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Abstract

A group of agents located along a river have quasi-linear preferences over water and money.

We ask how the water should be allocated and what money transfers should be performed.

We are interested in eÆciency, stability (in the sense of the core), and fairness (in a sense

to be de�ned). We �rst show that the cooperative game associated with that problem is

convex: its core is therefore large and easily described. Next, we propose the following fairness

requirement: no group of agents should enjoy a welfare higher than what it could achieve in

the absence of the remaining agents. We prove that only one welfare distribution in the core

satis�es this condition: its marginal contribution vector corresponding to the ordering of the

agents along the river. We discuss how it could be decentralized or implemented.
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1 Introduction

Water is essential to life. Man consumes it for a variety of purposes | from drinking, cooking

and washing to agricultural and industrial uses. Due to population growth and industrial-

ization, demand has tremendously increased. On most of the earth's surface, water has now

become a locally scarce resource. We are interested here in the problem of sharing river

water. This is a challenge of considerable practical importance. Two hundred river basins in

the world are shared: 148 by two countries, 30 by three, 9 by four, and 13 by �ve or more

countries (Barret, 1994). While many countries do coordinate their consumptions (Egypt and

Sudan, for instance, signed the Nile treaty, while Mali, Mauritania and Senegal founded the

\Organisation pour la Mise en Valeur du 
euve S�en�egal"), international disputes do occur.

Two important principles are advocated in such disputes (see, e.g., Kilgour and Dinar, 1996).

The theory of unlimited territorial integrity forbids a country to alter the natural conditions

on its own territory to the disadvantage of a neighboring country. It was put forward by

Egypt to claim the right to the continued and uninterrupted 
ow of water from the Nile river.

The theory of absolute territorial sovereignty1, on the other hand, states that a country has

absolute sovereignty over the area of any river basin on its territory: it may freely dispose

of the water 
owing within its borders but cannot claim the continued and uninterrupted


ow from upper basin countries. In response to the Nile treaty between Egypt and Sudan,

Ethiopia invoked this doctrine to claim the right to exploit the Nile waters originating on its

territory (Godana, 1985). The two doctrines are in obvious con
ict, which illustrates well the

tensions at work when sharing a river.

Sharing a resource over which property rights are not well de�ned is notoriously problem-

atic. The economic theory literature has stressed that decentralized noncooperative behavior

typically leads to ineÆciency. In particular, if agents have free access to the resource and

if their marginal net bene�ts are decreasing and eventually negative, the resource is overex-

ploited in equilibrium: this is the famed \tragedy of the commons" (see Hardin, 1968 and

Ostrom, 1990 for many examples). But sharing river water involves a twist due to the fact

1Also called the Harmon doctrine because it was �rst authoritatively stated by Judson Harmon, attorney-

general of the United States, in a declaration made in 1895 concerning the Rio Grande.
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that agents have unequal access to the resource. It is that twist that interests us.

Consider the case where only two agents (who could be countries) are located along a river

with no tributaries; their preferences over water and money are quasi-linear, and marginal

net bene�ts from water consumption are decreasing but always positive. To keep our point

as simple as possible, suppose also that water is a completely rival good. In equilibrium, the

upstream agent leaves nothing for the consumption of the other: this, of course, is typically

ineÆcient. In a model with more agents and possible tributaries, and as long as water is

not a fully nonrival good, agents located upstream still have a tendency to overconsume. In

order to maximize social welfare, i.e., the sum of all agents' bene�ts, it is often necessary that

upstream agents limit their own consumption so as to increase that of downstream agents

whose marginal bene�ts are higher. Clearly, inducing the upstream agents to do so requires

some compensatory payments.

But exactly what payments? While choosing a water consumption plan determines the

level of social welfare, choosing the compensatory payments determines the distribution of

that welfare. In abstract terms, therefore, the central diÆculty is to agree on a welfare

distribution. (Alternatively, if allocating property rights over the water may lead to eÆciency,

the agents still have to agree on how to distribute these rights: see Section 6). Our purpose

is to propose simple principles to do so. By contrast, the policy-oriented literature on river

water allocation, which is enormous (see, e.g., the numerous references in Dinar et al., 1997),

is primarily concerned with the problem of designing suitable institutions or mechanisms for

sharing water. This is undoubtedly of crucial importance, but it should be kept in mind that

di�erent mechanisms generally lead to di�erent welfare distributions. We therefore believe

that elementary principles for comparing such distributions are essential guidelines to evaluate

and recommend particular institutional arrangements.

In a nutshell, we contend that a sustainable welfare distribution should be stable and fair.

Stability is understood here in the sense of the core. The location of an agent along the river

determines the quantity of water he controls de facto and, thereby, the welfare he can secure

to himself. In the two-agent case with no tributaries, for instance, the upstream agent can

secure to himself the bene�t of consuming the total 
ow while the downstream agent can
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secure nothing. Likewise, the secure welfare of an arbitrary coalition of agents is the highest

welfare it can achieve by allocating to its members the water that they control. A welfare

distribution in the core gives to each coalition at least its secure welfare. We emphasize that

these core constraints stem from the e�ective power structure, not from a legal one: agents

have no obvious property rights on the river.

Fairness is admittedly a delicate and complex issue. In this paper, we suggest one, fairly

minimal, criterion. Every agent, in the absence of the others, would be able to consume

the full stream of water running through his location, thereby achieving what we call his

aspiration welfare level. Sharing the river involves negative externalities in the precise sense

that it is impossible to guarantee to every agent his aspiration level. We therefore suggest

that everyone should take up a share of these externalities; certainly no one should end up

above his aspiration welfare. Pushing the argument one step further, we de�ne the aspiration

welfare level of an arbitrary coalition of agents to be the highest welfare it could achieve in

the absence of the others. Our fairness criterion requires that no coalition should enjoy more

than its aspiration welfare.

The main purpose of the paper is to show that the core stability constraints (which we

view as inescapable) and the upper bounds de�ned by the coalitional aspiration levels (which

we regard as minimal) yield a unique welfare distribution. According to this distribution, an

agent's welfare is just his marginal contribution to the coalition composed of his predecessors

along the river. We brie
y discuss how this welfare distribution could be implemented.

2 A formal statement of the problem

A river 
ows through a number of countries, regions or cities, henceforth called agents, whose

set is denoted by N = f1; :::; ng. We identify agents with their location along the river and

number them from upstream to downstream: i < j means that i is upstream from j. We

assume that di�erent agents are located at di�erent points along the river. If S; T � N; we

write S < T if i < j for every i 2 S and every j 2 T: We denote by minS and maxS,

respectively, the smallest and largest members of S. It will be convenient to de�ne the
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sets of predecessors and followers of agent i, respectively, by Pi = fj 2 N : j � ig and

Fi = fj 2 N : i � jg; and the sets of his strict predecessors and followers by P 0i = Pinfig

and F 0i = Finfig: We often write i instead of fig.

The river picks up volume along its course: the 
ow at its source, e1 > 0 , is increased

by the amount ei � 0 between locations i � 1 and i; say, without loss of generality, at i: A

schematic representation is given in Figure 1.

A (possibly composite) perfectly divisible good, that will be called money, is available in

unbounded quantities to perform side-payments.. Agents value money and the water from the

river. Agent i0s utility from consuming xi units of water and receiving a net money transfer

ti is ui(xi; ti) = bi(xi) + ti: We call bi : R+ ! R agent i's bene�t function. It is assumed

to be di�erentiable at every xi > 0, strictly increasing, and strictly concave. We denote its

derivative by b0i and assume that b0i(xi) goes to in�nity as xi tends to 0. As a normalization,

we assume bi(0) = 0: The list (N; e; b); where e = (e1; :::; en) and b = (b1; :::; bn); constitutes

our problem.

A consumption plan ( for N) is any vector x 2 RN
+ : For an arbitrary nonempty coalition

S � N; xS 2 RS
+ denotes the restriction of x to S : it is a consumption plan for S. An allocation

is a vector (x; t) = (x1; :::; xn; t1; :::; tn) 2 RN
+ �RN satisfying the feasibility constraints

X
i2N

ti � 0; (1)

X
i2Pj

(xi � ei) � 0 for every j 2 N: (2)

It is important to note that the water stream ei can only be consumed by the followers of

i: This makes our problem di�erent from that of allocating a stock of some standard private

good with the possibility of side-payments.

A welfare distribution is any vector z = (z1; :::; zn) 2 RN which is the utility image of some

allocation (x; t) in the sense that zi = bi(xi) + ti for each agent i.

Two important features of the model must be stressed. First, as is clear from the feasibility

constraints (2.2), water is considered here to be a pure private good. In fact, it is to a large

extent a nonrival good. Many forms of consumption by an agent do not destroy the water

and leave its 
ow, or at least part of it, available for the consumption of downstream agents:

5



see Young and Haveman (1985) for a discussion. If water was a pure nonrival good, however,

there would be no consumption sharing problem at all. We therefore focus exclusively on the

rival forms of consumption. This is not to say that the partially nonrival nature of water does

not raise problems, but we ignore them here.

The second feature is that the marginal costs of consumption never exceed the marginal

bene�ts, as re
ected by the assumption that the bi functions are increasing over the whole

nonnegative real line. This assumption is not standard in the literature on common property

resources: the reason, of course, is that the tragedy of the commons arises only if marginal

costs eventually do exceed marginal bene�ts. In our model, however, noncooperative behavior

is ineÆcient even when net bene�ts are always increasing; moreover, the assumption allows

us to focus on the type of ineÆciency that is particular to sharing river water, namely, the

tendency for upstream agents to overconsume relative to downstream agents.

3 EÆciency

Because preferences are quasi-linear, an allocation (x�(N); t�(N)) is (Pareto) eÆcient if and

only if it maximizes the sum of all agents' bene�ts and wastes no money. We call x�(N) an

optimal consumption plan.

This section describes the structure of an optimal consumption plan. In fact, we consider

consumption plans maximizing the total bene�t of an arbitrary coalition S � N under a

more general set of constraints than just the corresponding feasibility conditions. We state

a number of lemmata concerning such plans, and how they are a�ected by changes in the

constraints. These lemmata, which are proved in Appendix 1, will be used repeatedly in

Sections 4 and 5.

Let ; 6= S � N and let T � S. Throughout Section 3 and Appendix 1, T and S are �xed

and all agents under consideration are understood to be members of S: We therefore often

simplify notations by dropping reference to S; for instance, i � j means that i 2 Pj \ S; and
P

i xi means
P

i2S xi:

Notation. Fix two numbers �; ! that are admissible in the sense that 0 � � and 0 �
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! �
P

i ei + �: Fix also a consumption plan xT that is feasible for T in S given �; !) in the

sense that there exists a consumption plan x for S satisfying the constraints

xT = xT (3)

and

X
i�j

(xi � ei) � �� �j! (4)

for every j 2 S; where �j = 1 if j = maxS and �j = 0 otherwise. Denote by x�(S;�; !; xT ) any

consumption plan for S that maximizes
P

i bi(xi) subject to those constraints. Extending our

terminology, we call such a plan optimal. If T = ;, we alleviate notations and write x�(S;�; !)

instead of x�(S;�; !; x;): If � = ! = 0; we write x�(S; xT ) instead of x�(S; 0; 0; xT ) and x�(S)

instead of x�(S; 0; 0; x;):

The parameter � may be viewed as an extra 
ow made available at minS for possible

consumption by any member of S while ! is interpreted as a minimal 
ow that must be left

over by S at maxS: For any admissible �; ! and any feasible xT ; our assumptions guarantee

that the optimal plan x�(S;�; !; xT ) is unique. It is described in Lemma 1 below.

Lemma 1. If
P

i�j(x
�
i (S;�; !; xT ) � ei) = � � �j! for some j , let S� be the set of

predecessors in S of the largest such j ; set S� = ; otherwise. Then, i) SnT � S� and ii) if

S� 6= ;, there is a partition fS�kgk=i;:::;K of S� and a list f�kgk=1;:::;K of positive numbers such

that

S�k < S�k0 and �k � �k0 whenever k < k0; (5)

b0i(x
�
i (S;�; !; xT )) = �k for every i 2 S�knT and every k = 1; :::K; and (6)

X
i2S�

k

(x�i (S;�; !; xT )� ei) = �� �maxS�
k
! for every k = 1; :::; K: (7)

According to Lemma 1, the marginal bene�ts of the agents in SnT decrease weakly as

we move downstream. Moreover, if two agents in SnT; say, j < j 00, have di�erent marginal

bene�ts, some constraint must be binding between them: there exists j 0 2 S; j � j 0 < j 00;

such that
P

i�j0(xi � ei) = �:
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In our next three lemmata, we formulate useful monotonicity | or solidarity| properties

of optimal plans. We use the vector inequality notation �; <;� : The �rst two results assert

that the consumption of no member of S at an optimal plan can be reduced if more water is

made available at minS or if less water must be left over at maxS:

Lemma 2. For any admissible �; !;and any feasible xT ; � � �0 ) x�(S;�; !; xT )

� x�(S;�0; !; xT ):

Lemma 3. For any admissible �; !0; and any feasible xT ; 0 � ! � !0 ) x�(S;�; !; xT ) �

x�(S;�; !0; xT ):

These lemmata can be used to show that decreasing the consumption of the members of

T cannot reduce the consumption of anyone in SnT: This is the content of our next lemma.

Lemma 4. Suppose T 6= S. For any admissible �; ! and any feasible xT ; 0 � yT �

xT ) x�SnT (S;�; !; yT ) � x�SnT (S;�; !; xT ):

With these results in hand, we are now ready to analyze the cooperative game generated

by our problem.

4 Core stability: lower bounds on welfare

Following Greenberg and Weber (1986), we call a coalition S consecutive if k 2 S whenever

i; j 2 S and i < k < j: If S is consecutive, we call

v(S) =
X
i2S

bi(x
�
i (S)) (8)

the secure bene�t of S: Now, every coalition T admits a unique coarsest partition into con-

secutive components: denote it T: The secure bene�t of T obtains by summing up the secure

bene�ts of its consecutive components,

v(T ) =
X
S2T

v(S); (9)
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where v(S) is given by (4.1). Coalition T cannot secure more than (4.2) because any water

left over by one of its connected components cannot be guaranteed for the consumption of

any other component. We say that v is the game generated by the problem (N; e; b): It is an

example of what Greenberg and Weber (1986, 1993) call a \consecutive" game: one in which

only consecutive coalitions generate surplus. We insist that no property rights exist in the

problem (N; e; b) and that the game v is an expression of the natural, e�ective |but not

legal| distribution of power among agents.

A (welfare) distribution z = (z1; :::; zn) is a core distribution if
P

i2S zi � v(S) for every

S � N: An allocation that does not generate a core distribution would be unstable: some

coalition could object to it on the basis that it can secure on its own a higher welfare to

all its members. Fortunately, core distributions do exist in the present context. This is

because the game v generated by our problem is convex in the sense of Shapley (1971), i.e.,

v(S)� v(Sni) � v(T )� v(Tni) whenever i 2 S � T � N: Informally, a convex game is one

where cooperation exhibits increasing marginal returns. To prove convexity of v, the following

lemma, whose straightforward proof is in Appendix 2, will be useful.

Lemma 5. If S; T are two coalitions such that S < T; then i) x�(T ) � x�T (S [ T ) and ii)

x�S(S [ T ) � x�(S):

We are now ready to establish our claim. To put it in perspective, it might be useful to

recall that an arbitrary consecutive game is not necessarily convex.

Proposition. The game v generated by the problem (N; e; b) is convex.

Proof. Fix i 2 S � T � N: Let R be the (unique, consecutive) coalition in the partition

S containing i and let Q be the unique coalition in T containing i. Note that R � Q: Given

(4.2), we need only check that

v(R)� v(Rni) � v(Q)� v(Qni): (10)

Let RP := R \ P 0i; RF := R \ F 0i; and de�ne QP and QF similarly. Note that v(Rni) =

v(RP ) + v(RF ) and v(Qni) = v(QP ) + v(QF ): Moreover, RP � QP ; RF � QF ; and R;RP ; RF

as well as Q;QP ; QF are all consecutive.
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Step 1. We claim that

v(RP [ i)� v(RP ) � v(QP [ i)� v(QP ); (11)

v(RF [ i)� v(RF ) � v(QF [ i)� v(QF ): (12)

To prove (4.4), let dj = x�j(RP )�x�j (RP [ i) for each j 2 RP : This quantity is nonnegative

because of Lemma 5. By de�nition,

v(RP [ i)� v(RP ) =
X
j2RP

[bj(x
�
j(RP )� dj)� bj(x

�
j(RP ))] + bi(ei +

X
j2RP

dj): (13)

Next, de�ne the following consumption plan for the consecutive coalition QP [ i :

x0j =

8>>>>><
>>>>>:

x�j(QP ) if j 2 QPnRP ;

x�j(QP )� dj if j 2 RP ;

ei +
P

j2RP
dj if j = i:

9>>>>>=
>>>>>;

By de�nition of the increments dj; this consumption plan meets the same feasibility constraints

as x�(QP [ i); note in particular that x0j � 0 for every j 2 RP because Lemma 5 guarantees

that x�j(QP ) � x�j(RP ): Therefore,

v(QP [ i)� v(QP ) �
X
j2RP

[bj(x
�
j(QP )� dj)� bj(x

�
j(QP ))] + bi(ei +

X
j2RP

dj): (14)

Moreover, by concavity of the bene�t functions, bj(x
�
j(RP )� dj)� bj(x

�
j(RP )) � bj(x

�
j(QP )�

dj)� bj(x
�
j(QP )) � 0 for every j 2 RP : Taking these inequalities into account, (4.6) and (4.7)

imply (4.4). The same argument, mutatis mutandis, establishes (4.5).

Step 2. By repeated application of (4.4) and (4.5), we obtain v(RP [ QF [ i) � v(RP [

RF [ i) � v(QF [ i)� v(RF [ i) and v(QP [QF [ i)� v(RP [QF [ i) � v(QP [ i)� v(RP [ i):

Therefore,

v(Q)� v(R)

= [v(QP [QF [ i)� v(RP [QF [ i)] + [v(RP [QF [ i)� v(RP [ RF [ i)]

� [v(QP [ i)� v(RP [ i)] + [v(QF [ i)� v(RF [ i)]

� v(QP )� v(RP ) + v(QF )� v(RF )

= v(Qni)� v(Rni);
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where the second inequality holds again because of (4.4) and (4.5). We are done. 2

The above proposition is important because the core of a convex game has a simple and

well-known structure. If � is a bijection from N to N , the so-called marginal contribution

vector z� is the welfare distribution assigning to each agent his marginal contribution to the

coalition made up of his strict predecessors in the ordering generated by �; i.e., z�i = v(fj :

�(j) � �(i)g)� v(fj : �(j) < �(i)g) for every i 2 N: Shapley (1971) has shown that the core

of a convex game is the convex hull of all the marginal contribution vectors.

Two particular welfare distributions occupying distinguished positions in the core of a

convex game are the Shapley value and the Dutta-Ray (1989) constrained egalitarian welfare

distribution. The former is the barycenter of the core; the latter is the unique maximal element

of the Lorenz partial order in the core. While these two welfare distributions are certainly of

interest in our problem, we emphasize that they are de�ned from the sole knowledge of the

game v: This, we believe, is a shortcoming. If the game v generated by the problem (N; e; b) is

all that counts from the stability viewpoint of the core, it does not contain all the information

that is relevant to a complete analysis. We contend, in particular, that the problem (N; e; b)

generates upper bounds on welfare that are very appealing from the viewpoint of fairness.

5 Fairness: upper bounds on welfare

In the absence of the other agents, agent i would be able to consume the full stream of water

running through his location, thereby enjoying his aspiration welfare

w(i) = bi(
X
j2Pi

ej):

Of course, the welfare distribution (w(1); :::; w(n)) is not feasible:
P

i2N w(i) > v(N) as soon

as N contains at least two agents. In Moulin's (1990a) terms, the problem (N; e; b) exhibits

negative group externalities. In such a context, it is natural to ask that everyone takes up a

share of these externalities; certainly no one should end up above his aspiration welfare.

This argument generalizes to coalitions in a very natural way. The aspiration welfare of

an arbitrary coalition S is the highest welfare it could achieve in the absence of NnS: It is
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obtained by choosing a consumption plan xS maximizing
P

i2S bi(xi) subject to the constraints

X
j2Pi\S

xj �
X
j2Pi

ej for every i 2 S: (15)

This problem has a unique solution, which we denote by x��(S): The aspiration welfare of S

is thus

w(S) =
X
i2S

bi(x
��
i (S))

and we say that a welfare distribution z satis�es the aspiration upper bounds if
P

i2S zi � w(S)

for every S � N:

Combining these fairness upper bounds with the core lower bounds yields a remarkable

result. It turns out that only one welfare distribution passes both tests: it is the downstream

incremental distribution z� de�ned by z�i = v(Pi)� v(P 0i) for each i 2 N: Notice that since

the game v is convex, z� admits a simple characterization: among all core distributions, it is

the one that lexicographically maximizes the welfare of agents n; n� 1; :::; 2; 1:

Theorem. The downstream incremental distribution z� is the unique core distribution

satisfying the aspiration upper bounds.

We will use an additional piece of notation and a lemma. If ; 6= S � N; T � S, and

xT is feasible for T in S, de�ne v(S; xT ) =
P

i2S bi(x
�
i (S; xT )), where we recall that x

�(S; xT )

maximizes the total bene�t to S subject to allocating xT to T .

Lemma 6. Let s; q 2 N; s < q; and de�ne S := Ps; Q := Pq: Let ; 6= T � S; and let xT

be feasible for T in S: Then, 0 � yT � xT ) v(S; yT )� v(S; xT ) � v(Q; yT )� v(Q; xT ):

The proof of this fact may be found in Appendix 2. We are now ready to establish our

theorem.

Proof of the Theorem. The argument is divided into three steps.

Step 1: The downstream incremental distribution z� is a core distribution.

The distribution z� is just the marginal contribution vector corresponding to the ordering

1; :::; n: That vector is a core distribution because v is convex, as asserted by the Proposition

in Section 4.
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Step 2: If a core distribution z satis�es the aspiration upper bounds, then z = z�:

Key to the proof is the straightforward observation that v(Pi) = w(Pi) for every i 2 N:

Since this is true for i = 1; the core inequalities and the aspiration upper bounds immediately

imply that z1 = z�1 : Next, proceed inductively. Fix j < n and suppose zi = z�i for all i � j:

Since v(P (j + 1)) = w(P (j + 1)); the core constraints and the aspiration upper bounds force
P

i2P (j+1) zi = v(P (j+1)); hence zj+1 = v(P (j +1))�
P

i2Pj zi: By the induction hypothesis,
P

i2Pj zi =
P

i2Pj z
�
i = v(Pj): Therefore, zj+1 = v(P (j + 1))� v(Pj) = z�j+1; as desired.

Step 3: z� satis�es the aspiration upper bounds.

Fix an arbitrary coalition S; write PS for P maxS; and compute

X
j2S

z�j =
X
j2S

[v(Pj)� v(P 0j)]

=
X
j2S

[v(Pj; x�PjnS(Pj))� v(P 0j)]

�
X
j2S

[v(Pj; x�PjnS(Pj))� v(P 0j; x�PjnS(Pj))]

�
X
j2S

[v(Pj; x�PjnS(PS))� v(P 0j; x�PjnS(PS))]:

The last inequality holds by Lemma 6 because Lemma 5 guarantees that x�PjnS(PS) �

x�PjnS(Pj) for every j 2 S:Writing ex(Pj) := x�(Pj; x�PjnS(PS)) and ex(P 0j) := x�(P 0j; x�PjnS(PS))

whenever j 2 S; we obtain

X
j2S

z�j �
X
j2S

[
X

i2P 0j\S

[bi(exi(Pj))� bi(exi(P 0j))] + bj(exj(Pj))]
=

X
i2S

[
X

j2F 0i\S

[bi(exi(Pj))� bi(exi(P 0j))] + bi(exi(Pi))]:
For every i 2 S; every j 2 F 0i \ S, and every k 2 F 0j \ S, Lemma 5 guarantees that

exi(P 0k) � exi(Pj) � exi(P 0j) � exi(Pi). Therefore, Pj2F 0i\S[exi(Pj)� exi(P 0j)] + exi(Pi) � 0:

By concavity of bi;

X
j2F 0i\S

[bi(exi(Pj))� bi(exi(P 0j))] + bi(exi(Pi))
� bi(

X
j2F 0i\S

[exi(Pj)� exi(P 0j)] + exi(Pi)):
Writing

yi :=
X

j2F 0i\S

[exi(Pj)� exi(P 0j)] + exi(Pi);

13



we therefore get

X
j2S

z�j �
X
i2S

bi(yi):

We complete the proof by showing that
P

i2S bi(yi) � w(S): To do so, it is certainly enough

to show that

X
i2Pj\S

(yi � ei) � 0 for every j 2 S: (16)

Fix j 2 S: Compute

X
i2Pj\S

yi =
X

i2Pj\S

X
k2F 0i\Pj\S

[exi(Pk)� exi(P 0k)]

+
X

i2Pj\S

X
k2F 0j\S

[exi(Pk)� exi(P 0k)] +
X

i2Pj\S

exi(Pi)
=

X
k2Pj\S

X
i2P 0k\S

[exi(Pk)� exi(P 0k)]

+
X

i2Pj\S

X
k2F 0j\S

[exi(Pk)� exi(P 0k)] +
X

i2Pj\S

exi(Pi);

so that �nally

X
i2Pj\S

yi =
X

k2Pj\S

[
X

i2Pk\S

exi(Pk)� X
i2P 0k\S

exi(P 0k)]

+
X

i2Pj\S

X
k2F 0j\S

[exi(Pk)� exi(P 0k)]: (17)

For every k 2 S; we have by de�nition of ex(Pk) and ex(P 0k);

X
i2Pk\S

exi(Pk) + X
i2PknS

x�i (PS) =
X
i2Pk

ei;

X
i2P 0k\S

exi(P 0k) +
X

i2P 0knS

x�i (PS) =
X
i2P 0k

ei:

Subtracting the second of these equations from the �rst and replacing in (5.3) yields

X
i2Pj\S

yi =
X

k2Pj\S

ek +
X

i2Pj\S

X
k2F 0j\S

[exi(Pk)� exi(P 0k)] �
X

k2Pj\S

ek;

where the inequality holds because exi(Pk) � exi(P 0k) whenever i 2 Pj \ S and k 2 F 0j \ S

because of Lemma 5. Since j was arbitrary, this establishes (5.2) and �nishes the proof. 2
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6 Decentralization and implementation

We argued so far that an optimal water consumption plan must be accompanied by appropri-

ate side-payments in order to lead to a sustainable welfare distribution. We further suggested

that a sustainable welfare distribution should be stable and fair. We showed how the core

stability constraints and the aspiration upper bounds pin down the so-called downstream in-

cremental distribution. That approach is quite abstract and very much cooperative in spirit:

it seeks to determine what general agreements have a better chance to be acceptable to all

parties.

The focus of the current section, by contrast, is procedural and noncooperative. We brie
y

discuss various institutional arrangements or mechanisms in which the decentralized behavior

of the concerned agents could lead to the downstream incremental welfare distribution. We

distinguish two forms of decentralized behavior: myopic competitive behavior is assumed in

the �rst subsection, sophisticated strategic behavior in the second. As most of the discussion

below involves familiar concepts, we will deliberately keep the presentation somewhat infor-

mal. We refer the reader to Moore (1992) for an introduction to the theory of implementation

under complete information.

6.1 Decentralization by markets

A simple procedure to avoid the ineÆcient use of river waters consists in assigning explicit

property rights to the concerned agents and set up markets where they can exchange these

rights. This is done in practice: in the irrigation service area of Alicante in Spain, for instance,

agents are endowed with volumetric water rights from speci�c sources which they may then

exchange in a public auction held every Sunday morning. Trade is enforced by an executive

commission elected by the members (Ostrom, 1990, Reidinger, 1994).

To formalize such a procedure in the context of our model, de�ne an array � = (�ij)i;j2N ,

where �ij is the proportion of tributary j's water owned by agent i: thus, 0 � �ij � 1

for all i; j and
P

i2N �ij = 1 for every j. The list (N; e; b;�) generates an (n + 1)-good

exchange economy in the following way. Water from each tributary j is considered as a
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separate good; agent i's endowment in that good is �ijej and endowments in money are

arbitrary. If xij denotes i's consumption of water from tributary j; xi := (xij)j2N , and ti is

the net money transfer received, agent i's preferences are represented by the utility function

Ui(xi; ti) = bi(
P

j2Pi xij) + ti. An allocation for that exchange economy is a list (x; t), where

x = (xij)i;j2N and t = (ti)i2N satisfy the constraints that
P

i2N xij � ej for every j 2 N and
P

i2N ti � 0:

A (competitive) equilibrium for (N; e; b;�) is de�ned in the obvious way. Normalizing

money endowments to zero, it is straightforward to check that i's utility at equilibrium is

zi(N; e; b;�) = bi(x
�
i )� b0i(x

�
i )x

�
i +

X
j2N

b0j(x
�
j)�ijej;

where x� is the optimal water consumption plan in the problem (N; e; b) discussed in Section

3. We may now search for an array of property rights � that would generate the downstream

incremental welfare distribution. Writing the latter z�(N; e; b) to emphasize its dependence

upon the problem at hand, we need to solve the system

zi(N; e; b;�) = z�i (N; e; b) for all i 2 N;

X
i2N

�ij = 1 for all j 2 N:

This is a linear system in �. While it may have several solutions, the important observation

is that they will typically change with the preference pro�le b: the simplest way to see this is

to note that z�1(N; e; b) = b1(e1) does not depend on (bj)j 6=1 while z1(N; e; b;�) generally does.

It is therefore necessary to know the agents' preferences in order to design property rights

that would generate the downstream incremental welfare distribution through competitive

exchange. In particular, endowing agents with equal property rights, a solution that is central

in the literature on the classical fair-division problem (Varian, 1974, Champsaur and Laroque,

1981) and important in the standard formulation of the tragedy of the commons (Moulin,

1990b), would not always lead to the downstream incremental distribution. It is easy to see

that the welfare distribution at the competitive equilibrium from equal endowments may in

fact violate the core constraints of Section 4 as well as the aspiration upper bounds of Section

5.
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6.2 Implementation through game forms

When the number of agents is small, competitive behavior is unlikely. Implementation in

the game-theoretic sense becomes important. To coordinate international river management,

countries often join institutions or sign treaties that specify negotiation rules on various mat-

ters. For instance, the \principe d'approbation des Etats" included in the treaty founding the

\Organisation pour la Mise en Valeur du 
euve S�en�egal" states that a country cannot change

the water 
ow without the consent of all members (Ambec, 1997). Such rules sometimes come

close to explicit game forms.

It is easy to implement in subgame perfect equilibrium the downstream incremental welfare

distribution | or, more precisely, the rule that associates with each conceivable preference

pro�le b the corresponding downstream incremental distribution z�(N; e; b). As we already

pointed out, that distribution lexicographically maximizes the welfare of agents n; n�1; :::; 2; 1

subject to the core constraints. This suggests an extensive game form in which n; n�1; :::; 2; 1

are successively allowed to make o�ers. If s 2 N , call an allocation for Ps any vector

(x; t) 2 RPs
+ �RPs such that

P
i2Ps ti � 0 and

P
i2Pj(xi�ei) � 0 for every j 2 Ps. In the �rst

stage, agent n proposes an allocation for Pn = N . Agents n� 1; :::; 1 are successively asked

whether they agree with the proposed allocation. If they all do, the allocation is enforced.

Otherwise, agent n gets the bundle (xn; tn) = (en; 0): Agent n � 1 may now propose an

allocation for P (n� 1); which in turn needs the unanimous successive approval of n� 2; :::; 1

to be enforced; otherwise n�1 gets (en�1; 0). If the last stage of this game form is ever reached,

agent 2 proposes an allocation for P2 which is enforced if agent 1 agrees; otherwise, 2 gets

(e2; 0) and 1 gets (e1; 0): Straightforward backwards induction shows that every subgame

perfect equilibrium of the game generated by this game form and an arbitrary preference

pro�le b yields the downstream incremental welfare distribution z�(N; e; b):

7 Concluding comments

The speci�city of the problem analyzed in this paper stems from the nature of the feasibility

constraints at play: agents are ordered and water can only be transferred downstream. We
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showed how this extremely rigid structure suggests powerful guidelines for collective choices.

Other interesting allocation problems involve highly structured feasibility constraints rem-

iniscent of inequalities (2.2). Intertemporal models, for instance, where commodities cannot

be consumed before they are produced, share some essential features with our setup. More

generally, networks of exchange where not all participants can meet are of a similar nature. We

believe that the theory of collective choices has much to gain from a systematic exploitation

of the structure of the feasibility constraints in such environments.

Appendix 1

Proof of Lemma 1. Write x�(S;�; !; xT ) = x. To prove i), note �rst that the inclusion

SnT � S� is trivial if S� = S. Otherwise, let j1; :::; jL = maxS denote the members of SnS�;

with jl < jl0 whenever l < l0. Since (3.2) is a strict inequality for j = maxS and since bmaxS

is strictly increasing, it must be that maxS 2 T: Repeating this argument, we conclude,

successively, that jL; :::; j1 are all members of T and, therefore, SnT � S�:

To prove ii), assume now that S� is nonempty. Denoting by �j the multiplier associated

with constraint (3.2) in the maximization problem de�ning x; the �rst-order conditions yield

b0j(xj) =
X
i�j

�i for all j 2 SnT; (18)

�j[
X
i�j

(xi � ei)� � + �j!] = 0 for all j 2 S; (19)

�j � 0 for all j 2 S: (20)

Let j�1 ; :::; j
�
K be the agents j for which (3.2) is an equality; there is at least one since S� 6= ;.

De�ne �1 =
P

j�j�
1
�j; S

�
1 = fj 2 S : j � j1g; and, if 1 < K; de�ne �k =

P
j�j�

k

�j and

S�k = fj 2 S : jk�1 � j � jkg whenever 1 < k � K: Conditions (3.5) are then satis�ed.

Moreover, conditions (9.1) and (9.2) imply (3.4) because �j = 0 for every j 6= j�1 ; :::; j
�
K:

Finally, conditions (9.1) and (9.3) guarantee (3.3). 2
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Proof of Lemma 2. Write x�(S;�; !; xT ) = x; x�(S;�0; !; xT ) = y; and recall that all

agents under consideration belong to S. If y = x; we are done. Otherwise, consider all the

agents i 2 S such that yi 6= xi: Number them i1; :::; iL; with il < il0 whenever l < l0: By

optimality of y,

X
i�i1

(yi � xi) � 0: (21)

We claim that

yi1 � xi1 > 0: (22)

Suppose that the opposite strict inequality holds. Let j be the smallest follower of i1 such

that yj � xj > 0, which exists because of (9.4). Observe that

X
i�k

(yi � ei) <
X
i�k

(xi � ei) � � � �0 whenever i1 � k < j: (23)

De�ne y" by y"i1 = yi1 + "; y"j = yj � "; and y"i = yi for all i 6= i1; j: The inequalities in (9.6)

guarantee that, for suÆciently small " > 0; y" satis�es the constraints of the maximization

problem de�ning y; namely,
P

i�k(y
"
i�ei) � �0 whenever k < maxS;

P
i�maxS(y

"
i�ei) � �0�!;

and y"T = xT : By optimality of x , however, b0i1(xi1) � b0j(xj) and, since bi1 and bj are strictly

concave, b0i1(yi1) > b0i1(xi1) and b0j(xj) > b0j(yj), hence, b
0
i1
(yi1) > b0j(yj): For " small enough,

therefore,
P

i[bi(y
"
i )� bi(yi)] > 0; contradicting the optimality of y. We have proved (9.5).

Suppose now, contrary to the claim, that yil � xil < 0 for some l � 2: Choose l minimal.

By optimality of y and strict concavity of bil�1 and bil ; we know that b0il�1(xil�1) > b0il(xil): By

Lemma 1, there is some k; il�1 � k < il; such that the constraint on x at k is binding, i.e.,
P

i�k(xi � ei) = �: It follows that
P

i>k(xi � ei) = �! and therefore

X
i�il

(yi � xi) � 0 (24)

since
P

i�il(yi� xi) =
P

i>k(yi� xi) =
P

i>k(yi� ei) + ! =
P

i�k(ei� yi) + �0 � ��0 + �0 = 0:

Now, mimicking the argument showing that (9.4) implies (9.5), we obtain from (9.7) that

yil � xil > 0; which is the desired contradiction. 2
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Proof of Lemma 3. Write now x�(S;�; !; xT ) = x and x�(S;�; !0; xT ) = y: If y = x; we

are done. Otherwise, consider all agents i 2 S such that yi 6= xi: Number them i1; :::; iL; with

il < il0 whenever l < l0: By optimality of x;

X
i�iL

(yi � xi) � 0: (25)

We claim that

yiL � xiL < 0: (26)

Suppose the converse strict inequality holds. Let j be the largest predecessor of iL such

that yj � xj < 0, which exists because of (9.8). Since
P

i�j(yi � xi) < 0, we know that
P

i�j(yi � ei) < �: Letting j 0 be the smallest strict follower of j in SnT , it follows that

X
i�k

(yi � ei) < � whenever j � k < j 0: (27)

By optimality of x and strict concavity of bj and bj0 however, we know that b0j(yj) > b0j0(yj0),

which, by Lemma 1, contradicts (9.10). We have proved (9.9).

Suppose now, contrary to the claim, that yil � xil > 0 for some l � L � 1: Choose l

maximal. By optimality of y and strict concavity of bil and bil+1, b
0
il
(xil) > b0il+1(xil+1): By

Lemma 1, there is some k; il � k < il+1; such that
P

i�k(xi � ei) = �: It follows that

X
i�il

(yi � xi) � 0 (28)

since
P

i�il(yi � xi) =
P

i�k(yi � xi) =
P

i�k(yi � ei)�
P

i�k(xi � ei) � �� � = 0: Mimicking

the argument showing that (9.8) implies (9.9), we obtain from (9.11) that yil � xil < 0; a

contradiction. 2

Proof of Lemma 4. Let T; �; !; xT and yT satisfy the assumptions of the lemma. Write

x�(S;�; !; xT ) = x and x�(S;�; !; yT ) = y: The case where yT = xT being straightforward,

assume that yT < xT (recall our notation for vector inequalities). Since xT may be transformed

into yT coordinate by coordinate, there is no loss of generality in assuming that the two vectors

di�er in only one coordinate, say, t. Since all agents are assumed to be members of S, we

further abuse our notation slightly and write P 0t = fi 2 S : i < tg and F 0t = fi 2 S : i > tg:
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De�ne !t = � +
P

i<t(ei � xi) and !0t = � +
P

i<t(ei � yi); with the convention that

a summation over the empty set is zero. Also de�ne �t = � +
P

i�t(ei � xi) and �0t =

� +
P

i�t(ei � yi); so that �
0
t � �t = (!0t � !t) + (xt � yt):

Step 1: Proving that !0t � !t:

Suppose, by contradiction, that !0t > !t: This has three consequences. First,

P 0tnT 6= ;; (29)

Second, using the notation introduced at the beginning of the section,

xP 0t = x�(P 0t; �; !t; xT\P 0t) and yP 0t = x�(P 0t;�; !0t; xT\P 0t) (since yT\P 0t = xT\P 0t). It

follows from Lemma 3 that

yP 0t < xP 0t; (30)

where the inequality is strict because (9.12) guarantees that the consumption of at least one

member of P 0t is not �xed. Third, �0t > �t. It follows from Lemma 2 that

yF 0t � xF 0t (31)

whenever F 0t is nonempty since in that case xF 0t = x�(F 0t;�t; !; xT\F 0t) and yF 0t =

x�(F 0t;�0t; !; xT\F 0t):

If either F 0t is empty or (9.14) is an equality, de�ne the consumption plan y0 for S by

letting y0 = yt and y0i = xi for every i 6= t: Note that y0 satis�es all the constraints of the

maximization problem whose solution is y: Yet, y0 > y; a contradiction.

If F 0t is nonempty and (9.14) is not an equality, pick any i < t such yi < xi and the

smallest j > t such that yj > xj: Observe that

X
k�l

(yk � ek) <
X
k�l

(xk � ek) � � whenever i � l < j: (32)

De�ne y" by y"i = yi + "; y"j = yj � "; and y"k = yk if k 6= i; j: In view of (9.15), we can choose

" > 0 small enough to ensure that y" satis�es all the constraints of the maximization problem

whose solution is y: But by optimality of x and strict concavity of the bene�t functions,

we know that b0i(yi) > b0j(yj): Therefore
P

k[bk(y
"
k) � bk(yk)] > 0 for suÆciently small ",

contradicting optimality of y and completing Step 1.
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Step 2. Proving that �0t � �t:

Suppose, again by way of contradiction, that �0t < �t: Note, �rst, that this inequality

implies (9.12). Second, because of Lemma 2,

yF 0t � xF 0t (33)

whenever F 0t is nonempty. Third, !t > !0t and therefore, by Lemma 3,

yP 0t > xP 0t: (34)

If either F 0t is empty or (9.16) is an equality, choose any i < t such that yi > xi: We claim

that

X
k�l

(xk � ek) < �� �l! whenever i � l: (35)

To see why this is true, note that if i � l < t; (9.17) implies that
P

k�l(xk � ek) <
P

k�l(yk �

ek) � �: Next, if t � l;
P

k�l(xk�ek) = (���t)+
P

t<k�l(xk�ek) < (���0t)+
P

t<k�l(xk�ek) =P
k�l(yk � ek) � � � �l!: Because of (9.18), the consumption plan x" de�ned by x"i = xi + "

and x"k = xk for k 6= i satis�es the constraints of the problem whose solution is x when " is

small enough, a contradiction.

If F 0t is nonempty and (9.16) is not an equality, pick any i < t such yi > xi and the

smallest j > t such that yj < xj: Using virtually the same argument as to prove (9.18), we

obtain

X
k�l

(xk � ek) < � whenever i � l < j: (36)

De�ne x" by x"i = xi+ "; x"j = xj � "; and x"k = xk if k 6= i; j: In view of (9.19), we can choose

" > 0 small enough to ensure that x" satis�es all the constraints of the maximization problem

whose solution is x: But by optimality of y and strict concavity of the bene�t functions,

we know that b0i(xi) > b0j(xj): Therefore
P

k[bk(x
"
k) � bk(x



Appendix 2

Proof of Lemma 5. Let S; T be two coalitions such that S < T: Let � :=
P

i2T [x
�
i (S [

T )�x�i (T )]:Optimality requires � � 0: Furthermore, x�T (S[T ) = x�(T ;�; 0) while x�S(S[T ) =

x�(S; 0; �): Invoking Lemmata 2 and 3 completes the proof. 2

Proof of Lemma 6. Let S;Q; T; xT and yT satisfy the assumptions of the lemma. The

case where yT = xT being trivial, assume yT < xT . For every i 2 SnT;

di := x�i (S; yt)� x�i (S; xt) � 0 (37)

because of Lemma 4, and

x�i (S; xT )� x�i (Q; xT ) � 0; (38)

as is easily seen by de�ning ! =
P

i2S(ei� x�i (Q; xT )); noting that x
�(S; xT ) = x�(S; 0; 0; xT );

x�S(Q; xT ) = x�(S; 0; !; xT ); and applying Lemma 3.

By strict concavity of the bene�t functions, (9.20) and (9.21) imply that bi(x
�
i (S; yT )) �

bi(x
�
i (S; xT )) � bi(x

�
i (Q; xT ) + di)� bi(x

�
i (Q; xT )) for every i 2 SnT . Therefore,

v(S; yT )� v(S; xT )

=
X
i2S

[bi(x
�
i (S; yT ))� bi(x

�
i (S; xT ))]

�
X
i2T

[bi(yi)� bi(xi)] +
X

i2SnT

[bi(x
�
i (Q; xT ) + di)� bi(x

�
i (Q; xT ))]

= [
X
i2T

bi(yi) +
X

i2SnT

bi(x
�
i (Q; xT ) + di) +

X
i2QnS

bi(x
�
i (Q; xT ))]

�[
X
i2T

bi(xi) +
X

i2SnT

bi(x
�
i (Q; xT )) +

X
i2QnS

bi(x
�
i (Q; xT ))]:

The second bracket is just v(Q; xT ): To complete the proof, we need only show that the �rst

bracket does not exceed v(Q; yT ): We show that the consumption plan

xi =

8>>>>><
>>>>>:

yi if i 2 T;

x�i (Q; xT ) + di if i 2 SnT;

x�i (Q; xT ) if i 2 QnS

9>>>>>=
>>>>>;

(39)
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satis�es the constraints of the maximization problem whose solution is x�(Q; yT ): Since xT =

yT ; all we have to check is that

X
i�j

(xi � ei) � 0 for every j 2 Q: (40)

If j 2 S, combining (9.22) with (9.20) and (9.21) yields that
P

i�j xi �
P

i�j x
�
i (S; yT ) �P

i�j ei: If j 2 QnS, we get
P

i�j xi =
P

i2T yi+
P

i2SnT [x
�
i (S; yT )�x

�
i (S; xT )]+

P
i2PjnT x

�
i (Q; xT )

�
P

i2T xi +
P

i2PjnT x
�
i (Q; xT ) =

P
i�j x

�
i (Q; xT ) �

P
i�j ei: 2
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