥∥∥(Σε)−1b

{[
(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂

]−1 −
[
(Σf )−1 + b′(Σε)−1b

]−1
}
b′(Σε)−1

∥∥∥∥
F

≤ Λ1 + Λ2 + Λ3 + Λ4 + Λ5 + Λ6

In order to compute the convergence rate of Σ̂−1, we will determine separately the order of

Λ1, Λ2, Λ3, Λ4, Λ5 and Λ6.

1) Rate of convergence of
∥∥∥(Σ̂ε)−1 − (Σε)−1

∥∥∥
F

Using the Frobenius norm expression:

∥∥∥(Σ̂ε)−1 − (Σε)−1
∥∥∥
F

=
√∑p

i=1(
1

PRV (ε̂i)
− 1

IV (εi)
)2

By the Taylor expansion around IV (εi), we obtain that:

1
PRV (ε̂i)

= 1
IV (εi)

+ (PRV (ε̂i) − IV (εi)) × (− 1
IV (εi)2 ) +Op((PRV (ε̂i) − IV (εi))

2)

Since 1
IV (εi)2 = Op(1) and (PRV (ε̂i) − IV (εi)) = Op(n

−1/4), we get:

1
PRV (ε̂i)

− 1
IV (εi)

= Op(n
−1/4) ×Op(1) +Op(n

−1/2)

= Op(n
−1/4)

Thus,

∥∥∥(Σ̂ε)−1 − (Σε)−1
∥∥∥
F

=
√∑p

i=1 Op(n−1/4)2

=
√
Op(pn−1/2)

= Op(p
1/2n−1/4)
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2) Convergence rate of Λ2 =
∥∥∥∥
(
(Σ̂ε)−1 − (Σε)−1

)
b̂
[
(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂

]−1
b̂′(Σ̂ε)−1

∥∥∥∥
F

Λ2 =
∥∥∥∥
(
(Σ̂ε)−1 − (Σε)−1

)
b̂
[
(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂

]−1
b̂′(Σ̂ε)−1

∥∥∥∥
F

≤
∥∥∥
(
(Σ̂ε)−1 − (Σε)−1

)
(Σ̂ε)1/2

∥∥∥
F

∥∥∥∥(Σ̂ε)−1/2b̂
[
(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂

]−1
b̂′(Σ̂ε)−1/2

∥∥∥∥
F

∥∥∥(Σ̂ε)−1/2
∥∥∥
F

i) Rate of
∥∥∥(Σ̂ε)−1/2

∥∥∥
F

.

It can easily be shown that
∥∥∥(Σ̂ε)−1/2

∥∥∥
F

=
√∑p

i=1 PRV (ε̂i)−1/2 = Op(p
1/2), since PRV (ε̂i)

−1/2 =

Op(1).

ii) Rate of convergence of
∥∥∥
(
(Σ̂ε)−1 − (Σε)−1

)
(Σ̂ε)1/2

∥∥∥
F

Since Σ̂ε and Σε are diagonal matrices:

∥∥∥
(
(Σ̂ε)−1 − (Σε)−1

)
(Σ̂ε)1/2

∥∥∥
F

=

√
∑p
i=1

(
IV (εi)−PRV (ε̂i)

PRV (ε̂i)1/2IV (εi)

)2

We know that IV (εi) − PRV (ε̂i) = Op(n
−1/4), PRV (ε̂i)

1/2 = Op(1) and IV (εi) = Op(1). It

follows that:

∥∥∥
(
(Σ̂ε)−1 − (Σε)−1

)
(Σ̂ε)1/2

∥∥∥
F

=
√∑p

i=1 Op(n−1/4)2

= Op(p
1/2n−1/4)

iii) Rate of
∥∥∥∥(Σ̂ε)−1/2b̂

[
(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂

]−1
b̂′(Σ̂ε)−1/2

∥∥∥∥
F

(Σ̂ε)−1/2b̂
[
(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂

]−1
b̂′(Σ̂ε)−1/2 is symetric positive definite, with a rank at

most equal to K, and no more than K positive eigenvalues (Since number of positive eigen-

values is smaller than the rank and the latter is smaller than K). Also:

(Σ̂ε)−1/2b̂
[
(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂

]−1
b̂′(Σ̂ε)−1/2 = Ip − (Σ̂ε)1/2Σ̂−1(Σ̂ε)1/2

≤ Ip

whereA ≤ B means thatB−A is positive semi-definite. Thus, eigenvalues of (Σ̂ε)−1/2b̂
[
(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂

]−

are positive and bounded by 1. We derive that:
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∥∥∥∥(Σ̂ε)−1/2b̂
[
(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂

]−1
b̂′(Σ̂ε)−1/2

∥∥∥∥
F

=
√∑p

i=1 λi

≤
√∑K

i=1 Op(1)

≤ Op(
√
K)

From i), ii), and iii) we derive that:

Λ2 = Op(p
1/2n−1/4)Op(p

1/2)Op(K
1/2)

= Op(pn
−1/4K1/2)

= Op(pn
−1/4)

The last equality comes from the fact that k is suppose to be known and fix.

Using the same procedure than for Λ2, it is easy to verify that Λ3 = Op(pn
−1/4).

3) Convergence rate of Λ4 =
∥∥∥∥(Σε)−1(b̂− b)

[
(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂

]−1
b̂′(Σε)−1

∥∥∥∥
F

It can be verified that:

Λ4 ≤
∥∥∥(Σε)−1(b̂− b)

∥∥∥
F

×
∥∥∥∥
[
(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂

]−1
∥∥∥∥
F

×
∥∥∥b̂′(Σε)−1

∥∥∥
F

* Convergence of
∥∥∥∥
[
(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂

]−1
∥∥∥∥
F

(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂ ≥ (Σ̂f )−1 =⇒
[
(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂

]−1 ≤ Σ̂f

=⇒
∥∥∥∥
[
(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂

]−1
∥∥∥∥
F

≤
∥∥∥Σ̂f

∥∥∥
F

But
∥∥∥Σ̂f

∥∥∥
F

=
√∑K

k=1 PRV (f̂k)2 and ∀k = 1, ..., K, PRV (f̂k)
2 = Op(1). Thus,

∥∥∥Σ̂f
∥∥∥
F

=

Op(
√
K) and

∥∥∥∥
[
(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂

]−1
∥∥∥∥
F

= Op(
√
K).

* Convergence of
∥∥∥(Σε)−1(b̂− b)

∥∥∥
F

.

Using the explicit formula of the Frobenius norm, it can be established that:

∥∥∥(Σε)−1(b̂− b)
∥∥∥
F

=
√∑p

i=1

∑K
k=1

1
IV (εi)2 (b̂ik − bik)2

From lemma 2.3.1, we know that (b̂ik − bik) = Op(n
−1/4). Also, 1

IV (εi)2 = Op(1). Thus:
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∥∥∥(Σε)−1(b̂− b)
∥∥∥
F

=
√∑p

i=1

∑K
k=1 Op(1)Op(n−1/2)

= Op(p
1/2K1/2n−1/4)

* Convergence of
∥∥∥b̂′(Σε)−1

∥∥∥
F

.

Since (Σε)−1 is diagonal, we have:

∥∥∥b̂′(Σε)−1
∥∥∥
F

=
√∑p

i=1

∑K
k=1 b̂

2
ik

1
IV (εi)2

It can be prove that b̂ik = Op(1) and 1
IV (εi)2 = Op(1). Then:

Λ4 = Op(p
1/2K1/2n−1/4)Op(K

1/2)Op(p
1/2K1/2)

= Op(pK
3/2n−1/4)

Using the same strategy than previously, we obtain:

Λ5 = Op(pK
3/2n−1/4)

4) Rate of convergence of Λ6 =
∥∥∥∥(Σε)−1b

{[
(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂

]−1 −
[
(Σf )−1 + b′(Σε)−1b

]−1
}
b′(Σε)−1

∥∥∥∥
F

Λ6 ≤
∥∥∥∥
[
(Σ̂f )−1 + b̂′(Σ̂ε)−1b̂

]−1 −
[
(Σf )−1 + b′(Σε)−1b

]−1
∥∥∥∥
F

× ‖b′(Σε)−2b‖F

Let’s call A = (Σf )−1 + b′(Σε)−1b, Â = (Σ̂f )−1 + b̂′(Σ̂ε)−1b̂ and Q = Â − A. Then, it

comes out that:

∥∥∥Â−1 − A−1
∥∥∥
F

≤ ‖A−1‖F × ‖A−1Q‖
F

1−‖A−1Q‖F

≤ ‖A−1‖2

F
‖Q‖F

1−‖A−1‖F ‖Q‖F

whenever 1 ≥ ‖A−1‖F ‖Q‖F .

* Convergence rate of ‖Q‖F .
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‖Q‖F =
∥∥∥((Σ̂f )−1 − (Σf )−1) + (b̂′(Σ̂ε)−1b̂− b′(Σε)−1b)

∥∥∥
F

≤
∥∥∥((Σ̂f )−1 − (Σf )−1)

∥∥∥
F

+
∥∥∥(b̂′(Σ̂ε)−1b̂− b′(Σε)−1b)

∥∥∥
F

But,

∥∥∥((Σ̂f )−1 − (Σf )−1)
∥∥∥
F

=
√∑K

k=1(
1

PRV (f̂k)
− 1

IV (fk)
)2

By the taylor expansion, ( 1
PRV (f̂k)

− 1
IV (fk)

) = Op(n
−1/4). Then:

∥∥∥((Σ̂f )−1 − (Σf )−1)
∥∥∥
F

=
√∑K

k=1 Op(n−1/2)

= Op(K
1/2n−1/4)

In the other hand:

∥∥∥b̂′(Σ̂ε)−1b̂− b′(Σε)−1b
∥∥∥
F

=

√∑K
k=1

∑K
l=1(

∑p
i=1(

b̂ik b̂il

PRV (ε̂i)
− bikbil

IV (εi)
))2

Based on the Taylor expansion and lemma 2.3.1, we get:

b̂ik b̂il

PRV (ε̂i)
− bikbil

IV (εi)
= Op(n

−1/4)

We obtain that:

∥∥∥b̂′(Σ̂ε)−1b̂− b′(Σε)−1b
∥∥∥
F

=
√∑K

k=1

∑K
l=1(

∑p
i=1 Op(n−1/4))2

= Op(pKn
−1/4)

We derive that:

‖Q‖F = Op(pKn
−1/4) +Op(K

1/2n−1/4) = Op(pKn
−1/4)

* Convergence rate of ‖A−1‖F .

Similarly to the part 3), ‖A−1‖F = Op(
√
K).

Since ‖Q‖F = Op(pKn
−1/4) and ‖A−1‖F = Op(

√
K), and assuming that K3/2pn−1/4 −→

0, we obtain:

∥∥∥Â−1 − A−1
∥∥∥
F

= Op(K
2pn−1/4)
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* Order of ‖b′(Σε)−2b‖F

‖b′(Σε)−2b‖F =
√∑K

k=1

∑K
l=1(

∑p
i=1

bikbil

IV (εi)2 )2

=
√
Op(p2K2)

= Op(pK)

We then derive

Λ6 = Op(K
2pn−1/4)Op(Kp) = Op(K

3p2n−1/4)

We then conclude from the rate of convergence of Λ1, Λ2, Λ3, Λ4, Λ5 and Λ6 that:

∥∥∥Σ̂−1 − Σ−1
∥∥∥
F

= Op(K
3p2n−1/4)

2.7 Alternative estimators

• The pre-averaging estimator is defined by:

PRV (r) =

√
∆n

θψ2

⌊1/∆n⌋−kn+1∑

i=0

(Y
n
i )2 − ψ1∆n

2θ2ψ2

⌊1/∆n⌋∑

i=1

r2
i , (2.20)

where n is the number of observed returns; ∆n is the time interval between two obser-

vations; ri = Yi∆n − Y(i−1)∆n is the ith return computed from the observed price series

Y ; Y
n
i =

kn−1∑
j=1

g(j/n)ri+j is the ith pre-averaging return and θ is a setting parameter

to choose optimally such that kn
√

∆n = θ + o(∆1/4
n ). Also φ1(s) =

1∫
s
g′(u)g′(u− s)du,

φ2(s) =
1∫
s
g(u)g(u− s)du, and ψi = φi(0). The most important result of the pre-

averaging approach is resumed in the asymptotic behavior established in Jacod, Li,

Mykland, Podolskijc, and Vetter (2009a).

∆−1/4
n (PRV (r) − IV ) → N(0; Γ), (2.21)

with Γ =
1∫
0

4
ψ2

2

(
Φ22θσ

4
t + 2Φ12

σ2
t Vǫ

θ
+ Φ11

V 2
ǫ

θ3

)
dt, Vǫ is the noise variance, IV the true

integrated volatility and Φij =
1∫
s
φi(s)φj(s)ds.
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• The realized kernel is defined by:

K(Y ) =
n∑

h=−n

k(
h

H + 1
)Γh, (2.22)

Γh =
n∑

j=h+1
yjy

′

j−h, for h > 0; Γh = Γ
′

−h, for h < 0,

where n is the number of synchronized returns per asset, Γh is the hth realized auto-

covariance; yj = Yj−Yj−1 for j = 1, 2, ..., n; with Y0 = 1
m

m∑
j=1

Y (τp,j); Yn = 1
m

m∑
j=1

Y (τp,p−m+j);

Yj = Y (τp,j+m) for j = 1, ..., n − 1; {τp,j} is the series of refresh time ; and k is a non-

stochastic weighting function. The rate of convergence of this estimator is n−1/5.

• The modulated realized covariance estimator is defined by:

MRC [Y ]n =
n

(n− kn + 2)

1

ψ2kn

n−kn+1∑

i=0

Ȳ n
i

(
Ȳ n
i

)′

− ψkn
1

2nθ2ψkn
2

n∑

i=1

(ri)(ri)
′

, (2.23)

where Y is the observed price vector, n is the number of observed returns per asset,

Ȳi the ith averaged return vector, ri the ith usual return vector defined as in (4), g a

weighting function, ψkn
1 = kn

∑kn−1
i=1

(
g( i

kn
) − g( i−1

kn
)
)2

, ψkn
2 = 1

kn

∑kn−1
i=1 g2( i

kn
) , kn − 1

the number of returns in each average, such that kn

n1/2 = θ + o(n−1/4) and θ is a setting

parameter. When the assets are not observed at the same time, the non-synchronicity

issue is resolved using the refresh time method of Barndorff-Nielsen, Hansen, Lunde,

and Shephard (2011a).

• The adjusted modulated realized covariance estimator is defined by:

MRC [Y ]δn =
n

(n− kn + 2)

1

ψ2kn

kn∑

i=0

Ȳ n
i

(
Ȳ n
i

)′

, (2.24)

where θ is such that kn

n1/2+δ = θ + o(n−1/4+δ/2). This estimator is consistent, with a

sub-optimal rate of convergence of n−1/5, and is positive semi-definite.
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2.8 Estimation of rotated factors, f̃

Consider the following least squared problem where fj∆ is chosen to minimize the scaled sum

of squared values of the idiosyncratic component:





Min
fj∆,b

1
p

⌊1/∆⌋∑
j=1

(r∗j∆ − bfj∆)′(r∗j∆ − bfj∆)

s.t 1
p
b′b = IK

This is equivalent to:





Min
fj∆,b

1
p

⌊1/∆⌋∑
j=1

(r∗j∆ − bfj∆)′(r∗j∆ − bfj∆)

s.t ∀k = 1, ..., K, 1
p
b′kbk = 1

∀k = 1, ..., K,∀l = k + 1, ..., K, b′kbl = 0

where bk corresponds to the column k of b. The Lagrangian of this problem is defined by

L = 1
p

⌊1/∆⌋∑
j=1

(r∗j∆ − bfj∆)′(r∗j∆ − bfj∆) −∑K
k=1 λk(b

′
kbk − p) −∑K

k=1

∑K
l=k+1 µklb

′
kbl

By deriving this Lagrangian with respect to fk∆, we obtain

∂L
∂fk∆

= ∂
∂fk∆

[
1
p

⌊1/∆⌋∑
j=1

(r∗j∆ − bfj∆)′(r∗j∆ − bfj∆)

]

= ∂
∂fk∆

[
1
p
(r∗k∆ − bfk∆)′(r∗k∆ − bfk∆)

]

= ∂
∂fk∆

[
1
p
(r∗

′

k∆r
∗
k∆ − r∗

′

k∆bfk∆ − f ′k∆b
′r∗k∆ + f ′k∆b

′bfk∆)
]

= (−b′r∗k∆ − b′r∗k∆ + b′bfk∆ + b′bfk∆)

= (−2b′r∗k∆ + 2b′bfk∆)

∂L
∂fk∆

= 0 ⇐⇒ (−2b′r∗k∆ + 2b′bfk∆) = 0

⇐⇒ b′bfk∆ = b′r∗k∆

⇐⇒ fk∆ = (b′b)−1b′r∗k∆

⇐⇒ fk∆ = (pIK)−1b′r∗k∆

⇐⇒ fk∆ = 1
p
b′r∗k∆

Hence,

fk∆ =
1

p
b′r∗k∆, ∀k = 1, ..., ⌊1/∆⌋ (2.25)
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We are going now to concentrate the objective function by replacing fj∆ by its formula given

by (17).

1
p

⌊1/∆⌋∑
j=1

(r∗j∆ − bfj∆)′(r∗j∆ − bfj∆) = 1
p

⌊1/∆⌋∑
j=1

(r∗j∆ − b.1
p
b′r∗j∆)′(r∗j∆ − b.1

p
b′r∗j∆)

= 1
p

⌊1/∆⌋∑
j=1

r∗
′

j∆(Ip − 1
p
bb′)′(Ip − 1

p
bb′)r∗j∆

= 1
p

⌊1/∆⌋∑
j=1

r∗
′

j∆r
∗
j∆ − 1

p

⌊1/∆⌋∑
j=1

r∗
′

j∆bb
′r∗j∆

= 1
p

⌊1/∆⌋∑
j=1

r∗
′

j∆r
∗
j∆ − 1

p

⌊1/∆⌋∑
j=1

K∑
k=1

r∗
′

j∆bkb
′
kr
∗
j∆

= 1
p

⌊1/∆⌋∑
j=1

r∗
′

j∆r
∗
j∆ − 1

p

K∑
k=1

⌊1/∆⌋∑
j=1

r∗
′

j∆bkb
′
kr
∗
j∆

= 1
p

⌊1/∆⌋∑
j=1

r∗
′

j∆r
∗
j∆ − 1

p

K∑
k=1

⌊1/∆⌋∑
j=1

(
r∗

′

j∆bk
) (
b′kr
∗
j∆

)

= 1
p

⌊1/∆⌋∑
j=1

r∗
′

j∆r
∗
j∆ − 1

p

K∑
k=1

⌊1/∆⌋∑
j=1

(
b′kr
∗
j∆

) (
r

′∗
j∆bk

)

= 1
p

⌊1/∆⌋∑
j=1

r∗
′

j∆r
∗
j∆ − 1

p

K∑
k=1

b′k

(
⌊1/∆⌋∑
j=1

r∗j∆r
′∗
j∆

)
bk

From the last equality, we deduce that the optimal b = (b1, ..., bK) is the solution of the

following problem





Max
b1,...,bK

1
p

K∑
k=1

b′k

(
⌊1/∆⌋∑
j=1

r∗j∆r
′∗
j∆

)
bk

s.t ∀k = 1, ..., K, 1
p
b′kbk = 1

∀k = 1, ..., K,∀l = k + 1, ..., K, b′kbl = 0

The problem above is equivalent to resolve K optimization problems defining by: ∀k ∈
{1, ..., K}: 




Max
bk

1
p
b′k

(
⌊1/∆⌋∑
j=1

r∗j∆r
′∗
j∆

)
bk

s.t 1
p
b′kbk = 1

∀l 6= k, b′kbl = 0

(2.26)

The Lagrangian of the above problem has the following form

L = 1
p
b′k

(
⌊1/∆⌋∑
j=1

r∗j∆r
′∗
j∆

)
bk − λk

(
1
p
b′kbk − 1

)
−

K∑
l 6=k

µklb
′
kbl

By resolving for bk
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∂L
∂bk

= 2
p

⌊1/∆⌋∑
j=1

[
r∗j∆r

∗′

j∆

]
bk − 2λk

p
bk − ∑

l 6=k
µklbl

∂L
∂b

= 0 ⇐⇒ 2
p

⌊1/∆⌋∑
j=1

[
r∗j∆r

∗′

j∆

]
bk − 2λk

p
bk − ∑

l 6=k
µklbl = 0

By a left multiplication by b′m (∀m 6= k)

2
p
b′m
⌊1/∆⌋∑
j=1

[
r∗j∆r

∗′

j∆

]
bk − 2λk

p
b′mbk − ∑

l 6=k
µklb

′
mbl = 0

⇔ 2
p

⌊1/∆⌋∑
j=1

b′m
[
r∗j∆r

∗′

j∆

]
bk − 2λk

p
b′mbk − µkmb

′
mbm = 0

⇔ µkm = 0

The third equation comes from the uncorrelation assumption of factors and the identification

constraint on loadings. Hence, ∀m 6= k, µkm = 0. We deduce that

2
p

⌊1/∆⌋∑
j=1

[
r∗j∆r

∗′

j∆

]
bk − 2λk

p
bk = 0

This is equivalent to

⌊1/∆⌋∑
j=1

[
r∗j∆r

∗′

j∆

]
bk − λkbk = 0

It follows that bk is an eigenvector associated to the matrix
⌊1/∆⌋∑
j=1

[
r∗j∆r

∗′

j∆

]
.

2.9 Factor structure in the noise

In order to underscore the empirical relevance of factor structures in the market microstruc-

ture noise component, we consider a sample of 384 stocks (as further described in Section

2.4) for all trading days from 2006 to 2011. For each trading days, we compute the realized

covariance matrix and we divide it by 2n, where n is the number of intraday transaction times

after synchronization. By doing so, we get an estimator of the covolatility of the microstruc-

ture noise. The next step consists on a spectral decomposition of the obtained matrix. The
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following figure plots the ratio of the sum of the largest eigenvalues (the biggest eigenvalue,

the first two biggest eigenvalues, the first three biggest eigenvalues, until the first six biggest

eigenvalues) to the total sum of eigenvalues: these ratios can been interpreted as the part of

the total variability explained by the considered factors (the first factor, the first two factors,

until the first six factors).

Figure 2.3. Ratio of largest eigenvalues relative to the total variation

Consistent with the idea of a factor structure in the market microstructure noise component,

the figure shows that the four largest eigenvalues of the noise covolatility matrix explain more

than 60% of the total variability for each of the six different days.
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2.10 Simulation design

Our simulation design replicates a two factor model in which the prices are observed with

noise.

• The loading factors b is generated such that elements of the kth column bk, for k =

1, ..., K, follow a normal law with mean 0 and standard deviation 1: bik ∼ N(0, 1), ∀
i = 1, ..., p.

• The two factor components in the frictionless return representation are generated by

the following model:24

– Factor 1

f1t = σf1tdB1t

with B1t a brownian motion and σf1t generated by a GARCH diffusion model as

in Andersen and Bollerslev (1998),

dσ2
f1t = κf1

(
θf1 − σ2

f1t

)
dt+ λf1σ

2
f1tdW1t

with Corr(W1t, B1t) = −0.5, κf1 = 0.035, θf1 = 0.636, φf1 = 0.296, λf1 =√
2κf1φf1, σf10 = θf1

– Factor 2

f2t = σf2tdB2t

with B2t a brownian motion and σf2t generated by a GARCH diffusion model as

in Andersen and Bollerslev (1998),

dσ2
f2t = κf2

(
θf2 − σ2

f2t

)
dt+ λf2σ

2
f2tdW2t

with Corr(W2t, B2t) = −0.5, κf2 = 0.035, θf2 = 0.3, φf2 = 0.296, λf2 =
√

2κf2φf2,

σf20 = θf2

• The idiosyncratic error term in the factor representation is assumed to satisfy

εit = σitdW
ε
it

24Recall that fkt is assumed to be the return of some portfolio
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with W ε
it a brownian motion such that W ε

it ⊥ W1t,W2t and W ε
it ⊥ B1t, B2t, with the

spot volatility generated by three different representative models:

– For 1 ≤ i ≤ p/3, the volatility of the idiosyncratic component is generated by

a Nelson GARCH diffusion limit model as in Barndorff-Nielsen and Shephard

(2002):

d(σ2
it) = (0.1 − σ2

it) dt+ 0.2σ2
itdB

ε
it,

with Corr(W ε
it, B

ε
it) = −0.3 and Bε

it ⊥ W1t,W2t and Bε
it ⊥ B1t, B2t;

– For p/3 < i ≤ 2p/3, the volatility process is assumed to follow a geometric

Ornstein-Uhlenbeck (OU) model as in Barndorff-Nielsen and Shephard (2002):

dlog(σ2
it) = −0.6 (0.157 + log(σ2

it)) dt+ 0.25dBε
it,

with Corr(W ε
it, B

ε
it) = −0.3 and Bε

it ⊥ Wt and Bε
it ⊥ Bt;

– For 2p/3 < i ≤ p, the volatility follows a GARCH diffusion model as in Andersen

and Bollerslev (1998):

dσ2
it = κε (θε − σ2

it) dt+ γεσitdB
ε
it,

with Corr(W ε
it, B

ε
it) = −0.3 and Bε

it ⊥ Wt and Bε
it ⊥ Bt; κε = 0.035 , θε = 0.636,

γε = 0.296, σi0 = θε

• The slope in the factor representation of the microstructure noise is such that: ci ∼

N(1, 1), ∀i = 1, ..., p;

• As in Barndorff-Nielsen, Hansen, and Shephard (2008a), the variance of the microstruc-

ture noise of the asset i satisfies the equality: V ar(ui) = ξ2
√

1
n

∑n
t=1 σ

4
it, with ξ2 the

noise-to-signal ratio which takes values in {0.001, 0.005, 0.01} and σit the spot volatility

of the true price process of asset i at time t.

• The variance of the idiosyncratic component ηit in the factor representation of the

microstructure noise is assumed to have a fraction 1/n1.1 of the total variance V ar(ui).

Then, the variance of the factor term in this representation is given by: σ2
g =

(V ar(u)−σ2
η)

C̄2
p

,

with C̄2
p = 1

p

∑p
i=1 c

2
i .

• gt and ηit are such that: gt ∼ N(0, σ2
g) and ηit ∼ N(0, 1

n1.1V ar(ui)).
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2.11 Estimation of W

In order to confirm that the eigenvectors of MRker provide reliable estimates for W , we

simulate daily efficient price vectors of dimension p ∈ {50, 100, 300}. We consider three

different levels of microstructure noise: low, median and high with noise-to-signal ratio equal

to 0.001, 0.01 and 0.1, respectively. Prices are generated by the same two factor simulation

design describe in Appendix 2.10. We compute the true covolatility matrix MRker for each

price path, and derive their spectral decompositions. The following figures illustrate the

results for each of the different noise levels.

Figure 2.4. Eigenvectors estimation using the multirealized kernel MRker: low noise
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Figure 2.5. Eigenvectors estimation using the multirealized kernel MRker: medium noise
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Figure 2.6. Eigenvectors estimation using the multirealized kernel MRker: high noise
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As is evident from the figures, the first two eigenvectors of the latent covolatility matrix are

well estimated by the eigenvectors of the MRker matrix. For low noise levels the two are

almost indistinguishable, but there is also a close coherence for the high noise case.
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Table 2.4. Simulation results: Synchronous prices, Sampling Frequency=5min, K = 1,
High noise

Signal-to-noise ratio ξ2 = 0.01
Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 1.818 1.233 7.688 13.69 213.6
(0.685) (0.267) (0.368)

MRker 2.345 1.758 7461 16.34 316.6
(0.641) (0.234) (194079)

MRCδ 2.336 1.782 6184 15.30 299.5
(0.523) (0.214) (7767)

Σ̂comp 2.311 1.721 5.002 22.84 305.1
(0.653) (0.232) (1.138)

PCA− PRV 2.307 1.703 9.954 15.303 294.1
(0.543) (0.225) (15.06)

POET 4.618 4.303 375.3 116.2 979.4
(0.371) (0.212) (22.69)

Number of assets: N=100
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 2.584 1.592 10.07 26.28 824.3
(1.137) (0.353) (71.65)

MRker 3.047 2.350 NA 29.80 1171
(0.987) (0.280) NA

MRCδ 3.059 2.431 NA 30.17 1118
(0.831) (0.271) NA

Σ̂comp 3.011 2.317 11.13 37.81 1145
(0.994) (0.278) (2.251)

PCA− PRV 2.941 2.254 9.235 30.17 1055
(0.865) (0.277) (19.78)

POET 5.479 5.915 557.6 173.1 2954
(0.428) (0.291) (89.52)

Number of assets: N=300
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 4.437 2.795 26.42 74.68 7086
(1.698) (0.492) (101.3)

MRker 5.489 4.277 NA 90.93 11087
(1.519) (0.489) NA

MRCδ 5.519 4.419 NA 88.827 10660
(1.277) (0.447) NA

PCA− PRV 5.207 4.052 7.684 88.82 9713
(1.349) (0.472) (6.266)

POET 10.31 10.96 NA 593.0 31542
(0.825) (0.469) NA

Number of assets: N=500
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 5.980 3.631 31.30 167.3 24530
(2.251) (0.637) (176.5)

MRker 7.412 5.535 NA 167.3 33281
(2.028) (0.653) NA

MRCδ 7.357 5.665 NA 154.9 31023
(1.583) (0.579) NA

PCA− PRV 6.942 5.187 34.67 154.9 28150
(1.672) (0.607) 90.39

POET 14.05 14.19 NA 1089 99408
(1.174) (0.607) NA
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Table 2.5. Simulation results: Synchronous prices, Sampling Frequency=5min, K = 2,
Low noise

Signal-to-noise ratio ξ2 = 0.001
Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 1.708 0.901 2.550 35.64 318.2
(0.490) (0.137) (4.176)

MRker 1.831 1.103 275.297 10.07 196.0
(0.452) (0.121) (98.92)

MRCδ 1.801 1.098 145.7 9.303 184.4
(0.422) (0.125) (1075)

Σ̂comp 1.811 1.043 3.535 21.69 180.2
(0.472) (0.126) (0.356)

PCA− PRV 1.774 1.057 3.764 9.303 180.871
(0.435) (0.127) (2.493)

POET 4.954 1.281 486.5 166.2 1111.0
(0.304) (0.274) (45.21)

Number of assets: N=100
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 2.423 1.252 2.870 60.65 1234
(0.724) (0.175) (4.69)

MRker 2.624 1.541 NA 19.49 808.9
(0.679) (0.162) NA

MRCδ 2.559 1.521 NA 18.26 758.8
(0.633) (0.168) NA

Σ̂comp 2.559 1.455 3.779 41.26 753.1
(0.699) (0.166) (0.261)

PCA− PRV 2.486 1.439 9.421 18.26 726.7
(0.650) (0.170) (3.363)

POET 7.219 1.756 438.651 322.787 5009.923
(0.494) (0.511) (387.5)

Number of assets: N=300
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 3.971 2.150 3.178 49.69 5565
(1.024) (0.275) (4.619)

MRker 4.362 2.711 NA 50.23 6544
(0.955) (0.262) NA

MRCδ 4.258 2.674 NA 47.13 6202
(0.907) (0.307) NA

Σ̂comp 4.226 2.555 4.218 96.26 6146
(0.981) (0.270) (0.231)

PCA− PRV 4.039 2.453 7.425 47.13 5685
0.939 0.307 1.504

POET 11.65 2.561 NA 890.2 40660
(0.828) (0.936) NA

Number of assets: N=500
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 5.438 2.797 3.256 99.40 18190
(1.499) (0.378) (14.04)

MRker 5.931 3.519 NA 99.90 21047
(1.403) (0.349) NA

MRCδ 5.840 3.483 NA 94.04 19861
(1.333) (0.368) NA

Σ̂comp 5.785 3.352 4.550 180.4 20084
(1.431) (0.362) (0.347)

PCA− PRV 5.564 3.182 3.457 94.03 18261
1.381 0.372 0.288 0.277

POET 16.25 3.636 NA 1681 130959
(1.155) (1.292) NA
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Table 2.6. Simulation results: Synchronous prices, Sampling Frequency=5min, K = 2,
High noise

Signal-to-noise ratio ξ2 = 0.01
Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 2.675 1.467 8.278 2301 22898
(0.766) (0.326) (35.81)

MRker 2.820 1.775 6861 23.41 443.3
(0.693) (0.193) (223603)

MRCδ 2.799 1.799 4677 22.46 428.6
(0.609) (0.180) (6525)

Σ̂comp 2.774 1.735 3.778 34.11 424.4
(0.708) (0.195) (0.438)

PCA− PRV 2.771 1.745 8.385 22.46 422.6
(0.632) (0.189) (20.78)

POET 4.635 3.747 390.7 148.8 954.8
(0.315) (0.233) (21.55)

Number of assets: N=100
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 3.844 2.032 13.35 41.93 1535
(1.050) (0.480) (50.55)

MRker 4.070 2.480 NA 41.08 1931
(0.851) (0.283) NA

MRCδ 4.111 2.517 NA 42.33 1910
(0.791) (0.262) NA

Σ̂comp 4.023 2.434 4.867 55.67 1875
(0.860) (0.286) (0.762)

PCA− PRV 4.002 2.385 8.253 42.33 1834
(0.827) (0.270) (16.03)

POET 6.700 5.598 550.7 282.0 4604
(0.397) (0.330) (60.31)

Number of assets: N=300
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 6.803 3.582 26.42 135.3 14831
1.971 0.780 0.275

MRker 7.312 4.290 NA 144.1 18516
(1.760) (0.482) NA

MRCδ 7.262 4.338 NA 144.4 18118
(1.552) (0.453) NA

PCA− PRV 6.996 4.091 7.259 144.4 17084
(1.612) (0.474) (3.043)

POET 12.08 9.595 NA 913.7 43662
(0.749) (0.569) NA

Number of assets: N=500
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 9.042 4.566 29.59 262.2 48451
(2.645) (1.100) (100.5)

MRker 9.622 5.467 NA 262.1 53310
(2.367) (0.640) NA

MRCδ 9.485 5.561 NA 261.3 52004
(2.118) (0.608) NA

PCA− PRV 9.148 5.221 31.94 261.3 48969
(2.192) (0.618) 0.435

POET 16.47 12.56 NA 1746 134674
(1.183) (0.803) NA
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Table 2.7. Simulation results: Synchronous prices, Sampling Frequency=5min, K = 3,
High noise

Signal-to-noise ratio ξ2 = 0.01
Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 3.129 1.677 6.646 26.46 534.9
(0.715) (0.307) (24.48)

MRker 3.368 1.689 6502.835 29.43 608.8
(0.690) (0.193) (60478)

MRCδ 3.391 1.703 4911 29.95 602.1
(0.635) (0.196) (6063)

Σ̂comp 3.340 1.660 3.775 43.04 585.9
(0.700) (0.196) (0.318)

PCA− PRV 3.425 1.689 7.011 29.952 615.430
(0.682) (0.226) (5.320)

POET 5.149 3.565 357.4 185.9 1148
(0.292) (0.249) (18.62)

Number of assets: N=100
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 4.675 2.451 12.11 56.65 2465
(1.089) (0.519) (166.9)

MRker 4.876 2.440 NA 60.54 2590
(0.928) (0.259) NA

MRCδ 4.946 2.457 NA 61.15 2579
(0.892) (0.253) NA

Σ̂comp 4.826 2.396 5.356 84.10 2515
(0.939) (0.264) (0.864)

PCA− PRV 4.934 2.447 6.388 61.146 2596.268
(0.969) (0.330) (5.928)

POET 7.808 5.295 555.9 428.7 5884
(0.453) (0.335) (51.19)

Number of assets: N=300
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 7.606 4.227 16.96 180.8 22110
(1.805) (0.614) (40.63)

MRker 8.071 4.213 NA 176.7 22003
(1.721) (0.407) NA

MRCδ 8.144 4.266 NA 180.8 21963
(1.540) (0.396) NA

PCA− PRV 8.143 4.288 23.62 180.8 22110
(1.712) (0.591) (4.845)

POET 12.14 9.009 NA 1095 43556
(0.739) (0.574) NA

Number of assets: N=500
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 9.619 5.273 36.160 257.9 51680
(2.216) (0.991) (176.9)

MRker 10.32 5.458 NA 276.9 59517
(2.137) (0.540) NA

MRCδ 10.37 5.523 NA 285.9 59899
(2.106) (0.544) NA

PCA− PRV 10.25 5.462 38.42 285.9 59699
(2.318) (0.777) 179.7

POET 15.45 11.96 NA 1766 118785
(0.998) (0.763) NA
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Table 2.8. Simulation results: Synchronous prices, Sampling Frequency=5min, K = 4,
High noise

Signal-to-noise ratio ξ2 = 0.01
Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 4.037 1.708 4.581 43.629 970.002
1.234 0.201 5.785

MRker 4.011 1.692 6199.281 43.629 953.945
1.222 0.197 29868.210

MRCδ 3.993 1.705 4640.197 41.786 889.712
0.962 0.185 7034.374

PCA− PRV 4.068 1.739 6.011 41.786 919.580
1.001 0.209 9.516

POET 6.705 3.573 346.307 249.893 2014.248
0.457 0.243 16.055

Number of assets: N=100
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 5.446 2.364 6.178 82.130 3306.777
1.240 0.260 9.254

MRker 5.384 2.355 NA 82.130 3265.596
1.224 0.249 NA

MRCδ 5.383 2.377 NA 84.718 3228.142
1.133 0.251 NA

PCA− PRV 5.506 2.420 4.883 84.718 3344.141
1.204 0.286 7.228

POET 8.226 4.896 518.627 492.257 6320.638
0.502 0.350 26.906

Number of assets: N=300
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 9.290 4.188 10.746 221.483 29644.100
2.085 0.445 24.31

MRker 9.302 4.186 NA 221.483 29681.950
2.064 0.421 NA

MRCδ 9.389 4.252 NA 224.378 29448.470
1.898 0.408 NA

PCA− PRV 9.543 4.353 13.37 224.3 30318
2.016 0.528 4.719

POET 14.411 9.106 NA 1446.328 61600.530
0.952 0.612 NA

Number of assets: N=500
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 10.746 5.381 16.14 10.165 64240.270
2.037 0.510 47.51

MRker 10.792 5.445 NA 310.165 64937.160
2.007 0.475 NA

MRCδ 10.906 5.526 NA 317.049 65213.200
1.848 0.493 NA

PCA− PRV 11.027 5.592 16.26 317.049 66440.870
1.996 0.635 4.531

POET 15.511 11.465 NA 1988.647 120393.340
0.936 0.755 NA
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Table 2.9. Simulation results: Synchronous prices, Sampling Frequency=5min, K = 5,
High noise

Signal-to-noise ratio ξ2 = 0.01

Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 3.988 1.701 4.640 39.695 866.751

0.912 0.197 6.337

MRker 3.947 1.688 6090.921 39.695 851.667

0.902 0.194 58262.954

MRCδ 3.921 1.715 4437.210 40.095 839.118

0.852 0.191 6254.129

PCA− PRV 4.031 1.756 4.826 40.095 882.369

0.899 0.217 4.178

POET 6.161 3.553 331.220 239.196 1682.909

0.401 0.265 15.638

Number of assets: N=100

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 4.734 2.377 6.181 58.74 2448

0.934 0.249 7.226

MRker 4.761 2.414 NA 58.746 2470.152

0.917 0.240 NA

MRCδ 4.823 2.438 NA 59.484 2470.405

0.839 0.235 NA

PCA− PRV 4.823 2.436 4.757 59.484 2505.438

0.893 0.282 7.067

POET 6.726 4.762 488.530 384.193 4160.014

0.369 0.303 22.880

Number of assets: N=300

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 8.913 4.108 10.71 209.4 26550

1.748 0.405 14.42

MRker 9.009 4.184 NA 209.404 27052.980

1.726 0.393 NA

MRCδ 9.041 4.222 NA 214.609 27031.750

1.645 0.399 NA

PCA− PRV 9.170 4.302 13.35 214.6 27684

1.787 0.527 3.410

POET 12.888 8.735 NA 1331.835 48912.060

0.788 0.617 NA

Number of assets: N=500

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 11.417 5.363 14.46 348.2 72834.800

2.388 0.546 20.89

MRker 11.549 5.466 NA 348.2 74332

2.361 0.532 NA

MRCδ 11.537 5.534 NA 353.803 73584.290

2.196 0.535 NA

PCA− PRV 11.787 5.669 16.390 353.803 75752.390

2.355 0.656 3.220

POET 16.329 11.163 NA 2149.455 132573.010

1.073 0.792 NA
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Table 2.14. Asynchronous prices, Sampling Frequency=5min, K = 4

Signal-to-noise ratio ξ2 = 0.01

Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 5.967 2.504 3.611 70.989 1715.118

0.481 0.145 0.170

MRker 6.127 2.714 4358.820 80.787 1804.064

0.475 0.160 60242.320

MRCδ 6.107 2.672 1412.715 79.490 1784.155

0.470 0.149 4273.349

PCA− PRV 6.053 2.610 4.512 79.490 1757.607

0.479 0.161 6.031

POET 6.757 3.217 239.251 248.195 2072.353

0.470 0.133 38.075

Number of assets: N=100

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 5.837 3.035 3.604 90.274 3308.031

0.333 0.127 0.188

MRker 6.102 3.475 NA 109.339 3611.086

0.335 0.139 NA

MRCδ 6.101 3.433 NA 106.142 3617.816

0.335 0.162 NA

PCA− PRV 6.021 3.257 4.810 106.142 3517.404

0.349 0.168 10.782

POET 6.554 3.957 284.599 355.956 3985.780

0.349 0.154 286.727

Number of assets: N=300

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 11.868 5.387 4.534 281.265 43113

0.754 0.162 0.244

MRker 12.566 6.207 NA 363.867 47669.990

0.762 0.198 NA

MRCδ 12.527 6.120 NA 351.565 47551.680

0.767 0.286 NA

PCA− PRV 12.317 5.725 3.603 351.565 45909.100

0.781 0.264 11.014

POET 14.058 6.626 NA 1332.691 59404.770

0.859 0.266 NA

Number of assets: N=500

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 14.676 6.979 5.911 450.438 108472.500

1.127 0.255 0.256

MRker 15.569 8.141 NA 571.719 120045.100

1.080 0.281 NA

MRCδ 15.521 7.906 NA 535.546 119769.300

1.063 0.332 NA

PCA− PRV 15.243 7.475 3.433 535.546 116003.200

1.078 0.303 2.749

POET 16.912 8.643 NA 2050.302 143111.900

1.263 0.354 NA
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Table 2.10. Simulation results: Synchronous prices, Sampling Frequency=5min, K = 1,
Medium noise, correlated noise

Signal-to-noise ration: ξ2 = 0.005
Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 1.829 0.960 2.502 18.170 219.713
(0.814) (0.180) (11.02)

MRker 2.117 1.442 5737 16.639 276.5
(0.723) (0.145) (217998)

MRCδ 1.887 1.395 187.2 10.62 197.6
(0.472) (0.148) (2651)

ˆΣcomp 2.109 1.397 5.306 27.71 266.2
(0.739) (0.144) (1.056)

PCA− PRV 1.876 1.358 4.251 10.62 197.3
(0.478) (0.151) (4.094)

POET 5.428 1.544 470.4 167.4 1329
(0.424) (0.226) (39.32)

Number of assets: N=100
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 1.859 1.329 2.511 16.79 473.6
(0.724) (0.200) (7.467)

MRker 2.334 1.992 NA 16.06 672.1
(0.666) (0.213) NA

MRCδ 2.104 1.963 NA 11.51 491.9
(0.449) (0.225) NA

ˆΣcomp 2.290 1.940 6.351 21.93 646.2
(0.677) (0.211) (1.238)

PCA− PRV 2.030 1.849 8.606 11.51 461.0
(0.467) (0.237) (3.533)

POET 5.200 1.516 284.9 164.6 2585
(0.442) (0.404) (1754)

Number of assets: N=300
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 3.732 2.217 2.747 68.185 5636.770
(1.453) (0.269) (3.142)

MRker 4.526 3.431 NA 71.36 7991
(1.343) (0.254) NA

MRCδ 4.104 3.356 NA 49.09 5727
(1.013) (0.323) NA

ˆΣcomp 4.499 3.386 18.46 89.21 7895
(1.349) (0.252) (2.533)

PCA− PRV 3.882 3.092 6.972 49.09 5210
(1.043) (0.308) (1.877)

POET 10.70 2.344 NA 681.4 34203
(0.882) (0.929) NA

Number of assets: N=500
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 4.839 2.971 2.846 113.168 15501.250
1.806 0.404 1.981

MRker 5.873 4.493 NA 113.085 21355.820
1.386 0.453 NA

MRCδ 5.338 4.422 NA 78.921 15866
(0.970) (0.475) NA

ˆΣcomp 5.848 4.460 NA 129.1 21199
(1.391) (0.453) NA

PCA− PRV 5.017 3.951 3.112 78.92 14204
(1.008) (0.502) 1.997

POET 14.19 3.046 NA 1187 99332
(1.114) (0.737) NA
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Table 2.11. Simulation results: Asynchronous prices, Sampling Frequency=5min, K = 2,
Medium noise, correlated noise

Panel A: Low noise (ξ2 = 0.005)
Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 3.727 2.153 3.282 31.63 668.0
0.289 0.151 0.241

MRker 3.938 2.491 4573 33.14 747.4
0.303 0.137 33330

MRCδ 3.868 2.413 208.6 29.29 722.6
0.290 0.120 1312

ˆΣcomp 3.864 2.424 3.813 32.498 717.8
0.296 0.128 0.173

PCA− PRV 3.815 2.335 5.361 29.291 702.347
0.294 0.131 4.119

POET 4.666 2.643 433.1 135.4 971.1
0.322 0.117 68.99

Number of assets: N=100
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 6.139 3.172 3.229 77.94 3756
0.506 0.199 0.372

MRker 6.496 3.586 NA 81.45 4140
0.568 0.200 NA

MRCδ 6.371 3.500 NA 68.61 3989
0.529 0.186 NA

ˆΣcomp 6.312 3.499 4.836 72.44 3943
0.515 0.165 0.305

PCA− PRV 6.329 3.372 7.729 68.61 3900
0.536 0.203 2.684

POET 7.758 3.819 394.7 333.7 5759
0.574 0.170 440.5

Number of assets: N=300
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 9.720 5.254 3.133 211.0 28502
0.682 0.227 0.277

MRker 10.45 6.258 NA 236.1 32742
0.711 0.252 NA

MRCδ 10.18 5.991 NA 198.8 31405
0.705 0.269 NA

ˆΣcomp 10.15 5.940 5.865 182.4 30789
0.688 0.223 0.237

PCA− PRV 10.02 5.694 4.903 198.8 30416
0.713 0.272 10.50

POET 12.03 6.544 NA 867.0 42874
0.787 0.280 NA

Number of assets: N=500
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 13.64 6.692 3.212 449.6 93345
0.991 0.302 0.270

MRker 14.63 7.977 NA 502.3 106688
1.064 0.314 NA

MRCδ 14.32 7.620 NA 430.0 102831
1.034 0.318 NA

ˆΣcomp 14.20 7.580 6.038 370.2 100502
0.997 0.271 0.182

PCA− PRV 14.12 7.209 5.888 430.0 99859
1.042 0.325 10.86

POET 17.02 8.159 NA 1737 141842
1.200 0.331 NA
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Table 2.12. Asynchronous prices, Sampling Frequency=5min, K = 1

Signal-to-noise ratio ξ2 = 0.01
Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 3.403 2.164 3.002 21.873 566.696
(0.331) (0.194) (0.214)

MRker 3.690 2.547 5985 25.37 655.6
(0.329) (0.192) (636880)

MRCδ 3.651 2.506 2251 25.57 646.3
(0.322) (0.186) (3624)

Σ̂comp 3.613 2.469 4.462 24.50 631.5
(0.309) (0.157) (0.328)

PCA− PRV 3.581 2.396 9.760 25.58 625.5
(0.327) (0.196) (7.680)

POET 4.252 3.326 337.89 92.54 838.4
(0.313) (0.113) (64.63)

Number of assets: N=100
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 6.795 3.514 3.188 74.988 4657.375
(0.630) (0.235) (0.224)

MRker 7.248 4.074 NA 95.66 5227
(0.646) (0.252) NA

MRCδ 7.258 4.046 NA 96.119 5182
(0.635) (0.242) NA

Σ̂comp 7.062 3.946 6.483 88.01 4967
(0.591) (0.219) (0.584)

PCA− PRV 7.163 3.857 10.86 96.119 5049
(0.642) (0.253) (13.31)

POET 8.789 5.008 484.8 332.281 7491
(0.651) (0.191) (406.6)

Number of assets: N=300
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 9.109 5.483 8.822 144.7 25457
(0.799) (0.326) (0.190)

MRker 9.907 6.759 NA 186.9 29961
(0.848) (0.374) NA

MRCδ 9.833 6.633 NA 176.4 29540
(0.819) (0.364) NA

PCA− PRV 9.601 6.223 9.318 176.39 28192
(0.833) (0.376) (9.233)

POET 11.21 8.259 NA 656.8 37695
(0.916) (0.285) NA

Number of assets: N=500
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 11.86 7.079 11.77 269.0 70047
(1.000) (0.409) (0.171)

MRker 12.80 8.706 NA 334.3 82166
(1.000) (0.440) NA

MRCδ 12.76 8.538 NA 324.2 81195.840
(0.982) (0.447) NA

PCA− PRV 12.46 7.969 13.06 324.2 77288
(0.999) (0.447) 0.211

POET 14.35 10.57 NA 1114 103646
(1.099) (0.353) NA
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Table 2.13. Asynchronous prices, Sampling Frequency=5min, K = 3

Signal-to-noise ratio ξ2 = 0.01
Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 4.249 2.073 3.514 28.32 878.6
(0.283) (0.102) (0.200)

MRker 4.525 2.373 5271 37.98 1002
(0.341) (0.107) (15556)

MRCδ 4.491 2.312 1399 36.96 979.9
(0.297) (0.113) (1501)

Σ̂comp 4.356 2.248 4.849 38.74 916.9
(0.268) (0.099) (0.392)

PCA− PRV 4.438 2.202 5.052 36.96 961.09
(0.310) (0.118) (6.009)

POET 5.661 2.620 352.9 203.1 1427
(0.300) (0.108) (161.9)

Number of assets: N=100
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 6.905 3.243 3.774 97.39 4711
(0.466) (0.147) (0.235)

MRker 7.230 3.616 NA 121.5 5189
(0.476) (0.168) NA

MRCδ 7.174 3.516 NA 119.9 5112
(0.458) (0.166) NA

Σ̂comp 7.021 3.460 4.434 106.9 4881
(0.459) (0.137) (0.213)

PCA− PRV 7.051 3.362 6.471 119.9 4972
(0.472) (0.173) (12.52)

POET 8.247 4.050 316.685 440.608 6449.541
(0.472) (0.146) (231.2)

Number of assets: N=300
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 10.57 5.420 5.993 259.8 33528
(0.700) (0.221) (12.70)

MRker 11.12 6.259 NA 323.4 37194
(0.671) (0.212) NA

MRCδ 11.09 6.157 NA 307.7 37069
(0.671) (0.253) NA

PCA− PRV 10.88 5.785 4.412 307.6 35613
(0.691) (0.261) (13.37)

POET 12.14 6.969 NA 1099 44168
(0.777) (0.233) NA

Number of assets: N=500
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 14.28 7.148 8.795 490.2 102280
(0.986) (0.317) (22.23)

MRker 15.04 8.259 NA 604.2 112820
(0.942) (0.308) NA

MRCδ 14.98 8.097 NA 574.8 112529
(0.943) (0.378) NA

PCA− PRV 14.75 7.635 3.763 574.8 108431
(0.970) (0.367) (3.801)

POET 16.38 9.032 NA 1900 132647
(1.072) (0.345) NA
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Table 2.25. Asynchronous prices, Sampling Frequency=1min, K = 2

Signal-to-noise ratio ξ2 = 0.01

Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 3.549 2.206 3.005 23.46 602.2

0.273 0.132 0.220

MRker 3.728 2.409 503.944 25.073 687.014

0.272 0.144 77.900

MRCδ 3.673 2.389 155.423 25.177 673.813

0.268 0.137 307.990
ˆΣcomp 3.632 2.353 3.867 24.183 653.677

0.260 0.124 0.282

PCA− PRV 3.625 2.294 5.746 25.177 653.366

0.270 0.138 4.007

POET 4.517 3.258 516.774 118.411 919.489

0.286 0.081 107.522

Number of assets: N=100

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 6.048 3.306 3.593 99.06 3593

0.680 0.217 0.278

MRker 6.407 3.635 19661.696 67.218 4051.629

0.531 0.182 55683.470

MRCδ 6.349 3.614 15532.681 63.905 4037.431

0.537 0.194 9748.741
ˆΣcomp 6.266 3.543 4.584 62.598 3889.042

0.494 0.143 0.209

PCA− PRV 6.234 3.457 6.900 63.905 3895.525

0.547 0.199 6.913

POET 7.525 5.000 425.956 305.532 5382.059

0.563 0.137 249.791

Number of assets: N=300

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 9.857 5.236 4.402 229.5 27765

0.679 0.243 0.225

MRker 10.272 5.801 NA 222.099 31940.730

0.686 0.217 NA

MRCδ 10.206 5.724 NA 217.697 31744.340

0.675 0.213 NA

PCA− PRV 10.015 5.476 6.885 217.697 30625.980

0.680 0.228 7.868

POET 12.381 8.713 NA 941.205 44672.550

0.816 0.151 NA

Number of assets: N=500

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 10.662 6.405 9.894 536.4 93371

0.659 0.319 0.151

MRker 11.269 7.489 NA 235.425 63823.950

0.646 0.336 NA

MRCδ 11.242 7.505 NA 240.186 63362.090

0.676 0.335 NA

PCA− PRV 11.041 7.083 4.349 240.186 60979.120

0.682 0.348 1.679

POET 13.171 11.329 NA 997.334 88386.030

1.012 0.215 NA
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Table 2.15. Asynchronous prices, Sampling Frequency=5min, K = 5

Signal-to-noise ratio ξ2 = 0.01
Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 4.818 2.128 3.742 79.790 1091.115
0.388 0.106 0.560

MRker 5.040 2.391 3983.302 63.686 1217.798
0.380 0.114 24531.540

MRCδ 5.028 2.326 987.014 60.937 1201.145
0.370 0.120 2306.474

PCA− PRV 4.984 2.263 3.987 60.937 1187.083
0.379 0.117 5.863

POET 5.952 2.606 239.436 224.348 1558.666
0.398 0.103 59.179

Number of assets: N=100
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 6.487 3.025 3.988 89.896 4180.667
0.424 0.112 0.157

MRker 6.800 3.438 NA 111.017 4512.112
0.436 0.139 NA

MRCδ 6.788 3.374 NA 104.005 4494.498
0.432 0.158 NA

PCA− PRV 6.658 3.197 3.561 104.005 4354.841
0.443 0.158 17.389

POET 7.577 3.788 253.404 423.524 5414.165
0.483 0.142 64.306

Number of assets: N=300
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 12.049 5.330 4.394 353.669 44164.960
0.834 0.182 0.224

MRker 12.596 6.158 NA 430.394 47721.310
0.842 0.219 NA

MRCδ 12.576 6.063 NA 410.577 47682.990
0.832 0.288 NA

PCA− PRV 12.335 5.675 3.578 410.577 46026.020
0.848 0.279 2.377

POET 13.626 6.726 NA 1389.440 55991.250
0.916 0.261 NA

Number of assets: N=500
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 14.403 6.818 5.719 505.900 104444.500
0.924 0.228 0.221

MRker 15.152 7.973 NA 634.692 114955.700
0.908 0.272 NA

MRCδ 15.182 7.786 NA 615.791 115351.900
0.898 0.373 NA

PCA− PRV 14.946 7.326 3.395 615.791 110955.500
0.923 0.331 1.278

POET 16.513 8.576 NA 2064.410 133301.600
1.002 0.325 NA
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Table 2.16. Synchronous prices, Sampling Frequency=1min, K = 1

Signal-to-noise ratio ξ2 = 0.01
Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 1.402 0.863 2.358 6.754 105.1
0.531 0.160 19.45

MRker 1.791 1.378 165.716 10.235 184.883
0.456 0.163 28.963

MRCδ 1.711 1.332 244.412 9.264 169.660
0.435 0.145 332.178

ˆΣcomp 1.788 1.370 4.872 14.972 180.890
0.465 0.161 0.771

PCA− PRV 1.694 1.291 5.718 9.264 169.208
0.455 0.160 5.483

POET 4.577 5.716 1581.676 124.820 1036.842
0.349 0.075 46.520

Number of assets: N=100
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 1.859 1.329 2.510 16.792 473.631
0.724 0.200 7.467

MRker 2.334 1.992 NA 16.066 672.109
0.666 0.213 NA

MRCδ 2.104 1.963 NA 11.511 491.949
0.449 0.225 NA

ˆΣcomp 2.290 1.940 6.351 21.931 646.273
0.677 0.211 1.238

PCA− PRV 2.030 1.849 8.606 11.511 461.006
0.467 0.237 3.533

POET 5.200 1.516 284.952 164.678 2585.705
0.442 0.404 1754.719

Number of assets: N=300
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 2.644 2.045 3.299 29.77 2969
1.020 0.356 0.180

MRker 4.074 3.370 NA 47.911 5845.232
0.911 0.358 NA

MRCδ 3.982 3.308 NA 45.686 5528.287
0.850 0.310 NA

ˆΣcomp 3.714 2.978 5.423 45.686 4956.766
0.908 0.349 12.660

PCA− PRV 3.714 2.978 5.422 45.68 4956
0.908 0.349 12.66

POET 10.32 14.12 NA 594.2 31913
0.502 0.124 96.510

Number of assets: N=500
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 4.839 2.971 3.952 58.04 8880
1.806 0.404 1.981

MRker 5.873 4.493 NA 113.085 21355.820
1.386 0.453 NA

MRCδ 5.338 4.422 NA 78.921 15866.410
0.970 0.475 NA

PCA− PRV 5.017 3.951 4.607 78.921 14204.250
1.008 0.502 7.675

POET 14.190 3.046 NA 1187.214 99332.680
1.114 0.737 NA
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Table 2.17. Synchronous prices, Sampling Frequency=1min, K = 2

Signal-to-noise ratio ξ2 = 0.01
Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 1.760 1.005 2.727 6.530 175.188
0.468 0.224 0.244

MRker 1.955 1.262 156.597 9.981 209.233
0.393 0.150 25.783

MRCδ 1.925 1.241 232.436 9.524 198.566
0.389 0.143 291.456

ˆΣcomp 1.938 1.254 3.640 14.271 202.336
0.398 0.150 0.267

PCA− PRV 1.909 1.194 5.220 9.524 197.967
0.410 0.150 5.842

POET 4.086 5.423 1588.886 104.949 739.163
0.255 0.090 46.261

Number of assets: N=100
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 2.753 1.466 2.969 25.24 834.605
0.684 0.333 0.217

MRker 3.112 1.902 2385.393 25.76 1038.536
0.559 0.210 132.426

MRCδ 3.022 1.837 3122.936 24.460 988.567
0.578 0.199 2346.389

ˆΣcomp 3.092 1.888 5.199 36.085 1016.635
0.564 0.210 0.690

PCA− PRV 2.947 1.747 6.960 24.460 949.173
0.607 0.216 9.510

POET 6.987 7.794 2015.151 312.294 4575.535
0.483 0.114 158.396

Number of assets: N=300
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 4.675 2.523 4.201 54.67 6092
1.252 0.540 0.180

MRker 5.439 3.283 NA 78.240 9564
1.075 0.344 NA

MRCδ 5.228 3.181 NA 71.64 8947.801
1.012 0.312 NA

PCA− PRV 5.020 2.971 5.229 71.646 8327.332
1.063 0.331 13.663

POET 11.992 13.242 NA 883.875 42785.279
0.907 0.225 NA

Number of assets: N=500
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 5.303 3.222 9.074 101.6 16153
1.624 0.707 0.177

MRker 6.949 4.355 NA 132.269 26740.610
1.354 0.451 NA

MRCδ 6.723 4.210 NA 124.675 25079.080
1.253 0.412 NA

PCA− PRV 6.431 3.923 4.217 124.675 23217.030
1.318 0.438 6.081

POET 15.137 17.317 NA 1486.634 114542.250
1.008 0.256 NA
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Table 2.18. Synchronous prices, Sampling Frequency=1min, K = 3

Signal-to-noise ratio ξ2 = 0.01
Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 2.325 1.153 3.343 11.383 280.158
0.507 0.266 6.195

MRker 2.857 1.373 2.886 19.650 428.635
0.603 0.245 0.278

MRCδ 2.755 1.322 151.251 19.650 407.589
0.545 0.147 24.199

ˆΣcomp 2.692 1.282 216.203 18.903 389.874
0.558 0.139 236.966

PCA− PRV 2.750 1.316 3.946 29.564 395.440
0.551 0.147 0.278

POET 2.678 1.255 5.959 18.903 395.000
0.613 0.190 3.554

Number of assets: N=100
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 3.171 1.551 3.486 43.719 1223.984
1.131 0.375 14.679

MRker 3.450 1.896 2321.267 29.547 1235.390
0.511 0.170 118.565

MRCδ 3.368 1.858 2898.652 28.235 1175.572
0.505 0.163 1748.858

ˆΣcomp 3.426 1.878 3.994 42.292 1204.254
0.516 0.171 0.327

PCA− PRV 3.240 1.730 5.286 28.235 1112.246
0.596 0.275 9.479

POET 6.691 7.494 1821.782 340.262 4179.766
0.373 0.118 52.693

Number of assets: N=300
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 5.226 2.717 5.487 65.84 9154.182
1.285 0.681 38.23

MRker 6.399 3.233 NA 111.6 13901
1.309 0.340 NA

MRCδ 6.250 3.166 NA 106.950 13243.474
1.326 0.326 NA

PCA− PRV 5.935 2.844 2.836 106.950 12659.655
1.599 0.596 3.777

POET 13.836 13.470 NA 1265.373 56591.524
0.907 0.222 NA

Number of assets: N=500
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 6.331 3.579 5.916 93.24 23354.110
1.747 1.082 32.41

MRker 7.838 4.227 NA 160.0 33619
1.327 0.413 NA

MRCδ 7.611 4.144 NA 156.001 32576.480
1.313 0.394 NA

PCA− PRV 7.464 3.923 2.750 156.001 30983
1.596 0.734 4.002

POET 16.425 17.320 NA 1909 134012
1.025 0.248 NA
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Table 2.19. Synchronous prices, Sampling Frequency=30s, K = 1

Signal-to-noise ratio ξ2 = 0.01
Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 1.257 0.705 2.444 8.089 98.758
0.470 0.137 0.206

MRker 1.634 1.159 46.192 8.089 152.281
0.403 0.141 6.995

MRCδ 1.545 1.104 98.080 7.294 136.677
0.397 0.135 153.366

ˆΣcomp 1.627 1.157 4.422 10.693 149.279
0.406 0.139 0.620

PCA− PRV 1.537 1.064 3.641 7.294 137.600
0.416 0.146 1.692

POET 5.191 6.412 3048.553 130.001 1211.080
0.385 0.060 72.130

Number of assets: N=100
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 1.634 1.145 2.750 14.806 403.545
0.849 0.197 0.233

MRker 2.155 1.851 950.298 14.806 588.130
0.748 0.222 55.125

MRCδ 2.043 1.711 1711.735 12.584 503.330
0.598 0.221 1312.939

ˆΣcomp 2.148 1.845 5.445 19.866 580.497
0.752 0.221 0.489

PCA− PRV 1.962 1.627 7.177 12.584 478.687
0.626 0.249 13.969

POET 6.106 8.712 3233.019 205.572 3563.967
0.544 0.076 73.224

Number of assets: N=300
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 2.628 1.812 2.788 19.52 1924
0.995 0.276 0.168

MRker 3.616 3.156 NA 36.972 4588.095
0.828 0.296 NA

MRCδ 3.375 2.935 NA 33.655 4182.825
0.795 0.280 NA

PCA− PRV 3.152 2.624 5.058 33.655 3728.817
0.855 0.339 7.243

POET 10.416 15.437 NA 580.325 32046.972
0.839 0.124 NA

Number of assets: N=500
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 3.591 2.340 4.546 41.34 6371
1.746 0.383 0.173

MRker 4.877 4.090 NA 81.342 15390.607
1.543 0.407 NA

MRCδ 4.626 3.910 NA 72.887 13929.861
1.357 0.407 NA

PCA− PRV 4.315 3.495 4.869 72.887 12558.205
1.440 0.500 7.682

POET 13.803 19.942 NA 1082.538 96063.676
1.210 0.184 NA
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Table 2.20. Synchronous prices, Sampling Frequency=30s, K = 2

Signal-to-noise ratio ξ2 = 0.01
Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 2.171 0.973 2.966 16.179 268.490
0.740 0.283 0.229

MRker 2.364 1.251 43.537 16.179 312.247
0.619 0.142 6.594

MRCδ 2.262 1.176 74.271 14.121 280.751
0.577 0.157 132.576

ˆΣcomp 2.358 1.253 4.198 23.741 304.601
0.622 0.141 0.391

PCA− PRV 2.267 1.162 3.402 14.121 280.906
0.591 0.166 1.518

POET 7.450 5.712 2898.912 256.036 2561.767
0.494 0.056 76.897

Number of assets: N=100
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 2.491 1.241 2.869 25.302 710.078
0.742 0.263 0.161

MRker 2.896 1.680 925.328 25.302 925.507
0.614 0.180 61.115

MRCδ 2.773 1.619 1597.341 22.486 840.257
0.592 0.170 1216.858

ˆΣcomp 2.880 1.671 5.425 37.724 908.015
0.618 0.179 0.623

PCA− PRV 2.713 1.531 6.409 22.486 814.074
0.615 0.179 13.217

POET 7.586 8.034 3658.237 333.557 5535.384
0.496 0.080 112.518

Number of assets: N=300
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 4.075 2.119 7.001 32.16 3434
0.958 0.438 0.188

MRker 4.938 2.959 NA 60.024 7635.184
0.831 0.358 NA

MRCδ 4.677 2.759 NA 56.197 7124.655
0.895 0.345 NA

ˆΣcomp 4.500 2.563 4.474 56.197 6655.273
0.942 0.373 5.251

PCA− PRV 4.500 2.563 4.474 56.197 6655.273
0.942 0.373 5.251

POET 12.534 14.958 NA 951.486 46646.743
0.867 0.116 NA

Number of assets: N=500
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 4.782 2.762 7.943 51.20 9510
1.455 0.535 0.151

MRker 6.029 3.872 NA 99.420 20401.754
1.262 0.389 NA

MRCδ 5.692 3.639 NA 88.506 18433.154
1.210 0.358 NA

ˆΣcomp 5.422 3.377 4.392 88.506 16999.631
1.272 0.399 4.471

PCA− PRV 15.365 18.915 NA 1489.080 116477.704
1.073 0.176 NA

POET 4.782 2.762 2.955 99.420 14684.452
1.455 0.535 0.151
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Table 2.21. Synchronous prices, Sampling Frequency=30s, K = 3

Signal-to-noise ratio ξ2 = 0.01
Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 2.164 1.022 3.223 8.869 296.250
0.836 0.433 7.891

MRker 2.519 1.172 43.050 16.573 332.866
0.440 0.141 5.744

MRCδ 2.376 1.110 96.129 14.426 305.749
0.476 0.135 112.426

ˆΣcomp 2.503 1.170 3.795 24.704 323.691
0.443 0.141 0.219

PCA− PRV 2.375 1.068 5.358 14.426 309.646
0.529 0.184 3.321

POET 7.017 5.786 3066.955 255.029 2192.846
0.462 0.054 70.115

Number of assets: N=100
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 2.400 1.342 3.498 107.012 1536.609
2.873 0.413 10.007

MRker 2.799 1.735 906.677 19.946 821.309
0.382 0.164 54.562

MRCδ 2.715 1.651 1655.213 18.277 759.159
0.374 0.141 947.838

ˆΣcomp 2.791 1.727 3.826 28.966 804.964
0.385 0.164 0.174

PCA− PRV 2.598 1.448 5.846 18.277 705.603
0.477 0.259 16.130

POET 6.450 8.176 3594.918 313.622 3932.506
0.406 0.066 74.295

Number of assets: N=300
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 4.365 2.125 6.148 251.0 12526
1.239 0.714 32.836

MRker 5.718 2.901 NA 89.650 11043.414
1.161 0.317 NA

MRCδ 5.520 2.814 NA 83.153 10187.868
1.089 0.283 NA

PCA− PRV 5.331 2.583 2.644 83.153 9598.054
1.273 0.491 3.845

POET 13.648 14.984 NA 1266.672 54978.458
0.876 0.129 NA

Number of assets: N=500
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 5.432 2.788 6.388 82.774 18954.170
1.628 0.972 41.651

MRker 7.410 3.728 NA 153.286 30023.820
1.438 0.375 NA

MRCδ 7.051 3.618 NA 141.235 27753.260
1.360 0.306 NA

PCA− PRV 6.675 3.163 2.667 141.235 25969.560
1.679 0.651 1.656

POET 18.022 18.810 NA 2262.741 161758.260
1.135 0.155 NA
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Table 2.22. Asynchronous prices, Sampling Frequency=5min, K = 1

Signal-to-noise ratio ξ2 = 0.01
Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 3.403 2.164 2.825 23.18 553.9
0.331 0.194 0.214

MRker 3.690 2.547 5985.302 25.368 655.568
0.329 0.192 636880.400

MRCδ 3.651 2.506 2251.927 25.577 646.338
0.322 0.186 3624.942

ˆΣcomp 3.613 2.469 4.462 24.503 631.539
0.309 0.157 0.328

PCA− PRV 3.581 2.396 9.760 25.577 625.472
0.327 0.196 7.680

POET 4.252 3.326 337.887 92.544 838.372
0.313 0.113 64.628

Number of assets: N=100
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 6.795 3.514 3.486 76.71 4598
0.630 0.235 0.224

MRker 7.248 4.074 NA 95.665 5227.592
0.646 0.252 NA

MRCδ 7.258 4.046 NA 96.119 5182.841
0.635 0.242 NA

ˆΣcomp 7.062 3.946 6.483 88.009 4967.783
0.591 0.219 0.584

PCA− PRV 7.163 3.857 10.864 96.119 5049.237
0.642 0.253 13.312

POET 8.789 5.008 484.784 332.281 7491.832
0.651 0.191 406.584

Number of assets: N=300
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 9.109 5.483 8.822 168.9 25079
0.799 0.326 0.190

MRker 9.907 6.759 NA 186.992 29961.660
0.848 0.374 NA

MRCδ 9.833 6.633 NA 176.398 29540.090
0.819 0.364 NA

PCA− PRV 9.601 6.223 9.318 176.398 28192.250
0.833 0.376 9.233

POET 11.208 8.259 NA 656.778 37695.620
0.916 0.285 NA

Number of assets: N=500
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 11.859 7.079 11.77 309.3 69106
1.000 0.409 0.171

MRker 12.800 8.706 NA 334.281 82166.590
1.000 0.440 NA

MRCδ 12.761 8.538 NA 324.175 81195.840
0.982 0.447 NA

PCA− PRV 12.463 7.969 13.98 324.175 77288.470
0.999 0.447 1.222

POET 14.347 10.570 NA 1114.855 103646.530
1.099 0.353 NA
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Table 2.23. Asynchronous prices, Sampling Frequency=5min, K = 3

Signal-to-noise ratio ξ2 = 0.01
Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 4.249 2.073 3.778 40.14 861.4
0.283 0.102 0.200

MRker 4.525 2.373 5271.528 37.987 1002.069
0.341 0.107 15556.160

MRCδ 4.491 2.312 1399.579 36.957 979.880
0.297 0.113 1501.990

ˆΣcomp 4.356 2.248 4.849 38.745 916.864
0.268 0.099 0.392

PCA− PRV 4.438 2.202 5.052 36.957 961.087
0.310 0.118 6.009

POET 5.661 2.620 352.895 203.071 1427.955
0.300 0.108 161.978

Number of assets: N=100
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 6.905 3.243 3.809 121.0 4579
0.466 0.147 0.235

MRker 7.230 3.616 NA 121.499 5189
0.476 0.168 NA

MRCδ 7.174 3.516 NA 119.957 5112.960
0.458 0.166 NA

ˆΣcomp 7.021 3.460 4.434 106.874 4881.537
0.459 0.137 0.213

PCA− PRV 7.051 3.362 6.471 119.957 4971.999
0.472 0.173 12.516

POET 8.247 4.050 316.685 440.608 6449.541
0.472 0.146 231.219

Number of assets: N=300
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 10.570 5.420 5.993 259.856 33528.890
0.700 0.221 0.188

MRker 11.124 6.259 NA 323.358 37194.140
0.671 0.212 NA

MRCδ 11.090 6.157 NA 307.651 37068.830
0.671 0.253 NA

PCA− PRV 10.880 5.785 4.412 307.651 35613.900
0.691 0.261 13.370

POET 12.141 6.969 NA 1099.284 44168.980
0.777 0.233 NA

Number of assets: N=500
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 14.280 7.148 8.795 490.1 102280.440
0.986 0.317 0.202

MRker 15.04 8.259 NA 604.2 112820
0.942 0.308 NA

MRCδ 14.98 8.097 NA 574.767 112529
0.943 0.378 NA

PCA− PRV 14.745 7.635 3.763 574.767 108431.870
0.970 0.367 3.801

POET 16.377 9.032 NA 1900.928 132647.910
1.072 0.345 NA

154



Table 2.24. Asynchronous prices, Sampling Frequency=1min, K = 1

Signal-to-noise ratio ξ2 = 0.01
Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 3.400 2.210 2.631 18.67 551.8
0.307 0.161 0.245

MRker 3.629 2.513 539.282 18.767 624.401
0.297 0.157 106.177

MRCδ 3.603 2.508 175.563 19.432 619.029
0.288 0.134 803.654

ˆΣcomp 3.578 2.504 4.292 18.313 611.140
0.290 0.139 0.362

PCA− PRV 3.559 2.427 6.862 19.432 603.598
0.293 0.143 3.475

POET 4.296 3.445 589.969 81.038 840.164
0.311 0.093 1066.088

Number of assets: N=100
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 5.303 3.160 3.062 63.27 2765
0.479 0.190 0.165

MRker 5.642 3.649 20217.000 63.717 3150.591
0.467 0.197 49581.740

MRCδ 5.617 3.611 12411.800 64.260 3102.177
0.470 0.178 16082.420

ˆΣcomp 5.562 3.571 6.363 58.644 3064.322
0.469 0.169 0.500

PCA− PRV 5.508 3.441 7.701 64.260 2992.306
0.473 0.197 5.535

POET 6.397 4.953 537.642 217.987 3935.613
0.513 0.127 898.606

Number of assets: N=300
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 8.377 4.750 2.645 142.070 20980.660
0.736 0.220 95.205

MRker 8.853 5.809 NA 136.782 23536
0.756 0.254 NA

MRCδ 8.840 5.805 NA 136.369 23450.960
0.762 0.259 NA

PCA− PRV 8.663 5.475 7.615 136.369 22597.510
0.769 0.285 3.549

POET 10.536 8.735 NA 623.118 32491.480
0.881 0.190 NA

Number of assets: N=500
Covariance Correlation Inverse Diag Off-Diag

Σ̂ 9.793 6.094 2.645 209.055 49152.810
0.908 0.326 91.637

MRker 10.369 7.438 NA 202.553 54724.110
0.890 0.343 NA

MRCδ 10.327 7.424 NA 202.525 54432.540
0.882 0.349 NA

PCA− PRV 10.108 6.987 4.758 202.525 52007.530
0.893 0.364 1.981

POET 12.126 11.315 NA 883.689 74464.050
1.070 0.270 NA
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Table 2.26. Asynchronous prices, Sampling Frequency=1min, K = 3

Signal-to-noise ratio ξ2 = 0.01

Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 3.981 2.062 3.735 100.7 734.7

0.407 0.102 4.623

MRker 4.184 2.331 496.018 49.484 823.986

0.248 0.121 77.102

MRCδ 4.172 2.349 372.509 48.811 818.385

0.249 0.125 815.212

Σ̂comp 4.078 2.325 3.831 49.843 805.012

0.241 0.098 0.142

PCA− PRV 4.099 2.265 5.675 48.811 794.262

0.248 0.129 9.045

POET 4.888 3.268 563.730 175.609 1033.610

0.235 0.067 118.888

Number of assets: N=100

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 6.548 3.154 3.815 75.201 4284.501

0.464 0.117 0.226

MRker 6.714 3.412 18784.944 89.631 4501.805

0.462 0.125 80538.060

MRCδ 6.716 3.390 13021.839 86.991 4478.863

0.443 0.118 8021.708

Σ̂comp 6.579 3.335 4.561 86.572 4319.042

0.450 0.117 0.190

PCA− PRV 6.628 3.262 5.276 86.991 4365.976

0.448 0.132 4.739

POET 8.140 4.354 527.333 391.642 6221.560

0.538 0.115 278.336

Number of assets: N=300

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 11.147 5.139 5.752 643.2 36593

0.692 0.212 11.889

MRker 11.605 5.578 NA 312.277 39826.280

0.765 0.162 NA

MRCδ 11.565 5.612 NA 307.382 39665.880

0.742 0.152 NA

PCA− PRV 11.425 5.388 4.231 307.382 38777.880

0.764 0.191 2.953

POET 13.468 8.284 NA 1238.280 52670.410

0.870 0.144 NA

Number of assets: N=500

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 14.204 6.675 10.97 6328.828 95181.790

1.305 0.253 7.780

MRker 14.630 7.216 NA 493.031 104202.670

0.949 0.209 NA

MRCδ 14.603 7.186 NA 482.631 103763.310

0.941 0.207 NA

PCA− PRV 14.445 6.930 3.293 482.631 101621.480

0.958 0.266 1.722

POET 16.999 10.408 NA 1994.152 141900.110

1.242 0.182 NA
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Table 2.27. Asynchronous prices, Sampling Frequency=30s, K = 1

Signal-to-noise ratio ξ2 = 0.01

Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 3.416 2.123 2.544 301.482 564.982

0.778 0.272 6.392

MRker 3.556 2.333 34.042 291.106 608.913

0.744 0.199 4.393

MRCδ 3.508 2.296 22.871 286.283 592.445

0.736 0.198 128.553
ˆΣcomp 3.543 2.276 3.961 287.665 602.628

0.735 0.190 0.361

PCA− PRV 3.437 2.214 2.904 281.514 567.742

0.735 0.206 1.797

POET 4.249 3.724 1856.430 409.202 801.424

0.909 0.240 4382.951

Number of assets: N=100

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 4.930 2.975 2.597 783.994 2389.652

0.766 0.280 0.366

MRker 5.108 3.265 560.116 825.412 2565.475

0.775 0.230 49.841

MRCδ 5.099 3.214 278.166 814.974 2556.652

0.767 0.238 913.005
ˆΣcomp 5.067 3.241 5.402 805.910 2523.896

0.764 0.246 0.566

PCA− PRV 5.031 3.103 5.241 807.153 2487.890

0.769 0.247 5.223

POET 5.846 5.225 1478.072 1123.056 3230.180

0.908 0.251 1888.548

Number of assets: N=300

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 9.383 5.230 3.144 3663.692 9.383

0.638 0.308 0.268

MRker 9.766 5.590 NA 3900.626 9.766

0.641 0.214 NA

MRCδ 9.718 5.571 NA 3734.895 9.718

0.617 0.215 NA
ˆΣcomp 9.561 5.302 3.696 3733.223 9.561

0.626 0.250 4.673

PCA− PRV 11.919 8.823 NA 6303.668 11.919

0.912 0.178 NA

POET 9.383 5.230 3.144 3663.692 9.383

0.638 0.308 0.268

Number of assets: N=500

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 10.857 6.491 2.484 17971.290 58778.540

1.502 0.447 0.245

MRker 11.248 7.375 NA 18910.360 63072.630

1.525 0.464 NA

MRCδ 11.177 7.227 NA 18787.650 62263.920

1.524 0.480 NA

PCA− PRV 13.862 11.628 NA 22622.460 95058.110

1.595 0.366 NA

POET 13.862 11.628 NA 22622.460 95058.110

1.595 0.366 NA
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Table 2.28. Asynchronous prices, Sampling Frequency=30s, K = 2

Signal-to-noise ratio ξ2 = 0.01

Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 3.963 2.192 3.777 362.408 757.145

0.891 0.231 0.372

MRker 4.019 2.212 30.594 350.346 787.372

0.845 0.188 4.758

MRCδ 4.024 2.202 25.252 344.362 782.485

0.835 0.190 91.475
ˆΣcomp 4.040 2.214 3.820 344.619 789.605

0.841 0.190 0.244

PCA− PRV 3.941 2.135 2.993 341.046 749.571

0.840 0.204 2.117

POET 5.188 3.598 2877.240 451.253 1207.574

0.928 0.198 9022.950

Number of assets: N=100

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 5.589 2.982 3.200 861.161 2950.496

0.773 0.139 1.895

MRker 5.578 3.172 511.025 942.135 3029.835

0.818 0.114 42.989

MRCδ 5.535 3.145 399.599 928.988 2983.166

0.813 0.137 813.036
ˆΣcomp 5.587 3.160 4.390 909.688 3035.229

0.803 0.107 0.298

PCA− PRV 5.459 3.036 5.301 916.343 2900.096

0.815 0.146 3.055

POET 7.129 5.114 1850.969 1513.986 4788.059

1.085 0.187 865.150

Number of assets: N=300

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 8.314 5.030 2.578 4226.601 20621.130

0.863 0.311 0.147

MRker 8.603 5.574 NA 4296.534 22071.120

0.848 0.281 NA

MRCδ 8.567 5.574 NA 4502.501 21885.110

0.884 0.267 NA

PCA− PRV 8.435 5.360 4.809 4451.909 21209.980

0.888 0.258 7.005

POET 10.703 9.221 NA 6999.849 33750.330

1.116 0.331 NA

Number of assets: N=500

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 12.932 6.504 6.315 10110.880 83015.940

0.807 0.318 6.211

MRker 13.448 7.288 NA 11537.000 90120.640

0.876 0.269 NA

MRCδ 13.364 7.283 NA 11580.780 89006.180

0.882 0.273 NA

PCA− PRV 13.183 6.951 6.399 11651.560 86601.570

0.901 0.322 13.782

POET 16.009 11.434 NA 16529.590 126567.720

1.053 0.219 NA
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Table 2.29. Asynchronous prices, Sampling Frequency=30s, K = 3

Signal-to-noise ratio ξ2 = 0.01

Number of assets: N=50

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 4.110 2.133 3.841 355.748 789.484

0.853 0.180 0.794

MRker 3.966 2.136 29.634 353.994 755.836

0.835 0.131 5.445

MRCδ 3.939 2.116 26.456 351.163 744.296

0.834 0.131 62.149
ˆΣcomp 3.961 2.113 3.761 358.219 749.254

0.845 0.137 0.281

PCA− PRV 3.876 2.061 2.984 344.453 720.156

0.834 0.140 1.019

POET 4.968 3.423 2484.268 511.659 1079.354

1.012 0.196 1904.887

Number of assets: N=100

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 5.786 2.919 3.635 1158.320 3207.442

0.964 0.169 2.618

MRker 5.886 3.044 484.073 1153.881 3388.831

0.931 0.126 45.818

MRCδ 5.853 3.043 537.427 1145.724 3350.789

0.929 0.129 421.498
ˆΣcomp 5.840 3.052 4.038 1168.896 3328.554

0.942 0.127 0.256

PCA− PRV 5.802 2.917 5.621 1109.138 3291.742

0.913 0.129 13.170

POET 7.312 4.932 2417.052 1857.105 4962.468

1.207 0.196 1524.093

Number of assets: N=300

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 10.552 4.919 4.598 5683.269 33186.640

0.937 0.278 27.900

MRker 11.037 5.409 NA 6875.356 36299.550

1.024 0.241 NA

MRCδ 11.046 5.402 NA 6708.402 36367.210

1.005 0.236 NA
ˆΣcomp 10.872 5.105 4.235 7017.927 35219.680

1.057 0.338 1.683

PCA− PRV 13.092 8.597 NA 8635.407 50239.490

1.097 0.140 NA

POET 10.552 4.919 4.598 5683.269 33186.640

0.937 0.278 27.900

Number of assets: N=500

Covariance Correlation Inverse Diag Off-Diag

Σ̂ 14.628 6.995 3.582 14529.670 96784.340

1.574 0.354 0.288

MRker 14.317 7.083 NA 15796.730 102042.330

1.098 0.275 NA

MRCδ 14.264 7.005 NA 15441.900 101274.640

1.077 0.273 NA

PCA− PRV 17.581 11.078 NA 18464.700 152408.560

1.113 0.161 NA

POET 17.581 11.078 NA 18464.700 152408.560

1.113 0.161 NA
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Chapter 3

Understanding Microstructure Noise

in a High Dimensional Framework

Abstract

We provide a new methodology to estimate microstructure noise characteristics and

frictionless prices under a high dimensional setup. We rely on factor assumptions both in

latent returns and microstructure noise. The methodology is able to estimate rotations

of common factors, loading coefficients and volatilities in microstructure noise for a huge

number of stocks. Using stocks included in the S&P500 during the period spanning January

2007 to December 2011, we estimate microstructure noise common factors and compare

them to some market-wide liquidity measures computed from real financial variables. We

obtain that: the first factor is correlated to the average spread and the average number of

shares outstanding; the second and third factors are related to the spread; the fourth and

fifth factors are significantly linked to the closing log price. In addition, volatilities of those

microstructure noise factors are widely explained by the average spread, the average volume,

the average number of trades and the average trade size.
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3.1 Introduction

Using high frequency data, volatility estimation has been a major theme in the recent financial

econometrics literature. It is commonly assumed that latent log-price processes follow semi-

martingale processes. But observed prices are polluted by noise called market microstructure

noise (Henceforth, MSN). This noise represents a deviation from fundamental price value,

induced by characteristics of the market under consideration, such as: the bid-ask bounce,

the discreteness of price change, rounding errors, transaction costs, and the asymmetry of

information of traders. Available estimation methodologies consist on reducing the impact

of noise prevalent at high frequency, while accurately estimating volatility of the latent log-

price. A non-exhaustive list of such estimation strategies is: the subsampling and averaging

approach of Aït-Sahalia, Mykland, and Zhang (2005), which provides the averaging and two

scales estimators; the realized kernels of Barndorff-Nielsen, Hansen, Lunde, and Shephard

(2008b); and the pre-averaging approach of Podolskij and Vetter (2009). In empirical studies,

the impact of noise is reduced by sampling less often (every 15 or 30 minutes).

In general, understanding microstructure noise is not the main purpose when estimating

volatility. Authors just want to get rid of it. In the empirical literature on microstruc-

ture noise, existing procedures are most often limited to estimate only the noise volatility.

Nevertheless, useful information can be extracted from this noise component for a better un-

derstanding of its behavior. Only few studies have taken this direction. Aït-Sahalia and Yu

(2009) study the nature of the information contained in high frequency statistical measure-

ments of microstructure noise volatility and relate them to observable financial characteristics

of the underlying assets and, in particular, to different financial measures of their liquidity.

Li, Xie, and Zheng (2016) consider a setting where market microstructure noise is a paramet-

ric function of trading information, possibly with a remaining noise component, and show

that higher efficiency can be obtained by modeling and removing the noise component caused

by trading and then applying existing estimators to the estimated log-prices. Jacod, Li, and

Zheng (2017) study the non-parametric estimation of autocovariances and autocorrelations

of microstructure noise based on high frequency data. Chaker (2017) explicitly models mi-

crostructure noise and removes it from observed prices to obtain an estimate of the frictionless

price.

The objective of this paper is to contribute to the growing literature which consists on

studying the information contain of microstructure noise. Considering a huge number of

stocks, our aim is firstly to estimate microstructure noise components through a factorial
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decomposition. Secondly, we want to extract the information contain of the factor compo-

nent of this noise by relating it to some liquidity measures. Thirdly, we are interested on

approximating frictionless prices. Our paper is more related to the ones by Aït-Sahalia and

Yu (2009), Li, Xie, and Zheng (2016) and Chaker (2017), but with important differences.

Firstly, our methodology relies on factor assumptions both in latent returns and microstruc-

ture noise. Thus, variables that explain microstructure noise are unobservable latent common

factors. They will be estimated through the process. Contrary to the existing literature, when

specifying noise equations, our approach will not suffer for the misspecification or missing

explanatory variables issues. Secondly, our approach is high dimensional in term of number

of stocks: microstructure noise characteristics and frictionless prices are estimated jointly for

huge number of stocks. As it is common in this literature, we compare the extracted com-

mon factors of microstructure noises to some liquidity measures. Here, liquidity measures

are not stock specific, but are averages or principal components of individual stock liquidity

measures.

The rest of the paper is organized as follow: in section 2, we present the benchmark

model. Section 3 describes the estimation strategy of microstructure noise characteristics

and frictionless prices. An empirical study is carry out in section 4 and section 5 concludes.

3.2 The benchmark model

As in the paper by Bollerslev, Meddahi, and Nyawa (2018), we assume that the dynamics of

the log-price process Xt is given by a continuous process with a factor representation of the

form,

dX∗t = bdFt + dEt, (3.1)

where b = (bik)1≤i≤p,1≤k≤K denotes the p × K matrix of factor loadings, Ft = (F1t, ..., FKt)
′

refers to the latent factor vector, and Et = (E1t, ..., Ept)
′ denotes the vector of idiosyncratic

errors. In order to obtain the continuous Itö semimartingale representation of the log-price

process Xt, we further assume that,

dFkt = σfktdB
F
kt,

dEit = σǫitdB
I
it.

Integrating both sides of the resulting latent factor price process above over a time interval
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of length ∆, it readily follows that

∫ t
t−∆ dX

∗
s = b · ∫ tt−∆ σfs

dBF
s +

∫ t
t−∆ σǫsdB

I
s .

Defining the corresponding returns, factors, and errors over the time-interval ∆,

r∗t ≡ r∗t,∆ ≡ ∫ t
t−∆ dX

∗
s

ft ≡ ft,∆ ≡ ∫ t
t−∆ σft

dBF
s

ǫt ≡ ǫt,∆ ≡ ∫ t
t−∆ σǫsdB

I
s

allows for following standard discrete-time factor representation,

r∗t = bft + εt (3.2)

where r∗t = (r∗1t, ..., r
∗
pt)
′, ft = (f1t, ..., fKt)

′, and εt = (ε1t, ..., εpt)
′, respectively.

Factors and idiosyncratic components satisfied the same orthogonality assumptions than

Assumption 1 in Bollerslev, Meddahi, and Nyawa (2018).

The latent prices X∗it for each of the p individual assets are not directly observable.

Instead, the actually observed prices are additively contaminated with market microstructure

noise, such as

Xit = X∗it + uit (3.3)

As in Hasbrouck and Seppi (2001b), we assume that this noise component has its own

separate factor representation,

uit = cigt + ηit (3.4)

where the K ′ × 1 vector gt accounts for the cross-sectional dependence in the noise, and

the 1 × K ′ vector ci denotes the corresponding factor loadings. Assumption 2 in Bollerslev,

Meddahi, and Nyawa (2018) is also assumed to hold.

3.3 Estimation

The aim of this section is to estimate the factor component of the microstructure noise

(loadings and factors), and its volatility. The estimation strategy will take advantage of

some results established in Bollerslev, Meddahi, and Nyawa (2018).
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3.3.1 Estimation of factors and loadings of the microstructure

noise

From the estimation strategy developped in Bollerslev, Meddahi, and Nyawa (2018), we are

able to consistently estimate: the loading matrix b by b̂; and a noisy version of a rotation of

the true factor f in the latent return equation by f̂ :

b̂ik =
MRC(f̂kt, rit)

PRV (f̂kt)
(3.5)

f̂kt =
1

p
Ŵ
′

krt (3.6)

where MRC and PRV represent respectively the modulated realized covariance estimator of

Christensen, Kinnebrock, and Podolskij (2010b) and the pre-averaging estimator of Jacod,

Li, Mykland, Podolskijc, and Vetter (2009b); Ŵ k is a consistent estimator of the eigenvector

associated to the kth biggest eigenvalue of the integrated covolatility matrix, W k.

From the model specification, the expression of the noisy return for a stock i is given by:

rit = bift + εit + ci(gt − gt−∆) + (ηit − ηit−∆) (3.7)

= bi

[
f̂t − 1

p
W ′c(gt − gt−∆)

]
+ ci(gt − gt−∆) + εit + (ηit − ηit−∆) (3.8)

We derive that

rit − bif̂t ≈
(
ci − 1

p
biW

′c

)
(gt − gt−∆) + εit + (ηit − ηit−∆) (3.9)

For ∆ sufficiently small and p sufficiently large, we assume that bi is well estimated by b̂i.

We obtain

rit − b̂if̂t =

(
ci − 1

p
biW

′c

)
(gt − gt−∆) + εit + (ηit − ηit−∆) (3.10)

In a matricial representation, we can write

rt − b̂f̂t =

(
c− 1

p
bW ′c

)
(gt − gt−∆) + εit + (ηt − ηt−∆) (3.11)

The previous equation is a factor decomposition of the observed series rt − b̂f̂t. In this
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factor representation,
(
c− 1

p
bW ′c

)
is the matrix of loadings, (gt − gt−∆) are factors and

εt + (ηt − ηt−∆) the idiosyncratic component. The principal component analysis can be used

to extract common factors. In that sense, (gt − gt−∆) will be estimated in the following way:

̂(gkt − gkt−∆) = Ω′k
(
rt − b̂f̂t

)
,∀k = 1, ..., K ′ (3.12)

where Ω = (Ω1, ...,ΩK′) is the matrix of ordered eigenvectors of the covariance matrix of

rt − b̂f̂t and Ωk is the kth column of Ω.

For two processes X and Y , we call [X, Y ] and [X] respectively the quadratic covariation

of X and Y , and the quadratic variation of X. In order to compute the loading matrix c, we

firstly compute [rt − b̂f̂t, gkt − gkt−∆].

[
rit − b̂if̂t, gkt − gkt−∆

]
=

[(
ci − 1

p
biW

′c

)
(gt − gt−∆) + εit + (ηit − ηit−∆), gkt − gkt−∆

]

=



K′∑

l=1

(
cil − 1

p

K∑

s=1

bisW
′

scl

)
(glt − glt−∆) + εit + (ηit − ηit−∆); gkt − gkt−∆




=



K′∑

l=1

(
cil − 1

p

K∑

s=1

bisW
′

scl

)
(glt − glt−∆) ; gkt − gkt−∆




=

(
cik − 1

p

K∑

s=1

bisW
′

sck

)
[gkt − gkt−∆]

=

(
cik − 1

p
biW

′

ck

)
[gkt − gkt−∆]

We derive from the last equality that

(
cik − bi

(
1

p
W

′

ck

))
=

[
rit − b̂if̂t, gkt − gkt−∆

]

[gkt − gkt−∆]
(3.13)

The next step consists on computing 1
p
W

′

ck.

165



cik − bi

(
1

p
W

′

ck

)
=

[
rit − b̂if̂t, gkt − gkt−∆

]

[gkt − gkt−∆]

1

p

p∑

i=1

wilcik − 1

p

p∑

i=1

wilbi

(
1

p
W

′

ck

)
=

1

p

p∑

i=1

wil

[
rit − b̂if̂t, gkt − gkt−∆

]

[gkt − gkt−∆]

1

p
W

′

lck − 1

p
W lb

(
1

p
W

′

ck

)
=

1

p

p∑

i=1

wil

[
rit − b̂if̂t, gkt − gkt−∆

]

[gkt − gkt−∆]
,∀l = 1, ..., K ′

In a matricial representation, we get




1
p
W

′

1ck − 1
p
W 1b

(
1
p
W

′

ck
)

...
1
p
W

′

Kck − 1
p
WKb

(
1
p
W

′

ck
)


 =




1
p

p∑
i=1

wi1
[rit−b̂if̂t,gkt−gkt−∆]

[gkt−gkt−∆]

...

1
p

p∑
i=1

wiK
[rit−b̂if̂t,gkt−gkt−∆]

[gkt−gkt−∆]




1

p




W
′

1
...

W
′

K




(
ck − b

(
1

p
W

′

ck

))
=




1
p

p∑
i=1

wi1
[rit−b̂if̂t,gkt−gkt−∆]

[gkt−gkt−∆]

...

1
p

p∑
i=1

wiK
[rit−b̂if̂t,gkt−gkt−∆]

[gkt−gkt−∆]




1

p
W ′ck −

(
1

p
W

′

b

)(
1

p
W

′

ck

)
=




1
p

p∑
i=1

wi1
[rit−b̂if̂t,gkt−gkt−∆]

[gkt−gkt−∆]

...

1
p

p∑
i=1

wiK
[rit−b̂if̂t,gkt−gkt−∆]

[gkt−gkt−∆]




We obtain

1

p
W ′ck =

[
IK −

(
1

p
W

′

b

)]−1




1
p

p∑
i=1

wi1
[rit−b̂if̂t,gkt−gkt−∆]

[gkt−gkt−∆]

...

1
p

p∑
i=1

wiK
[rit−b̂if̂t,gkt−gkt−∆]

[gkt−gkt−∆]




(3.14)
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From 3.13 and 3.14 we derive an estimator of cik, ∀i = 1, ..., p and ∀k = 1, ..., K ′

ĉik = b̂i

[
IK −

(
1

p
Ŵ

′

b̂

)]−1




1
p

p∑
i=1

wi1
[rit−b̂if̂t, ̂gkt−gkt−∆]

[ ̂gkt−gkt−∆]
...

1
p

p∑
i=1

wiK
[rit−b̂if̂t, ̂gkt−gkt−∆]

[ ̂gkt−gkt−∆]




+

[
rit − b̂if̂t, ̂gkt − gkt−∆

]

[
̂gkt − gkt−∆

] (3.15)

3.3.2 Estimation of the volatility of the microstructure noise

In this section, we want to estimate Σg and Ση which correspond respectively to covolatility

matrices of factors and idiosyncratic components. They are diagonal matrices. The starting

point of this estimation is the following expression for common factors of microstructure noise

̂(gkt − gkt−∆) = Ω′k
(
rt − b̂f̂t

)
,∀k = 1, ..., K ′

From the previous expression, it comes out that

σ̂2
gk

=
1

2
Ω′kΣ̂r−b̂f̂Ωk,∀k = 1, ..., K ′ (3.16)

where Ωk is the eigenvector associated to the kth largest eigenvalue of Σ̂r−b̂f̂ , an estimator of

the covariance matrix of r − b̂f̂ .

We consider the realized variance function RVall, defined for a process Xt as follow

RVall(X) = Σti(Xti+1
−Xti)

2 (3.17)

Applied to a latent process contaminated by microstructure noise, it is well established in

the literature that this estimator consistently estimate the volatility of microstructure noise.

rit − b̂if̂t can be written as the sum of εit and a microstructure noise component:

rit − b̂if̂t = εit +

(
ci − 1

p
biW

′c

)
(gt − gt−∆) + (ηt − ηt−∆) (3.18)

By applyingRVall to rit−b̂if̂t, we get a consistent estimator of the volatility of
(
ci − 1

p
biW

′c
)

(gt−
gt−∆) + (ηit − ηit−∆). Since volatility of factors in the noise equation are assumed to be con-
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stant, we have the following equation

RVall(rit − b̂if̂t) =

(
ci − 1

p
biW

′c

)
(2Σ̂g)

(
ci − 1

p
biW

′c

)′
+ 2Σ̂ηii

(3.19)

Thus, an estimator of Ση is given by

Σ̂ηii
=

1

2
RVall(rit − b̂if̂t) −

(
ĉi − 1

p
b̂iŴ

′
ĉ

)
Σ̂g

(
ĉi − 1

p
biŴ

′
ĉ

)′
(3.20)

Based on (3.15), (3.16) and (3.20), the variance of microstructure noise of each stock can

easily be recorvered: ∀i = 1, ..., p

σ̂2
ui

= ĉiΣ̂g ĉ
′

i + Σ̂ηii
(3.21)

3.3.3 Estimation of the frictionless return

In the high frequency financial econometrics literature, frictionless prices, i.e true prices, are

usually assumed to be latent. Recorded prices are noisy and additively contaminated with

microstructure noise (bid-ask bounces, discreteness of price changes, differences in trade

sizes or informational content of price changes, gradual response of prices to a block trade,

strategic component of the order flow, inventory control effects, etc. See, e.g, Aït-Sahalia and

Yu (2009)). The presence of such noise has a negative impact in the estimation of objects of

interest such as the integrated volatility, the spot volatility, leverage effects, integrated betas,

etc. Thus, accuracy can be improved if the latent return is estimated prior to the use (See,

e.g, Chaker (2017)).

The aim of this section is to take advantage of estimates of the common component of

the microstructure noise, in order to estimate frictionless returns.

From assumptions of the model, it is easily established that

rit = r∗it + ci(gt − gt−∆) + (ηit − ηit−∆) (3.22)

Writting things differently, we get

r∗it = rit − ci(gt − gt−∆) − (ηit − ηit−∆) (3.23)
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Since we know how to estimate ci and (gt − gt−∆), we propose the following quantity to

estimate the latent return

r̂∗it = rit − ĉi ̂(gt − gt−∆),∀i = 1, ..., p (3.24)

where ri is the observed return of the asset i, ĉi and ̂(gt − gt−∆) are given respectively by

equations 3.15 and 3.12.

Based on an artificial set of data, we can assess the accuracy gain generates by our new

procedure when estimating the integrated volatility or the integrated covolatility of processes.

Depending on the noise level present on our estimate of the latent returns, our estimator can

be either RV (r̂∗i ) or PRV (r̂∗i ). These estimators can be compared to the Kernel estimator

Ker(ri), the pre-averaging estimator PRV (ri) and the realized variance RV (ri).

We can replicate a two factors model in which prices are observed with noise. Parameters

can be set as in Bollerslev, Meddahi, and Nyawa (2018)

• The loading factors b can be generated such that elements of the kth column bk, for

k = 1, 2, follow a normal law with mean 0 and standard deviation 1: bik ∼ N(0, 1), ∀
i = 1, ..., p.

• The two factor components in the frictionless return representation can be generated

by the following model: ∀k = 1, 2

fkt = σfktdBkt

with Bkt a brownian motion and σfkt generated by a GARCH diffusion model,

dσ2
fkt = κfk

(
θfk − σ2

fkt

)
dt+ λfkσ

2
fktdWkt

• The idiosyncratic error term in the factor representation can be assumed to satisfy

εit = σitdW
ε
it

with W ε
it a brownian motion such that W ε

it ⊥ W1t,W2t and W ε
it ⊥ B1t, B2t, with the

spot volatility generated by three different representative models:

– For 1 ≤ i ≤ p/3, the volatility of the idiosyncratic component can be generated

by a Nelson GARCH diffusion limit model as in Barndorff-Nielsen and Shephard

(2002):
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d(σ2
it) = (θ∞ − σ2

it) dt+ ησ2
itdB

ε
it,

– For p/3 < i ≤ 2p/3, the volatility process can be assumed to follow a geometric

Ornstein-Uhlenbeck (OU) model as in Barndorff-Nielsen and Shephard (2002):

dlog(σ2
it) = κ (σ + log(σ2

it)) dt+ νdBε
it,

– For 2p/3 < i ≤ p, the volatility can follow a GARCH diffusion model:

dσ2
it = κε (θε − σ2

it) dt+ γεσitdB
ε
it,

• The slope in the factor representation of the microstructure noise can be such that:

ci ∼ N(1, 1), ∀i = 1, ..., p;

• As in Barndorff-Nielsen, Hansen, and Shephard (2008a), microstructure noise variance

of the asset i can satisfy the equality: V ar(ui) = ξ2
√

1
n

∑n
t=1 σ

4
it, with ξ2 the noise-

to-signal ratio and σit the spot volatility of the true price process of asset i at time

t.

3.4 Empirical Study

The aim of this section is to study the information contain of microstructure noise. This will

be achieved by comparing microstructure noise extracted factors to some observable financial

characteristics such as liquidity measures. Information on links between microstructure noise

common factors and liquidity measures has important implications for asset management,

statistical arbitrage or proprietary trading (see, e.g., Aït-Sahalia and Yu (2009)).

Our study relies on stocks included in the S&P500 during the period spanning January

2007 to December 2011. Those data come from the TAQ Database of WRDS. Price data are

available at a high frequency intraday level. We clean the data following the procedures in

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011b). This leaves us with a total of 384

stocks.

Based on our high dimensional set of price intraday data, and following the methodology

described in Bollerslev, Meddahi, and Nyawa (2018), we compute estimates of factors and

loadings of the latent return equation, namely f̂t and b̂. The next step consists on applying

the estimation strategy developped in section 3 in order to extract the factor component of

microstructure noises. These steps are carried out for each trading day within the sample.
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For a given day, the main output is an intra day time series of microstructure noise factors
̂(gt − gt−∆). The latter variable will be compared to some popular liquidity measures.

Data of liquidity measures come from the WRDS database and concern:

• Spread: the difference between the closing ask and bid prices;

• Trade size: the average number of shares per trade;

• Number of trades: the number of trades made on the Stock Market for a given

security;

• Daily share volume: the total number of shares of a stock sold on a given day,

expressed in units of one share;

• Total shares outstanding: the number of publicly held shares, recorded in thousands.

Liquidity measures are observed for each stock during the period spanned, at a daily

frequency. For a comparison purpose, firstly, the frequency of extracted factors of the mi-

crostructure noise ̂(gt − gt−∆) must be daily. This is not yet the case since estimated factors

of noise are in an intraday frequency. To overcome this issue, we use as daily value of
̂(gt − gt−∆), its closing value. Alternative aggregation technics are possible, such as the sum

or the mean of intraday observations. Secondly, for each liquidity measure, the correponding

available panel data must be transformed to obtain one index with whom the daily measure

of ̂(gt − gt−∆) will be compared. We consider the cross-sectional average of each liquidity

measure as a market-wide liquidity measure. The underlying assumption behind this trans-

formation of the data is that liquidity across many different stocks could co-move (See, e.g.,

Aït-Sahalia and Yu (2009) for futher explanation). Another option for getting market-wide

liquidity measures is through the PCA based on panel data of each liquidity measure. This

technic will provide factors which drive each liquidity measure and these factors will be com-

pared to microstructure noise factors. The two approaches are going to be considered in this

paper.

The following graphics represent the dynamics of five first extracted factors of microstruc-

ture noises. We only care about the first five factors, since, using the same dataset, Bollerslev,

Meddahi, and Nyawa (2018) established that those factors can explain around 63% of the to-

tal variability of microstruture noise. Since those extracted factors can be noisy, we consider

their serial monthly average in order to reduce the impact of estimation errors.
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Figure 3.1. Dynamics of some microstructure noise common factors: monthly frequency.
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As in Aït-Sahalia and Yu (2009), the information contain of microstruture noise can

also be assessed using its volatility time series. Another empirical exercise will consist on

comparing the daily quadratic variation of extracted microstructure noise factors to liquidity

measures. We represent in the following graphics the dynamics of daily quadratic variations

for the five first factors of microstructure noises.
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Figure 3.2. Dynamics of some microstructure noise common factors.
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3.4.1 Information Content of microstructure noise factors

We want to measure the extent to which our extracted factors of microstructure noises

correlate with liquidity measures. To achieve this goal, we will run a set of regressions of the

following form:

gkt = ck + αkxt + εkt (3.25)

where gkt is the kth extracted factor of microstructure noises (or its daily quadratic variation),

and xt is a vector of market-wide liquidity measures available in the literature (spread, trade

size, number of trades, daily share volume, total share outstanding). Market-wide liquidity

measures are computed from the panel of each liquidity measure by taking the cross sectional

average or by running a principal component analysis from which the first factor will be

considered. The sampling frequency is daily for regressions involving quadratic variations

of microstructure noise, and monthly for regressions with extracted factor of microstructure

noises.
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The following tables present results of theses different regressions, starting from regres-

sions based on extracted factor of microstructure noises.

Table 3.1. Regression of the MSN first factor on liquidity measures

Estimate Std.Error Error t. value Pr(>|t|)

Spread 0.474 0.227 2.084 0.041 *

log(Price) -1.097 0.706 -1.555 0.125

log(Share.outsd) 6.521 2.401 2.716 0.008 **

log(V olume) -9.329 7.224 -1.291 0.201

log(Nb.trades) 9.303 7.157 1.300 0.198

trade.size 0.041 0.042 0.981 0.330

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.627 on 65 degrees of freedom.

R2: 0.235, Adj.R2: 0.164. F-stat: 3.327 on 6 and 65 DF, p-value: 0.006413

Table 3.2. Regression of the MSN second factor on liquidity measures

Estimate Std.Error Error t. value Pr(>|t|)

Spread 0.337 0.177 1.898 0.042 *

log(Price) -0.712 0.628 -1.133 0.261

log(Share.outsd) 0.850 1.763 0.482 0.632

log(V olume) -1.590 4.884 -0.326 0.746

log(Nb.trades) 1.530 4.759 0.322 0.749

trade.size 0.007 0.027 0.266 0.791

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.562 on 66 degrees of freedom.

R2: 0.115, Adj.R2: 0.034. F-stat: 1.422 on 6 and 66 DF, p-value: 0.2196
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Table 3.3. Regression of the MSN third factor on liquidity measures

Estimate Std.Error Error t. value Pr(>|t|)

α -0.254 0.137 -1.851 0.069 .

∆Spread 7.691 3.839 2.003 0.049 *

∆log(Price) 2.030 1.397 1.453 0.151

∆log(Share.outsd) 2.799 5.227 0.535 0.594

∆log(Nb.trades) -0.136 0.385 -0.353 0.725

∆trade.size 0.338 0.816 0.414 0.680

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.520 on 66 degrees of freedom.

R2: 0.182, Adj.R2: 0.112. F-stat: 1.422 on 5 and 65 DF, p-value: 0.335

Table 3.4. Regression of the MSN fourth factor on liquidity measures

Estimate Std.Error Error t. value Pr(>|t|)

Spread 0.179 0.151 1.185 0.240

log(Price) -1.383 0.467 -2.961 0.004 **

log(Share.outsd) 0.357 1.590 0.225 0.823

log(V olume) 1.711 4.784 0.358 0.722

log(Nb.trades) -1.822 4.739 -0.384 0.702

trade.size -0.008 0.028 -0.280 0.780

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.520 on 66 degrees of freedom.

R2: 0.289, Adj.R2: 0.223. F-stat: 1.422 on 5 and 65 DF, p-value: 0.001
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Table 3.5. Regression of the MSN fifth factor on liquidity measures

Estimate Std.Error Error t. value Pr(>|t|)

α -0.061 0.092 -0.665 0.508

∆Spread 1.163 2.586 0.450 0.654

∆log(Price) 2.089 0.941 2.221 0.030 *

∆log(Share.outsd) -0.164 3.521 -0.047 0.963

∆log(Nb.trades) -0.025 0.259 -0.097 0.923

∆trade.size -0.370 0.549 -0.674 0.503

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.520 on 66 degrees of freedom.

R2: 0.289, Adj.R2: 0.223. F-stat: 1.422 on 5 and 65 DF, p-value: 0.001

From these previous regression results, it comes out that microstrucutre noise common

factors are mostly related to the average spread, the average price level and the average

share outstanding. More precisely, average spread and average share outstanding are the

more significant explanatory variables of the first factor. The second and the third factors

are highly related to the average spread while the fourth and the fifth factors are strongly

correlated to the average price level.

We now look at results of regressions based on daily quadratic variation of extracted

microstructure noise factors and liquidity measures. Tables below display those results. We

obtain that volatility of microstructure noise factors are highly correlated with the considered

liquidity measures, namely: the average spread, the average price level, the average number

of publicly held shares, the average number of trades, the average number of shares sold and

the average number of shares per trade.
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Table 3.6. Regression of the volatility of the MSN first factor on liquidity measures.

Estimate Std.Error Error t. value Pr(>|t|)

α -2.478 0.995 -2.490 0.013 *
Spread 0.029 0.007 4.273 0.000 ***
log(Price) -0.658 0.020 -32.102 0.000 ***
log(Share.outsd) 0.105 0.071 1.477 0.140
log(V olume) 0.621 0.147 4.235 0.000 ***
log(Nb.trades) -0.490 0.145 -3.384 0.001 ***
trade.size -0.004 0.001 -4.889 0.000 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Residual standard error: 0.105 on 1502 degrees of freedom.

R2: 0.662, Adj.R2: 0.661. F-stat: 490.1 on 6 and 1502 DF, p-value: < 2.2e-16

Table 3.7. Regression of the volatility of the MSN second factor on liquidity measures.

Estimate Std.Error Error t. value Pr(>|t|)

α -1.345 0.637 -2.112 0.035 *
Spread 0.021 0.004 4.850 0.000 ***
log(Price) -0.495 0.013 -37.795 0.000 ***
log(Share.outsd) 0.097 0.045 2.144 0.032 *
log(V olume) 0.366 0.094 3.896 0.000 ***
log(Nb.trades) -0.298 0.093 -3.217 0.001 **
trade.size -0.003 0.001 -4.728 0.000 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Residual standard error: 0.067 on 1502 degrees of freedom.

R2: 0.699, Adj.R2: 0.697. F-stat: 580.8 on 6 and 1502 DF, p-value: < 2.2e-16

Table 3.8. Regression of the volatility of the MSN third factor on liquidity measures.

Estimate Std.Error Error t. value Pr(>|t|)

α -0.747 0.523 -1.428 0.154
Spread 0.020 0.004 5.491 0.000 ***
log(Price) -0.441 0.011 -40.979 0.000 ***
log(Share.outsd) 0.064 0.037 1.714 0.087 .
log(V olume) 0.322 0.077 4.181 0.000 ***
log(Nb.trades) -0.275 0.076 -3.610 0.000 ***
trade.size -0.002 0.000 -5.011 0.000 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Residual standard error: 0.055 on 1502 degrees of freedom.

R2: 0.718, Adj.R2: 0.717. F-stat: 638.9 on 6 and 1502 DF, p-value: < 2.2e-16
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Table 3.9. Regression of the volatility of the MSN fourth factor on liquidity measures.

Estimate Std.Error Error t. value Pr(>|t|)

α -0.524 0.462 -1.135 0.257
Spread 0.022 0.003 7.000 0.000 ***
log(Price) -0.409 0.010 -43.044 0.000 ***
log(Share.outsd) 0.073 0.033 2.200 0.028 *
log(V olume) 0.239 0.068 3.504 0.000 ***
log(Nb.trades) -0.202 0.067 -3.007 0.003 **
trade.size -0.002 0.000 -4.396 0.000 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Residual standard error: 0.048 on 1502 degrees of freedom.

R2: 0.729, Adj.R2: 0.728. F-stat: 675.4 on 6 and 1502 DF, p-value: < 2.2e-16

Table 3.10. Regression of the volatility of the MSN fifth factor on liquidity measures.

Estimate Std.Error Error t. value Pr(>|t|)

α -0.254 0.416 -0.609 0.543
Spread 0.021 0.003 7.303 0.000 ***
log(Price) -0.382 0.009 -44.627 0.000 ***
log(Share.outsd) 0.065 0.030 2.177 0.030 *
log(V olume) 0.184 0.061 3.006 0.003 **
log(Nb.trades) -0.153 0.061 -2.531 0.011 *
trade.size -0.001 0.000 -3.971 0.000 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Residual standard error: 0.044 on 1502 degrees of freedom.

R2: 0.740, Adj.R2: 0.738. F-stat: 711.5 on 6 and 1502 DF, p-value: < 2.2e-16
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3.5 Conclusion

We provide a new methodology to estimate microstructure noise characteristics and fric-

tionless prices under a high dimensional setup. We rely on factor assumptions both in

latent returns and microstructure noise. Inspired from the principal component analysis,

the methodology is able to estimate rotations of common factors, corresponding loading co-

efficients and volatilities from the microstructure noise factorial representation, for a huge

number of stocks.

We show how we can take advantage of estimates of the common factor component

of microstructure noises, firstly in order to estimate frictionless returns, and secondly to

improve the accuracy when estimating the integrated volatility or the integrated covolatility

of processes.

Using stocks included in the S&P500 during the period spanning January 2007 to De-

cember 2011, we estimate factors in the microstructure noise factorial representation and

compare them to some market-wide liquidity measures computed from real financial vari-

ables. We obtain that: the first factor is correlated to the average spread and the average

number of shares outstanding; the second and third factors are related to the spread; the

fourth and fifth factors are significantly linked to the closing average log price level. In ad-

dition, volatilities of those microstructure noise factors are widely explained by the average

spread, the average volume, the average number of trades and the average trade size.
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