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Abstract

During the recent years, financial markets have known many institutional changes and new regu-

lations. The improvements in ITC, the multiplication and fragmentation of markets increase the

High Frequency trading activity, and the cross listing of assets in many towns or countries. The

prices for a given security on those interrelated markets are strongly linked by arbitrage activities.

A similar situation arises for one security and its derivatives: The Cash prices are related to futures

prices, the CDS prices are related to the Credit spread, spot is related to options Markets. In those

multiple market settings, it is interesting for regulators, investors and academia to understand how

each market contributes to the dynamic of the common underlying fundamental value. My thesis

develops new frameworks, with respect to the sampling frequency, to measure the contribution of

each market to the formation of prices (Price discovery) and to the formation of volatility (Volatility

discovery).

In the first chapter, I consider the problem of measuring price discovery using High-frequency

data. I show that existing measures of price discovery lead to misleading conclusions when using

High-frequency data, due to uninformative microstructure noises. I then propose robust-to-noise

measures, good at detecting “which market incorporates quickly new information”. Using the Dow

Jones stocks traded on NYSE and NASDAQ on the period March 1st to May 30th 2011, I show

that the data are in line with my theoretical conclusions. In addition, when the Information Share

measure gives wide bounds making it unusable, my proposed robust IS has very close bounds. I

later obtain that price discovery mostly happens on NYSE and Nasdaq is dominant for the four

nasdaq-listed stocks. The contribution of NYSE is positively correlated with its liquidity and its

market share in small size transactions. And, NASDAQ contribution to price discovery increases

slightly the days with macroeconomic announcements.

In the second Chapter, I provide a new way to evaluate price adjustment across linked markets

by building an Impulse Response measuring the permanent impact of market’s innovation and I

give its asymptotic distribution. The framework innovates in providing testable results for price

discovery measures based on Hasbrouck (1995) innovation variance and gives a rationale to the

Information Share Upper bound. I later present an equilibrium model of different maturities futures
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markets with convenience yield and show that it supports my measure: As the theoretical result of

Garbade and Silber (1983) and Figuerola-Ferretti and Gonzalo (2010), the measure selects the

market with the higher number of participants as dominating the price discovery. An application

on some metals of the London Metal Exchange shows that some markets are in Backwardation and

others in Contago. And that, 3-month futures contract dominates the spot and the 15-month in price

formation.

The third chapter tries to build a comprehensive framework for Price discovery analysis with

High Frequency data. The literature exists only in a discrete time framework, we build a continuous-

time framework that incorporates explicitly microstructure noises. We derive a measure of price

discovery evaluating the permanent impact of a shock on a market’s innovation. It has advantages

on the literature in that: it is in continuous-time, deals with non-informative microstructure noises

and accommodates a stochastic volatility. An application is done on the four Dow Jones stocks

primary listed on NASDAQ and traded on NYSE: Apple, Intel, Microsoft and Cisco. The results

show that for those stocks the NASDAQ dominates the continuous price discovery process

In the fourth chapter, as literature has focused on where information enters the price, I de-

velop a framework to study how each markets’ volatility contributes to the permanent volatility of

interlinked assets. This allows answering questions such as: Where does new volatility enter the

volatility of securities listed in many markets? Does volatility of futures markets dominate volatility

of the Cash market in the formation of permanent volatility? I build a VECM with Autoregressive

Stochastic Volatility estimated by MCMC method and Bayesian inference. I show empirically that

not only prices of strongly related are cointegrated, but their conditional volatilities share a perma-

nent factor at the daily and at the intraday level, and I propose measures of market’s contribution

to Volatility discovery. In the application, I study daily data of cash and 3Month futures markets of

some metals traded on the London Metals Exchange, and intraday data of the EuroStoxx50 index

and its futures. I find that for most of the securities, while price discovery happens on the cash

market, the volatility discovery happens in the Futures market. Overall, the results suggest that

Information discovery and volatility discovery do not necessarily have the same determinants. In

the last part of the study, I build a framework that exploits High frequency data and avoid compu-

tational burden of MCMC. I show that Realized Volatilities are driven by a common component

and I compute contribution of NYSE and NASDAQ to permanent volatility of Dow Jones stocks.

I obtain a slight domination of NYSE. And among liquidity, Volume market Share by trade size,

and volatility of volume. I obtain that volatility of the volume is the best determinant of volatility

discovery, But low figures suggest others important factors.
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Resumé

Au cours des années récentes, les marchés financiers ont connu de nombreux changements institu-

tionnels et de nouvelles réglementations. Les developpemens dans les TIC, la multiplication et la

fragmentation des marchés, ont accru l’activité de trading à Haute fréquence , et aussi la cotation

simultanée des actifs dans plus en plus de villes ou pays. Les prix d’un titre donné sur ces differ-

entes places sont liés par des activités d’arbitrage. Cette situation se présente aussi pour un titre

et ses dérivés: Les prix spot sont liés aux prix futures, les CDS sont liés au Spread de crédit, le

prix spot est lié au prix des options. Dans ces cadres de marchés “informationnellement reliés”, il

est intéressant pour le regulateur et les investisseurs de comprendre comment chaque marché con-

tribue à la dynamique de la valeur fondamentale. Cette thèse développe de nouveaux outils pour

mesurer la contribution, relativement à la fréquence, de chaque marché à la formation du prix et à

la formation de la volatilité.

Dans le premier chapitre, Je montre que, en raison de bruits de microstructure, les mesures

existantes de la découverte des prix conduisent à des conclusions trompeuses lorsque l’on utilise

des données à haute fréquence. Je propose ensuite des mesures robustes au bruit, capables de

détecter “quel marché intègre rapidement de nouvelles informations”. En utilisant les titres du

Dow Jones vendues sur le NYSE et le NASDAQ sur la période du 1er mars au 30 mai 2011,

je montre que les données corroborent mes conclusions théoriques. De plus, lorsque les bornes

de l’ “Information Share” sont larges et inutilisables, mon robuste IS proposé a des bornes très

serrées. J’obtiens ensuite que la découverte de prix se produit principalement sur le NYSE et est

positivement corrélée avec sa liquidité et sa part de marché dans les transactions de petite taille. Le

NASDAQ est dominant sur les stocks listés initialement au NASDAQ. La contribution du NASDAQ

à la découverte des prix augmente légèrement les jours avec annonces macroéconomiques.

Dans le deusième chapitre, je propose une mesure de découverte prix sur les marchés reliés en

construisant une fonction de réponse qui évalue l’impact permanent de l’innovation d’un marché,

et je donne sa distribution asymptotique. Ce cadre semble être le premier à fournir des résultats

testables pour les mesures de découverte des prix basées sur la variance d’innovation de Has-

brouck (1995), et il donne une justification à la borne supérieure de “ l’Information Share”. Je
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présente ensuite un modèle d’équilibre des marchés à terme à différentes maturités avec rendement

d’opportunité, et on montre qu’il soutient notre cadre: Conformement aux conclusions théoriques

de Garbade and Silber (1983) et Figuerola-Ferretti and Gonzalo (2010), la mesure sélectionne le

marché avec le plus de participants comme dominant le processus de découverte des prix. Une

application sur certains métaux de la London Metal Exchange montre que le contrat à terme de 3

mois domine coinjointement le marché cash et le contrat à 15mois dans la formation des prix.

Le troisième chapitre introduit un cadre complet pour l’analyse de la découverte des prix sur

données à haute fréquence. La littérature n’existe que dans un cadre de temps discret, nous con-

struisons un cadre en temps continu qui incorpore explicitement des bruits de microstructure.

Nous obtenons une mesure de la découverte des prix qui évalue l’impact permanent, d’un choc

sur l’innovation d’un marché. Il présente des avantages sur la littérature en ce sens qu’il est en

temps continu, traite des bruits de microstructure non informatifs et permet d’intégrer une volatilité

stochastique. Une application est faite sur les quatre principales actions Dow Jones cotées au NAS-

DAQ et négociées sur NYSE: Apple, Intel, Microsoft et Cisco. Les resultats montrent que pour ces

actions le Nasdaq dominent le processus continu de découverte des prix.

Le quatrième chapitre s’intéresse à la volatilité de la volatilité. Alors que la littérature se con-

centre sur la quête du marché où l’information rentre dans les prix, je développe un cadre pour

étudier comment la volatilité de chaque marché contribue à la volatilité permanente de l’actif. Ce

qui permet de répondre à des questions telles que: La volatilité du marché futures contribue-t-elle

plus que la volatilité du marché spot dans la formation de la volatilité du fondamental? Premiere-

ment, je construis un VECM avec Volatilité Stochastique estimé avec les MCMC et inférence

bayésienne. Je montre empiriquement que les volatilités conditionnelles ont une composante com-

munes et propose des mesures de découverte de la volatilité. Je l’applique aux données jour-

nalières de certains metaux de la London Metals Exchange, et aux données intrajournalières de

l’EuroStoxx50 et son contrat futures. Je trouve qu’alors que la formation des prix a lieu sur le

marché au comptant, la découverte de la volatilité a lieu sur le marché futures. Globalement, les

résultats suggèrent que la découverte de l’information et la découverte de la volatilité n’ont pas

nécessairement les mêmes déterminants. Dans une seconde partie, je construis un cadre d’analyse

qui exploite les données à Haute fréquence et évite la charge de calcul des MCMC. Je montre que

les Volatilités Réalisées sont formées par une composante commune et calcule la contribution du

NYSE et NASDAQ à la volatilité permanente des titres du Dow Jones. J’obtiens que pour la ma-

jorité des titres, le NYSE domine la formation de la volatilité. Et, entre la liquidité, le poids du

marché dans les transactions par taille, le volume, et la volatilité des volumes, la volatilité des vol-

umes est le meilleur déterminant de la découverte de la volatilité. Mais les chiffres faibles obtenues

suggèrent l’existence d’autres facteurs.
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Chapter 1 Price discovery measures and High Frequency data

Chapter 1

Price discovery measures and High

Frequency data

Abstract: For an asset traded in multiple venues, an outstanding problem is how those places

individually contribute to the price discovery mechanism (the incorporation of information into

prices). I show that existing measures of price discovery lead to misleading conclusions when using

High-frequency data, due to uninformative microstructure noises. I then propose robust-to-noise

measures, good at detecting “which market incorporates quickly new information”. Using the Dow

Jones stocks traded on NYSE and NASDAQ on the period March 1st to May 30th 2011, I show

that the data are in line with my theoretical conclusions. In addition, when the Information Share

measure gives wide bounds making it unusable, my proposed robust IS has very close bounds.

I later obtain that price discovery mostly happens on NYSE and is positively correlated with its

liquidity and its market share in small and big size transactions. For NASDAQ-listed stocks, large

quantities trades do not convey information and NASDAQ contribution to price discovery increases

slightly the days with macroeconomic announcements.

Keywords: Price discovery, Information Share, Permanent-Transitory component, Microstruc-

ture noise, Realized Variance

JEL: C32, C58, G14
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1.1. INTRODUCTION

1.1 Introduction

The institutional evolutions of financial markets and the development of High-frequency Trading

generated a growing literature on the resulting consequences on market’s outcomes. The multipli-

cation of trading platforms coupled with the internationalization of financial markets resulted in

some assets being listed simultaneously in many town or even many countries. Similarly traders

can send orders in remotely located market places. The trading prices for a given security on those

interrelated markets are strongly linked by arbitrage activities. A similar situation arises for one

security and its derivatives: The spot prices are related to futures prices, the CDS prices are related

to the credit spread.

The price discovery mechanism is generally understood as the process by which information is

computed into prices, it is interesting in the multiple markets setup to understand how each market

does so. An international investor for instance, choosing how to split the orders in different markets,

might find it worthy to know where the price is close to the fundamental. The regulator also, in

its quest to the best market organization, is interested in which market contributes to the price

movement of an asset and for which reasons1. This quest of the market with the “best” information

processing mechanism goes back to Garbade and Silber (1983) problem: which market is dominant

and which market is satellite?

To determine in which market price discovery happens some tools (known as price discovery

measures) are developed in the literature. Hasbrouck (1995) pioneer paper, using the Beveridge-

Nelson permanent component, presented a measure called the Information Share (IS) and provided

comparison of NYSE and regional exchanges in the quotes formation of Dow stocks. The main

competing measure to Hasbrouck (1995) is the PT measure in Harris et al. (2002b), consisting of

the common factor weight in the permanent-transitory (PT) decomposition of Gonzalo and Granger

(1995). Those measures are intensively debated by De Jong (2002), Lehmann (2002), Hasbrouck

(2002),Baillie et al. (2002), and Yan and Zivot (2010). One conclusion of the debate is that the IS

accounts more for the variability in the price discovery process and the permanent (efficient) price

identified by Hasbrouck (1995) has an economic relevance2.

The other part of the debate lies in their view of price discovery. Hasbrouck (1995) sees it as

“who moves first” in the process of price adjustment and Harris et al. (2002b) as the process by

which security markets attempt to identify permanent changes in equilibrium transaction prices.

Meanwhile, what their proposed measures actually capture is unclear. And as stated by Lehmann

(2002), a market should dominate the price discovery if it is the best in incorporating information

1Eun and Sabherwal (2003) report that the Canadian authority was really worried about US-markets becoming the
place where the Canadian’s stock prices were computed

2The PT relies on a permanent price that is not a random walk

2



1.1. INTRODUCTION

in a “timely and efficient” manner. This widely accepted characterization of market dominance

presents two dimensions. The first dimension is the timing: a market reflecting quickly new in-

formation is close to efficiency. The second dimension is the avoidance of noises. A market with

less noises is also efficiently incorporating information. The noises can come from uninformative

sources as bid-ask bounce, price discreteness, and measurement errors. It is then not very clear

which dimension is actually captured by the existing measures. For example, using Monte Carlo

exercises, Putnin, š (2013) obtains that IS and PT are actually assessing how markets avoid noises.

Whereas Yan and Zivot (2010) obtains in a specific structural VECM that the PT assess how mar-

kets avoid noises while the IS captures both dimensions.

This study innovates in exposing new facts on price discovery measures, particularly linked

to the utilization of High-frequency data. Using those data bring issues that are studied in the

literature for volatility estimation in the presence of microstructure noises (see Andersen et al.,

2000; Zhang, 2010; Jacod et al., 2009). I show that IS and PT are not related to the fundamental

value but rather to information-uncorrelated noises. This could lead to misleading interpretations

in applications. I also contribute to the literature by proposing new measures that are robust-to-

noise and restore a clear interpretation of what is being measured: My robust IS (ISR) and robust

PT (PTR) measures are good at detecting which market incorporates quickly new information. My

framework incidentally provides values to compare the pure noise in the markets.

If both “speed” and “noise-avoidance” dimensions of price discovery are relevant and mean-

ingful, confusions might come in utilization of price discovery measures as their nature can change

given the frequency of data at hand. The analysis of price discovery should disentangle the previous

two dimensions for the following reasons:

First, the way most papers consider a market to be informationally dominant is that, once new

information is available, the price of the asset on this market is the first to reflect it. But this market

might be more affected by information uncorrelated-noise, if it has a different tick size for example.

It is thus unclear which effect will dominate in the measure or which market reveals more about the

fundamental value. Let’s take the extreme case where one market’s price equals the efficient price

plus a noise with infinite variance, and another market’s price is the one-period lagged efficient

price. The latter market is clearly more informative about the efficient price even if the first market

is the fastest. It thus appears that another source of confusion about what the measures will do is

the size of the noise in the data. On this matter, I provide analytical insights on how price discovery

measures are related to microstructure noises and the sampling frequency.

Secondly, Hasbrouck (1995) defines its price discovery measure as the contribution of a mar-

ket’s innovation to the variance of the innovation in the efficient price. He then suggests that his

Information Share is good at detecting which market moves first. This statement is somewhat giv-
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ing more importance to the fact that a market is the first to incorporate information. In addition,

the IS has an identification problem and is only able to produce bounds3. Sometimes, bounds can

be wide making the IS useless. Hasbrouck (1995) recommended to sample at High-frequency to

reduce the correlation and tighten the IS bounds, but this practice ignores that at High-frequency

non informative part of the noise dominates the variances estimation4. Meanwhile in application,

Chakravarty et al. (2004) use IS and are interested in the timing sequence when they justify their

contribution to the literature by stating: “there is surprisingly little evidence that new information

is reflected in option prices before stock prices”. My paper emphasizes that at high frequency the

IS is not related to the efficient price and rather measures which market avoids noise.

Lastly, an endogeneity problem could arise in a number of applications. The values provided

by price discovery are used as dependent variables in regression to investigate the determinants

of a market’s dominance. Chakravarty et al. (2004) use IS to show that 17% of informed trading

happens in the options markets, and that price discovery across strike price is determined by rela-

tive spread, leverage, and volume. Huang (2002) uses the IS to compare who has the most timely

and informative quote, between Electronics communication Networks (ECNs) and Nasdaq; they

find that measures of market liquidity do not necessarily explain the market maker’s contribution

to price innovation. Barclay et al. (2003) study the impact of trading costs variables on the In-

formation Share of ECNs. Eun and Sabherwal (2003) regress the PT coefficients on the relative

spread, volume, listing age, and market Cap, to explain the contribution of Toronto Stock Exchange

(TSE) and U.S. exchanges to price discovery of cross-listed Canadian stocks. As an example, in

Chakravarty et al. (2004), the price discovery of the option market, measured by the IS, tends to be

greater when the effective bid-ask spread is narrow relative to the stock market. If by definition the

IS were to fully capture the bid-ask spread noise, then there is full endogeneity in their regression

of the IS on the bid-ask spread. By disentangling the two aspects of price discovery, my proposed

robust measures can be used to avoid the endogeneity issue.

In the application, using data of NYSE TAQ database, I examine if my conclusions are in

line with the data. I observe that indeed the data seem to present the patterns I highlighted, but

the frequency of the transactions might not be high enough to show certain features. As quotes

data are more frequent, I do the same analysis with mid-quotes of some assets and it confirms

my theoretical conclusions. I then investigate the relative contribution of NYSE and NASDAQ to

the price formation of Dow Jones assets. The robust IS measure performs well as it has very close

bounds, when the standard IS bounds are wide and thus unusable. Descriptively, NYSE captures the

big part of volume traded but NASDAQ is the most liquid with a high level of activity. This implies

3 it is based on the Cholesky decomposition of variance matrix and is thus dependent of variables ordering.
4This is related to the signature plot of Andersen et al. (2000)
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that NASDAQ mostly runs the orders of small quantities while NYSE runs big quantities orders.

In terms of contribution to price discovery for the assets under investigation, NYSE is generally

dominant. The contribution of a market appears to be positively correlated with its liquidity. I also

analyze the correlation between market’s contribution and markets share in each category of trade

size. It reveals that the contribution of a market is correlated with its share in small and medium

size transactions. For NASDAQ listed stocks, there is no correlation with market’s share in big size

transactions, so large quantities trades do not convey information.

The remainder of the paper is organized as follow. The second section reviews the main existing

measures of price discovery. The third section presents some structural microstructure models and

the price discovery measures are analytically computed at High-frequency. In the fourth section I

propose the robust-to-noise measures and present their performances in some simulation exercises.

In the fifth section, an application is done on assets of the Dow Jones that are listed and traded on

NYSE and NASDAQ on the period March 1st to May 30th 2011.

1.2 Measuring price discovery

Constructing a price discovery measure would normally require that the object of interest be clearly

identified. There is a current and permanent discussion in this respect with existing measures. This

originates from the fact that they are defined on a reduced form model and not in a structural model.

The approach to build prices discovery measures is to extract a common unobserved permanent

price from the observed prices, and to attribute its characteristics to each market.

Let’s consider an asset traded on markets 1 and 2 at the respective prices p1t and p2t
5. This

is done via the VECM representation of the cointegrated price vector pt = (p1t , p2t)
′. The gap

between the two prices (p1t − p2t) is stationary such that there exists only one common trend for

the prices. In fact, because the prices in the two markets are from the same asset, a gap between

them can not remain infinitely as there will be room for profits by arbitrage (for example buying

continuously in the first market and selling in the second). Under the previous notations and restric-

tions implied by arbitrage, Johansen (1991) results imply that the price vector admits the following

Vector Error Correction Model (VECM):

∆pt =−αβ ′pt−1 +Γ1∆pt−1 + . . .+ΓK∆pt−K + et , (1.1)

where the cointegrating matrix is β ′ = ( 1 −1 ) as β ′pt = p1t − p2t is stationary. et is an

independent white noise with var(et) = Ω.

5The results are easily obtained for more than 2 markets
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The Granger representation theorem gives the following transformation of 1.1 where Ψ(L) is a

lag polynomial:

pt = p0 +Ψ(1)
t

∑
s=1

es +Ψ∗(L)et , (1.2)

where the matrix Ψ(1) is given by

Ψ(1) = β⊥

(
α

′
⊥

(
I −

p

∑
i=1

Γi

)
β⊥

)−1

α
′
⊥. (1.3)

The representation 1.2 entails a decomposition of the prices in a stationary component p0 +

Ψ∗(L)et and a permanent component Ψ(1)∑
t
s=1 es . The matrix Ψ(1) summarizes the long run

impact of the innovation et on prices pt .

1.2.1 The Information Share measure

Hasbrouck (1995) looks for a measure that will determine on which market the price discovery

does happen. He proposes to use the contribution of each market to the variance of the innovation

of the “efficient price” price.

As β ′ = ( 1 −1 ), its orthogonal β
′
⊥ = ( 1 1 ) and the formula 1.3can be written as

Ψ(1) =

(
1

1

)
ψ =

(
1

1

)(
ψ11 ψ12

)
.

The 2×1 row ψ replaced in equation 1.2 yields

pt = p0 +

(
1

1

)
ψ

t

∑
s=1

es +Ψ∗(L)et . (1.4)

This representation displays a scalar random walk component of the prices ψ ∑
t
s=1 es, and a

stationary part Ψ∗(L)et that might be attributed to transitory effects. The common permanent com-

ponent is identified as the implicit fundamental price of the asset. Something to notice here is

that et drives both the permanent and the transitory component. So, the construction does not dis-

tinguish the non-informative noise (due for example to tick size or measurement errors) from the

information-correlated frictions that would be due to information asymmetry, market under/over

reaction (Menkveld et al., 2007).

The new information entering the fundamental price is the innovation ψet , and its variance
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(ψΩψ ′) is the total Information Share. Hasbrouck (1995) defines the market contribution to price

discovery in the following way.

If Ω is diagonal, then the total Information Share is

ψΩψ ′ = ψ2
11Ω11 +ψ2

22Ω22

and the Information Share (IS) for the market j, defined as the relative contribution of this market

in the variance of the new information, is obtained as:

IS1 =
ψ2

1 Ω11

ψ2
11Ω11 +ψ2

22Ω22
and IS2 =

ψ2
2 Ω22

ψ2
11Ω11 +ψ2

22Ω22
. (1.5)

As Ω is not diagonal in general, Hasbrouck (1995) suggests using its Cholesky root to obtain a

lower triangular matrix F , such that Ω= FF ′. An identification problem arises as the ranking of the

variables matters for the Cholesky decomposition. That is the matrix F changes with the ordering

of the variables in the prices vector. Thus, the Information Share measure can only provides an

upper and a lower bounds.

When the market 1 is placed in the first position in pt , then Ω = FF ′, and I have the bounds

ISu,1 =
([ψF ]1)

2

ψΩψ ′ and ISl,2 =
([ψF ]2)

2

ψΩψ ′ , (1.6)

where [ψF ] j represents the jth element of the vector ψF .

Now if the market 1 is switched to the 2nd position in pt , the new Cholesky root F̃ is obtained

such that Ω = F̃F̃ ′. The others bounds are

ISu,2 =

(
[ψF̃ ]1

)2

ψΩψ ′ and ISl,1 =

(
[ψF̃ ]2

)2

ψΩψ ′ (1.7)

The non-uniqueness of the Information share is a problem for applications as the measure are

used as dependent variable in regression. Many studies thus, simply consider the lower bound or

take the mid-bounds (see Chakravarty et al., 2004; Putnin, š, 2013).

The IS identification issue is related to the Macroeconomics VAR literature problem of identi-

fying the structural shocks from the reduced form model. Relying on Hasbrouck (1995)’s efficient

price, some authors tried to solve this by doing some transformations of the innovation variance

matrix. The limit of those techniques is that they completely lose an economic meaning behind the

mathematical operations. For example, Lien and Shrestha (2014) use an orthogonalization of the

correlation matrix to propose a measure that is independent of the variables ordering. Meanwhile

there is no economic intuition behind the orthogonalization of the correlation matrix. Grammig and
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1.2. MEASURING PRICE DISCOVERY

Peter (2013) exploit “tail dependence” for identification which is done through heteroskedasticity

on two regimes as in Rigobon (2003), Lanne and Lütkepohl (2010). The drawback is that identi-

fication relies on the data and it is not always the case that they provide enough tail dependence

to identify unique information share. Another limit of all the existing method based on Hasbrouck

(1995) efficient price is that they lack a testing theory. This is not the case of the PT measure, which

in turn, has the severe drawback that its efficient price is not a random walk.

1.2.2 The Permanent-Transitory measure

The main competitor to IS is the Gonzalo and Granger (1995) common factor weight in the

Permanent-Transitory (PT) decomposition. This consists of decomposing a difference stationary

time series as the sum of a permanent component Qt and a transitory stationary component Tt . The

identification of the two components of pt = Qt +Tt relies on two assumptions:

• Tt does not Granger-cause Qt in the long run,

• Tt is a linear combination of the observed variables.

In the context of one asset and many markets, the permanent component is driven by a difference

stationary6 factor ( ft) that is common to both markets, such that the observed prices vector can be

written as

pt =

[
1

1

]
ft +Tt .

The common factor is a linear combination of current prices ft = γ1 p1t + γ2 p2t . It is easily

shown that given the ECM equation 1.1, the weight (γ1γ2) are proportional to α⊥ such that:

ft = cα1⊥× p1t + cα2⊥× p2t

with c constant.

Harris et al. (2002a) evaluate the relative contribution to price discovery of market 1 and market

2 by taking the weight of each market in the permanent component as

PT1 =
α1⊥

α1⊥+α2⊥
,PT2 =

α2⊥
α1⊥+α2⊥

.

The link between the permanent price extracted by Hasbrouck (1995) and the permanent price

of Harris et al. (2002b) is studied by De Jong (2002). A difference between the PT measure with the

6Or integrated of order 1 denoted I(1)
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IS measure is that ft is a linear combination of only the current prices. Thus the permanent compo-

nent of the Gonzalo and Granger (1995) decomposition is generally not a random walk. This is a se-

rious limitation as this permanent component could not represent an efficient price and only gets an

economic meaning in a structural model (see Lehmann, 2002). Baillie et al. (2002) show that IS and

PT can be computed easily after the estimation of the VECM and they present the relationship link-

ing PT to IS. In the case of a diagonal Ω, the PT squared coefficients are weighted by the innovations

variances to obtain IS. This is seen by deducing
(

ψ11 ψ12

)
= c

(
α1⊥ α2⊥

)
from formula

1.3 and replacing for example in formulas 1.5 to obtain IS1 =
(
α2

1⊥Ω11
)
/
(
α2

1⊥Ω11 +α2
2⊥Ω22

)
.

Instead of focusing on the innovation variance, the permanent component share relies on the

error correction weighting matrix α⊥. In this respect Eun and Sabherwal (2003) also think of

price discovery as the adjustment to the equilibrium and access it by the coefficient α summarizing

how a market corrects a departure from the other market price. Building the measures with only

a coefficient of the VECM allows those methods to have testable implications and thus test of

statistical significance can be performed.

1.3 Microstructure models and sampling frequency

The price discovery measures presented in Section 2 are used in the literature to detect which

model is likely to have generated the observed log prices pt ≡ (p1t , p2t)
′
. Are the two markets

structurally identical? Is one market leading the information while the other is lagged? To compare

the performances of the measures in answering those questions, literature relies on some structural

microstructure models (see Hasbrouck, 2002; Harris et al., 2002a) representing the different situ-

ations that might arise on market . I rewrite versions of those models to make them dependent of

the sampling interval h and a delay parameters δ . For those models, ∆pt generally admits a Vector

Moving-Average of order 1 (V MA(1)) representation, allowing to compute analytically the values

of the prices discovery metrics. The VMA(1) equation is

∆pth = eth +Θeth−h with Θ =

(
−1+ c 1+d

c d

)
, (1.8)

where eth is the white noise innovation with variance Ω = var (eth) =

(
σ11 σ12

σ12 σ22

)
.

The long run impact matrix is thus

Ψ(1) = I +Θ =

(
c 1+d

c 1+d

)
= ψ

(
1

1

)
with ψ =

(
c 1+d

)
(1.9)
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To compute the measures, one needs the values of the parameters Ω, c, d in terms of the structural

parameters in pt . For this, the values of the structural variance and autocovariance are matched

with the ones of the VMA(1) equation 1.8. That is

C0 = var(∆pth) = Ω+ΘΩΘ′

C1 = cov(∆pth,∆pth−h) = ΘΩ
(1.10)

Computing ΘC0 and replacing ΘΩ by C1 gives the equation 1.11

C1 −ΘC0 +ΘC1Θ′ = 0 (1.11)

For each of the model I will present, I computed Θ by solving this matrix equation via long and

tedious calculations given in appendix, and then Ω is obtained as Ω = Θ−1C1. Next, I present the

structural models of interest and study the behavior of the price discovery measures.

1.3.1 Model I: A two-market “Roll” model.

In model I, both markets incorporate the efficient price mt . This situation could arise from markets

with no private information, and an efficient price driven by public non-traded information. At the

sampling interval h, the latent fundamental log price of the asset is

mth = mth−h +ηth

The innovation is ηth = σhN (0,1) and its variance σ2 (h) converges to zero when h goes to zero.

This is not a limitation as empirically the returns and their variance become very small at high

frequency. It can also be viewed in the discretization of the often-used continuous time model

dmt = σdBt , implying σh = σ
√

h. The observed prices are contaminated by i.i.d non correlated

microstructure noises

p1th = mth + c1ε1th (1.12)

p2th = mth + c2ε2th

ε1t ,ε2t ,∼ N (0,1) with E (ε1tε2t) = E (ηthε1t) = E (ηthε2t) = 0. The constants c1,c2 represent the

variances of the noise components. They could be made dependent of h and going to zero but

less faster than σh. This will not change the main conclusions as all the facts I describe remain

qualitatively the same.
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In this setup, there is no market dominating the price discovery process considered as the pre-

dominance in incorporating the new information ηth.

I compute the variance and covariance 1.10 and obtain

C0 =

(
σ2

h +2c2
1 σ2

h

σ2
h σ2

h +2c2
2

)
and C1 =

(
−c2

1 0

0 −c2
2

)
.

Using C0 and C1 to solve equation 1.11, the values of ψ and Ω that are necessary to compute the

different measures, are obtained in terms of the structural parameters σ2
h , c2

1, c2
2.

Lemma 1.1. In model I, solving equations 1.44 gives

ψ = κ
(

c−2
1 c−2

2

)
and Ω = K

(
c2

1

(
1− c−2

2 κ
)

κ

κ c2
2

(
1− c−2

1 κ
)
)

(1.13)

With κ =−1
2

hσ2 +
√

hσ
1
2

√
hσ2 +

4c2
1c2

2(
c2

1 + c2
2

) , (1.14)

K =
[
1−κ

(
c−2

1 + c−2
2

)]−1
. (1.15)

Proposition 1.2. The PT measure

Using the results in Lemma 1.1, the PT gives

PT1 =
c−2

1

c−2
1 + c−2

2

and PT2 =
c−2

2

c−2
1 + c−2

2

. (1.16)

Proof. See Appendix

The PT does not assess the priority to incorporate mt but is completely dependent of noises.

The contribution of a market is inversely proportional to its own noise. That is, the market with the

lowest noise has the biggest contribution, and the PT is measuring the avoidance of noises at any

frequency. It is only when the level of noise is the same in the two markets, that the measure can

be coherently interpreted in term of fundamental information with an equal value for each market.

Proposition 1.3. The IS measure,
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Using the results in Lemma 1.1, The IS bounds for market 1 and for market 2 are computed as

ISu,1 =
c−2

1(
c−2

1 + c−2
2

)(
1− c−2

2 κ
) and ISl,1 =

c−2
1 K−1

(
c−2

1 + c−2
2

)(
1− c−2

1 κ
) , (1.17)

ISu,2 =
c−2

2(
c−2

1 + c−2
2

)(
1− c−2

1 κ
) and ISl,2 =

c−2
2 K−1

(
c−2

1 + c−2
2

)(
1− c−2

2 κ
) . (1.18)

At High-frequency ( when h ≃ 0), the parameter κ ≃ 0 and

ISu,1 ≃ ISl,1 →
c−2

1

c−2
1 + c−2

2

= PT1, (1.19)

ISu,2 ≃ ISl,2 →
c−2

2

c−2
1 + c−2

2

= PT2. (1.20)

Proof. See Appendix

In this model at high frequency, when h is small, the bounds on the Information Share be-

comes tighter and close to the value of the PT measure. But the limiting values are dominated by

information-uncorrelated microstructure noises and are not related to the fundamental value. This

result challenges the interpretation of price discovery measure in term of the fundamental price. At

high frequency, the parameter σ2of the fundamental price disappears from the formulas and I are

let with a comparison of the level of noises. So if c2
1 is smaller than c2

2, then IS1 = PT1 > PT2, and

ones might conclude that the Market 1 is fast to compound new information, while the market are

actually equally fast. The formulas 1.19 and 1.20 could meanwhile be taken as positive result, in

the sense that they provide items to compare the costs of trading in different markets for a cross

listed asset.

To explore how the measures depend on the noise and the frequency I plot the IS and PT as a

function of M = 1/h. In Figure 1.1 with equal level of noise the bounds are wide at lower frequency

but go to 50% when the frequency (M = 1/h) increases. When the level of noise is different (Figure

1.2) the bounds are reduced but then the market with the smallest noise becomes dominant.

1.3.1.1 Time Varying noises

The previous results are derived under constant noises variances. The following theorem show that

all the conclusions remain when the noises variance vary with the sampling frequency as long as
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Figure 1.1: Model 1: Equal noises c2
1 = c2
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Note: The figures plot the IS and the PT measures computed analytical on model I. The horizontal axis

represents the sampling frequency M = 1/h.

Figure 1.2: Model I: Different noises c2
1 = 2c2
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Note: The figures plot the IS and the PT measures computed analytical on model I. The horizontal axis

represents the sampling frequency M = 1/h.
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the fundamental return decreases less faster than h.

Proposition 1.4. Time Varying noises: Let c2
1 ≡ c

′2
1 hα1 , c2

2 ≡ c
′2
2 hα2 with α1,α2 > 0

If Max(α1,α2)< 1 , then





κ = −1
2 hσ2 +

√
h σ

2

√
σ2h+

4c
′2
1 c

′2
2 hα1 hα2

(c
′2
1 hα1+c

′2
2 hα2)

−→ 0

K =
[
1−κ

(
c
′−2
1 h−α1 + c

′−2
2 h−α2

)]−1
−→ 1

And

ISu,i ≃ ISl,i
h→0−→→ PTi =

c
′−2
i

c
′−2
1 + c

′−2
2

, i = 1,2

Proof. See appendix

1.3.2 Model II: The Roll model with a delayed market

The fundamental log price of the asset is still driven by the innovation ηth = σhN (0,1) with

σ (h) = σ
√

h, and

mth = mth−h +ηth.

The first market incorporates mt , but the second market is delayed of δ . The observe prices are

p1th =mth + c1ε1th (1.21)

p2th =mth−δ + c2ε2th.

I compute the variance and covariance 1.10 as

C0 =

(
hσ2 +2c2

1 (h−δ )σ2

(h−δ )σ2 hσ2 +2c2
2

)
and C1 =

(
−c2

1 0

δσ2 −c2
2

)
.

When h > δ the price admits a VMA(1) representation and I calculate the analytical solutions

by solving the matrix equation 1.11

Proposition 1.5. The PT measure

In Model II, solving equations 1.44 gives

PT1 =

(
−1

2
σ2

l [(δσ2
l +c2

2)(σ2
l δ (h−δ )+h(c2

1+c2
2))+2c2

1c2
2δ ]

c4
2c2

1+(δσ2
l
+c2

1)
2
c2

2

± 1
2

√
∆

)

(
−1

2
σ2

l [(δσ2
l
+c2

2)(σ2
l

δ (h−δ )+h(c2
1+c2

2))+2c2
1c2

2δ ]
c4

2c2
1+(δσ2

l
+c2

1)
2
c2

2

± 1
2

√
∆

)(
1+

δσ2
l
+c2

1
c2

2

)
− δσ2

l
+c2

2
c2

2

PT2 = 1−PT1
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where

∆ =

[
σ2

l

[(
δσ2

l + c2
2

)(
σ2

l δ (h−δ )+h
(
c2

1 + c2
2

))
+2c2

1c2
2δ
]

c4
2c2

1 +
(
δσ2

l + c2
1

)2
c2

2

]2

+4
σ2

l

[
σ2

l δ (h−δ )+hc2
2

]

c2
2c2

1 +
(
δσ2

l + c2
1

)2

Proof. See appendix

The formula for the IS, which is also very cumbersome, is computed after obtaining Ω by the

equation 1.36. The formulas are not really intuitive, but it displays the fact that PT depend on the

information parameter σ , on the frequency parameter h, and on the delay δ . Here, the limit when

h is small can not be easily obtained analytically. In fact, by computing the autocavariance for the

process for h < δ , the order of the VMA becomes bigger than 1 and increases when h decreases. I

will rely on graphical analysis for more insights.

The behavior of the measures in Model II is summarized in Figures 1.3 and 1.4. The Panel A

of the graph corresponds to h > δ is plotted using the analytical formulas. The Panel B is plotted

for all h using simulations. In this setup by construction, the first market dominates structurally the

price discovery mechanism as it is the first to compute new information. When the level of noise are

equals (Figure 1.3), the measures succeed in designing market 1 as dominant when h ≥ δ . But at

high frequency with h < δ , the measures converges to 0.5, stating that the two markets are equally

contributing to the price discovery mechanism. When the market 1 is noisier than market 2 (Figure

1.4), the measures in both panels seem to converge to values such that market 2 is dominant. Theses

results simply reflect the relative size of noise in market 1, compared to noise in market 2.

Note: The figure plots the IS and PT model II. The horizontal axis represents the sampling frequency

M = 1/h. Panel A and Panel B are separated at the point where h < δ . c2
2 = 0.002/2.

1.3.3 Model III: A Two-market model with public and private information

In this model presented by Hasbrouck (2002), the efficient price is driven by informative trading on

the market 1 (η1th) and a non-traded public information ηth = σhN (0,1). The dynamic of price is

described by the following system

mt =mt−h +λhη1th +ηth (1.22)

p1th =mth +η1th + c1ε1th

p2th =mth−h + c2ε2th
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1.3. MICROSTRUCTURE MODELS AND SAMPLING FREQUENCY

Figure 1.3: Model II: Equal noises
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Figure 1.4: Model II: Different noises
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1.3. MICROSTRUCTURE MODELS AND SAMPLING FREQUENCY

where λh, the liquidity parameter, goes to zero with h for the same reasons as σh in the previous

sections. The Market 2 relies on a delayed value (with lag h) of mt . The parts of microstructure

noises that are information-uncorrelated are ε1th and ε2th.

As before, Market 1 is dominant from the structural point of view.

I solve for the equation 1.11 and the results at the order of
√

λh are :

Proposition 1.6. The PT Share

In Model III, the solutions of equations 1.44 at the order of
√

λh gives

PT1 =
1

1+ c−2
2

(
1+ c2

1

) +o
(√

λh

)
and PT2 =

c−2
2

(
1+ c2

1

)

1+ c−2
2

(
1+ c2

1

) +o
(√

λh

)

Proof. See appendix

Proposition 1.7. The IS bounds

In Model III, the solutions of equations 1.44 at the order of
√

λh gives

ISu,1 = − 1
c−2

2 (1+c2
1)D−1

× 1
1+c−2

2 (1+c2
1)

+o
(√

λh

)

ISl,1 =
D(1+c−2

2 (1+c2
1))−1

D−1 × 1
1+c−2

2 (1+c2
1)

+o
(√

λh

)

ISu,2 =
−(1+c2

1)c−2
2

(−1+D) × 1
1+c−2

2 (1+c2
1)

+o
(√

λh

)

ISl,2 =
D(1+c−2

2 (1+c2
1))−1

Dc−2
2 (1+c2

1)−1
× c−2

2 (1+c2
1)

1+c−2
2 (1+c2

1)
+o
(√

λh

)

with D =
√

λh

(√(
1+ c2

1

)(
1+ c−2

2

(
1+ c2

1

)))−1
h→0−→.

When h ≃ 0,

ISu,1 ≃ ISl,1 ≃ PT1 −→ 1
1+c−2

2 (1+c2
1)

=
c−2

1

c2
1c−2

2 +c−2
1 +c−2

2

ISu,2 ≃ ISl,2 ≃ PT2 −→ (1+c2
1)c−2

2

1+c−2
2 (1+c2

1)
=

c−2
2 (c2

1+1)
c2

1c−2
2 +c−2

1 +c−2
2

Proof. See appendix

When h is small in this setup, IS and PT give the same value. The contribution of market 2

decreases with the noise variance in market 2, and increases with the noise variance in market 1.

When the level of noise is equal in the two markets, PT2 > PT1 and market 2 is chosen as the

dominant market, which is in opposition with the structural model. In Figure 1.5, I compare the

measures for the model III computed numerically for h decreasing. Even if the model is changing

by reducing the delay parameter δ = h, market 1 remains dominant as it drives the efficient price.
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1.3. MICROSTRUCTURE MODELS AND SAMPLING FREQUENCY

At lower frequency, the IS of market 1 is almost 100% and the IS of market 2 is close to 0, even if

market 1 is the noisiest. When the values of h is small, the contribution of market 2 is bigger than

that of market 1, suggesting falsely that market 2 is dominant. The issues highlighted here are less

important with small noises variances or with small noises difference between the two markets. The

frequency at which the dominance commutes increases (see Figures 1.7a and 1.7b in appendix).

Figure 1.5: Model III: IS with sampling frequency and delay
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Note: The figure plots the IS model III. The horizontal axis represents M = 1/h. The PT (not plotted here)

has the same pattern

Remark: By fixing δ = 0 and ηth = 0., I obtain mt = mt−h +λhη1th and

p1th =mth +η1th + c1ε1th

p2th =mth + c2ε2th (1.23)

corresponding to a Two-market model with overreaction. It is not very clear which market domi-

nates the price discovery in this setup. The market 1 incorporates mt but there is an overreaction

to information in the observed prices. The market 2 also incorporates timely mt . The computation

using the formula 1.32 in appendix gives directly PT as

PT1 =
c−2

1

c2
1c−2

2 (λhσ2 +1)+ c−2
1 + c−2

2

and PT2 =
c−2

2

(
c2

1

(
λhσ2 +1

)
+1
)

c2
1c−2

2 (λhσ2 +1)+ c−2
1 + c−2

2

19



1.4. ROBUST-TO-NOISE PRICE DISCOVERY MEASURES

I still see that the measures vary inversely proportional to noises. But the contribution of market

2 increases with the variance of the efficient price. For equal level of information uncorrelated-

noises, market 2 has a greater contribution than market 1. So the PT captures the “efficient” facet

of prices.

All the new facts just explained here are warnings about the interpretations when using existing

price discovery measures on High-Frequency data. It is thus of interest to develop a price discovery

measure that is adapted in high frequency data and clarify what aspect of the market is actually

captured.

1.4 Robust-to-Noise price discovery measures

The different analytical computations showed that at High-frequency the price discovery measures

are dominated by noises. In this sense, the measures seem to be better interpreted in terms of

noises avoidance. This point is also made by Yan and Zivot (2010) who suggest combining IS

and PT in one measure to reduce the noises effects. The issue here is related to the debate in the

literature about the property that those price discovery measures are actually capturing. My results

suggest that at lower frequency they might be capturing the speed at which markets incorporate

information while at a high frequency they are capturing which market is less noisy. This creates a

misleading interpretation caused only by the frequency of observations. To restore a consistency in

the definition of the measures at all frequency, I propose a correction of the measures to reduce the

effect of noises. For this, a look at the different formulas suggests that the measures are dominated

by a factor equal to the inverse variance of the market microstructure noises. I thus propose to

robustify the IS and the PT by multiplying them by the noise variance.

So the bounds on IS and the PT for the market 1 are multiplied by c2
1, and the bounds on IS

and PT for the market 2 are multiplied by c2
2 . I re-normalize the robust to-noise versions of the

measures to keep the sum to one:

ISRu,1 =
c2

1ISu,1

c2
1ISu,1 + c2

2ISl,2
and ISRl,1 =

c2
1ISl,1

c2
1ISl,1 + c2

2ISu,2
(1.24)

ISRu,2 =
c2

2ISu,2

c2
1ISl,1 + c2

2ISu,2
and ISRl,2 =

c2
2ISl,2

c2
1ISu,1 + c2

2ISl,2
(1.25)

PT R1 =
c2

1PT1

c2
1PT1 + c2

2PT2
and PT R2 =

c2
2PT2

c2
1PT1 + c2

2PT2
(1.26)

Obviously, if Ω is diagonal, here too for each market, I have equality of its lower and upper
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bounds (ISRu,1 = ISRl,1 and ISRu,2 = ISRl,2).

To compute the previous quantities, estimations of the microstructure noise variances c2
1 and

c2
2 are required. Fortunately, the literature on integrated volatility estimation in the presence of

microstructure noises provides good ones. At High-frequency, the realized volatility (the sum of

squared log return) divided by (2n) is a good approximation of the noise variance (see Andersen

et al., 2000; Zhang, 2010; Jacod et al., 2009). I thus consider the estimators

ĉ2
1 = (2n)−1

n

∑
t=1

∆p2
1t and ĉ2

2 = (2n)−1
n

∑
t=1

∆p2
2t

The properties of this estimator of the noise variance are proven in Zhang (2010). The intuition

behind the results is the following. Let’s Consider an observed price written as pth = mth + c0εth

with εth ∼ i.i.d N (0,1) and ∆mth = ηth = σhN (0,1), E (ηthεth) = 0, the variance of the intraday

return
(

σh = O(
√

h)
)

decreases with the sampling interval h= 1/n. The expectation of the realized

volatility is

E

(
n

∑
t=1

∆p2
t

)
=

n

∑
t=1

E
(
η2

th + c2
0∆ε2

th +2c0ηth∆εth

)

= nσ2
h +2n× c2

0

= O(nh)+2n× c2
0

≃ 2n× c2
0

This development incidentally provides a way to evaluate the noise in the data. In fact, if one

is to consider only how markets avoid noises, the values of c2
1 and c2

2 estimated previously could

measure price discovery in the sense of “which market is not noisy”.

1.5 Simulation

I analyze through Monte Carlo simulations the performances of the robust measures (ISR and PTR)

relatively to IS and PT . For this, I simulate the structural models I, II and III (1.12,1.21, 1.22). For

each model, I simulate a sample of 23 400 observations (to imitate a trading day in second), then the

data are sampled at a given frequency (1, 2, 5, 10, 60) and the measures are computed in a VECM.

The order of the VECM is chosen using the Akaike Information Criterion (AIC) which is typically

what people do in practice. Each design is replicated 1000 times and the numbers in Tables 1.1-1.3

are the averages results and standard deviations (in parenthesis) over the 1000 replications. The

gray-shaded columns of the Tables are the robust-to-noise estimates. The results are presented only

21



1.6. EMPIRICAL APPLICATION

for market 1.

In model I, both markets incorporate mt , so a good estimate of price discovery in term of

“where information enter the price first” should be 0.5. When the two markets have the same level

of information-uncorrelated noises (Table 1.1, Panel A), all the measures perform well with values

close to 1/2. When the market 1 is noisier than market 2 (see Table 1.1, Panel B), the estimated

mid-bounds on IS and the PT (0.35 and 0.33) are far below 0.5 when data are sampled at High-

frequency (h = 1). Meanwhile, my proposed robust mid-bounds ISR is 0.48 and PTR is 0.47,

suggesting rightly that both markets are similar in incorporating mt . All the metrics perform quite

well at lower frequency.

In model II, the market 2 is slow and incorporates new information with a lag δ = 3s, and market

1 noise’s variance is set to c2
1 ≡ 0.0002, bigger than c2

2 ≡ 0.0001 of market 2. Price discovery

happens in market 1, but the small values in Table 1.2, obtained for IS and PT falsely suggests

that it happens in market 2. By using the robust measures the good interpretation is restored with

values for ISR and PTR close to 0.89 and 0.76. The effect is more pronounced in Table 1.3 where

the first market drives the fundamental price. While the other measures suggest an equal role

for both markets in the price discovery process, the robust-to-noise measures are almost 0.99. The

estimated values presented here depend on the size of the noise and on the sampling frequency. The

performances of IS and PT are improved when the noise is reduced or when the difference in noises

between the two markets diminishes. But the qualitative result remains unchanged: the robust

measures are better than IS and PT to detect which market incorporates timely new information.

1.6 Empirical application

I study the daily relative part in the price discovery of assets of the Dow Jones Industrial Index

that are listed and traded on NYSE and NASDAQ. I focus on the trade prices coming from the

TAQ Database and covering the period from the 01 March to the 30 May 2011. Before using the

data a cleaning job is done on the raw data: First, I suppress the data stamped before the opening

(9h30) and after the closing (16h00) of the market. I also remove the data between 9h35 because

the activity at the opening session creates a lot large values with respect to the daily continuous

activity I aim to study. Second, to handle the synchronicity problem, I fill the data with the last

trade price.

1.6.1 Descriptive analysis

The Dow Jones stocks data, on NYSE and NASDAQ, amount to 30 assets on a 3 month period for a

total of 22,444,752 observations. NYSE and NASDAQ are the two biggest exchanges in the world
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1.6. EMPIRICAL APPLICATION

Table 1.1: Simulation Results: Model I

Panel A: c2
1 = c2

2

h ISu,1 ISl,1 ISRu,1 ISRl,1 IS1 ISR1 PT1 PT R1

1s 0.65 0.35 0.50 0.50 0.50 0.50 0.50 0.50
(0.06) (0.06) (0.04) (0.08) (0.06) (0.06) (0.04) (0.04)

5s 0.77 0.22 0.50 0.49 0.50 0.50 0.49 0.49
(0.12) (0.11) (0.07) (0.22) (0.11) (0.15) (0.14) (0.14)

10s 0.83 0.17 0.50 0.50 0.50 0.50 0.50 0.50
(0.14) (0.14) (0.08) (0.31) (0.14) (0.20) (0.28) (0.28)

Panel B: c2
1 = 2c2

2

h ISu,1 ISl,1 ISRu,1 ISRl,1 IS1 ISR1 PT1 PT R1

1s 0.51 0.19 0.54 0.42 0.35 0.48 0.33 0.47
(0.06) (0.05) (0.05) (0.09) (0.06) (0.06) (0.04) (0.05)

5s 0.7 0.11 0.54 0.36 0.41 0.45 0.34 0.42
(0.13) (0.08) (0.07) (0.23) (0.1) (0.15) (0.15) (0.17)

10s 0.78 0.09 0.53 0.36 0.44 0.44 0.34 0.37
(0.15) (0.11) (0.08) (0.32) (0.13) (0.2) (0.3) (0.34)

30s 0.82 0.14 0.51 0.45 0.48 0.48 0.33 0.26
(0.2) (0.17) (0.1) (0.38) (0.18) (0.19) (2.76) (2.02)

Estimates for market 1 of the Information Share (IS) bounds, the PT share,

the robust ISR and PTR. It is computed on simulated prices of Model

I:
mth = mth−h +ηth, ηth ∽ σhN (0,1),σh = T−0.5, panel A : c2

1 = c2
2 = 2.10−4

pith = mth + ciεith, εith ∼ N (0,1), i = 1,2, panel B : c2
1 = 2c2

2 = 2.10−4

A path of T=23400 observations is generated, prices are sampled at each interval h and a VECM

is estimated with lag chosen by AIC. The values presented are the averages and the standard de-

viation (in parenthesis) over 1000 simulated paths.The gray shaded columns are robust measures.

The reference value is 0.50
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Table 1.2: Simulation Results: Model II

h ISu,1 ISl,1 ISRu,1 ISRl,1 IS1 ISR1 PT1 PT R1

1s 0.39 0.29 0.90 0.88 0.34 0.89 0.16 0.76
(0.06) (0.06 ) (0.02) (0.03) (0.06) (0.03) (0.02) (0.03)

2s 0.33 0.19 0.84 0.77 0.26 0.81 0.14 0.69
(0.09) (0.07) (0.05) (0.10) (0.08) (0.08) (0.03) (0.06)

3s 0.30 0.14 0.80 0.66 0.22 0.73 0.13 0.63
(0.10) (0.08) (0.08) (0.17) (0.09) (0.13) (0.04) (0.13)

5s 0.30 (0.10 0.74 0.51 0.20 0.63 0.12 0.53
(0.12 (0.08) (0.11) (0.23) (0.10) (0.17) (0.06) (0.24)

10s 0.34 0.08 0.67 0.36 0.21 0.52 0.11 0.40
(0.18) (0.10) (0.16) (0.28) (0.14) (0.22) (0.11) (1.77)

The Table reports estimates for market 1 of the Information Share (IS) bounds, the PT share,

the robust ISR and PTR). It is computed on simulated prices of Model II: mth = mth−h + ηth,

p1th = mth + c1ε1th,p2th = mth−δ + c2ε2th, εith,(ηth/σh) ∼ N (0,1), i = 1,2, σh = T−0.5,c2
1 =

0.002, c2
2 = 0.0001, δ = 3. A path of T=23400 observations is generated, prices are sampled at

each interval h and a VECM is estimated with lag chosen by AIC. The values presented averages

and standard deviations (in parenthesis) over 1000 simulated paths.The gray shaded columns are

robust measures. The reference value is 1.
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Table 1.3: Simulation Results: Model III

h ISu,1 ISl,1 ISRu,1 ISRl,1 IS1 ISR1 PT1 PT R1

1s 0.47 0.49 1.00 1.00 0.48 1 0.01 1
(0.19) (0.19) (0.00) (0.00) (0.19) (0.00) (0.01) (0.00)

2s 0.25 0.26 1.00 1.00 0.26 1 0.01 0.99
(0.20) (0.20) (0.03) (0.04) (0.20) (0.03) (0.06) (0.02)

3s 0.22 0.22 0.99 0.99 0.22 0.99 0.01 1.00
(0.21) (0.21) (0.09) (0.09) (0.21) (0.09) (0.04) (0.51)

5s 0.18 0.18 0.98 0.98 0.18 0.98 0.01 0.61
(0.22) (0.22) (0.10) (0.10) (0.22) (0.10) (0.03) (11.57)

10s 0.24 0.23 0.98 0.97 0.24 0.98 0.00 0.99
(0.27) (0.27) (0.13) (0.09) (0.27) (0.11) (0.26) (0.21)

The Table reports estimates for market 1 of the Information Share bounds (ISu,ISl), the robust

IS bounds (ISlr,ISur), the PT and the robust PT (PTr). It is computed on simulated prices of

Model III: mth = mth−h+λhη1th, p1th = mth+η1th+c1ε1th,p2th = mth−δ +c2ε2th, εith,(ηth/σh)∼
N (0,1), i = 1,2, σh = λh = T−0.5,c2

1 = 0.002, c2
2 = 0.0001, δ = 3. A path of T=23400 observa-

tions is generated, prices are sampled at each interval h and a VECM is estimated with lag chosen

by AIC. The values presented averages and standard deviations (in parenthesis) over 1000 simu-

lated paths.The gray shaded columns are robust measures. The reference value is 1.
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by capitalization and trade value. NYSE remains by far the first with a capitalization of around 14

USD trillion in 2011 (around 16 USD trillion in 2014). During this year, the trade value was about

20 USD trillions, which represents an average daily amount of 55 USD billions. NASDAQ has a

market capitalization of 4.6 USD trillions, and a trade value of 13.5 USD trillions, corresponding

to an average daily amount of 37 USD billions7.

Concerning where the assets are traded, the domination is not that pronounced as shown by

the average daily statistics in Table 1.8 in appendix. For JP Morgan (JMP) for example, around 5

millions of share are traded each day on NYSE, while 4.8 millions are traded on NASDAQ. This

pattern is the same for most of the stocks, that is to say that NYSE concentrates the biggest part

of share exchanged in a day. For few assets like PFE and GE, NASDAQ dominates the exchanges

in term of volume. If I look at the liquidity (I think of liquidity as the frequency of transactions),

NASDAQ dominates for almost all assets. For PFE I have around 16,153 trading times in one day

on NASDAQ, while I have only 7 080 trading times on NYSE. This is not in contradiction with the

analysis of volumes, it simply states that most of the trades of bigger size happens on NYSE, while

NASDAQ is characterized by a lot of trades of small quantities (details in table 1.9 in appendix).

For example, NASDAQ cumulates 43.3% of small size trades for American express (AXP) and

only 23.4% of big size trades, while NYSE cumulates 57.3% of big size trades.

Those descriptive statistics also show that, if prior-belief is that price discovery is completely

driven by the liquidity or by the volume of share traded, the answer is not straightforward as I

have for each market depending on the asset: high-volume and high-liquidity, high-volume and

low-liquidity, low-volume and high-liquidity.

1.6.2 Results on markets contribution

Before looking at market dominance, I compute the IS and the PT measures for the assets at dif-

ferent sampling frequency with the VECM-lag chosen by AIC. I obtain the same type of patterns

described in Section 3 with the structural models. Figures 1.7 and 1.8 plot the results for American

Express (AXP) and Exxon Mobil Corporation (XOM). It shows that the evolution of the measures

with sampling frequency looks like the theoretical path up to a given frequency. It doesn’t show the

crossing of the lines, but this might be just that raw data are not frequent high enough to display

all the interesting features. I can only have convincing guess by looking at the limit of the lines. In

fact, for most of the stocks, the number of transactions per day is such that the interval h is between

4s and 7s.

Now, let’s consider the mid-quotes data at the microsecond frequency for Microsoft and Pfizer

on the December 12th 2013. This choices are imposed only by data accessibility, and I consider

7 Source: (http://www.i3investor.com/jsp/hti/usmarket.jsp).
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NYSE ARca (market 1) and NASDAQ (market 2). This trading day corresponds to an amount of

424,876 observations for Microsoft, and 149090 for Pfizer. Figure 1.9 shows the results of the IS

and the PT measures with respect to the sampling frequency. It confirms that the interpretation

of the results can change with the sampling frequency, and that the IS bounds tighten to the same

values at high frequency.

The results on markets contributions in Table 1.4 show that, for most of the stocks, NYSE

appears to be the dominant market. The dominance of NYSE on NASDAQ is strong for MMM,

NKE and TRV. NASDAQ dominates the price discovery mechanism for BA, CAT, GS, IBM and

all Nasdaq primary listed stocks. The table 1.4 also reports the lower and the upper bounds on

the IS. It shows that bounds are quite wide for all assets (for example NYSE has a 28% to 85%

contribution for American Express-AXP) which clearly complicates the interpretation. Meanwhile

the robust IS indicates that the contribution is between 55% and 56% coherent with the numbers for

PT and PTR. The results are robust to the latency problem while recording the data. To check that,

I redo the estimations by delaying the prices of 1 second and the results remain qualitatively the

same. These results also indicate that the markets structure have really changed during the recent

years. For comparison, in Hasbrouck (1995), NYSE concentrated most of the trades resulting in

more than 90 % of the contribution to price discovery.

I now compute the correlation of each market’s contribution to price discovery with its share in

different categories of transaction size. I see that (table 1.5) for all the exchanges the correlation

between their contribution and their market share in small-size transactions is 1/3. The correlation

with big-size trades is 0.27 for NYSE-listed share, while it is only -0.04 for the set of NASDAQ-

listed shares. The correlation of the ISR with the liquidity does not show a specific pattern. In

summary, price discovery happens generally on NYSE for the stocks under investigation, the con-

tribution of a market is correlated with its market share for small and medium size transactions. In

the results, The robust IS measures present another advantage over the IS. When the bounds on IS

are wide, the robust IS provides very close bounds that facilitate the interpretation.

1.6.3 Macroeconomics announcements days

The releases of Macroeconomic indicators constitute some of the times where fundamental infor-

mation arrive in the markets. Interesting insights could thus be investigated by looking at how the

different markets behave the days of major macroeconomic news compared to normal days. For

this, I identify a set of events from the literature (Andersen et al., 2003; Frijns et al., 2015) and

the corresponding dates at which they are released in the sample. I mention that almost all the an-

nouncements here happen at 8:30 AM, which is before the markets open. An important comparison

of the markets could be done for the news that are released during the trading session, to see for
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Table 1.4: Contribution to price discovery of NYSE

ISu,1 ISl,1 ISRu,1 ISRu,1 IS1 ISR1 PT1 PT R1

NYSE-listed stocks

AXP 0.85 0.28 0.55 0.56 0.59 0.67 0.60 0.63
BA 0.64 0.14 0.36 0.39 0.47 0.33 0.39 0.40
CAT 0.79 0.21 0.48 0.50 0.54 0.52 0.51 0.53
CVX 0.89 0.31 0.63 0.60 0.57 0.72 0.63 0.65
DD 0.82 0.28 0.54 0.55 0.57 0.63 0.58 0.60
DIS 0.89 0.36 0.63 0.63 0.63 0.79 0.67 0.71
GE 0.79 0.36 0.53 0.58 0.64 0.71 0.62 0.68
GS 0.73 0.23 0.47 0.48 0.50 0.47 0.49 0.49
HD 0.88 0.33 0.59 0.60 0.62 0.75 0.64 0.69
IBM 0.74 0.25 0.48 0.49 0.53 0.51 0.51 0.52
JNJ 0.91 0.41 0.66 0.66 0.67 0.84 0.71 0.75
JPM 0.89 0.29 0.59 0.59 0.61 0.75 0.64 0.68
KO 0.87 0.29 0.58 0.58 0.60 0.72 0.63 0.66
MCD 0.87 0.40 0.63 0.63 0.62 0.75 0.66 0.69
MMM 0.94 0.54 0.75 0.74 0.67 0.88 0.75 0.78
MRK 0.84 0.36 0.58 0.60 0.63 0.74 0.64 0.69
NKE 0.84 0.45 0.62 0.65 0.64 0.74 0.65 0.69
PFE 0.72 0.32 0.47 0.52 0.62 0.64 0.58 0.63
PG 0.85 0.30 0.56 0.57 0.60 0.69 0.61 0.65
TRV 0.87 0.44 0.64 0.65 0.64 0.77 0.67 0.71
UNH 0.87 0.34 0.60 0.61 0.61 0.74 0.63 0.67
UTX 0.80 0.31 0.54 0.56 0.57 0.62 0.57 0.60
VZ 0.88 0.38 0.62 0.63 0.64 0.79 0.67 0.71
WMT 0.87 0.33 0.58 0.60 0.63 0.75 0.64 0.69
XOM 0.94 0.31 0.68 0.62 0.61 0.83 0.71 0.72
Total 0.84 0.33 0.69 0.60 0.57 065 0.58 0.62

Nasdaq-listed stocks
AAPL 0.64 0.08 0.42 0.19 0.36 0.30 0.32 0.33
CSCO 0.60 0.22 0.34 0.27 0.41 0.31 0.48 0.38
INTC 0.60 0.15 0.34 0.22 0.38 0.28 0.42 0.34
MSFT 0.60 0.16 0.33 0.22 0.38 0.28 0.44 0.35
Total 0.61 0.15 0.36 0.23 0.38 0.29 0.41 0.35
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Table 1.5: Correlation of ISR (NYSE) with transactions size and liquidity

NYSE-Listed NASDAQ-Listed

small trade 0.33 0.30
medium trade 0.10 0.19

big trade 0.27 -0.04
Liquidity 0.33 0.27

liquidity= number of trades per day.

Table 1.6: Macroeconomic News days on the period of study

Macroeconomics Announcement Source Release dates

GDP (Advance, preliminary, final) estimate BEA March 25, April 28, May 26
Personal Income, Personal Consumption Expenditures BEA March 28, April 29, May 27
International Trade Balance in Goods and Services BEA March 10, April 12, May 11
Nonfarm Payroll Employment BLS March 4, April 21, May 6
Producer Price Index PPI BLS March 16, April 14, May 12
Consumer Price Index CPI BLS March 17, April 15, May 13
Industrial Production, Capacity Utilization FRB May 17, April 15, March 17
Consumer Credit FRB March 7, April 7, May 6
Federal Funds Rate FRB March 15, April 27

example which market reacts quickly. However, this would required a very long sample as they are

typically published only one day per month. Table 1.6 presents the macroeconomics indicators that

I consider and the announcement dates in the sample.

I compute the measures for the announcement days and for the non-announcements days, I

obtain that on average NASDAQ’s contribution to information share is slightly bigger the days

where there is a news (from 0.41 to 0.42). The contribution of NYSE is still greater than for the

NASDAQ but slightly decreases compared to non-announcement days. Since the changes in the

numbers are to small it is difficult to convince of a particularity for these news days. If I believe

the contribution of NASDAQ has significantly increased, it is difficult to explain why but a reason

might be found in the liquidity of NASDAQ. Traders wanting to exploit quickly those public pre-

scheduled news, could prefer to do so on the most liquid market. More details, per asset, on which

market increases its contribution to price discovery can be found in table 1.10.

1.7 Conclusion

Among the assets traded on markets places, some are strongly related by arbitrage relationships.

This is the case of securities and their derivatives, and assets listed simultaneously in many coun-
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Table 1.7: Markets’ contribution to Price discovery on Macro News days

NYSE NASDAQ
ISu ISl IS PT ISu ISl IS PT

Announcement 0.84 0.32 0.58 0.57 0.68 0.16 0.42 0.43
Non Announcements 0.84 0.33 0.59 0.58 0.67 0.16 0.41 0.42

tries. To determine in which market the efficient price is determined, some measures of price

discovery were proven useful in the literature. In this paper, I started by studying the behavior

of the popular prices discovery metrics in their relationship with sampling frequency and market

microstructure noises. I showed analytically, in some standard microstructure models, that the

Information Share measure (IS) of Hasbrouck (1995) and the Permanent-Transitory component

measure (PT) of Harris et al. (2002b) are driven by non-informative noises when the sampling

interval is small. The IS is identified only between bounds and, when the frequency is low, the

bounds are too wide to provide straight conclusions. When the frequency is particularly high, the

IS bounds tighten and converge to a unique value which is the same as the PT. But this value is

dominated by noises and is not affected by the informative innovation. Using data of NYSE TAQ

database, I examined if my conclusions are in line with the data. I observed that indeed the data

seem to present the patterns I highlighted. The frequency of the transaction prices might not be

high enough to show certain features, but the analysis with mid-quotes of Microsoft confirms my

theoretical conclusions.

The price discovery measures are typically used to decide which price is close to the funda-

mental price. The “closeness” involves two interesting dimensions, the “speed” at which a market

incorporates news and the “noise-avoidance” in the mechanism. The two dimensions are economi-

cally relevant but confusions come from that a market is not necessarily the best in both dimensions.

A market can be the fastest and the noisiest. At lower frequency the measures capture a mix of the

two aspects, while at high frequency, my results showed that they rather capture the avoidance of

noise. This is a serious problem because first, many papers use and think of price discovery as the

rapidity to process new information. Second, the measures are used in regression to investigate the

determinant of a market’s efficiency. Those papers conclude for example that market with relative

small bid-ask spread are dominating price discovery process. If price discovery were to measure

only how markets avoid noises, this conclusion amounts to stating that “Noise is small in this mar-

ket because noise is small”. I then presented new measures of price discovery, that I named Robut

IS (ISR) and Robust PT (PTR), that disentangle the two dimensions and clarify the interpretation.

They are good at detecting “which market incorporates quickly new information”. My overall con-

tribution constitutes many steps forward into the debate on what the price discovery measures are

actually capturing.
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In the application, I investigated the relative contribution of NYSE and NASDAQ to the price

formation of Dow Jones assets. The robust measures seem to improve a little bit on the IS and PT.

I found that NYSE captures the big part of volume traded, but NASDAQ is the most liquid with a

high level of activity. This implies that NASDAQ mostly runs the orders of small quantities while

NYSE runs big quantities orders. In terms of contribution to price discovery for the assets under

investigation, NYSE is generally dominant and Nasdaq dominates for teh four Nasdaq-listed stocks.

The contribution of a market appears to be positively correlated with its liquidity. I also computed

the correlation between market’s contribution and markets share in each category of trade size. It

reveals that the contribution of a market is correlated with its share in small size transactions. For

NASDAQ listed stocks, there is no correlation with market’s share in big size transactions, so large

quantities trades do not convey information. I analyze the performance of the measures the days

with major macroeconomic announcements and the contribution of NASDAQ to price discovery

increases only slightly the days with news. As the announcements considered here are typically

done when the market is closed, it is not possible to conclude about the behavior of price discovery

measures around the news. There are more insights to investigate with a good database of news

released during trading session.
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1.8 APPENDIX A

1.8.1 Tables and Figures

1.8.1.1 Figures

Figure 1.6: Model III: IS performance with noise and frequency
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(b) mall difference between the noises
Note: The figure plots the IS model III. The horizontal axis represents M = 1/h. The PT (not plotted here)

has the same pattern
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Figure 1.7: IS and PT by sampling frequency for American Express

(a) IS bounds AXP
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Note: The figures plot 6 chosen day in the database. For each day the data are sampled at different fre-

quency and the measures at computed in a VECM with lag selected by AIC. The horizontal axis represents

the sampling frequency M.

34



1.8. APPENDIX A

Figure 1.8: IS and PT by sampling frequency for Exxon Mobil (XOM)

(a) IS bounds for XOM
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Note: The figures plot 6 chosen day in the database. For each day the data are sampled at different fre-

quency and the measures at computed in a VECM with lag selected by AIC. The horizontal axis represents

the sampling sampling frequency M. e.g: M = 1 means 1 observation per 200 s , M = 30 means 3 obs. per

20s
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Figure 1.9: IS and PT by sampling frequency for Microsoft and Pfizer
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Note: IS and PT for Microsoft and Pfizer Inc on 02/12/2013. The mid-quotes are sampled at different fre-

quency and the measures at computed in a VECM with lag selected by AIC. The horizontal axis represents

the sampling frequency M. E.g M = 1 means 1 observation per 200 s , M = 600 means 3 obs. per second
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1.8.1.2 Tables

Table 1.8: Average daily number and volume of transactions by markets and assets

Volume Liquidity

Stocks NYSE NASDAQ NYSE NASDAQ

AXP 1,390,154 1,333,287 5,675 9,175

BA 761,827 939,104 4,265 7,518

CAT 1,509,825 1,258,157 8,587 9,909

CVX 1,638,540 1,387,986 9,221 11,646

DD 1,197,841 932,970 5,618 7,544

DIS 2,205,886 1,279,417 7,123 8,919

GE 7,303,315 7,452,367 8,162 18,419

GS 852,376 957,759 5,407 7,373

HD 1,885,715 1,489,919 5,804 9,231

IBM 1,065,407 979,830 6,294 7,523

JNJ 2,606,299 1,614,322 8,618 10,354

JPM 5,036,588 4,866,551 11,438 22,572

KO 1,833,110 1,282,143 6,942 9,534

MCD 1,217,757 835,071 5,398 6,390

MMM 877,629 506,236 5,389 4,154

MRK 2,028,357 2,106,988 4,626 9,580

NKE 808,253 479,999 4,164 3,713

PFE 6,601,470 7,418,801 7,080 16,153

PG 2,010,251 1,732,199 5,725 10,131

TRV 803,587 478,962 3,893 3,877

UNH 1,331,712 974,829 5,753 7,084

UTX 852,967 766,713 4,778 6,367

VZ 2,261,393 2,160,213 5,614 10,639

WMT 2,136,040 1,521,625 6,743 9,916

XOM 4,649,096 2,546,214 15,937 17,663

NYSE Arca NASDAQ NYSE Arca NASDAQ

AAPL 2,318,123 3,944,326 17,123 27,099

CSCO 7,573,610 13,954,385 14,945 22,991

INTC 6,455,527 16,635,294 15,125 30,653

MSFT 5,513,734 14,580,294 14,825 27,540

Note: The period is from the 01/03 to 30/05/2011. liquidity=number of transactions per day; vol-

ume=volume of trades per day.
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Table 1.9: Share of markets each category of transactions size

Small size Medium size Big size

Stock NYSE NASDAQ NYSE NASDAQ NYSE NASDAQ

AXP 0.32 0.68 0.51 0.49 0.71 0.29

BA 0.32 0.68 0.55 0.45 0.65 0.35

CAT 0.41 0.59 0.66 0.34 0.72 0.28

CVX 0.37 0.63 0.69 0.31 0.79 0.21

DD 0.35 0.65 0.66 0.34 0.81 0.19

DIS 0.39 0.61 0.67 0.33 0.86 0.14

GE 0.29 0.71 0.28 0.72 0.57 0.43

GS 0.40 0.60 0.60 0.40 0.58 0.42

HD 0.33 0.67 0.55 0.45 0.71 0.29

IBM 0.41 0.59 0.62 0.38 0.69 0.31

JNJ 0.41 0.59 0.59 0.41 0.78 0.22

JPM 0.30 0.70 0.38 0.62 0.66 0.34

KO 0.33 0.67 0.68 0.32 0.79 0.21

MCD 0.38 0.62 0.67 0.33 0.79 0.21

MMM 0.52 0.48 0.75 0.25 0.81 0.19

MRK 0.28 0.72 0.36 0.64 0.56 0.44

NKE 0.47 0.53 0.72 0.28 0.80 0.20

PFE 0.30 0.70 0.27 0.73 0.48 0.52

PG 0.32 0.68 0.61 0.39 0.75 0.25

TRV 0.44 0.56 0.77 0.23 0.85 0.15

UNH 0.38 0.62 0.63 0.37 0.75 0.25

UTX 0.37 0.63 0.68 0.32 0.76 0.24

VZ 0.31 0.69 0.33 0.67 0.67 0.33

WMT 0.35 0.65 0.57 0.43 0.78 0.22

XOM 0.41 0.59 0.69 0.31 0.83 0.17

Total 0.37 0.63 0.58 0.42 0.73 0.27

Note: Let DM the average transactions size in a day: Small size≡ quantity<DM, medium

size: ≡ DM ≤ quantity ≤ 2DM, big size: ≡ quantity > 2DM. The numbers are Daily

Averages.
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Table 1.10: NYSE contribution by asset on the days of Macroeconomic announcements

ISRu ISRl ISR PT R

A N A N A N A N

AXP 0.85 0.85 0.26 0.28 0.55 0.57 0.54 0.56

BA 0.65 0.63 0.15 0.14 0.40 0.39 0.37 0.35

CAT 0.80 0.78 0.22 0.20 0.51 0.49 0.49 0.47

CVX 0.89 0.89 0.28 0.33 0.59 0.61 0.61 0.63

DD 0.82 0.82 0.27 0.28 0.55 0.55 0.55 0.54

DIS 0.89 0.90 0.32 0.38 0.61 0.64 0.61 0.65

GE 0.83 0.78 0.38 0.36 0.60 0.57 0.57 0.52

GS 0.75 0.71 0.25 0.23 0.50 0.47 0.49 0.46

HD 0.86 0.88 0.29 0.35 0.57 0.62 0.56 0.61

IBM 0.76 0.73 0.26 0.24 0.51 0.49 0.50 0.47

JNJ 0.89 0.91 0.39 0.42 0.64 0.67 0.64 0.67

JPM 0.90 0.88 0.28 0.29 0.59 0.59 0.59 0.59

KO 0.87 0.87 0.27 0.30 0.57 0.58 0.57 0.58

MCD 0.87 0.87 0.40 0.40 0.63 0.63 0.64 0.62

MMM 0.93 0.94 0.51 0.55 0.72 0.75 0.72 0.77

MRK 0.85 0.84 0.33 0.38 0.59 0.61 0.57 0.58

NKE 0.85 0.84 0.48 0.44 0.66 0.64 0.64 0.62

PFE 0.75 0.71 0.31 0.33 0.53 0.52 0.49 0.46

PG 0.84 0.85 0.27 0.31 0.55 0.58 0.54 0.57

TRV 0.85 0.88 0.40 0.46 0.63 0.67 0.62 0.66

UNH 0.87 0.87 0.34 0.34 0.60 0.61 0.60 0.60

UTX 0.80 0.81 0.30 0.31 0.55 0.56 0.53 0.55

VZ 0.86 0.89 0.34 0.41 0.60 0.65 0.59 0.64

WMT 0.87 0.86 0.33 0.33 0.60 0.60 0.59 0.58

XOM 0.94 0.94 0.31 0.31 0.62 0.62 0.69 0.68

Total 0.84 0.84 0.32 0.33 0.58 0.59 0.57 0.58
ISl = (ISu + ISl)/2,,A=announcement, N=Non announcement
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1.8.2 Proofs: Analytical formulas of the measures

I present calculations by skipping some details. The detailed calculations can be found (Online

here)

1.8.2.1 General results

Consider pt =
(

p1t p2t

)′

admitting the VMA(1) : ∆pt = et +Θet−1

With Ω = var (εt) =

(
σ11 σ12

σ12 σ22

)
and Ψ(1) = I +Θ =

(
c 1+d

c 1+d

)
.

The goal is to solve for Θ and Ω given the structural parameters. Let

C0 ≡ var(∆pt) =

(
v2

1 v12

v12 v2
2

)
and C1 ≡ cov(∆pt ,∆p

′
t−h) =

(
m1 m12

m21 m2

)
(1.27)

Using the VMA(1) 1.8 gives

C0 = Ω+ΘΩΘ′ (1.28)

C1 = ΘΩ (1.29)

By multiplying 1.28 by Θ and using 1.29 then

C1 −ΘC0 +ΘC1Θ′ = 0 (1.30)

ΘC1Θ′ =

(
−1+ c 1+d

c d

)(
m1 m12

m21 m2

)(
−1+ c c

1+d d

)

=




c2m1 +d2m2 + cd (m12 +m21)+ c(−2m1 +m12 +m21)+d (2m2 −m12 −m21)

+m1 +m2 −m12 −m21

c2m1 +d2m2 + cd (m12 +m21)+ c(−m1 +m21)+d (m2 −m12)

c2m1 +d2m2 + cd (m12 +m21)+ c(−m1 +m12)+d (−m21 +m2)

c2m1 +d2m2 + cd (m12 +m21)



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Set Q = c2m1 +d2m2 + cd (m12 +m21) then

ΘC1Θ′ =




Q+ c(−2m1 +m12 +m21)+d (2m2 −m12 −m21)+m1 +m2 −m12 −m21

Q+ c(−m1 +m21)+d (m2 −m12)

Q+ c(−m1 +m12)+d (m2 −m21)

Q




I stack the lines to ease the presentation ΘC0.

Using equation 1.30

0 = ΘC1Θ′+C1 −ΘC0

=




Q+ c
(
−2m1 +m12 +m21 − v2

1

)
+d (2m2 −m12 −m21 − v12)

+2m1 +m2 −m12 −m21 + v2
1 − v12

Q+ c(−m1 +m21 − v12)+d
(
m2 −m12 − v2

2

)
+m12 + v12 − v2

2

Q+ c
(
−m1 +m12 − v2

1

)
+d (m2 −m21 − v12)+m21

Q− cv12 −dv2
2 +m2




Subtracting the 2nd from the 3rd line

d
(
m12 −m21 + v2

2 − v12
)

= c
(
−m12 +m21 + v2

1 − v12
)
+m12 −m21 − v2

2 + v12 (1.31)

d = c

(
−m12 +m21 + v2

1 − v12
)

m12 −m21 + v2
2 − v12

+
m12 −m21 − v2

2 + v12

m12 −m21 + v2
2 − v12

(1.32)

= cF +G

with

F =
−m12 +m21 + v2

1 − v12

m12 −m21 + v2
2 − v12

and G =
m12 −m21 − v2

2 + v12

m12 −m21 + v2
2 − v12

(1.33)

Which is plugged into the quadratic equation (4th line):

c2m1 +d2m2 + cd (m12 +m21)− cv12 −dv2
2 +m2 = 0 (1.34)
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0 = c2m1 +d2m2 + cd (m12 +m21)− cv12 −dv2
2 +m2

= c2m1 +(cF +G)2
m2 + c(cF +G)(m12 +m21)− cv12 − (cF +G)v2

2 +m2

= c2 (m1 +F2m2 +F (m12 +m21)
)
+ c
[
2FGm2 +G(m12 +m21)− v12 −Fv2

2

]

+G2m2 −Gv2
2 +m2

c2 + c

[
2FGm2 +G(m12 +m21)− v12 −Fv2

2

]

m1 +F2m2 +F (m12 +m21)
+

G2m2 −Gv2
2 +m2

(m1 +F2m2 +F (m12 +m21))

∆ =

[
2FGm2 +G(m12 +m21)− v12 −Fv2

2

m1 +F2m2 +F (m12 +m21)

]2

−4
G2m2 −Gv2

2 +m2

(m1 +F2m2 +F (m12 +m21))

✤

✣

✜

✢
c = −1

2
2FGm2 +G(m12 +m21)− v12 −Fv2

2

m1 +F2m2 +F (m12 +m21)
± 1

2

√
∆ (1.35)

d = cF +g

then

Ω = Θ−1C1 = −
(

−1+ c d

c −1+d

)−1(
m1 m12

m21 m2

)
(1.36)

The PT measure I have computed ψ ≡
(

ψ11 ψ12

)
=
(

c 1+d

)

PT1 =
c

1+ c+d
and PT2 =

1+d

1+ c+d
(1.37)

The information share bounds The total IS is

ψΩψ ′ =
(

c 1+d

)
Ω

(
c

1+d

)

=
[
c2σ11 +2σ12c(1+d)+(1+d)2 σ22

]
(1.38)
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The IS bounds for market 1 are

IS1u = (ψ11
√

σ11 +ψ12ρ
√

σ22)
2
/ψΩψ

=
(

c
√

σ11 +(1+d)σ12 (
√

σ11)
−1
)2

/ψΩψ (1.39)

IS1l =

(
ψ11

√
σ11

√
(1−ρ2)

)2

/ψΩψ

= c2σ11
(
1−σ2

12/σ11σ22
)
/ψΩψ

and for market 2

IS2u = (ψ12
√

σ22 +ψ11ρ
√

σ11)
2
/ψΩψ

=
(
(1+d)

√
σ22 + cσ12 (

√
σ22)

−1
)2

/ψΩψ (1.40)

IS2l =

(
ψ12

√
σ22

√
(1−ρ2)

)2

/ψΩψ

= (1+d)2 σ22
(
1−σ2

12/σ11σ22
)
/ψΩψ

1.8.2.2 Model I: A two-market “Roll” model.

Here mth = mth−h +ηth, the is innovation ηth = σhN (0,1) and σ (h)converges to zero withh

p1th =mth + c1ε1th (1.41)

p2th =mth + c2ε2th

With εit ∼ N (0,1) , E (ηthεit) = 0, i=1,2. c1,c2 > 0

Equation 1.33 gives G =−1, F = c2
1c−2

2 , thus 1+d = cc2
1c−2

2

In the 2nd degree equation 1.34
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∆ =

[
2c2

1c−2
2 c2

2 −σ2
h − c2

1c−2
2

(
σ2

h +2c2
2

)

−c2
1 − c4

1c−4
2 c2

2

]2

−4
−c2

2 +σ2
h +2c2

2 +−c2
2(

−c2
1 − c4

1c−4
2 c2

2

)

=

[
−σ2

h − c2
1c−2

2 σ2
h

−c2
1 − c4

1c−2
2

]2

+4
σ2

h(
−c2

1 − c4
1c−2

2

)

= c−4
1 σ4

h +4c−4
1

σ2
h(

c−2
1 + c−2

2

)

= c−4
1 σ4

h

[
σ2

h +
4(

c−2
1 + c−2

2

)
]

= c−4
1 σ4

h

[
σ2

h +4
(
c−2

1 + c−2
2

)−1
]

c = −1
2

c−2
1 σ2

h +
1
2

c−2
1 σh

√
σ2

h +4
(
c−2

1 + c−2
2

)−1

set κ =−1
2σ2

h +
σh

2

√
σ2

h +4
(
c−2

1 + c−2
2

)−1
then

c = c−2
1 κ

1+d = c−2
2 κ

Computation of Ω

Ω = Θ−1C1 = −
(

−1+ c−2
1 κ c−2

2 κ

c−2
1 κ −1+ c−2

2 κ

)−1(
c2

1 0

0 c2
2

)

= −
[(
−1+ c−2

1 κ
)(

−1+ c−2
2 κ

)
− c−2

1 κc−2
2 κ

]−1

(
−1+ c−2

2 κ −c−2
2 κ

−c−2
1 κ −1+ c−2

1 κ

)(
c2

1 0

0 c2
2

)

= −
[
1− c−2

1 κ − c−2
2 κ

]−1

(
c2

1

(
−1+ c−2

2 κ
)

−κ

−κ c2
2

(
−1+ c−2

1 κ
)
)

= K

(
c2

1

(
1− c−2

2 κ
)

κ

κ c2
2

(
1− c−2

1 κ
)
)

With K =
[
1− c−2

1 κ − c−2
2 κ

]−1
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The PT measure I have
(

c 1+d

)
=
(

c−2
1 κ c−2

2 κ
)

so

PT1 =
c−2

1

c−2
1 + c−2

2

and PT2 =
c−2

2

c−2
1 + c−2

2

The IS bounds The total IS 1.38 using 1.39 and 1.40 is:

ψΩψ ′ = K12κ2
(

c−2
1 c−2

2

)( c2
1

(
1− c−2

2 κ
)

κ

κ c2
2

(
1− c−2

1 κ
)
)(

c−2
1

c−2
2

)

= K12κ2 (c−2
1 + c−2

2

)

Then the Cholesky decomposition matrix F :

F =
√

K12

( √
σ11 0

ρ
√

σ22
√

σ22
√

(1−ρ2)

)

I have

• The Upper bound for market 1 is

IS1u =
([ψF ]1)

2

ψΩψ ′ =
K12

ψΩψ
(ψ11

√
σ11 +ψ12ρ

√
σ22)

2

=
K12

ψΩψ
κ2
(

c−2
1
√

σ11 + c−2
2 σ12 (

√
σ11)

−1
)2

=
1

c−2
1 + c−2

2

(
c−4

1 σ11 + c−4
2 σ2

12σ−1
11 +2c−2

1 c−2
2 σ12

)

=
1

c−2
1 + c−2

2

(
c−4

1 c2
1

(
1− c−2

2 κ
)
+ c−4

2 (κ)2 (
c2

1

(
1− c−2

2 κ
))−1

+2c−2
1 c−2

2 (κ)
)

=
1

c−2
1 + c−2

2

(
c−2

1

(
1− c−2

2 κ
)
+ c−4

2 κ2c−2
1

(
1− c−2

2 κ
)−1

+2c−2
1 c−2

2 κ
)

=
c−2

1

c−2
1 + c−2

2

(
1+ c−2

2 κ + c−4
2 κ2 (1− c−2

2 κ
)−1
)

=
c−2

1(
c−2

1 + c−2
2

)(
1− c−2

2 κ
)
((

1+ c−2
2 κ

)(
1− c−2

2 κ
)
+ c−4

2 κ2)

=
c−2

1(
c−2

1 + c−2
2

)(
1− c−2

2 κ
)
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• The lower bound for market 2 is IS2l

IS2l =
([ψF ]2)

2

ψΩψ ′ =
K12

ψΩψ

(
ψ12

√
σ22

√
(1−ρ2)

)2

=
K12

ψΩψ

(
ψ2

12σ22
(
1−ρ2))

=
K12

ψΩψ
κ2c−4

2 c2
2

(
1− c−2

1 κ
) c2

1c2
2 − c2

1κ − c2
2κ +κ2 −κ2

c2
1c2

2 − c2
1κ − c2

2κ +κ2

K12

ψΩψ
κ2c−2

2

(
1− c−2

1 κ
) c2

1c2
2 − c2

1κ − c2
2κ

c2
1c2

2

(
1− c−2

2 κ
)(

1− c−2
1 κ

)

=
c−2

2

c−2
1 + c−2

2

1− c−2
1 κ − c−2

2 κ(
1− c−2

2 κ
)

=
c−2

2

c−2
1 + c−2

2

(
1−κ

(
c−2

1 + c−2
2

))
(
1− c−2

2 κ
)

=
c−2

2 K−1
12(

c−2
1 + c−2

2

)(
1− c−2

2 κ
)

By switching the variable this gives
(

ψ11 ψ22

)
= κ

(
c−2

2 c−2
1

)

and Ω = K12

(
c2

2

(
1− c−2

1 κ
)

κ

κ c2
1

(
1− c−2

2 κ
)
)

= F̃F̃ ′ with

F̃ =
√

K12

( √
σ22 0

ρ
√

σ11
√

σ11
√

(1−ρ2)

)

• The Lower bound for market 1 is

IS1l =

(
[ψF̃ ]2

)2

ψΩψ
=

K12

ψΩψ

(
ψ11

√
σ11

√
(1−ρ2)

)2

=
c−2

1 K−1
12(

c−2
1 + c−2

2

)(
1− c−2

1 κ
)

• The Upper bound for market 2 is

IS2u =

(
[ψF̃ ]1

)2

ψΩψ ′ =
K12

ψΩψ
(ψ11

√
σ22 +ψ12ρ

√
σ11)

2

=
c−2

2(
c−2

1 + c−2
2

)(
1− c−2

1 κ
)
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To summarize I have

The bounds for market 1 are

• IS1u =
c−2

1

(c−2
1 +c−2

2 )(1−c−2
2 κ)

and IS1l =
c−2

1 K−1

(c−2
1 +c−2

2 )(1−c−2
1 κ)

And for market 2

• IS2u =
c−2

2

(c−2
1 +c−2

2 )(1−c−2
1 κ)

and IS2l =
c−2

2 K−1

(c−2
1 +c−2

2 )(1−c−2
2 κ)

The Lemma 1 and the Propositions 1,2,3 are proven.

1.8.2.3 Model II: The Roll model with a delayed market

The prices system is

mth = mth−h +ηth

p1th = mth + c1ε1th

p2th = mth−δ + c2ε2th

The second market is delayed of δ .

To specify the how h moves with respect to δ , I set δ = b× l, h = k× l. l is a short time pace

and there is a white noise ul , with var (µl) = σ2 and

mtkl = mtkl−l +utkl

= mtkl−2l +utkl +utkl−l

...

mtkl = mtkl−kl +
k−1

∑
j=0

utkl− jl

Thus mth = mth−h +ηth with ηth = ∑
k−1
j=0 utkl− jl and var (ηth) = hσ2.

When h ≥ δ , ∆pt is a VMA (1) and I have

∆p1th = ∆mth + c1∆ε1th = ∑
k−1
j=0 utkl− jl + c1∆ε1th

∆p2th = ∆mth−δ + c2∆ε2th = ∑
k+b−1
j=b utkl− jl + c2∆ε2th

Then I easily compute

C0 =

(
hσ2 +2c2

1 (h−δ )σ2

(h−δ )σ2 hσ2 +2c2
2

)
and C1 =

(
−c2

1 0

δσ2 −c2
2

)
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I compute F,G from 1.33

F =
−m12 +m21 + v2

1 − v12

m12 −m21 + v2
2 − v12

and G =
m12 −m21 − v2

2 + v12

m12 −m21 + v2
2 − v12

F =
δσ2

l +hσ2
l +2c2

1 − (h−δ )σ2
l

−δσ2
l +hσ2

l +2c2
2 − (h−δ )σ2

l

=
2δσ2

l +2c2
1

2c2
2

=
δσ2

l + c2
1

c2
2

G =
−δσ2

l −hσ2
l −2c2

2 +(h−δ )σ2
l

−δσ2
l +hσ2

l +2c2
2 − (h−δ )σ2

l

=
−δσ2

l −2c2
2 −δσ2

l

2c2
2

= −δσ2
l + c2

2

c2
2

set A = c2
2

C =

(
hσ2

l +2c2
1 (h−δ )σ2

l

(h−δ )σ2
l hσ2

l +2c2
2

)
and M =

(
−c2

1 0

δσ2
l −c2

2

)

Which is plugged into the elements of 1.35:

= 2A2FGm2 +A2Gm12 −A2v12 −A2Fv2
2

= 2
(
δσ2

l + c2
1

)(
δσ2

l + c2
2

)
c2

2 −
(
δσ2

l + c2
2

)
δσ2

l − c4
2 (h−δ )σ2

l − c2
2

(
δσ2

l + c2
1

)(
hσ2

l +2c2
2

)

= c2
2

[
2
(
δσ2

l + c2
1

)(
δσ2

l + c2
2

)
− c2

2 (h−δ )σ2
l −
(
δσ2

l + c2
1

)(
hσ2

l +2c2
2

)]
−
(
δσ2

l + c2
2

)
δσ2

l

= c2
2

[
2δσ2

l

(
c2

1 + c2
2

)
+2
(
δσ2

l

)2
+2c2

1c2
2 − c2

2 (h−δ )σ2
l −δσ2

l hσ2
l −δσ2

l 2c2
2 − c2

1hσ2
l −2c2

1c2
2

]

−
(
δσ2

l + c2
2

)
δσ2

l

= c2
2σ2

l

[
2δc2

1 +2δ 2σ2
l − c2

2 (h−δ )−δhσ2
l − c2

1h
]
−
(
δσ2

l + c2
2

)
δσ2

l
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= A2G2m2 −A2Gv2
2 +A2m2

=
(
−c2

2

)(
δσ2

l + c2
2

)2
+ c2

2

(
δσ2

l + c2
2

)(
hσ2

l +2c2
2

)
− c4

2c2
2

=
(
−c2

2

)[(
δσ2

l + c2
2

)2 −
(
δσ2

l + c2
2

)(
hσ2

l +2c2
2

)
+ c4

2

]

=
(
−c2

2

)[
2δσ2

l c2
2 +
(
δσ2

l

)2
+
(
c2

2

)2 −
(
δσ2

l + c2
2

)
hσ2

l −
(
δσ2

l + c2
2

)
2c2

2 + c4
2

]

=
(
−c2

2

)
σ2

l

[
δ 2σ2

l −
(
δσ2

l + c2
2

)
h
]

=
(
−c2

2

)
σ2

l

[
δσ2

l (δ −h)− c2
2h
]

= c2
2σ2

l

[
δσ2

l (h−δ )+ c2
2h
]

= A2m1 +A2F2m2 +A2Fm12

= −c4
2c2

1 −
(
δσ2

l + c2
1

)2
c2

2

∆ =

[
2(F)(G)m2 +(G)(m12)− v12 − (F)v2

2

m1 +(F)2
m2 +(F)(m12)

]2

−4
(G)2

m2 − (G)v2
2 +m2

m1 +(F)2
m2 +(F)(m12)

=

[
−σ2

l

[(
δσ2

l + c2
2

)(
σ2

l δ (h−δ )+h
(
c2

1 + c2
2

))
+2c2

1c2
2δ
]

−c4
2c2

1 −
(
δσ2

l + c2
1

)2
c2

2

]2

+4
c2

2σ2
l

[
σ2

l δ (h−δ )+hc2
2

]

c4
2c2

1 +
(
δσ2

l + c2
1

)2
c2

2

=

[
σ2

l

[(
δσ2

l + c2
2

)(
σ2

l δ (h−δ )+h
(
c2

1 + c2
2

))
+2c2

1c2
2δ
]

c4
2c2

1 +
(
δσ2

l + c2
1

)2
c2

2

]2

+4
σ2

l

[
σ2

l δ (h−δ )+hc2
2

]

c2
2c2

1 +
(
δσ2

l + c2
1

)2

c = −1
2

σ2
l

[(
δσ2

l + c2
2

)(
σ2

l δ (h−δ )+h
(
c2

1 + c2
2

))
+2c2

1c2
2δ
]

c4
2c2

1 +
(
δσ2

l + c2
1

)2
c2

2

± 1
2

√
∆

d = c
δσ2

l + c2
1

c2
2

− δσ2
l + c2

2

c2
2
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then

Ω = Θ−1C1 = −
(

−1+ c d

c −1+d

)−1(
−c2

1 0

δσ2
l −c2

2

)

= (1− c−d)−1

(
−1+d −d

−c −1+ c

)(
−c2

1 0

δσ2
l −c2

2

)

= (1− c−d)−1

(
−c2

1 (−1+d)−dδσ2
l dc2

2

cc2
1 +(−1+ c)δσ2

l −(−1+ c)c2
2

)

=

(
σ11 σ12

σ12 σ22

)

And then the PT and the IS are computed by replacing in 1.39, 1.40, 1.37.

The PT measure

PT1 =
c

1+ c+d
and PT2 =

1+d

1+ c+d
(1.42)

The information share bounds The total IS is

ψΩψ ′ =
(

c 1+d

)
Ω

(
c

1+d

)

=
[
c2σ11 +2σ12c(1+d)+(1+d)2 σ22

]

= c2 × (−1+ c+d)−1 (
c2

1 (−1+d)+dδσ2)+2dc2
2 (1− c−d)−1

c(1+d)− (1− c−d)−1 (−1+ c)c2
2

The IS bounds for market 1 are

IS1u =

(
c2 (−1+ c+d)−1 (

c2
1 (−1+d)+dδσ2

)
+

(1+d)2(dc2
2(1−c−d)−1)

2

((−1+c+d)−1(c2
1(−1+d)+dδσ2))

/+4c(1+d)dc2
2 (1− c−d)−1

)

c2 × (−1+ c+d)−1 (
c2

1 (−1+d)+dδσ2
)
+2dc2

2 (1− c−d)−1
c(1+d)− (1− c−d)−1 (−1+ c)c2

2

IS1l =

c2 (−1+ c+d)−1 (
c2

1 (−1+d)+dδσ2
)(

1− (1+d)2(dc2
2(1−c−d)−1)

2

(c2
1(−1+d)+dδσ2)((−1+c)c2

2)

)

c2 × (−1+ c+d)−1 (
c2

1 (−1+d)+dδσ2
)
+2dc2

2 (1− c−d)−1
c(1+d)− (1− c−d)−1 (−1+ c)c2

2
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and for market 2

IS2u = 1−
c2 (−1+ c+d)−1 (

c2
1 (−1+d)+dδσ2

)(
1− (1+d)2(dc2

2(1−c−d)−1)
2

(c2
1(−1+d)+dδσ2)((−1+c)c2

2)

)

c2 × (−1+ c+d)−1 (
c2

1 (−1+d)+dδσ2
)
+2dc2

2 (1− c−d)−1
c(1+d)− (1− c−d)−1 (−1+ c)c2

2

IS2l = 1−

(
c2 (−1+ c+d)−1 (

c2
1 (−1+d)+dδσ2

)
+

(1+d)2(dc2
2(1−c−d)−1)

2

((−1+c+d)−1(c2
1(−1+d)+dδσ2))

/+4c(1+d)dc2
2 (1− c−d)−1

)

c2 × (−1+ c+d)−1 (
c2

1 (−1+d)+dδσ2
)
+2dc2

2 (1− c−d)−1
c(1+d)− (1− c−d)−1 (−1+ c)c2

2

1.8.2.4 Model III: two markets with public and private information

I have λh,σ (h)
h→0−→ 0 and

mt =mt−h +λhη1th +ηth (1.43)

p1th =mth +η1th + c1ε1th

P2th =mth−h + c2ε2th

thus

C0 =

(
(λh +1)2 +1+σ2

h +2c2
1 −λh

−λh λ 2
h +σ2

h +2c2
2

)
and C1 =

(
−(λh +1)− c2

1 0

λh (λh +1)+σ2
h −c2

2

)

(1.44)

Using the equation 1.33

d
(
m12 −m21 + v2

2 − v12
)

= c
(
−m12 +m21 + v2

1 − v12
)
+m12 −m21 − v2

2 + v12

d
(
−λh (λh +1)−σ2

h +λ 2
h +σ2

h +2c2
2 +λh

)
= c

(
λh (λh +1)+σ2

h +(λh +1)2 +1+σ2
h +2c2

1 +λh

)

−λh (λh +1)−σ2
h −λ 2

h −σ2
h −2c2

2 −λh

d
(
2c2

2

)
= c

(
2(λh +1)2 +2σ2

h +2c2
1

)
−2σ2

h −2λ 2
h −2c2

2 −2λh

dc2
2 = c

[
(λh +1)2 +σ2

h + c2
1

]
−
(
σ2

h +λ 2
h + c2

2 +λh

)

d = cc−2
2

[
(λh +1)2 +σ2

h + c2
1

]
− c−2

2

(
σ2

h +λ 2
h + c2

2 +λh

)

d = cF +G

F = c−2
2

[
(λh +1)2 +σ2

h + c2
1

]
and G =−c−2

2

(
σ2

h +λ 2
h + c2

2 +λh

)
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For h ≃ 0 I consider the development at the order of λh and σh. That is

F = c−2
2

(
1+ c2

1

)
, G =−

(
1+ c−2

2 λh

)
thus d = c−2

2

(
1+ c2

1

)
c−
(
1+ c−2

2 λh

)
and I have

C0 =

(
2λh +2+2c2

1 −λh

−λh 2c2
2

)
and C1 =

(
−1− c2

1 0

λh −c2
2

)

In equation 1.34

m1 +F2m2 +F (m12 +m21) = −
(
1+ c2

1

)[
1+ c−2

2

(
1+ c2

1

)
− c−2

2 λh

]

2FGm2 +G(m12 +m21)− v12 −Fv2
2 =

(
c−2

2 λh

)(
2
(
1+ c2

1

)
−λh

)

G2m2 −Gv2
2 +m2 = −c2

2

(
2+ c−2

2 λh

)2

∆ =
(
c−2

2 λh

)2 (
2
(
1+ c2

1

)
−λh

)2 −4c2
2

(
2+ c−2

2 λh

)2 (
1+ c2

1

)[
1+ c−2

2

(
1+ c2

1

)
− c−2

2 λh

]

= c−4
2 λ 2

h

(
4
(
1+ c2

1

)2
+λ 2

h −4
(
1+ c2

1

)
λh

)
−4
(
4+4c−2

2 λh + c−4
2 λ 2

h

)
c2

2

(
1+ c2

1

)[
1+ c−2

2

(
1+ c2

1

)]

+4
(
4+4c−2

2 λh + c−4
2 λ 2

h

)
c2

2

(
1+ c2

1

)
c−2

2 λh

c =
c−2

2 λh(1+c2
1)+

√
λh(1+c2

1)(1+c−2
2 (1+c2

1))

(1+c2
1)[1+c−2

2 (1+c2
1)−c−2

2 λh]

d = c−2
2

(
1+ c2

1

)
c−
(
1+ c−2

2 λh

)

= c−2
2

(
1+ c2

1

) c−2
2 λh(1+c2

1)+
√

λh(1+c2
1)(1+c−2

2 (1+c2
1))

(1+c2
1)[1+c−2

2 (1+c2
1)−c−2

2 λh]
− c−2

2 λh −1

1+d = c−2
2

c−2
2 λh(1+c2

1)+
√

λh(1+c2
1)(1+c−2

2 (1+c2
1))

[1+c−2
2 (1+c2

1)−c−2
2 λh]

− c−2
2 λh

I go at the order
√

λh

c =

√
λh√

(1+c2
1)(1+c−2

2 (1+c2
1))

and 1+d =
c−2

2 (1+c2
1)
√

λh√
(1+c2

1)
√

1+c−2
2 (1+c2

1)

The variance 1.36 Ω = [c+d]−1

(
d
(
1+ c2

1

)
−(1+d)c2

2

−c
(
1+ c2

1

)
(−1+ c)c2

2

)
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The PT measure

PT1 =
1

1+ c−2
2

(
1+ c2

1

) and PT2 =
c−2

2

(
1+ c2

1

)

1+ c−2
2

(
1+ c2

1

)

The information share bounds The total IS is

ψΩψ ′ = [c+d]−1
(

c 1+d

)( d
(
1+ c2

1

)
−c
(
1+ c2

1

)

−c
(
1+ c2

1

)
(−1+ c)c2

2

)(
c

1+d

)

= [c+d]−1
(

c 1+d

)( d
(
1+ c2

1

)
c− c(1+d)

(
1+ c2

1

)

−c2
(
1+ c2

1

)
+(1+d)(−1+ c)c2

2

)

= [c+d]−1
(

c c−2
2

(
1+ c2

1

)
c

)( −c
(
1+ c2

1

)

−c
(
1+ c2

1

)
)

= − [c+d]−1
c2 (1+ c2

1

)(
1+ c−2

2

(
1+ c2

1

))

= − [c+d]−1 λh

Then the Cholesky matrix F :

F =
√

K

( √
σ11 0

ρ
√

σ22
√

σ22
√

(1−ρ2)

)

I have
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• The Upper bound for market 1 is

IS1u =
([ψF ]1)

2

ψΩψ ′ =
K

ψΩψ
D2 (√σ11 + c−2

2

(
1+ c2

1

)
ρ
√

σ22
)2

=
KD2

ψΩψ

(√
σ11 + c−2

2

(
1+ c2

1

)
σ12 (

√
σ11)

−1
)2

=
KD2

ψΩψ

(
σ11 +

(
c−2

2

(
1+ c2

1

))2
σ2

12σ−1
11 +2

(
c−2

2

(
1+ c2

1

))
σ12

)

=
KD2

ψΩψ

(
d
(
1+ c2

1

)
+
(
c−2

2

(
1+ c2

1

))2 (
1+ c2

1

)2
d−1 (1+ c2

1

)−1
)

−2
(
c−2

2

(
1+ c2

1

))(
1+ c2

1

)

=
KD2

ψΩψ

(
1+ c2

1

)(
d +

(
c−2

2

(
1+ c2

1

))2
d−1 −2c−2

2

(
1+ c2

1

))

=
KD2

ψΩψ

(
1+ c2

1

)(
d +

(
1+2d +d2)d−1 −2(1+d)

)

=
KD2

ψΩψ

(
1+ c2

1

)(
d−1)

=
KD2

ψΩψ

(
1+ c2

1

)

d

• The lower bound for market 2 is IS2l

IS2l =
([ψF ]2)

2

ψΩψ ′ =
K

ψΩψ

(
ψ12

√
σ22

√
(1−ρ2)

)2

=
K

ψΩψ
ψ2

12σ22
(
1−ρ2)

=
K

ψΩψ
(1+d)2 σ22

(
1−σ2

12σ−1
11 σ−1

22

)

=
K

ψΩψ
(1+d)2 (−1+ c)c2

2

(
1− c2 (1+ c2

1

)2
d−1 (1+ c2

1

)−1
(−1+ c)−1

c−2
2

)

=
K

ψΩψ
(1+d)2 (−1+ c)c2

2 (−1+ c)−1
d−1 (d(−1+ c)− c2 (1+ c2

1

)
c−2

2

)

=
K

ψΩψ
(1+d)2 (−1+ c)c2

2 (−1+ c)−1
d−1 (d(−1+ c)− c(1+d))

=
K

ψΩψ
(1+d)2 (−1+ c)c2

2 (−1+ c)−1
d−1 (−c−d)

=
K

ψΩψ
(1+d)2

c2
2d−1 (−c−d)

= − K

ψΩψ

(c+d)

d
(1+d)2

c2
2
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By switching the variable this gives
(

ψ11 ψ22

)
=
(

1+d c

)

and Ω=K

(
(−1+ c)c2

2 −c
(
1+ c2

1

)

−c
(
1+ c2

1

)
d
(
1+ c2

1

)
)
= F̃F̃ ′ with F̃ =

√
K

( √
σ22 0

ρ
√

σ11
√

σ11
√

(1−ρ2)

)

• The Lower bound for market 1 is

IS1l =

(
[ψF̃ ]2

)2

ψΩψ
=

K

ψΩψ

(
ψ11

√
σ11

√
(1−ρ2)

)2

=
K

ψΩψ
ψ2

11σ11
(
1−ρ2)

=
KD2

ψΩψ
σ11
(
1−σ2

12σ−1
11 σ−1

22

)

=
KD2

ψΩψ
d
(
1+ c2

1

)
(−1+ c)−1

d−1 (−c−d)

= − KD2

ψΩψ

(
1+ c2

1

)( c+d

−1+ c

)

• The Upper bound for market 2 is

IS2u =

(
[ψF̃ ]1

)2

ψΩψ ′ =
K12

ψΩψ
(ψ22

√
σ22 +ψ11ρ

√
σ11)

2

=
K

ψΩψ

(
(1+d)

√
σ22 + cσ12 (

√
σ22)

−1
)2

=
K

ψΩψ

(
(1+d)2 σ22 + c2σ2

12 (σ22)
−1 +2c(1+d)σ12

)

=
K

ψΩψ

(
(1+d)2 (−1+ c)c2

2 + c2c2 (1+ c2
1

)2
(−1+ c)−1

c−2
2 −2c2(1+d)

(
1+ c2

1

))

=
K

ψΩψ

(
c−4

2

(
1+ c2

1

)2
c2 (−1+ c)c2

2 + c2c2 (1+ c2
1

)2
(−1+ c)−1

c−2
2 −2c2c−2

2

(
1+ c2

1

)
c
(
1+ c2

1

))

=
K

ψΩψ

(
1+ c2

1

)2
c2c−2

2

(
(−1+ c)+ c2 (−1+ c)−1 −2c

)

=
K

ψΩψ

(
1+ c2

1

)2
c2c−2

2 (−1+ c)−1
(
(−1+ c)2 + c2 −2c(−1+ c)

)

=
K

ψΩψ

(
1+ c2

1

)2
c2c−2

2 (−1+ c)−1 (
c2 −2c+1+ c2 +2c−2c2)

=
K

ψΩψ

(
1+ c2

1

)2
c2c−2

2 (−1+ c)−1

=
K

ψΩψ

c2

(−1+ c)

(
1+ c2

1

)2
c−2

2

To summarize I have K = [c+d]−1 =
[
D
(
1+ c−2

2

(
1+ c2

1

))
−1
]−1

, c = D , 1+d = c−2
2

(
1+ c2

1

)
D

, ψΩψ =−Kλh
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D =
√

λh

(√(
1+ c2

1

)(
1+ c−2

2

(
1+ c2

1

)))−1

• IS1u =− 1
c−2

2 (1+c2
1)D−1

× 1
(1+c−2

2 (1+c2
1))

• IS1l =

(
D(1+c−2

2 (1+c2
1))−1

D−1

)
1

1+c−2
2 (1+c2

1)

• IS2u =
−(1+c2

1)c−2
2

(−1+D) × 1
(1+c−2

2 (1+c2
1))

• IS2l =
[D(1+c−2

2 (1+c2
1))−1]

Dc−2
2 (1+c2

1)−1
c−2

2

(
1+ c2

1

)
1

(1+c−2
2 (1+c2

1))

When h −→ 0 then D −→ 0 and

IS1u = − 1
c−2

2 (1+c2
1)D−1

× 1
(1+c−2

2 (1+c2
1))

= 1
1+c−2

2 (1+c2
1)

= PT1

IS1l =

(
D(1+c−2

2 (1+c2
1))−1

D−1

)
1

1+c−2
2 (1+c2

1)
= 1

1+c−2
2 (1+c2

1)
= PT1

IS2u =
−(1+c2

1)c−2
2

(−1+D) × 1
(1+c−2

2 (1+c2
1))

=
(1+c2

1)c−2
2

1+c−2
2 (1+c2

1)
= PT2

IS2l = 1
(1+c−2

2 (1+c2
1))

[D(1+c−2
2 (1+c2

1))−1]
Dc−2

2 (1+c2
1)−1

c−2
2

(
1+ c2

1

) (1+c2
1)c−2

2

1+c−2
2 (1+c2

1)
= PT2

I obtain also here that the IS bound and PT are similar at high frequency.

1.8.2.5 Proof of Proposition 1.4

Proof. If 1 ≥ α1 then

κ =−σ2h

2
+

σh

2

√
4c

′2
1 c

′2
2 hα1

(
c
′2
1 hα1−α2 + c

′2
2

)−1 ≃−σ2h

2
+σc

′
1c

′
2h0.5+α1

(
c
′2
1 hα1−α2 + c

′2
2

)−1/2

−→ 0

K =
[
1−κh−α1

(
c
′−2
1 + c

′−2
2 hα1−α2

)]−1

=

[
1−
(
−1

2
σ2h+σc

′
1c

′
2h0.5+α1

(
c
′2
1 hα1−α2 + c

′2
2

)−1/2
)

h−α1

(
c
′−2
1 + c

′−2
2 hα1−α2

)]−1

⋍

[
1−
(
−1

2
σ2hh−α1 +σc

′
1c

′
2h0.5+α1h−α1

(
c
′2
1 hα1−α2 + c

′2
2

)−1/2
)(

c
′−2
1 + c

′−2
2 hα1−α2

)]−1

⋍

[
1+

1
2

σ2c
′−2
1 h1−α1 −σc1c2h0.5c

′−1
2 c

′−2
1

]

−→ 1
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Chapter 2 Adjustment of the permanent price on interlinked markets

Chapter 2

Adjustment of the permanent price on

interlinked markets

Abstract: I provide a new way to evaluate price adjustment across linked markets by building an

Impulse Response measuring the permanent impact of market’s innovation and I give its asymptotic

distribution. The framework seems to be the first to provide testable results for price discovery

measures based on Hasbrouck (1995) innovation variance and gives a rationale to the Information

Share Upper bound. I later present an equilibrium model of different maturities futures markets

with convenience yield and I show that it supports my measure: As Garbade and Silber (1983),

adjustment is driven by the number of participants in each market. An application on some metals of

the London Metal Exchange shows that some markets are in Backwardation and others in Contago.

And that, 3-month futures contract dominates the spot and the 15-month in price formation.

Keywords: Backwardation, Contago, Generalized Impulse Responses, Information Share, Price

discovery,

JEL: C32,G13,G14
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2.1 Introduction

The multiplication of financial derivatives and markets places resurges the interest in understanding

the path of information shocks in financial markets. Information becomes critically important when

it is not shared by all the market participants and they would like prices to reflect what is known

by others liquidity suppliers at a given point in time. Investors trading at that time would benefit

from a fair price, without a shortfall resulting from adverse selection when other side of the market

has a private information. The markets authorities activity involves engaging reforms to make

information available to market participants and ameliorating the informational quality of prices.

This put them in the need of a permanent assessment of information diffusion trough the market

and strengthen the importance of having measures of the information carried by prices.

For assets listed in many markets or securities linked by strong arbitrage relationships, the

concern is to evaluate how each market contributes to the adjustment of the permanent price: the so-

called price discovery mechanism. For this purpose, some measures were developed in the literature

triggered by Hasbrouck (1995). He presented a measure of price discovery called Information

Share (IS) and provides comparison of New York Stock Exchange and the Regional exchanges in

the quotes formation of thirty Dow stocks. The main competing measure is the common factor

weight of Gonzalo and Granger (1995) permanent-transitory (PT) decomposition (see Harris et al.,

2002b). Those methods are intensively discussed by De Jong (2002), Lehmann (2002), Hasbrouck

(2002),Baillie et al. (2002),Yan and Zivot (2010). The main lesson is that the IS is more concerned

with the variability in the process with an economic sensitive identification of its efficient price.

The IS measure suggests to evaluate the market contribution to price discovery by the relative part

of this market in the variance of the innovation in the efficient price. Meanwhile IS has some

drawbacks; it is not identified and is only able to produce upper and lower bound, and sometimes

those bounds can be very wide.

Many authors tried to solve this identification issue by doing some transformations of the inno-

vation variance matrix. But the limit of those techniques is that they completely lost an economic

meaning behind the mathematical operations. For example, Lien and Shrestha (2014) use an or-

thogonalization of the correlation matrix to propose the Generalized Information Share (GIS), this

measure has the advantage of being independent of the variable ordering and is applicable to CDS

and Bond as in their application. Meanwhile, the orthogonalization procedure of the correlation

matrix lacks some economic intuition. This is the same limitation with methods based on het-

eroskedasticity as in Grammig and Peter (2013). They exploit “tail dependence” for identification

through heteroskedasticity on two regimes (Rigobon, 2003; Lanne and Lütkepohl, 2010).

In this study, I build the Impulse response Information Share (IRIS) based on the definition of

Generalized Impulse Response Function (GIRF) of Pesaran and Shin (1998). I propose to evaluate
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the informational content of the price of a given market by measuring the response of the permanent

component of prices to a shock in this market. My framework has the advantage that it provides a

unique value and has a straightforward economic interpretation. In contrary to other methods based

on Information Share, I provide a limiting distribution to test the significance of the responses.

While also making use of the cointegration properties, the setup doesn’t impose the cointegrating

coefficient to be one, and it provides a rationale for the practical choice of Hasbrouck (1995) IS

upper bound when facing the identification issue. Then, I present an equilibrium cost-of- carry

model of futures markets with convenience yield. I show that the model supports my measure:

As the theoretical result of Garbade and Silber (1983) andFiguerola-Ferretti and Gonzalo (2010),

my measure selects the market with the higher number of participants as dominating the price

discovery.

The remainder of the paper is organized as follow. The section 2 presents the modeling frame-

work; the IRIS measure, the estimation and asymptotic theory are constructed. It finishes by some

Monte-Carlo exercises showing how it performs. In section 3 a theoretical cost-of-carry model

is presented and shows that IRIS has theoretical relevance. In section 4 I present an application

to study the spot, 3 months and 15 months futures contracts on some metals traded at the London

Metal Exchange (LME). One of the primary functions of futures contract design is to improve price

discovery. I obtain that only the 3-month contract serves that purposes, the 15-month contract being

less relevant.

2.2 Modeling and estimation

2.2.1 Setup

There is d strongly related securities that are traded at the respective prices p1t . . . and pdt . For

example, for one asset listed on two markets, p1t is the price of the asset on the first market and p2t

the price on the second. I denote the vector of prices by Pt = (p1t , p2t . . . pdt)
′. In this situation it is

classical that Pt is assumed to be cointegrated and the gap between every pair of prices is stationary

such that there exist only one common trend for all prices. Using Johansen (1991) results, Pt can

be shown to admit the following Vector error correction model (VECM) representation:

∆Pt =−αβ ′Pt−1 +Γ1∆Pt−1 + . . .+ΓK∆Pt−K + εt (2.1)
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where the cointegrating matrix is normalized here to be

β ′ =




1 −β1 . . . 0 0

0 1 −β2 0

. . .

0 0 1 −βd−1




: (d −1)×d (2.2)

The infinite moving average representation of the price vector difference and the Granger rep-

resentation theorem give the following relationships where Ψ(L) is a lag polynomial and εt inde-

pendent white noise with var(εt) = Ω:

∆Pt = Ψ(L)εt = (Ψ(1)+Ψ∗(L)(1−L))εt (2.3)

Pt = P0 +Ψ(1)
t

∑
s=1

εs +Ψ∗(L)εt (2.4)

The matrix of the long run impact is given by

Ψ(1) = β⊥

(
α

′
⊥

(
I −

p

∑
i=1

Γi

)
β⊥

)−1

α
′
⊥ (2.5)

From now on, to simplify the presentation and keep the focus on intuitions and arguments, I

restrict to d = 2 markets. Meanwhile the proof are done for d > 2 .

2.2.2 The Information Share measure

For an asset that is traded on two or more venues, Hasbrouck (1995) is looking for a measure

that will determine on which market the price discovery does happen. He proposed to use the

contribution of each market in the variance of the innovation of the fundamental value (or the

“efficient price” which is common to all the markets). His method relies on the assumption that the

cointegrating equation is β = (1 −1).

So the matrix Ψ(1) can be expressed with a the unique ψ as

Ψ(1) =

(
1

1

)
ψ =

(
1

1

)(
ψ11 ψ12

)
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Replacing in equation 2.4 yields

Pt = P0 +

(
1

1

)
ψ

t

∑
s=1

εs +Ψ∗(L)εt (2.6)

The random walk component of the price is ψ ∑
t
s=1 εs, it is a scalar random variable and it is

common to market 1 and market 2. It is identified as the implicit fundamental price of the asset.

The new information entering the fundamental price is ψεt and its variance (ψΩψ ′) is the total

information share. he defines the market contribution in the following way:

If Ω were to be diagonal, then the total information share will be

ψΩψ ′ = ψ2
11Ω11 +ψ2

22Ω22

and the information share of the market j will be

IS j =
ψ2

j jΩ j j

ψΩψ ′

As Ω is not diagonal in general, its Cholesky decomposition root is computed as Ω = FF ′ with

F lower triangular. And I have

IS j =
(
[ψF ] j

)2
/ψΩψ ′ (2.7)

[ψF ] j is the jth element of the matrix ψF .

An identification problem arises because the ranking of the variables matters for the result.

Then by switching variables position in the price vector, he provides lower and upper bounds on

the Information Share of each market.

2.2.3 Invariant information Share measures

The IS identification problem can be summarized in the structural shock identification problem in

the SVAR literature. In fact having the reduced form shock εt the goal is to look for structural shock

ηt and B such that ηt = B−1εt . Briefly, the problem is to solve for the matrix B in equation Ω= BB′.

Unfortunately an infinity of solutions exist and the Hasbrouck (1995) choice is to consider the lower

triangular matrix F obtained from the Cholesky root of Ω. But as seen previously the IS doesn’t

give the same value for a market if it is placed in first and in second position in the price vector.

A solution to this is presented in Lien and Shrestha (2014) where instead of focusing on the

covariance matrix Ω, they consider the eigenvalues decomposition of its correlation matrix Φ. Let
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G the matrix of eigenvectors, Λ is the diagonal matrix of eigenvalues and V = diag(Ω11,Ω22) the

diagonal matrix of standard deviations, and

F∗ =
[
GΛ−1/2GTV−1

]−1
(2.8)

It happens that Ω = F∗ (F∗)T . They thus define their Generalized Information share for market

j using the matrix B = F∗

GIS j =
(
[ψF∗] j

)2
/ψΩ2ψ

Where ψ is a line of the matrix Ψ(1)1.

This method has the advantage of being independent of the variables ordering, but it strongly

lacks an economic relevance behind the decomposition of the correlation matrix.

Others attempts to compute a unique Information Share may be to use non-gaussianity or het-

eroskedasticity to identify structural shocks as it is done in the Macroeconomics literature. Those

procedures have the advantage of allowing identification of the two structural shocks. Meanwhile

it is not possible to say which shock comes from which market and the parameters are identified

only up to a permutation matrix. In addition to the fact that they are purely statistical identifica-

tion schemes with no economics motivation, this is a severe problem for the purpose of assigning

market’s contribution to price discovery. To overcome this problem, Grammig and Peter (2013)

after considering heteroskedasticity on two regimes of structural innovations to identify uniquely

the matrix B, assign shocks in a way that the coefficient of a shock on its market should be bigger

than its coefficient on the other market.

Another non less important disadvantage of method based on information share is that they lack

asymptotic theory and testing. The current practice is to use some bootstrap procedures to provide

standard errors on Information Share.

2.2.4 α-based measures

The main competitor to IS measure in the literature is the Gonzalo and Granger (1995) common

factor weight in the Permanent-Transitory (PT) decomposition. This consist of decomposing a

difference stationary time series as the sum of a permanent I(1) component Qt and a transitory

stationary component Tt . The identification of the two components of Pt = Qt +Tt relies on two

assumptions:

1Here they don’t assume the Cointegrating value to be -1 like for the Modified Information Share (MIS) in Lien
and Shrestha (2009) . But GIS and MIS are analytically equal, the only difference remains in the estimation of the GIS
where there is no constraints on the coefficients β1.
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• Qt and Tt form a PT decomposition,

• Tt is a linear combination of the observed variables,

In the contest of one asset and many markets the permanent component is driven by an I(1) factor

( ft) common to both markets such that the observed price vector can be written as

Pt =

[
1

1

]
ft +Tt

And it is shown that given the ECM equation 2.1, the weight in the I(1) component are propor-

tional to α⊥ such that:

ft = c×α⊥Pt = c
(

α1⊥ α2⊥
)

Pt ,with c constant

The relative contribution to price discovery of market 1 and market 2 is thus computed by taking

the weight of each market in the permanent component (Harris et al., 2002a) as

PT1 =
α1⊥

α1⊥+α2⊥
,PT2 =

α1⊥
α1⊥+α2⊥

A difference between the PT and the IS is that ft is a linear combination of only the current

prices. Thus the permanent component of the Gonzalo and Granger (1995) decomposition is gen-

erally not a random walk. This is a serious drawback as this permanent component could not

represent an efficient price. Baillie et al. (2002) show that both can be easily computed after the

estimation of the ECM and they present the relationship linking CS to IS.

Instead of focusing on the innovation variation, the permanent component Share relies on the

error correction weighting matrix α⊥. In this respect Eun and Sabherwal (2003) also think of price

discovery as the adjustment to the equilibrium, but assess price discovery of a market directly by its

coefficient in α , summarizing its speed of adjustment toward the long run equilibrium. Building the

measures with only a coefficient of the VECM allows those methods to have testable implications

and thus statistical significance checking of the contribution to price discovery.

2.2.5 A new measure: The Impulse response Information share

The question of measuring price discovery for cross-listed assets comes from the need to know on

which market information enter the prices. As information is supposed to affect permanently the

prices, an appealing intuition is to say that: if information comes trough market 1 (and not through

market 2), the efficient price should react to innovation in market 1 (and not to innovation in market
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2). Price discovery can thus be well evaluated by the response of the efficient price to each market’s

innovation.2

2.2.5.1 The Generalized impulse response

In the case of linear VAR and Cointegrated systems, Pesaran and Shin (1998) analyzed the gen-

eralized impulse response function (GIRF) by relying on Koop et al. (1996). For a vector Zt the

Generalized Impulse Response defines the reaction of Zt to a shock δ j on ε jt , conditional on the

information set (It−1) at time t −1 as

GIz

(
n,δ j, It−1

)
= E

(
Zt+n|ε jt = δ j, It−1

)
−E (Zt+n|It−1)

This formula doesn’t rely on an orthogonalization procedure (e.g Cholesky), and the interpreta-

tion is straight-forward. In fact instead of shocking all the system, only the jth variable is shocked

and the effect of the other variables are integrated out.

If Zt is d-dimensional vector having the following Moving Average representation

Zt =
∞

∑
i=1

Aiεt−i

with εt has a normal distribution, the integration is easily done using the formula

E
(
εt |ε jt = δ j

)
=
(
σ1 j,σ2 j, . . . ,σd j

)′
σ−1

j j δ j = Ωe jσ
−1
j j δ j

where e j is the vector having 1 at the jth position and 0 elsewhere.

The vector of the unscaled impulse response of the effect of a shock in the jth equation at time

t on Zt+n is given by

GIz (n) = Anδ j = AnΩe jσ
−1
j j δ j ,n = 0, 1, 2, ...

Then normalizing the size of the shock to a one standard deviation δ j =
√

σ j j gives

GIz (n) = σ
− 1

2
j j AnΩe j

2 The impulse response function here differs totally from the analysis of Yan and Zivot (2010). They assume
two structural shocks (informational and noisy) and they look at the reaction of existing measures (IS, PT) to the
informational shock. Here after identifying the same permanent price as Hasbrouck (1995) I are interested in the
response of this efficient price to an innovation shock in each market.
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2.2.5.2 Definition of the measure

Let’s write the long run impact matrix as Ψ(1) =

(
ψ11 ψ12

ψ21 ψ22

)
and design its two rows by ψ1 =

(
ψ11 ψ12

)
and ψ2 =

(
ψ21 ψ22

)
.

With the cointegrating vector β = (1 −β1) and the properties β ′Ψ(1) = 0 I have

(
ψ11 ψ12

ψ21 ψ22

)
=

(
ψ11 −β1ψ12

ψ12 −β1ψ22

)
= 0

Thus ψ11 = β1ψ12 and ψ12 = β1ψ22, which implies that the second row is multiple of the first

row ψ2 = β−1
1 ψ1. There is 1 cointegrating relation so the space of permanent component is of

dimension 1 and Ψ(1) =

(
1

β−1
1

)
ψ1.

The permanent component entering the first price p1t is given by Q1t =ψ1 ∑
t
s=1 εs it is a random

walk, the same identified by the information share when β1 = 1. To define the measure, I compute

the generalized impulse response of Q1t , to a shock in the first and the second market. The response

of Q1t after n periods to a shock to the jth market is given by

GIQ1

(
n,ε j

)
= E

(
Q1t+n|ε jt = δ j,Ωt−1

)
−E (Q1t+n,Ωt−1)

= ψ1E
(
εt |ε jt = δ j

)

= ψ1Ωe jσ
− 1

2
j j

= ψ1σ
− 1

2
j j

(
σ1 j,σ2 j

)′

= σ
− 1

2
j j

(
ψ11σ1 j +ψ12σ2 j

)

The horizon n disappears from the formula at the second equality thanks to the random walk

nature of Q1t .

The square of the impulse response gives the variance of the permanent component forecast

error resulting from the shock in the jth market. As the IS using the variance, it is a good summary

of the permanent information entering the prices by market j:

GIq1(ε j)
2 = σ−1

j j

(
ψ11σ1 j +ψ12σ2 j

)2

This value can be compare for different market to see where information enter the price. The

market with the biggest value of GI2
q1

is designed as the dominant market. To express the result in

term of percentage (such that the results sum-up to one) and to compare with other measures, the
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contribution of the jth market to price discovery that I called Impulse Response Information Share

(IRIS) is defined by

IRIS j =
σ−1

j j

(
ψ11σ1 j +ψ12σ2 j

)2

∑
2
l=1 σ−1

ll

(
∑

d
i=1 ψ1iσil

)2 (2.9)

Remember that the IRIS was computed using Q1t the permanent component entering the first

price. If I consider the permanent component entering the second market: Q2t = ψ2 ∑
t
s=1 εs =

β−1
1 Q1t . It is a multiple of Q1t so the impulse response of Q2t to a shock to the jth price is:

GIQ2(ε j) = E
(
Q2t+n|ε jt = δ j,Ωt−1

)
−E (Q2t+n,Ωt−1) = β−1

1 GIQ1(ε j)

and

IRIS j =
β−1

1 GIQ2(ε j)
2

∑
2
j=1 β−1

1 GIQ2(ε j)2
=

GIQ1(ε j)
2

∑
2
j=1 GIQ1(ε j)2

So IRIS doesn’t depend on which permanent component you choose3 and the estimation of the

VECM can be done without imposing the unit restriction on the cointegrating equation.

2.2.5.3 Relationship between IRIS and the Information Share measures.

To present the link between IRIS and the IS of Hasbrouck (1995), I write explicitly the formulas

for market 1.

IRIS1 =
σ−1

11 (ψ11σ11 +ψ12σ12)
2

σ−1
11 (ψ11σ11 +ψ12σ12)

2 +σ−1
22 (ψ11σ12 +ψ12σ22)

2

If Ω is diagonal then the IRIS measure gives the IS measure:

IRIS1 =
σ−1

11 ψ2
11σ2

11

σ−1
11 ψ2

11σ2
11 +σ−1

22 ψ2
12σ2

22

=
ψ2

11σ11

ψ2
11σ11 +ψ2

12σ22

If Ω is not diagonal, let σ12 = ρ
√

σ11
√

σ22 and let’s consider the expression of the Cholesky

roots of Ω when the market 1 is placed first in vector of prices (Baillie et al., 2002):

F =

( √
σ11 0

ρ
√

σ22
√

σ22
√

(1−ρ2)

)

Then the numerator of the Information Share of the market 1 which correspond to Hasbrouck

3This properties is easily seen for more than two markets, there is d−1 cointegration relations so only 1 permanent
component entering each market multiplied by the corresponding β−1

i
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(1995) upper bound is

([ψF ]1)
2 = (ψ11

√
σ11 +ψ12ρ

√
σ22)

2

= ψ2
11σ11 +ψ2

12ρ2σ22 +2ψ11ψ12ρ
√

σ11
√

σ22

Let’s now focus on the numerator of IRIS1, the square of the Impulse Response of the permanent

component to a shock in market 1.

σ−1
11 (ψ11σ11 +ψ12σ12)

2 = σ−1
11 (ψ11σ11 +ψ12ρ

√
σ11

√
σ22)

2

= ψ2
11σ11 +ψ2

12ρ2σ22 +2ψ11ψ12ρ
√

σ11
√

σ22

So the numerator of the IRIS for the first market corresponds to the numerator of the IS for the

first market when it is in the first position in the orthogonalization procedure. I can thus write

IRIS1 =
U pper.IS1×ψΩψ ′

U pper.IS1×ψΩψ ′+U pper.IS2×ψΩψ ′ =
U pper.IS1

U pper.IS1+U pper.IS2

In applications studies, where one value of the IS is needed for regression purposes, one bound

or the mid-bounds is chosen without justification. The framework provide thus an economic ratio-

nale for the use of Hasbrouck (1995) upper-bound. In appendix 2.6.2.1 I show this result for d > 2

markets.

This result is not really surprising given the relationship between Cholesky factorization and

the Generalized Impulse response functions (Kim, 2013). It might lead to conclusion that there is

no difference in the definitions of the information Share and IRIS. Actually there is a difference:

The IRIS doesn’t not try to identify the origin of the shock and its contribution to the permanent

price variance. But it is looking at where this information enter the fundamental price. A concrete

example is to think of a Canadian company that is traded in Toronto and NYSE. If a relevant

information is produced in Canada but is reflected in the price by fast NYSE traders, then I consider

NYSE as dominating the price discovery process.

2.2.6 Estimation and Testing

The computation of the impulse response is easy once the parameters of the VECM representation

of the prices are identified. On real data after selecting the order K with the help of information

criteria, the VECM (2.1) is estimated for Ω̂ and for the parameters Γ1, . . . ,ΓK . Then Ψ̂(1) is

computed and the elements of the impulse response are identified.
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To obtain standard errors and the limiting distribution of the response to jth market, I use of the

limiting distribution of the coefficients. I have

ĜI j = ψ̂1Ω̂e jσ̂
− 1

2
j j

For the deduction of asymptotic the VECM (2.1) is represented as

∆Y =−αβ ′Y−1 +Γ∆X +U

with T = sample size and

∆Y = [∆P1, . . .∆PT ]

Y−1 = [P0, . . .PT−1]

Γ = [Γ1, . . . ,ΓK]

U = [ε0, . . .εT ]

∆X = [∆X0, . . .∆XT ] with ∆Xt−1 =




∆Pt−1
...

∆Pt−K




The theorem 2.1 gives the asymptotic distribution for the response of the permanent component

to a shock in the jth market.

Theorem 2.1. Let Pt the vector of prices satisfying VECM (2.1). then

√
T
(
ĜI j −GI j

) d−→ N
(
0,Σ ˆiris

)

With

Σiris = σ−1
j j

(
e
′
jΩ⊗ e

′
j

)
FΣγF

′ (
Ωe j ⊗ e j

)
+σ−1

j j

(
e
′
jΨ(1)⊗ e

′
j

)
Σσ̂

(
Ψ

′
(1)e j ⊗ e j

)

Where the notations are defined in the following:

Σσ̂ = 2DK

(
D

′
KDK

)−1
D

′
K (Ω⊗Ω)

Σγ = plimT

[
β ′Y−1Y

′
−1β β ′Y−1∆X

′

∆XY
′
−1β ∆X∆X

′

]−1

⊗Ω

F =

((
Ψ

′
(1)
(
I −∑

K
i=1 Γi

)′− Id

)
H

α
′
1

(
α

′
H

α
′
1

)−1
,
(

ι
′
K ⊗Ψ

′
(1)
))

⊗Ψ
′
(1)

DK (duplication matrix) and H
α
′
1

are matrix of 0-1 (defined in appendix). ιK represents a column

vector with ones of length K

The asymptotic variance can be used to compute standard errors and test the significance of

the permanent response to a shock in one market. For this purpose, the different expressions in
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the variance are replaced by their feasible estimator. The matrix H
α
′
1

might be bit a tricky to build

especially if the cointegration rank is not known. Fortunately in the setup the rank of cointegration

is known to be d − 1 and provided that α
′

is put in reduced echelon form I have the [d × (d −1)]

matrix

H
α
′
1
=

[
01×d−1

Id−1

]

For example in the bivariate case I have H
α
′
1
=

[
0

1

]

To test the significance of GI j the following testing statistic is computed

ˆST j =
√

T
|ĜI j|
Σ̂iris

and can be compared with the critical values of the classical t-test.

2.2.7 Simulation

In this simulation exercise, I evaluate the performance of IRIS measure and the test statistic. For

this, I rely on some structural models. The parameters of the microstructure noise (driven there

by trade direction effect) are small as in the literature with respect to the fundamental innovation

variance4 .

Model-1: The two-markets “Roll” model

I have one asset that is traded on two markets at the respective prices p1t and p2t . The unobserved

efficient price (fundamental value) of the asset is mt is driven by non-trade public information.

As Hasbrouck (2002), ∆mt = ut is the is the public and non traded information. The observed

transaction prices are the fundamental price plus a microstructure component driven for example

by signed trade direction. Formally it can be represented as:

• mt = mt−1 +ut with ut ∼ N
(
0,σ2

)

• Transaction prices: pit = mt + cqit and trade directions for qit ; i = 1,2,

With qit ∼ N (0,1) , E (q1tq2t) = 0, E (qitut) = 0, for i = 1,2

In this model, in term of fundamental information, one market can not be said to dominate the

other. A good price discovery measure should thus give the same weight to both markets.

4Harris et al. (2002a) also criticizes Hasbrouck (2002) simulation by arguing that it considers only high and unre-
alistic values for the parameters of the trade direction (which give a small signal-to-noise ratio)
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Model-2: Two markets with private information

This model presented in Hasbrouck (2002) considers that traders on market 1 have private infor-

mation and their trade drive the efficient price. There is also a public information that is not traded

and enter the efficient price each period.

The second market relies on lagged value of the fundamental price mt . This might signify that

traders on this market are slower, or that they learn about the fundamental from the traders actions

on the first market. The observed price is equal to the fundamental price plus and impact of the

trade direction.

• mt = mt−1 +λc1q1t +ut with ut ∼ N
(
0,σ2

)

• p1t = mt + c1q1t

• p2t = mt−1 + c2q2t

With qit ∼ N (0,1) , E (q1tq2t) = 0, E (qitut) = 0, for i = 1,2

It is clear in this situation that all price discovery happens in market 1. A good price discovery

measure should design market 1 as dominant.

Results

I simulate 1000 replications of Model-1 with 100,000 observations. A good price discovery mea-

sure is expected to give the same contribution to both market, Table 2.1 shows the measures perform

pretty well for this and IRIS is more close to 50% than the others with the smallest standard devia-

tion. The values of the test statistics show that both markets are highly significant.

Table 2.1: Model 1. The values represent the measures for market 1 averaged over 1000 replications. The value of

the test statistics ˆST are given for market 1 and market 2. Standard errors are in parenthesis.

c IRIS1 IS1U IS1L PT1
ˆST 1 ˆST 2

0.005 50.00

(7e-4)

99.998

(1.5e-3)

0.001

(1.5e-3)

52.58

(17.8)

83.5**

(59.01)

83.9**

(58.24)

0.0005 50.00

(1e-06)

99.99

(3e-6)

0.00

(3e-6)

50.1

(6.8)

7.30**

(10.25)

7.50**

(11.05)
** :significance at 1%
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In the case of Model-2, the whole price discovery happens on market 1. I simulate 1000 repli-

cations of the model with 100,000 observations. I vary the noise variance as in the previous case.

The measures perform quite well by designing market 1 as dominant (Table 2.2), IRIS having a

small standard deviation . The value of the test statistic for market 1 is highly significant using

student critical values, and for the second market it is not significant.

Table 2.2: Model 2. The values represent the measures averaged over 1000 replications. For λ = 1, c2 = 0, and

different values of c1. The value of the test statistics ˆST are given for market 1 and market 2. Standard errors are in

parenthesis.

c1 IRIS1 IS1U IS1L PT1
ˆST 1 ˆST 2

0.005 99.96

(0.04)

99.97

(0.03)

99.97

(0.04)

42.35

(0.03)

154**

(9.47)

1.65

(0.7)

0.0005 97.65

(3.947)

97.66

(3.949)

97.54

(3.945)

0.84

(0.63)

134**

(29.8)

0.016

(0.008)
** :significance at 1%

2.3 A cost-of-carry model of futures market

Here I present an extension of the model of futures and spot market of Garbade and Silber (1983).

Figuerola-Ferretti and Gonzalo (2010) extended this model and provide a justification for the PT

measure of price discovery. I will show that the IRIS measure leads to the same conclusion stating

that the market with the highest number of participants is informationally dominant.

Consider that I have a storable commodity that is traded on the spot market and let st be the log

price at time t. There is a futures contract on this commodity that mature at date T (e.g. T = 15

months), and is sold at time t at the log price ft . There is another futures contract with maturity

date T
′
< T (e.g. T

′
= 3 months) and is sold at log price qt .

The model relies on the storage theory with convenience yield. Under some classical assump-

tions: no transaction costs; no limitations on borrowing; no limitation on short sales, The equilib-

rium relation between spot market and the futures market is given by the following cost-and-carry

no-arbitrage relationship:

Ft = Ste
(rt+ct−yt)(T−t)

The same reasoning applies for two futures contracts with different maturities. The partial

equilibrium relationship is

Ft = Qte
(rt+ct−yt)

(
T−T

′)

Where yt is the convenience yield. It represents the fact that beyond carrying costs, people
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might have a benefit of having a physical commodity rather than a futures contract on it. I can fix

T −T
′
= 1, and taking log the relationship gives

ft = qt + rt + ct − yt (2.10)

Following Figuerola-Ferretti and Gonzalo (2010), the prices are assumed to be random walk

∆qt = qt − qt−1 = I (0) and ∆ ft = ft − ft−1 = I (0). The total interest rate (interest rate+storage

cost) is stationary and written rt + ct =−w+ I(0), then

qt = ft + yt +w+ I(0)

The convenience yield is assumed endogenous and written as yt = γ1qt − γ2 ft + I(0) with

γ1,γ2 > 0 . Then I have

qt = β1 ft +β0 + I(0)

This is a cointegration relation with a cointegrating vector ( 1 −β1 −β0 ), where β1 =
1−γ2
1−γ1

and β0 = w
1−γ1

. The market is said to be under long run Backwardation when the cash price is

smaller than the futures price coefficient (β1 > 1) , and under long run Contago when the cash

price is bigger than the futures price (β1 > 1) .

The description of interaction between spot and futures market is done following Garbade and

Silber (1983). There are N f participants in the long maturity futures market and Ns participants in

the spot or the short maturity futures market. Let Eit the endowment of the ith participant immedi-

ately prior to period t and rit the reservation price at which that participant is willing to hold Eit .

The demand schedule of the ith participant in the short maturity futures market in period t is

Eit −A(qt − rit) , A > 0, t = 1, . . . ,n

Where A is the elasticity of demand assumed to be the same for all participants. The aggregate

short-maturity futures market demand schedule of arbitrageurs in period t

H (β1 ft +β0 −qt) , H > 0

H is the elasticity of short-maturity futures market demand by arbitrageurs. It is infinite when

arbitrage activities between markets are riskless, this corresponds to the previous model with a
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yt = 0. The market on the short maturity contract will clear at the value of qt that solves

Ns

∑
i=1

Eit =
Ns

∑
i=1

[Eit −A(qt − rit)]+H (β1 ft +β0 −qt) (2.11)

The long maturity futures market will clear the value of ft such that

Ns

∑
i=1

Eit =
Ns

∑
i=1

[Eit −A(qt − rit)]+H (β1 ft +β0 −qt) (2.12)

The two previous equations give qt and ft as a function of the mean reversion price of the two

markets (Rs
t = N−1

s ∑
Ns

i=1 rit and R
f
t = N−1

f ∑
N f

i=1 rit)

qt =

(
AN f +H

)
NsR

s
t +HN f R

f
t +HN f β0

(ANs +H)N f +HNs

ft =
HNsR

s
t (ANs +H)N f R

f
t −HN f β0

(ANs +H)N f +HNs
(2.13)

The next step is to describe the evolution of reservation prices. A reasonable dynamic is to say

that immediately after the market clearing at period t −1 the ith short-maturity futures market par-

ticipant was willing to hold amount Eit at the price qt−1. This implies that qt−1 was his reservation

price after that clearing. This reservation price change to Rit according to equation

rit = qt−1 + vt +wit , i = 1, . . . ,Ns (2.14)

r jt = ft−1 + vt +w jt , j = 1, . . . ,N f

Where cov(vt ,wit) = 0 , cov(wit ,wkt) = 0 for ∀k 6= i, and (vt ,wit ,wkt) is a vector white noise.

The price change Ri,t − qt−1 reflects the arrival of new information between period t − 1 and

period t which changes the price at which the ith participant is willing to hold the quantity Eit of

the commodity. The price change has a common component (vt) and an idiosyncratic component

(wit). Summing 2.14 by market, the mean reservation price in period t will be

Rs
t = qt−1 + vt +ws

t

R
f
t = ft−1 + vt +w

f
t

Where ws
t = N−1

s ∑
Ns

i=1 wit and w
f
t = N−1

f ∑
N f

j=1 w jt . Substituting into 2.13 yields
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2.4. EMPIRICAL APPLICATION

(
qt

ft

)
= Π

(
qt−1

ft−1

)
+

Hβ0

d

(
N f

−Ns

)
+

(
us

t

u
f
t

)
(2.15)

Where

(
us

t

u
f
t

)
=M

(
vt +ws

t

vt +w
f
t

)
, Π= 1

d

(
Ns

(
β1H +AN f

)
β1HN f

HNs (H +ANs)N f

)
and d =(H +ANs)N f +

β1HN f

Rewriting the previous equation in a VECM form gives

(
∆qt

∆ ft

)
=

Hβ0

d

(
N f

−Ns

)
+(Π− I)

(
qt−1

ft−1

)
+

(
us

t

u
f
t

)
(2.16)

with the reduce rank matrix Π− I = 1
d

(
−HN f β1HN f

HNs −β1HNs

)
and rearranging the terms

(
∆qt

∆ ft

)
=

H

d

(
N f

−Ns

)(
1 −β1 −β0

)



qt−1

ft−1

1


+

(
us

t

u
f
t

)
(2.17)

The weighting matrix αT =
(

N f −Ns

)
shows immediately the link with the component

share measure of price discovery. This leads to the same conclusion of GS that the market with

the highest number of participant is dominant. The proposition 2.2 shows that IRIS has the same

feature.

Proposition 2.2. Given the previous structural economy and equation 2.16:

If Ns > N f then the IRIS measure of the short-maturity futures market is bigger than the IRIS of

the long-maturity futures market: IRISs > IRIS f .

The previous proposition, proven in appendix, also provides some theoretical support to the

IRIS measure. The main difference with the PT measure is that for the PT, the relative contribution

of a market is proportional to its number of participants. This is not necessarily a best representation

of the reality in the sense that marginal effect or marginal risk might behave differently for big and

small market size.

2.4 Empirical application

In this application I investigate the relative contribution to price discovery of futures contracts on

some metals and alloys: Cobalt (Co), Molybdenum (Mo), Steel billet (St), Tin (Ti), Aluminium

(Al), Copper (cu). They are traded on the London Metals Exchange (LME) which is the biggest
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exchange for Metals in the world. The advantage of LME is that in addition to have futures market

transactions, the cash market also operate at the same place. I will focus on 3 timed securities, the

cash market, the 3-month futures contract and the 15-month futures contract. The goal is to study

the relative relevance of theses contracts in term of price discovery.

The data for each of the metals under study is comprised of the cash official prices, the 3-month

futures official prices and the 15-month futures official prices, extracted from the database Eikon

of Thomson Reuters. The Official prices of some base metals stopped being produced by LME for

15-month contract in April 2012, so the study period is 7th July 1993 to 01 February 2012 for Ti,

Al and Cu. The data for Co, Mo and St are available from 19th May 2010 to 31th March 2016.

2.4.1 Results

The first step of the empirical strategy to compute the elements of interest accordingly to my frame-

work, is to perform some statistical analysis on the data. For all the series presented in graphs 2.1 to

2.6 the 3 prices under investigation are closely moving together, in fact arbitrage operations will re-

duce any tendency of the spread to diverge. The stationarity examination on the time series reveals

that for all prices the unit root hypothesis cannot be rejected (see table 2.5). When considering the

first difference they all appear stationary. The cointegration test is applied for each metal two-by-

two: except for copper, for all the commodities I can not reject cointegration between Cash and

Futures markets, and between 3-month and 15 month futures prices. The Lag length of the Vector

autoregressive is selected using the Akaike Criterion (AIC), then estimation of the VECM and the

necessary checks on the residuals are done.

The trace test failed to find a cointegrating relation for Copper between the cash price and 15-

month futures and between the 3-month futures and 15-months. I nevertheless estimate the long

term relationships in the VECM and the plots (graph 2.7) shows that the problem is not really

severe. In fact by applying the ADF test to the long term relationships (table 2.7), I obtain that I

can accept cointegration at a level of 7% and 9%.

2.4.1.1 Analysis of long run Contago and Backwardation

The estimation of the long term relation between two related securities shows mixing conclusion

for different type of markets. For the Co, Mo and St I obtain cointegrating coefficients that are

greater than 1 between cash and 3-month futures, between cash and 15-month, between 3-month

futures and 15 months. I also compute the statistics and a comparison with critical values of the

unilateral test (H0 : β = 1vsH1 : β > 1) shows that the alternative hypothesis that they are strictly

greater than 1 can be accepted. There is a consistent long-run backwardation pattern in those
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Table 2.3: Impulse response Information Share computed using the Vector Autoregressive equation on the following

four vectors of variables:

I : (pcash, p03m) III : (p03m, p15m)
II : (pcash, p15m) IV : (p03m, p15m, pcash)

I II III IV I II III IV

Cobalt Molybdenum
Cash 46.75 57 40.74 47.8 92.3 46.93
3M 53.25 55.7 46.58 52.2 93.3 51.61

15M 43 44.3 12.66 7.7 6.7 1.45
Steel billet Tin

Cash 49.9 38.1 43.17 50.14 54.93 35.57
3M 50.1 38.8 42.49 49.86 54.75 34.93

15M 61.9 61.2 14.33 45.07 45.25 29.48
Aluminium Copper

Cash 49.97 54.76 33.53 47.89 51.13 33.21
3M 50.03 54.56 34.61 52.11 55.15 36.35

15M 45.24 31.84 48.87 44.85 30.42

markets. That is in the long run, having taken into account all the storage costs, forward prices

are decreasing with the maturity: the cash price is bigger than the 3-month forward price, which

is in turn bigger than the 15-month forward prices. This result is not obtained by comparing the

observed prices series. In fact, while the observed prices are mostly decreasing with maturity for

Cobalt, it is mostly increasing for Molybdenum. A look at the graphs of the series also show that

the relative position of the 3 curves depends on the metal.

For Aluminium and Copper and Tin, coefficients are smaller than 1. As previously in the test

H0 : β = 1V SH1 : β < 1; the null hypothesis is rejected. The markets are in long run Contago that

is in the long run the cash price is smaller than the 3-month forward price, and the 3-month forward

price is smaller than the 15-month forward prices. These results are the opposite of Figuerola-

Ferretti and Gonzalo (2010) for Aluminium and copper. A justification of this difference is that

their analysis of non-ferrous metal is on the period January 1989 to October 2006. Since then the

market has drastically changed as can be seen in the graph 2.6, the spread between the different

prices is huge in early 2000 compare to 2010. A deep understanding of what happens is important

but not in the scope of this paper.

2.4.1.2 Analysis of price discovery

The results in table 2.3 on the permanent impact of market differ according to each metal and ma-

turity. I estimate the IRIS measure in bivariate VECM (I,II,III) and in a trivariate VECM (IV) and

obtain the following: For the Cobalt, Copper and Aluminium, in the two-by-two comparison, the
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3-month dominates the spot market and 15-Month, the spot market also dominates the 15-month

contract. When the three markets are compared it appears that permanent price reacts more to a

shock in cash and 3-Month than a shock to the 15-Month future. All markets here appears to be

informationally relevant with highly significant responses (see testing at Table 2.4). The same pat-

tern is observed for the molybdenum where the 15-Month market is strongly dominated by the two

others, the 3-month market being the leading ones. For the Tin there is only a minor difference with

the previous results, for model I the cash market dominates very slightly the 3-month future. The

Steel billet presents a different configuration, I have that 15-month future dominates the cash mar-

ket and dominates the 3-months contract in the bivariate analysis even if the permanent component

of the 3 markets reacts less to a shock in 15-month prices

Globally the empirical results for the sample of LME metals under investigation seems to sug-

gest that even if in theory the function of the future market is to provide price discovery, only the

3-month contract seems to fully play this role. This suggest that in those markets the 15-Month

futures contract are less used than the 3-month to exploit new information.

Table 2.4: The table presents the value of the Test statistic tĝi for Model I,II,III.

I : (pcash, p03m) III : (p03m, p15m)
II : (pcash, p15m) IV : (p03m, p15m, pcash)

I II III I II III

Cobalt Molybdenum
Cash 19.5** 10.0** 28.9** 4.0**
3M 18.2** 7.4** 6.12** 6.97**

15M 43.4** 19.8** 14.4** 15**
Steel billet Tin

Cash 17.8** 7.3** 17.8** 7.3**
3M 20.6** 6.9** 20.6** 6.9**

15M 33.6** 13.6** 33.6** 13.6**
Aluminium Copper

Cash 19.5** 10.0** 28.9** 6.9**
3M 18.8** 7.4** 6.1** 4.0**

15M 43.5** 19.8** 14.4** 15.6**
** :significance at 1%

2.5 Conclusion

The study of assets that are strongly related requires tools to evaluate the information content of

prices. In this paper I proposed to study the impact of a shock in one market on the permanent

component of prices by using the Generalized impulse response function as defined by Pesaran and
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Shin (1998). I provide a measure that I named Impulse Response Information Share, to determine

which market is the leading one. For me a market is leading if the effect on the permanent com-

ponent of prices, of a shock in that market is greater than the permanent effect of the shock on the

other markets. IRIS has some advantages over the existing measure as it provides a unique value

of the information without loosing its economic sensitive definition. Some Monte-Carlo exercises

also show that it can produce lower standard deviation compared to other measures.

In the application I study price discovery phenomenon on spot and futures markets of some base

metals traded on the London Metals Exchange. I found that 3-month futures market dominates the

spot market in term of price discovery suggesting that the futures contracts is a good expectation

of the future cash prices, and that the futures market can be well used for hedging purposes. When

comparing the spot and the 15-month futures with the 3M market or the spot market it appears that

the 15-month futures contract is always dominated by the others. The join comparison of the threes

securities in the same VECM confirms that when the 3-month contract importance in term of price

discovery the 15-month contract is not relevant. Of course there is a big jump to go far and say that

15-month contract are useless, since there are many used of this contract by economics agents. A

deep study of its importance should include a broad view of the actors and their strategies. Some

events studies might also help with this respect, like understanding why for the copper 15 month

LME production of (Official, Settlement and Unofficial ) prices ceased in April 2012.
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2.6 APPENDIX B

2.6.1 Tables and figures

Table 2.5: ADF unit root test results.

level ∆(Series) level ∆(Series)

Series stat Prob stat Prob Series stat Prob stat Prob

CoCash -1.40 0.58 -44.73 0.00 TiCash -1.30 0.63 -37.61 0.00
Co3m -1.40 0.59 -45.59 0.00 Ti3m -1.26 0.65 -37.71 0.00
Co15m -1.63 0.47 -45.23 0.00 Ti15m -1.22 0.67 -37.92 0.00
MoCash 0.11 0.97 -44.03 0.00 AlCash -1.26 ă0.65 -40.31 0.00
Mo3m 0.10 0.97 -43.92 0.00 Al3m -1.13 ă0.70 -40.63 0.00
Mo15m 0.06 0.96 -43.80 0.00 Al15m -0.97 ă0.77 -40.98 0.00
StCash -1.04 0.74 -43.64 0.00 CuCash -0.52 0.88 -40.14 0.00
St3m -1.00 0.76 -43.39 0.00 Cu3M -0.48 0.89 -40.0 0.00
St15m -0.96 0.77 -42.53 0.00 Cu3M -0.39 0.90 -40.21 0.00

The table shows the statistic and prob for the level and first difference of each series

Figure 2.1: Cobalt: Daily cash , 3-month and 15-month Futures prices
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Figure 2.2: Molybdenum: Daily cash , 3-month and 15-month Futures prices
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Table 2.6: Trace Test for the rank(r) of Cointegration.

Model H0 I II III

Cobalt r = 0 0.0000 0.0000 0.0000
r ≥ 1 0.5162 0.4550 0.4390

Molybdenum r = 0 0.0002 0.0000 0.0000
r ≥ 1 0.4358 0.4513 0.4367

Steel r = 0 0.0013 0.0126 0.0053
r ≥ 1 0.9040 0.6871 0.6600

Tin r = 0 0.0006 0.0379 0.0160
r ≥ 1 0.7744 0.7801 0.7905

Aluminium r = 0 0.0000 0.0062 0.0074
r ≥ 1 0.3904 0.3302 0.2922

Copper r = 0 0.0227 0.498* 0.439*
r ≥ 1 0.8267 0.8491 0.8451

Table 2.7: ADF Test results on the cointegrating equations for Copper:

ADF test
Statistic Prob

Moded II -2.7835 0.0607
Model III -2.6656 0.0802
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Table 2.8: Long term relationships in the VECM.

I : pcash = c+β × p03m+ ε III : p03m = c+β × p15m+ ε
II : pcash = c+β × p15m+ ε

I II III I II III

Cobalt Molybdenum
β 1.03

(0.005)

1.24

(0.08)

1.31

(0.08)

1.007

(0.008)

1.03

(0.01)

1.02

(0.01)

c 0.16

(0.02)

-1.11

(0.37)

1.39

(0.39)

0.034

(0.035)

0.03

(0.03)

0.13

(0.06)

Steel billet Tin

β 1.09

(0.009)

1.31

(0.02)

1.20

(0.01)

0.99

(0.001)

0.99

(0.009)

0.98

(0.01)

c -0.25

(0.02)

-0.92

(0.06)

-0.61

(0.03)

0.02

(0.001)

0.02

(0.04)

0.05

(0.04)

Aluminium Copper
β 0.995

(0.013)

0.94

(0.058)

0.98

(0.03)

0.995

(0.006)

0.97

(0.02)

0.98

(0.01)

c 0.01

(0.04)

0.15

(0.19)

0.02

(0.12)

0.02

(0.02)

0.1

(0.08)

0.07

(0.05)
Standard errors are in parenthesis:

Figure 2.3: Steel Billet: Daily cash , 3-month and 15-month Futures prices
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Figure 2.4: Tin: Daily cash , 3-month and 15-month Futures prices
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Figure 2.5: Aluminium: Daily cash , 3-month and 15-month Futures prices
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Figure 2.6: Copper: Daily cash , 3-month and 15-month Futures price
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Figure 2.7: Long term relationship for the Copper: Model I and model III
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2.6.2 Proofs

2.6.2.1 Link between IRIS and IS

Proof. For d markets, the IRIS measure for the market j is given by.

IRIS j =
σ−1

j j

(
∑

d
i=1 ψ1iσil

)2

∑
d
l=1 σ−1

ll

(
∑

d
i=1 ψ1iσil

)2 =

(
σ
− 1

2
j j ψΩe j

)2

∑
d
l=1

(
σ
− 1

2
ll ψΩel

)2 (2.18)

I will focus on the numerator of the IS measure for the first market when it is placed first in the

Cholesky decomposition. For this let F be the Cholesky root of Ω = FFT , I have the following

relationships

Ω =




f11

f21 f22
...

...
. . .

fd1 fd2 . . . fdd







f11 f21 . . . fd1

f22 . . . fd2
. . .

...

fdd




=




f 2
11 f11 f21 . . .

f21 f11 f 2
21 + f 2

22 . . .
...

... . . .
...

fd1 f11 fd1 f21 + fd2 f22 . . .



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By equalizing the first columns I have





σ11 = f 2
11

σ21 = f11 f21
...

σd1 = f11 fd1

=⇒





f11 =
√

σ11

f12 = σ21/
√

σ11
...

fd1 = σd1/
√

σ11

So the numerator of IS for the market 1 is

([ψF ]1)
2 =

(
ψ
[

F11 F21 . . . Fd1

]T
)2

=

(
ψ
[ √

σ11 σ21/
√

σ11 . . . σd1/
√

σ11

]T
)2

= σ−1
11

(
σ
− 1

2
11 ψ

[
σ11 σ21 . . . σd1

]T
)2

=

(
σ
− 1

2
11 ψΩe1

)2

Which is exactly the numerator of the IRIS measure for the first market.

2.6.2.2 Proof of theorem 2.1

Proof. As it is shown in Lütkepohl (2007) the asymptotic is the same considering that β is known

the reason being that β̂ is estimated at the rate T better than the
√

T of α̂ . To simplify the formulas

I use Ψ to denote Ψ(1).

Let γ ≡ vec [α : Γ] where the vec operator stacks the columns of matrix into one column. The

vech operator stacks the elements on and below the diagonal of a square matrix.

The following asymptotics and the expression for Σγ and Σσ̂ are derived from Lütkepohl (2007)

and Pesaran and Shin (1998) :

•
√

T (γ̂ − γ)
d−→ N

(
0,Σγ

)

•
√

T vec
(
Ω̂−Ω

) d−→ N (0,Σσ̂ )

• The duplication matrix DK is the
(
K2 × 1

2K (K +1)
)

matrix of 0-1 such that for any (K ×K)

matrix A, vec(A) = DKvech(A).

• The estimators of [α : Γ] and Ω are asymptotically independent.
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As Ψ depends only on the [α : Γ] I have

√
T

[
vec
(
Ψ̂−Ψ

)

vec
(
Ω̂−Ω

)
]

d−→ N

(
0,

[
Σψ 0

0 Σσ̂

])
(2.19)

To obtain the asymptotic variance of Ψ as a function of γ the Delta-method gives

Σψ =
∂vecΨ(1)

∂γ
′ Σγ

∂vecΨ(1)′

∂γ
(2.20)

and the expression for ∂vecΨ(1)
∂γ

′ is derived from Vlaar (2004):

F =
∂vecΨ(1)

∂γ
′ =

((
Ψ

′
(

I −
K

∑
i=1

Γi

)′

− Id

)
H

α
′
1

(
α

′
H

α
′
1

)−1
,
(

ι
′
K ⊗Ψ

′)
)
⊗Ψ

′
(2.21)

The matrix H
α
′
1

is a matrix of 0-1 selecting the column of α
′
such that

(
α

′
H

α
′
1

)
is non singular

and H
α
′
2

selects the remaining columns. Those matrix allows the representation

α⊥ = H
α
′
2
−H

α
′
1

(
α

′
H

α
′
1

)−1
α

′
H

α
′
2
.

The response of the market j is given by

GI j = ψ1Ωe jσ
− 1

2
j j =

(
e
′
jΩe j

)− 1
2 × e

′
jΨΩe j

its estimator is thus

ĜI j = ψ̂1Ω̂e jσ̂
− 1

2
j j

= e
′
jΨ̂Ω̂e j ×

(
e
′
jΩ̂e j

)− 1
2

=
(

e
′
j

(
Ψ̂−Ψ

)(
Ω̂−Ω

)
e j + e

′
j

(
Ψ̂−Ψ

)
Ωe j + e

′
jΨ
(
Ω̂−Ω

)
e j + e

′
jΨΩe j

)
×
(

e
′
jΩ̂e j

)− 1
2

= Ng/Dg

For the denominator I have from Pesaran and Shin (1998) that given the consistency of the ML

estimators there is a scalar R which is op(1) such that
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Dg =
(

e
′
jΩe j

) 1
2
+

1
2

(
e
′
jΩe j

) 1
2
(

e
′
j ⊗ e

′
j

)
vec
(
Ω̂−Ω

)
+R = σ

1
2
j j +op(1) (2.22)

I now compute the distribution of the numerator

√
T
(

Ng− e
′
jΨΩe j

)
= e

′
j

(
Ψ̂−Ψ

)(
Ω̂−Ω

)
e j + e

′
j

(
Ψ̂−Ψ

)
Ωe j + e

′
jΨ
(
Ω̂−Ω

)
e j

=
(

e
′
jΩ⊗ e

′
j

)√
T vec

(
Ψ̂−Ψ

)
+
(

e
′
jΨ⊗ e

′
j

)√
T vec

(
Ω̂−Ω

)
+op(1)(2.23)

=
[(

e
′
jΩ⊗ e

′
j

)
,
(

e
′
jΨ⊗ e

′
j

)][ √
T vec

(
Ψ̂−Ψ

)
√

T vec
(
Ω̂−Ω

)
]
+op(1) (2.24)

The second equality uses the following straightforward relations



e
′
j

(
Ψ̂−Ψ

)
Ωe j =

(
e
′
jΩ⊗ e

′
j

)
vec
(
Ψ̂−Ψ

)

e
′
jΨ
(
Ω̂−Ω

)
e j =

(
e
′
jΨ⊗ e

′
j

)
vec
(
Ω̂−Ω

)
(
Ψ̂−Ψ

)(
Ω̂−Ω

)
= op

(
1/

√
T
)

From the results in formulas 2.22, 2.24and equation 2.19,
√

T
(
ĜI j −GI j

)
is asymptotically

normal with variance

Σiris = σ−1
j j

[(
e
′
jΩ⊗ e

′
j

)
,
(

e
′
jΨ⊗ e

′
j

)][ Σψ 0

0 Σσ̂

][(
e
′
jΩ⊗ e

′
j

)
,
(

e
′
jΨ⊗ e

′
j

)]T

= σ−1
j j

(
e
′
jΩ⊗ e

′
j

)
Σψ

(
Ωe j ⊗ e j

)
+σ−1

j j

(
e
′
jΨ⊗ e

′
j

)
Σσ̂

(
Ψ

′
e j ⊗ e j

)

2.6.2.3 Proof of proposition 2.2

Proof. I want to show here that when Ns > N f then IRISs > IRIS f . For this I focus only on the

numerators of the IRIS, the denominators being the same. According to formula 2.9, the numerator

of the IRIS are given by

Nums = σ−1
11 (ψ11σ11 +ψ12σ12)

2

Num f = σ−1
22 (ψ11σ12 +ψ12σ22)

2
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I will show that if Ns > N f then Nums −Num f > 0. I have

Nums −Num f = σ−1
11 (ψ11σ11 +ψ12σ12)

2 −σ−1
22 (ψ11σ12 +ψ12σ22)

2

= ψ2
11σ11 +σ−1

11 ψ2
12σ2

12 +2ψ11ψ12σ12 −σ−1
22 ψ2

11σ2
12 −ψ2

12σ22 −2ψ11ψ12σ12

=
(
ψ2

11σ11 −ψ2
12σ22

)
+σ2

12

(
σ−1

11 ψ2
12 −σ−1

22 ψ2
11

)

=
(
ψ2

11σ11 −ψ2
12σ22

)
+σ2

12σ−1
11 σ−1

22

(
σ−1

22 ψ2
12 −σ−1

11 ψ2
11

)

=
(
1−σ2

12σ−1
11 σ−1

22

)(
ψ2

11σ11 −ψ2
12σ22

)

=
(
1−ρ2)(ψ2

11σ11 −ψ2
12σ22

)

Where ρ = σ12

√
σ−1

11 σ−1
22 is a correlation coefficient. ρ2 ≤ 1 so it is sufficient to show that

(
ψ2

11σ11 −ψ2
12σ22

)
≥ 0

The VECM representation 2.16 gives

(
ψ11 ψ12

)
=
(

Ns N f

)
(2.25)

To Compute the variance (Ω) of the VECM errors I use the following notations to simplify the

presentation:
a = HNs

b = HN f

c = ANsN f

es
t = vt +ws

t

e
f
t = vt +w

f
t

N = Ns +N f

K = (a+b+ c)2

Thus Π = 1
d

(
a+ c b

a b+ c

)
and the VECM errors are

(
us

t

u
f
t

)
= Π

(
es

e f

)
=

1
d

(
(a+ c)es +be f

aes +(b+ c)e f

)
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I have

σ2
s = var(es) = v2 +w2/Ns

σ2
f = var(e f ) = v2 +w2/N f (2.26)

σs f = cov(es,e f ) = v2

So I compute the variance of the VECM error Ω

var (us
t ) = (a+ c)2 σ2

s +b2σ2
f +2b(a+ c)σs f

var
(

u
f
t

)
= a2σ2

s +(b+ c)2 σ2
f +2a(b+ c)σs f (2.27)

Replacing 2.26 in 2.27 gives

var (us
t ) = v2

[
(a+ c)2 +b2 +2b(a+ c)

]
+w2

[
1
Ns

(a+ c)2 +
1

N f

b2
]

= v2 (a+b+ c)2 +w2
[

1
Ns

(a+ c)2 +
1

N f

b2
]

= v2K2 +w2
[

1
Ns

(
Ns

(
AN f +H

))2
+

1
N f

(
HN f

)2
]

= v2K2 +w2
[
Ns

(
AN f +H

)2
+H2N f

]

= v2K2 +w2 (NsA
2N2

f +2AHNsN f +H2Ns +H2N f

)

= v2K2 +w2 (NsA
2N2

f +2AHNsN f +H2N
)

(2.28)

Similarly

var
(

u
f
t

)
= v2K2 +w2 (N f A2N2

s +2AHNsN f +H2N
)

(2.29)

Using 2.27 and 2.25 gives

(
ψ2

11σ11 −ψ2
12σ22

)
= N2

s var(us
t )−N2

f var(u
f
t )

= N2
s

[
v2K2 +w2 (NsA

2N2
f +2AHNsN f +H2N

)]

−N2
f

[
v2K2 +w2 (N f A2N2

s +2AHNsN f +H2N
)]

= v2K2 (N2
s −N2

f

)
+w2A2N2

s N2
f

(
Ns −N f

)
+w2N

(
N2

s −N2
f

)

When Ns > N f all the the terms on right-hand side are strictly positive so
(
ψ2

11σ11 −ψ2
12σ22

)
≥ 0
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and

IRISS > IRIS f
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Chapter 3 Continuous time Analysis of Price Discovery

Chapter 3

Continuous time Analysis of Price Discovery

Abstract: For assets that are traded simultaneously on many markets, the problem of measuring

their contribution to price discovery has mainly been studied in discrete time setup. We provide a

new way to study this problem in the continuous time setup. We propose a measure evaluating the

permanent impact of a shock on a market’s innovation. It has advantages on the literature in that:

it is in continuous-time and deals with non-informative microstructure noises; it provides a unique

meaningful measure of information processing.

Keywords: continuous-time cointegration, Generalised Impulse Response, preaverraging, Price

discovery, Modulated Realized Covariance

JEL: C32, C58, G14
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3.1. INTRODUCTION

3.1 Introduction

The study of asset prices dynamic has been accelerated by the availability of data and the de-

velopment of adapted statistical techniques. The development of High Frequency trading have

made available data sampled at a frequency close to the continuous time. In addition, the listing

of assets on many markets and the competition between them, maintain the focus on the under-

standing of price discovery mechanism in this cross market setting. The main interest remaining

to study the relative contribution of a market to the formation of the fundamental price. The pio-

neer study of Hasbrouck (1995) presented a measure of price discovery called Information Share

(IS) and provides comparison of New York Stock Exchange and the Regional exchanges in the

quotes formation of thirty Dow stocks. The IS has some drawbacks and an intensive literature

discusses improvements, properties and alternatives to this measure: Harris et al. (see 2002b),

De Jong (2002), Lehmann (2002), Hasbrouck (2002),Baillie et al. (2002),Yan and Zivot (2010),

Lien and Shrestha (2014). Some papers use the model-free price discovery measures provided by

the literature to study the determinants of market performance. Eun and Sabherwal (2003), Harris

et al. (2002b),Blume and Goldstein (1997); Chakravarty et al. (2004); Huang (2002), Barclay et al.

(2003).

With the availability of high frequency data, the tendency is to use all of them to exploit all

available information. In fact, on one hand, Hasbrouck (1995) recommended to sample data at

high frequency in order to tighten the IS bounds. This is done by many papers, but this practice

ignores that at high frequency non informative part of the noise dominates the variances estimation.

On the other hand, it is statistically “absurd” to not use the huge amount of data once we are lucky

to have them. Meanwhile, as shown in the previous chapter, price discovery measures using high

frequency data can be seriously misleading if there are too much non informative noises in those

data. The intuition, coming from the literature on integrated volatility estimation in the presence of

microstructure noise, is that: Using high frequency data, the realized variance of the observe prices

is completely driven by the microstructure noises and not by the fundamental price (See Andersen

et al., 2000; Jacod et al., 2009; Zhang, 2006).

Even if they differ in the way they define price discovery mechanism, all the previous studies

identify their price discovery measure by relying on a discrete framework. They rely on a Vector

Error Correction Model of the non stationary price processes. In addition, their construction is

based on a model that considers only microstructure noises related to information sources: Infor-

mation asymmetry, market under/over reaction (Menkveld et al., 2007). It is not concerned with

non-informative noises due for example to tick size or measurement errors. There is up to our

knowledge no literature dealing with with price discovery measure of cross listed assets in contin-

uous time.
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3.2. PRICE DISCOVERY MEASURE IN CONTINUOUS TIME

In this paper, we model the price vector by using a Continuous time VECM, it is simple but

considered as general enough in finance literature. We add some microstructure noises at the ob-

servation times in the model. By relying on Hasbrouck (1995) identification of the unobserved

efficient price, we measure market contribution by writing a continuous time version of the IRIS

measure presented in the first chapter. It consists of accessing how this permanent unobserved price

reacts to a shock in one market. It is related to the generalized impulse response of Pesaran and Shin

(1998) in the VAR literature, but instead of looking the response function of each market, we look

at the response function of the permanent common component to the markets. We showed in the

first chapter in a discrete time framework that it is a sensible way of defining price discovery. We

propose the High-frequency Impulse Response (HIR) that is best defined as the variance of the

change in the fundamental price over a period of time, resulting from a shock to the innovation

in one market. Our framework has the following advantages over the literature:

• It uses a continuous time-setup to deal with high frequency data.

• It accommodates a stochastic volatility, important for example to capture clustering effects.

• It explicitly deals with non-informative part of microstructure noises.

The remainder of the paper is organized as follow: The second section presents the high frequency

measure of price discovery in a continuous time framework. In the third section, the estimation

strategy is discussed. In the fourth section and Monte-Carlo simulations are performed an an ap-

plication is done on Apple stocks prices on NYSE and NASDAQ. And the conclusion is presented

in the fifth section.

3.2 Price discovery measure in Continuous time

The aim of this paper is to provide a continuous time framework for price discovery measures

in a continuous time allowing a coherent use of High-frequency data. Using those data involves

features that are extensively studied in the literature for volatility estimation in the presence of

microstructure noises1. By relying on a continuous time VECM, we present the framework and

derive a measure that we name High frequency Impulse Response (HIR).

1The importance of designing a measure for high frequency data comes principally from the distortion in the
variance estimation when noises are present.
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3.2. PRICE DISCOVERY MEASURE IN CONTINUOUS TIME

3.2.1 Setup

There is one asset that is traded on two markets 1 and 2. Let Xt = (X1t ,X2t) be the price we would

observed on market 1 and 2 in the absence of non-informative noise.

We make the following assumption which is simplifying, but is general enough in continuous

time finance literature.

Assumption 3.1. Xt admits the following CVAR(1) representation

DXt =−ΠXt +ΩtDBt (3.1)

where Bt is a standard Brownian motion. Ωt is a zero-mean stationary stochastic volatility with

E(Ω2
t ) = Ω2.

Ωt is the volatility matrix and Ω2
t ≡ ΩtΩ

′
t is the Covariance matrix.

This assumption is relaxed later in a dedicated section, after the construction of the measure and

the estimation strategy. The following assumption simply clarifies that X1t and X2t are cointegrated.

Assumption 3.2. X1t , X2t and Xt are non-stationary but their increments are covariance stationary.

The spread between the two prices X1t −X2t is covariance stationary

The trade prices are recorded at discrete points (ti)i=1,..,n ∈ [0,T ] and are dirtied by microstruc-

ture noises not related to information (tick size, measurement errors...) εt = (ε1t ,ε2t) . We have the

following observation equations:

P1th =X1th + ε1th

P2th =X2th + ε2th (3.2)

Formally this wight be justified by

writing X1t = Yt +µ1t and X2t = Yt +µ2t

The fundamental price of the asset is Yt , this is the price which in finance literature will result

in perfect world , with no arbitrage.

µt = (µ1t ,µ2t) is the part of microstructure noise that is completely related to information,

this is for example due to asymmetric information, market’s over-reaction, or under-reaction to

information2

2This is consistent with Menkveld et al. (2007) where they estimate a price equation comprising the sum of three
elements. The first term is the efficient price, the second term is the market over/under-reaction to information propor-
tional to the efficient price innovation, and the third part is the microstructure noise arising from bid ask spread and
price discreteness.
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Briefly said, the observed prices are equal to the efficient price plus information-correlated noise

and plus information-uncorrelated noise. We make the following assumption on the noise:

Assumption 3.3. The noise process (εt) is i.i.d and X |= εt .

The symbol |= means stochastic independence. The i.i.d noise is tricky to define in continuous

time, but Christensen et al. (2010) gives probability space and filtration in which εt is well defined.

Under assumptions 1 to 3, Xt is cointegrated and admits the following Granger representation

in continuous time

MA(∞) : DXt = Lc(D)ΩtDBt =
´ ∞

τ=0− c(τ)e−DτΩtdBt

V ECM : Ld(D)ΩtDBt = −αβ ′Xt +ΩtDBt

(3.3)

dBt is the innovation and (L ) is the Laplace transform operator function

Lc(D) =

ˆ ∞

τ=0−
c(τ)e−Dτdτ

The Difference operator (DXt =
1
dt

dXt ) is useful to write ARMA class processes in continuous

time. As presented in Cochrane (2012) , working with D in continuous time rather than L renders

simplify the manipulations. 3

3.2.2 Construction of the measure

We construct the measure under a generality that Xt is cointegrated with cointegrating vectors β =(
1 −λ1

)
.

3.2.2.1 Identification of the permanent component

The Beveridge-Nelson decomposition of the Laplace operator function is

Lc(D) = Lc(0)+DLb(D) (3.4)

replacing in 3.3 we get

DXt = Lc(0)ΩtDBt +DLb(D)ΩtDBt

3For example the MA(∞) representation of a Gaussian stationary process yt is: yt =
´ ∞

τ=0 c(τ)σdBt−τ =
Lc(D)ΩDBt
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This parallels the discrete time version where DLb(D) is the operator function of a stationary

process. It permit a decomposition in term of common trend and stationary components:

DXt = DZt +Dwt (3.5)

where wt = Lb(D)DBt is a stationary process, and Zt = Xt −wt is a martingale (even a pure

random walk) satisfying

DZt = Lc(0)ΩtDBt (3.6)

We restate the difference with IS where Xt is the observed process and then the transitory part

of price wt has its innovations correlated with the innovation in the martingale component. Here Xt

is unobserved and will be dirtied by the other sources of microstructure noise.

If Lc(0) 6= 0 and is not full rank r < n then Xt is cointegrated, and there exist a matrix β ′ such

that β ′Xt is stationary. There is also another matrix α summarizing the impact of the long common

trend on the variable Xt .

Cointegration required β ′Lc(0) = 0, and thus the row of Lc(0) are collinear. They are the

same when the cointegrating coefficient is equal to 1. Otherwise, the second row ψ2r = λ−1
1 ψ1r

and using one row or the other will not change the value of our proposed measure. Let us consider

the first row and define ψ = ψ1r , we have

Lc(0) = Jψ ,withJ = (1 λ−1
1 )⊤

From the formula 3.6 we have

dZt = JψΩtdBt (3.7)

The fundamental price (common component to all the markets) of the asset is then

zt = z0 +ψ

t
ˆ

0

ΩsdBs (3.8)

3.2.2.2 The Impulse response function

Consider the permanent component of prices given by equation 3.8. In the spirit of IRIS we define

the impulse response of this permanent price to a shock in market 1. For this we rewrite the

permanent prices in term of original shocks dWt = ΩtdBt and consider a shock of value δ1t = dW1t ,

so the response of dzt to a shock in market 1 is
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GI1(t) = E (dzt |dW1t = δ1t) (3.9)

Similarly the response of dzt to a shock δ2t = dW2t in market 2 is

GI2(t) = E (dzt |dW2t = δ2t) (3.10)

This measures how the permanent price reacts to news in the first and in the second market. This

is a good intuitive property to define a measure of price discovery, in the sense that fundamental

information impacts permanently the prices.

3.2.2.3 Constant Volatility case

We start our development by assuming that the volatility matrix Ω is constant, which allows a

comprehensive presentation of our construction. Using the normality properties of the Brownian

motion and the conditional expectation formula we derive

GI1(t) = ψE (dWt |dW1t = δ1t)

= ψΩe1σ−1
11 ×δ1t

= ψ
(

σ11, σ12

)′

σ−1
11 ×δ1t

Thus the cumulative response on a period [0,T ] is given by

CGI1(t) = ψ

ˆ T

0

(
σ11, σ12

)′

σ−1
11 ×δ1t

= ψ

ˆ T

0

(
σ11, σ12

)′

σ−1
11 dW1t (3.11)

As Hasbrouck (1995) using the variance, the quadratic variation of this cumulative response is

good summary of the amount of information due to market 1:

<CGI1 > =

[
ψ
(

σ11, σ12

)′

σ−1
11

]2

×< dW1t >

=

[
ψ
(

σ11, σ12

)′

σ−1
11

]2

×σ11T (3.12)

Similarly for a shock on the second market we obtain that the cumulative response variation of
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the permanent component is

<CGI2 > =

[
ψ
(

σ12, σ22

)′

σ−1
22

]2

×σ22T (3.13)

Thus we define the “High-frequency Impulse Response” (HIR) measure of price discovery as

HIR1 =
<CGI1 >

<CGI1 >+<CGI2 >

If we replace the value it gives

HIR j ≡ (T σ11)
−1 [ψ11(T σ11)+ψ12(T σ12)]

2

(T σ11)−1 [ψ11(T σ11)+ψ12(T σ12)]
2 +(T σ22)−1 [ψ11(T σ12)+ψ12(T σ22)]

2 (3.14)

We add T in front of each of the volatility coefficient to keep visible the continuous-time feature of

the framework, this will be important for the next section and to understand the estimation strategy.

3.2.2.4 The stochastic volatility case

When we relax the assumption of a constant volatility, the spot variance matrix is now dependent

on t and in previous framework the generalized response of the permanent component is

GI1(t) = ψ
(

σ11t , σ12t

)′

σ−1
11t ×δ1t (3.15)

Let’s denote by σ̄i jt =
´ T

0 σi jtdt and Ω̄2 =
´ T

0 Ω2
t dt. By mimicking the previous construction

we propose the following formula for our HIR.

HIR1 =
σ̄−1

11t [ψ11σ̄11t +ψ12σ̄12t ]
2

σ̄−1
11t [ψ11σ̄11t +ψ12σ̄12t ]

2 + σ̄
−1

22t [ψ11σ̄12t +ψ12σ̄22t ]
2 (3.16)

For d markets with d ≥ 2, the contribution of market j is

HIR1 =

[
ψΩ̄2e j

]2
σ̄−1

j jt

∑
d
j=1

[
ψΩ̄2e j

]2
σ̄−1

j jt

(3.17)

Where e j is the vector having 1 at the jth position and 0 elsewhere.

Some comments need to be done on this formula. In fact as there is the inverse of the variance

in the formula of CGI1, the formula 3.16 is not what appears exactly when computing the quadratic

variation. Applying strictly the quadratic variation of the cumulative process of GI1 in equation

3.15 will give a formula where the coefficient
´ T

0 σ12t/
´ T

0 σ11t is replaced by
´ T

0 (σ12t/σ11t)dt .
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This is not really an issue as first it is a definition and it doesn’t have an impact on our relative

measure. Second it will complicate the presentation and makes the estimation unfeasible without

additional assumptions. Assuming for example that the volatility parameters are constant piece-

wise, an estimation of this ratio can be done block-by-block using the methods presented in section

3.

Another important feature of our framework is that it provides a generalization to continuous

time of the IS of Hasbrouck (1995). In fact the total information entering zt on [0,T ] can be

represented by its quadratic variation:

ST =
1
T

ψ

(
ˆ T

0
Ω2

t dt

)
ψ ′

and by taking F as the Cholesky root of
(
´ T

0 Ω2
t dt
)

, the High-frequency Information Share

(HIS) of market j defined by formula 2.7 is:

HIS j =
(
[ψF ] j

)2
/ST (3.18)

and by switching ordering one gets lower and upper bound on information share.

Remark: The intensive set of simulations that we perform shows that the price discovery is well

estimated when the formula is adjusted by the variance of the microstructure noise. The

corrected formula we suggest is then

HIR1 =
σ̄−1

11t [ψ11σ̄11t +ψ12σ̄12t ]
2 ×σ2

ε1

σ̄−1
11t [ψ11σ̄11t +ψ12σ̄12t ]

2 ×σ2
ε1
+ σ̄

−1

22t [ψ11σ̄12t +ψ12σ̄22t ]
2 ×σ2

ε2

The variance of the non-informative noise will be estimated using the realized volatility by

σ̂2
ε1
= (2n)−1

n

∑
t=1

∆p2
1t and σ̂2

ε1
= (2n)−1

n

∑
t=1

∆p2
2t

3.3 Estimation

The estimation of the measure is done by computing each element of the formula 3.16 which in-

cludes components of the integrated covariance matrix (
´ T

0 Ω2
t dt) and elements of the vector ψ .

The volatility parameters will be estimated using existing covolatility estimators in recent econo-

metric of high frequency data and ψ is estimated through the weighting matrix of the classical

VECM equation.
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3.3.1 Estimation of
´ T

0 Ω2
t dt

From Assumptions 1 to 5, using the observed noisy values, the system to estimate is:





dXt = µtdt +ΩtdBt

Pt = Xt + εt

(3.19)

With µt = ΠXt

The integrated volatility
´ T

0 Ω2
t dt of the process 3.19 is estimated in the recent high frequency

econometric framework. We propose with proposition 3.4 to use the Modulated Realized Covari-

ance (MRC) estimator of Christensen et al. (2010) which is robust to microstructure noise. We use

the sub-optimal estimator which is always definite positive. It is minor issue here since the second

part of the estimator is to remove the asymptotic bias coming entirely from noise.

Proposition 3.4. Let kn

n1/2+δ = θ +o
(

n−1/4+δ/2
)

, with 0 < δ < 0.5

In equation 3.26,

MRC[P]δn =
n

n− kn +2
1

ψ2kn

n−kn+1

∑
i=0

P̄i
n(P̄

i
n)

′ (3.20)

MRC[P]δn
h→0

−−−−−−→
ˆ T

0
Ω2

t dt with h : discretization pace

where the different notations are presented in appendix.

In practice in this framework, the drift is known after the estimation of α . Removing the drift

before computing the preaveraged return can improve the results.

3.3.2 Estimation of ψ

With cointegration properties the assumption 3.1 corresponds to the ECM

dXt =−αβ ′Xtdt +ΩtdBt (3.21)

For the estimation, a discretisation should be made. Advantages of the “ exact discretisation “

scheme form of process are highlighted by Phillips (1991), Comte (1999), Chambers (1999, 2011).

And we have the following discrete time VECM representation

Proposition 3.5. Using the exact discrete form of equation 3.21, the following VECM representa-

tion applies to Pt

∆Pth = g(h,d)αβ ′Pth−h +ξth (3.22)
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where ξth = eth +∆uth +g(h,d)αβ ′uth−h,

eth =
´ th

th−h
e
−(th−s)αβ ′

ΩsdBth−s

and g(h,d) = 1− e−hd

Using the representation 3.25, α̂ is estimated consistently (see proposition 3.6), Lc(0) is com-

puted using the formula

Lc(0) = I −α(β ′α)−1β ′

and then ψ is identified as a row of Lc(0).

Proposition 3.6. Let

• Zth = β ′Pth = P1th −P2th

• α̂ = h−1
(
∑

T
t=1 Zth−1hZth−2h

)−1 (
∑

T
t=1 Zth−2h∆Pth

)
4

when T h → ∞ and T h×h2 → 0

√
T h(α̂ −α) =⇒ O(1)

√
2ΩuW (1)

Where W is the standard wiener process

Proof. See Appendix

3.3.3 Generalization

We will present how the previous framework is adapted to more general setting.

Estimation of ψ

According to the Granger representation theorem of cointegrated time series, there exists a repre-

sentation in vector error correction form:

Ld(D)DXt =−αβ ′Xt +ΩtDBt (3.23)

ˆ ∞

τ=0
d(τ)dXt−τ =−αβ ′Xt +ΩtdBt

The assumption 3.1 corresponds to the case where Ld(D) = I.

4This is like an IV estimator of α in equation 3.25 using Zth−2h as Instrument to solve for endogeneity due to
measurements errors
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Discretizing this equation in the simple scheme to estimate is α,

∆Xt =−αβ ′Xt−1 +Γ1∆Xt−1 + . . .+ΓK∆Xt−K + et (3.24)

The last lag K can be chosen by information criteria.

With the observed value Pt we obtain the following linear regression model with autocorrelated

error

∆Pt =−αβ ′Pt−1 +Γ1∆Pt−1 + . . .+ΓK∆Pt−K +ξt (3.25)

α (thus ψ) can be again estimated by linear regression, IV can be used with past value of β ′Pt

as instruments. Consistency is difficult to established formally in this case when T → ∞ and h → 0.

And especially because K should be moving, but as in the discrete time literature this is the same

problem as choosing the K.

Estimation of
´ T

0 Ω2
t dt

From equation 3.3, to impose a restriction on the first term, it is assume a Dirac Delta in c(τ) at

τ = 0 such that its Laplace transform is c0 = 1. that is the contemporaneous impact of the noise of

the price is one,

DXt = c(0)ΩtDBt +

ˆ ∞

τ=0
c(τ)e−DτΩtDBt

dXt =

(
ˆ ∞

τ=0
c(τ)ΩtdBt−τ

)
dt + c(0)ΩtdBt = µtdt +ΩtdBt (3.26)

So replacing in 3.2 the system to estimate is





dXt = µtdt +ΩtdBt

Pt = Xt + εt

(3.27)

Which is estimated using the MRC.

3.4 Simulations an application

3.4.1 Simulation setting

To evaluate the bias in the estimated price discovery measures, it is necessary to initialize the value

of market’s contribution and compare it with the estimations. This required specifying the model

in the reduced error correction form.

We will consider designs of equation 3.21 written as
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d

(
X1t

X2t

)
=

(
−α1

α2

)
Ztdt +

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)0.5

dBt (3.28)

Zt = X1t −X2t is the stationary component

The observed prices are contaminated by i.i.d noises: Pith = Xith + εith, εit ∼ D(0,σ2
εi
), i = 1,2.

We simulate a path of observation with equation 3.28 corresponding to N = 100,000, and T =

∆−1
ti = 1000. We also consider 2 designs, and for each we compute the average and standard

deviation of the measures over 1000 replications.

Design 1: α1 = α2 = 0.9, σ2
1 = σ2

2 = 1, ρ = 0

In this design both markets have the same parameters and are structurally identical. The contribu-

tion of market 1 should be equal 50%.

Design 2: α1 = 0.25, α2 = 0.75 σ2
1 = σ2

2 = 1, ρ = 0

With those parameters, the first market dominates the price discovery process with a contribution

of 90%.

Results:

The simulation results in Table 3.1 show that the HIR captures pretty well the dominance in price

discovery. For design 1, the markets are structurally similar, and the true contribution of market 1 is

equal to 50%. When the level of noises is equal in the two markets, the simulation gives 49.99% for

market 1 with a standard deviation of 5.36. This is clearly better than the Hasbrouck Information

share bounds 57.11 and 39.13 with a standard deviation of 20.56. The high standard deviations

that appear in the simulations come from the instability in simulating cointegrated variables. When

the level of noises is different, the previous conclusions remain. In design 2, the values of the

parameters for simulations are chosen such that the contribution of market 1 is 90%. When the

level of noise is the same with a variance of 0 or 5e-4, our measure gives a close value of 85%.

When the level of noise is different the measure seems to worsen, but very slightly than what

happens to ISu and ISl.
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Table 3.1: Simulation results:

Noise HIR HIS HISu1 HISl1 HISu2 HISl2 ISu1 ISl1
c1 c2 A. Value: 50%

0 0 49.99 49.91 56.6 43.1 56.82 43.3 57.11 39.13
(5.36) (5.58) (8.42) (8.45) (8.45) (8.42) (20.56) (19.8)

0.5 0.5 50.09 50.12 57.0 43.29 56.7 42.9 52.3 52.9
(6.7) (6.6) (8.8) (8.7) (8.7) (8.8) (32.6) (32.7)

0.5 5 49.89 49.88 64.4 35.33 64.6 35.59 55.55 38.51
(6.35) (1.51) (2.44) (2.48) (2.48) (2.44) (22.58) (22.9)

B. Value: 90%

0 0 84.9 85.1 87.84 83.7 17.8 12.2 79.6 79.6
(8.8) (8.7) (9.51) (8.13) (8.13) (9.51) (18.7) (18.7)

0.5 0.5 85.41 85.66 84.81 89.73 10.28 15.2 82.1 81.92
(7.8) (7.8) (8.5) (7.05) (7.05) (8.5) (17.52) (17.57)

0.5 5 84.28 84.30 87.89 83.48 16.51 12.10 76.26 76.41
(8.36) (8.39) (7.74) (9.01) (9.01) (7.74) (22.85) (22.82)

c1, c2 in 10−4. Note: The table reports the High frequency measures averaged

over 1000 replications. Standard deviation in parenthesis. HISu and HISl are the

upper and the lower bound on Information share computed in the continuous time

framework. ISu1, ISl1 are the Hasbrouck discrete time IS.

3.4.2 Application

In this short application, we estimate the price discovery contribution of NYSE an NASDAQ for the

Dow Jones stocks primary listed on NASDAQ. There are four stocks: Apple (AAPL), Microsoft

(MSFT), Cisqo (CSCO) and Intel (INTC) during the 23 trading days of March 2011. The results

are plotted in Figure 3.1 and shows the evolution of the daily contribution of each market. We

obtain that price discovery mostly happens in NASDAQ, and there are very few days where NYSE

dominates NASDAQ. These results confirm the finding in the previous chapter application, where

in addition we found that information for those assets was driven by orders of small quantities.
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Figure 3.1: Evolution of the Daily Contribution to price discovery
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Note: The figures show the daily High Frequency Impulse Response during the 23 trading days of March

2011.

3.5 Conclusion

This paper aims at providing the literature with a new framework for assessing price discovery in

the context of High-frequency data. The literature on this topic have mainly used a discrete time

representation of the price dynamic, with some drawbacks highlighted in the previous sections:

non-unique value of price discovery measure, non-intuitive identification of the fundamental price,

absence of non-informative microstructure noise. We tried to build a framework that is not con-

cerned by all these issues. In a continuous time setup, we proposed to consider the Generalized

impulse response of the permanent price, to a shock in one market. Thus, constructing an invariant
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measure of price discovery with economic relevance. We proposed the High-Frequency Impulse

Response measure which is not affected by information-uncorrelated noise. Our strategy is to build

the error correction model of latent prices with stochastic volatility and additive non-informative

noise. Thanks to the recent literature on integrated volatility estimation in the noisy diffusion setup,

we are able to estimate the objects of interest by getting rid of the noise.

Using some simulations, we obtained that our framework displays good properties in term of

capturing price discovery. The application is done on the Dow Jones stock listed on NASDAQ:

Apple, Cisco, Intel and Microsoft. It showed that NASDAQ dominates the NYSE in the prices

formation of those stocks. The High frequency Impulse response HIR can ultimately be used on

empirical analysis to investigate the determinants of a market’s efficiency. For example by a regres-

sion of HIR on a set of explanatory variables: number of market makers, latency, liquidity, trade

size, location, trading fees...etc. The framework also considered the information as being smoothly

introduced into price, but some empirical evidences suggest that information surprises enter prices

as jumps, further research will attempt to consider price discovery in a models comprising a jump

process.
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3.6 APPENDIX C

3.6.1 Proofs

3.6.1.1 Proof of proposition 3.5

Proof. By solving the differential equation represented by 3.21 for a given h

Xth = e−hαβ Xth−h + eth

∆Xth =
(
e−hαβ − I

)
Xth−h + eth

(3.29)

with eth =
´ th

th−h
e
−(th−s)αβ ′

ΩsdBth−s.

exp(−hαβ ′) = ∑
∞
l=0 (−h)l (αβ ′)l

(αβ ′)2 = αβ ′αβ ′ = d ×αβ ′ where d = β ′α = α1 −α2

by recurrence (αβ ′)l = dl−1 ×αβ ′ and we have

exp(−hαβ ′)− I =
(
−hαβ ′+(−h)2 (αβ ′)2 /2+ . . .

)

= αβ ′
(
−h+(−h)2

d/2+ . . .
)

= αβ ′

d

(
−hd +(−h)2

d2/2+ . . .
)

= αβ ′

d

(
−1+1−hd +(−h)2

d2/2+ . . .
)

= αβ ′ (−1+e−hd)
d

= −αβ ′g(h,d)

With g(h,d) =
(1−e−hd)

d
,

replacing in the expression 3.29 gives

∆Xth =−g(h,d)αβ ′Xth−h + eth

With the observed value Pt :

∆Pth = ∆Xth +∆uth

= −g(h,d)αβ ′Xth−h +∆uth + eth

= −g(h,d)αβ ′Pth−h −g(h,d)αβ ′uth−h +∆uth + eth

= −g(h,d)αβ ′Pth−h +ξth

with ξth = eth +∆uth −g(h,d)αβ ′uth−h

Lemma 3.7.

1. g(h,d) = h+O
(
h2
)
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2. Var (eth) = hΩ2 +O
(
h2
)

3. Var (ξth) = 2Ω2
u +O(h)

4. E
(

ξthξ
′
th−h

)
= Ω2

u +g(h,d)αβ ′Ω2
u = Ω2

u +O(h)

Proof. .

1. g(h,d) =
(1−e−hd)

d
= h− (−h)2

d/2+ . . .= h+O
(
h2
)

2. Var (eth) =Var
(
´ th

th−h
e
−(th−s)αβ ′

ΩsdBs

)
=Var

(
´ h

0 e
−uαβ ′

ΩsdBu

)

Var (eth) =
´ h

0 (I −g(h,u)αβ ′)Ω2 (I −g(h,u)αβ ′)′ du

Var (eth)= hΩ2−
(
´ h

0 g(h,u)du
)

αβ ′Ω2−
(
´ h

0 g(h,u)du
)

Ω2βα ′+
´ h

0 g(h,u)2 αβ ′Ω2βα ′du

Using 1) we have the result: Var (eth) = hΩ2 +O
(
h2
)

3. ξth = (eth +uth − (1−g(h,d)αβ ′)uth−h)

Var (ξth) = Var (eth)+Ω2
u +
(
1−g(h,d)αβ ′)Ω2

u

(
1−g(h,d)βα ′)

= hΩ2 +O
(
h2)+2Ω2

u −g(h,d)
(
αβ ′Ω2

u

)
−g(h,d)

(
Ω2

uβα ′)+g(h,d)2 (αβ ′Ω2
uβα ′)

= 2Ω2
u +
(
Ω2 −αβ ′Ω2

u −Ω2
uβα ′)O(h)+O

(
h2)

4. .

E
(

ξthξ
′
th−h

)
= E

((
eth +uth −

(
1−g(h,d)αβ ′)uth−h

)(
eth−h +uth−h −

(
1−g(h,d)αβ ′)uth−2h

)′)

=
(
1−g(h,d)αβ ′)Ω2

u

= Ω2
u −g(h,d)αβ ′Ω2

u

Lemma 3.8. Let Zth = β ′Pth = P1th −P2th then

Var (Zth) = O
(
h−1
)

E (ZthZth−h) = O
(
h−1
)

Proof. Zth = β ′Pth = P1th −P2th
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∆Pth = g(h,d)αZth−h +ξth

∆β ′Pth = g(h,d)β ′αZth−h +β ′ξth

∆Zth = g(h,d)d ×Zth−h +β ′ξth

Zth = (1+g(h,d)d)×Zth−h +β ′ξth

Zth = e−hd ×Zth−h +β ′ξth

Var (Zth)
(
1− e−2hd

)
= Var (β ′ξth)+Cov

(
β ′ξthZ

′
th−h

)

= β ′Var (ξth)β +β ′Cov
(

ξthξ
′
th−h

)
β

= β ′ (2Ω2
u +O(h)

)
β +β ′ (Ω2

u +O(h)
)

β

Var (Zth)
(
−2hd +O

(
h2
))

= 3β ′Ω2
uβ +O(h)

Var (Zth) = 3β ′Ω2
uβ+O(h)

h(−2d+O(h))

= O
(
h−1
)

Cov
(

Zth,Z
′
th−h

)
= e−hdVar (Zth−h)+Cov

(
β ′ξthZ

′
th−h

)
β ′Var (ξth)β +β ′Cov

(
ξthξ

′
th−h

)
β

= e−hdO
(
h−1
)
+β ′ (Ω2

u +g(h,d)αβ ′Ω2
u

)
ββ ′ (2Ω2

u +O(h)
)

β +β ′ (Ω2
u +O(h)

)
β

= e−hdO
(
h−1
)
+β ′Ω2

uβ +O(h)

= O
(
h−1
)

E
(

Zth−2hξ
′
th

)2
= Var (Zth−h)×Var (ξth)

= O
(
h−1
)
×
(
2Ω2

u +O(h)
)

3.6.1.2 Proof of proposition 3.6

Now we prove the proposition using the Lemma 3.7 to replace the variable by the bigs O results
α̂ = h−1

(
∑

T
t=1 Zth−1hZth−2h

)−1 (
∑

T
t=1 Zth−2h∆Pth

)

hα̂ =
(
∑

T
t=1 Zth−1hZth−2h

)−1 (
∑

T
t=1 Zth−2h∆Pth

)

= −g(h,d)α +
(
∑

T
t=1 Zth−1hZth−2h

)−1 (
∑

T
t=1 Zth−2hξth

)

hα̂ −hα = (−g(h,d)+h)α +
(
∑

T
t=1 Zth−1hZth−2h

)−1 (
∑

T
t=1 Zth−2h∆Pth

)

h(α̂ −α) = O
(
h2
)
+
(
∑

T
t=1 Zth−1hZth−2h

)−1 (
∑

T
t=1 Zth−2hξth

)
√

T h(α̂ −α) = O
(√

T h2
)
+
(
T−1 ∑

T
t=1 Zth−1hZth−2h

)−1 1√
T h

(
∑

T
t=1 Zth−2hξth

)

≈ O
(√

T h2
)
+
(

Cov
(

Zth,Z
′
th−h

))−1
1√
h

√
Var (Zth−2h)Var (ξth)×W (1)

≈ O
(√

T h2
)
+
(
O
(
h−1
))−1√

O(h) 1√
h

√
2Ω2

u +O(h)×W (1)

≈ O
(√

T hh
)
+O(1)×

√
2Ω2

u +O(h)×W (1)

=⇒ O(1)
√

2Ω2
u ×W (1)

Provided that
√

T h → ∞ and
√

T h×h → 0 .
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3.6.1.3 Notations of proposition 3.4:

The notations in 3.4 originally come from the pre-averaging method of Jacod et al. (2009), which

provides and estimator of the integrated volatility,

Assuming that the true log price is generated by an Îto process of the form

Xt = X0 +

ˆ t

0
usds+

ˆ t

0
σsdWs

where W is a standard wiener process and µ = (µt) and σ = (σt) are adapted processes.

and the noisy observed process is given by

Zt = Xt + εt

let kn be the size of each group in the length of each period at the first stage. it is chosen such

that

kn = θ ∗n0.5+δ +o(n
1
4 )

We have a function g on [0,1], continuous, piece-wise C1 with a piece-wise Lipschitz derivative

g′satisfying g(0) = g(1) = 0, and
´ 1

0 g(x)2dx > 0. let’s define some quantities and notation.

gn
i = g(i/kn),

φ1(s) =
´ 1

s
g′(u)g′(u− s)du, φ2(s) =

´ 1
s

g(u)g(u− s)du,

f or s > 1,φ1(s) = 0, φ2(s) = 0,

φi j =
´ 1

0 φi(s)φ j(s)ds, ψi = φi(0), i, j = 1,2

their empirical equivalent:

ψ̂1 = kn ∑
kn

j=1(g
n
j+1−gn

j)
2 ψ̂2( j)= 1

kn
∑

kn−1
j=1 (gn

j)
2φ̂1( j)=∑

kn

i= j+1(g
n
j−1−gn

i )(g
n
i− j−1−gn

i− j) φ̂2( j)=

∑
kn

i= j+1 gn
i gn

j−1

φ̂11( j) = kn

(
∑

kn−1
j=0 (φ̂1( j))2 − 1

2(φ̂1(0))2
)

φ̂12( j) = 1
kn

(
∑

kn−1
j=0 φ̂1( j)φ̂2( j)− 1

2 φ̂1(0)φ̂2(0)
)

Then, pre-averaged return are defined as:

Zn
i = Zi∆n

, ∆n
i Z = Zn

i −Zn
i−1, Z

n
i =

kn−1

∑
j=1

gn
i ∆n

i+ jZ
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Chapter 4 Volatility discovery across interlinked securities

Chapter 4

Volatility discovery across interlinked

securities

Abstract: Where does new volatility enter the volatility of securities listed in many countries?

While literature has focused on where information enters the price. I develop a framework to study

how each markets’ volatility contributes to the permanent volatility of the Asset. I build a VECM

with Autoregressive Stochastic Volatility framework estimated by MCMC method and Bayesian

inference. This specification allows defining measures of a market’s contribution to Volatility dis-

covery. In the application, I study cash and 3Month futures markets of some metals traded on the

London Metals Exchange. I also study the EuroStoxx50 index and its futures. I find that for most

the securities, while price discovery happens on the cash market, the volatility discovery mostly

happens in the Futures market. Overall, the results suggest that Information discovery and volatil-

ity discovery do not necessarily have the same determinants. In a second part of the study. I build

a framework that exploits High frequency data and avoid computational burden of MCMC. I show

that Realized variances are driven by a permanent component and I compute contribution NYSE

and NASDAQ to permanent volatility of Dow Jones stocks. It appears for most of the stocks that,

from March 2011 to May 2011. NYSE dominates the Volatility discovery process. I later check the

correlation between Volatility Discovery measures, liquidity, Volume market Share by trade size,

and volatility of volume. I obtain that volatility of the volume is the best determinant of volatility

discovery, but low figures suggest others important factors.

Keywords: Multivariate Stochastic Volatility. Monte Carlo Markov Chain. VECM.

JEL: C32. C58. G14
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4.1 Introduction

The recent decades have seen huge investigations and debates about how a market contributes to the

fundamental price discovery of cross-listed assets and derivatives prices. The literature triggered

by Hasbrouck (1995) and Harris et al. (2002b) proposed price discovery measures to evaluate the

relative informativeness of one market’s prices and to perform regressions aiming at accessing the

determinants of a market’s efficiency. Meanwhile, concerning Volatility formation, there is almost

no literature nor such statistical measures.

The motivation for this literature is manifold: An investor who wants to avoid being adverse se-

lected would prefer to trade in the markets where prices are close-to-efficiency. Regulators are also

interested in having an efficient market for their stocks that are listed abroad (Eun and Sabherwal,

2003). Then, the derivatives products as futures contracts are generally implemented, among other

reasons, to improve the price discovery mechanism. Papers are thus interested to which market,

between cash and futures, conveys more fundamental information. For instance Chakravarty et al.

(2004) show that informed trading happens in the spot market compared to option market. For the

case of futures market, a bunch of papers study to which extend price of the asset on cash market

reflects the information in the futures markets. Lien and Shrestha (2009) show that Price discovery

takes place mostly in the futures market. Fricke and Menkhoff (2011) obtain that the 10-year Euro

bond future contract on German sovereign debt is important but does not dominate two futures with

shorter maturity.

This literature do not look at which market’s volatility is dominant in forming the volatility

of the fundamental price, while there are many reasons to analyze the volatility formation. First

the theoretical literature shows that the information arrival and the volatility on information have

different implications for price and price volatility formation (Ross, 1989). Second, given the

arbitrage activities between spot and derivatives, missing the link between their volatilities can lead

to incorrect inferences and misunderstanding of the relationship between their returns. Chan et al.

(1991) advocates that for the case of cash and futures markets. Third, the volatility itself is an

object of interest for investors and there are tradable volatility indexes like the VIX, and derivatives

on the volatility. An actively traded derivative is the volatility of the volatility index (VVIX) which

captures the uncertainty of investors about future volatility. In risk management terms also, it is

obviously important to know which market’s risk contributes the most to the fundamental risk of

the asset.

The previous elements provide sufficient motivation to go far than information, and investigate

on which market the trading with uncertainty on information is happening. This objective is by

formulation an empirical problem This paper contributes to the literature by developing a simple

framework in a cross-market setting, that allows measuring a relative contribution of a market’s
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volatility to the volatility of the fundamental price.

The literature is not empty concerning the analysis of volatility transmission between deriva-

tives and spot markets. Some papers investigate how the volatility in the futures market impacts

the cash market’s volatility and vice versa. This is done by using multivariate GARCH models

see Bhar (2001), Antoniou and Holmes (1995), Antoniou and Holmes (1995), Zhong et al. (2004),

Yang et al. (2012), Chan et al. (1991). Those papers are more concerned with a lead lag relation-

ship, This paper also shows the volatility contagion, but in addition tackles a question that those

papers do not look at: Does the volatility of futures market contributes more than the volatility

of the cash market in the formation of the permanent price volatility? The paper innovates in this

respect. A very small number of papers are approaching the topic in this way. Dias et al. (2016)

assess the contribution to the permanent volatility of Dow Jones asset by assuming that realized

volatilities are fractionally cointegrated. Baule et al. (2017) evaluate how Warrants market and

classical option markets contribute to the formation of volatility. They use information share of

each market computed in bivariate system of implied volatility. Our paper distinguishes from their

in several aspects that are explained below.

In the first part, I rely on a classical Vector Error Correction Model (VECM) which is the simple

powerful tool for interrelated assets with cointegrated prices. I also add an Autoregressive Stochas-

tic Volatility dynamic to the innovations to form what I call next VECM-ASV. In the specification,

the conditional volatilities of the both markets are also driven by common persistent component. I

show that this is the case in the data. This allows then building the Volatility Share (VS), defined as

the contribution of the volatility’s innovation of a given market to the volatility of the permanent

volatility, and the Permanent Volatility Share (PV), defined as the weight of a market in the per-

manent volatility1. This paper has the advantage of defining simultaneously price discovery and

volatility discovery in the same framework.

To estimate the model, I use MCMC simulation method in a Bayesian framework. This estima-

tion method appears to be the adapted workhorse for time series models introducing non observable

components like a stochastic variance (Tsay, 2005).

In the application on daily data, I estimate the VECM-ASV model to compute the contribu-

tion of 3-month futures and the cash markets to volatility discovery of some metals traded on the

London Metal exchange. They are extracted from the database Eikon of Thomson Reuters. The

data range is from January 2010 to December 2015. The literature on futures contracts has mixed

results concerning price discovery. Most of the studies find that price discovery happens in the

futures, but some find that there is informed trading in the cash market. Concerning volatility, I

find that for most of the metals the contribution of the futures market to volatility discovery is big-

1See the definitions of IS and PT in Hasbrouck (1995) and Lehmann (2002)
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ger than that of the cash market. For Aluminum and Tin, the Cash market dominates the futures

in volatility discovery with contribution of 56% and 52.47%. To check if there is link between

Volatility discovery and the price discovery, I compute the main price discovery measures IS and

PT on those assets. The results I obtain vary by stocks. For Aluminum, Tin and Molybdenum, the

IS and PT of the Cash market is the highest. Overall the results shows that for Aluminum and Tin,

price discovery and Volatility discovery happen in the cash market; for copper and Molybdenum,

price discovery happens in the cash market and volatility discovery in the futures market; For Lead,

price discovery and Volatility discovery happen in the Futures market. I then consider the intraday

EuroStoxx 50 Index and futures contracts on this index. The Futures market contributes for more

than 90% to volatility discovery while price discovery happens for around 90% on the Cash market.

Thus for Euro50Stoxx. informed trading happens on Cash market while Volatility trading happens

in Futures market. Those results point out a that price discovery and volatility discovery do not

necessarily have the same determinants.

In a second part. I develop a framework that exploits High frequency data2 and avoids compu-

tational burden of MCMC. When High frequency data are available, Realized volatility is another

way of capturing the total volatility in a day. Using Dow Jones stocks on NYSE and NASDAQ, I

first show that volatilities appear also to be driven by a permanent component when measured by

Realized Volatilities. This allows estimating contributions to Volatility discovery by simply apply-

ing Hasbrouck (1995) and Harris et al. (2002c) methodology to time series of Realized volatility.

Dias et al. (2016) also propose a measure of volatility discovery based on IS and features of real-

ized volatility. This paper proposes two measures of volatilities based on innovations variance and

weighting matri and studies the determinant of volatility discovery.

In the application, I obtain for most of the stock that from March 2011 to May 2011, NYSE

dominates the Volatility discovery process. I later check the correlation between Volatility Dis-

covery measures, liquidity, Volume market Share by trade size, and volatility of volume. I obtain

that volatility of the volume is the best determinant of volatility discovery. It is followed by the

market share in big size trade. This result is coherent with the literature in a one market setting

showing strong linkages between the volume activity and price volatility (Epps and Epps, 1976;

Tauchen and Pitts, 1983). In absolute terms, those coefficients remain meanwhile low; suggesting

the existence of other sources of volatility discovery.

The remainder of the paper is organized as follow: The second section presents the VECM-

ASV model with its features and defines the Volatility discovery measures. Section 3 presents

the MCMC method and the estimation strategy using Gibbs sampling. In the fourth section a

simulation exercise is performed. In the fifth section an application is done on base metal traded on

2The first part of this chapter is concerned with VECM-ASV framework. mostly suitable for Low frequency data.
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LME and the EuroStoxx 50 Index. The sixth section presents the analysis of volatility discovery

with Realized volatilities on Dow jones stocks. Conclusion is presented in the seventh section.

4.2 Modeling

There are 2 strongly related securities that are traded at the respective prices p1t . p2t . For example

for one asset listed on two markets, p1t is the price of the asset on the first market and p2t the price

on the second. It is classical to consider these prices as cointegrated such that they have only one

common trend representing the “latent efficient price”. In fact arbitrageurs’ activities prevent the

prices between those markets from diverging.

4.2.1 A VECM with Stochastic-Volatility

By denoting the vector of prices by Pt = (p1t , p2t)
′, Johansen (1991) results show that the Vector

Error Correction Model (VECM) 4.1 applies. I then add an Autoregressive dynamic to the error’s

volatility to form the VECM with Autoregressive Stochastic Volatility (VECM-ASV):

VECM-ASV(1):

∆Pt = −αβ ′Pt−1 +Γ1∆Pt−1 + . . .+ΓK∆Pt−K + εt (4.1)

εt = H
1/2
t ηt (4.2)

Ht =

(
σ1t 0

0 σ2t

)(
1 ρ

ρ 1

)(
σ1t 0

0 σ2t

)
(4.3)

log
(
σ2

1t

)
= a01 +a11Vt−1 + v1t (4.4)

log
(
σ2

2t

)
= a02 +a12Vt−1 + v2t (4.5)

Vt = a+λVt−1 +ut (4.6)

with ut ∼ i.i.d
(
0,σ2

u

)
, ηt ∼ i.i.d (0, I) , vt =

(
v1t

v2t

)
∼ i.i.d(0,

(
σ2

v1
0

0 σ2
v2

)
).

The cointegrating vector is normalized to be β ′ =
[

1 −β1

]
.

The model is classical in the formulation of the error term where the variance Ht is then mod-

eled as a Factor with SV. First, I use a decomposition in a Constant Correlation framework. This

will ensure that the Volatility matrix is positive semi-definite. For the dynamic of the individual

volatility, since the innovations v1t and v2t can be negative, I use a log form that forces the individ-

ual conditional variances to be positive. The correlation coefficient ρ is constant so the model is
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restricted in some senses compared to free varying correlation or covariance (see Dynamic Condi-

tional Correlation Garch). Meanwhile, the specification is general enough to include non diagonal

matrix Ω in the price equation.

4.2.1.1 Identification of the common component

The specification of the common factor dynamic displays a parameter λ which measure persistence

in the factor. As the conditional volatility of financial returns are known to be highly persistent.

The common factor component is expected to be highly persistent and capturing all the persistence

in both series. The coefficient λ is thus expected to be close to 1. If λ is set equal to 1, then the

factor component is identify in a Berveridge Nelson decomposition of the vector of log volatiliy.

Given the strongness of this assumption for volatility, I dont set a value for lambda. Meanwhile,

assumptions are useful to extract the factor:

Assumptions:

• The Factor is a assumed to be a linear combination of the conditionnal variances

Vt = ψ1 × log
(
σ2

1t

)
+ψ2 × log

(
σ2

2t

)
(4.7)

• The factor Vt is the axis that maximises the inertia of the projection of log
(
σ2

1t−1

)
,

log
(
σ2

2t−1

)
; It can be obtained as their first principal component.

This imposes a long run relationship between the conditional variances.3 This assumption is sup-

ported by the presence of arbitrageurs on volatility. For a cross-listed asset, traders on volatility

can ultimately make profit on differences in the volatility for the asset on two markets. At the

end of this section, I show empirically that the conditional variances are indeed driven by a com-

mon component. After removing the highly persistent component, the remaining parts show no

persistence.

By replacing the expressions of log
(
σ2

1t

)
and log

(
σ2

2t

)
in 4.7 we have

Vt = (ψ1a01 +ψ2a02)+(ψ1a11 +ψ2a12)Vt−1 +ψ1v1t +ψ2v2t (4.8)

which allow extracting the persistence parameter

λ = ψ1a11 +ψ2a12 (4.9)

3It also allows non-stationary volatility but this is not in contradiction with Cointegration. The non-stationary
volatility can only slightly biased the Cointegration test (Cavaliere et al., 2010). This is not an issue here as the series
I analyze are strongly cointegrated.
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And the innovation in the common component

wt = ψ1v1t +ψ2v2t (4.10)

The specification can finally provides some nice interpretations in term of volatility spillovers.

By replacing the factor formula 4.7 in the variances equations. They become

log
(
σ2

1t

)
= a10 +a11ψ1 × log

(
σ2

1t−1

)
+a11ψ2 × log

(
σ2

2t−1

)
+ v1t (4.11)

log
(
σ2

2t

)
= a20 +a21ψ1 × log

(
σ2

1t−1

)
+a21ψ2 × log

(
σ2

2t−1

)
+ v2t (4.12)

Which is a classical Autoregressive representation. The coefficients (a11ψ2). (a21ψ1).(a11ψ1)

and (a12ψ2) have interesting interpretation in terms of individual volatility spillovers and persis-

tence.

4.2.2 The volatility discovery measures

The common factor equation 4.7 is similar to the setup in which the price discovery measures are

generally defined. By considering this factor as the permanent component in the volatility, a notion

of contribution to volatility discovery can be build. The coefficient ψ1(respectively ψ2 ) measures

the weight of market 1 (respectively market 2 ) in the formation of the common persistent volatility

factor. Accordingly. as done with the Permanent Transitory measure, the contribution of market 1

to volatility discovery can be defined by the “Permanent Volatility Share”:

PV1 =
ψ1

ψ1 +ψ2
and PV2 =

ψ2

ψ1 +ψ2
(4.13)

Considering now the innovation in the volatility component in equation 4.10. Its variance ψ2
1 σ2

v1 +

ψ2
2 σ2

v2 can be considered as the total volatility of volatility entering the volatility at time. This

allows another construction of a measure of volatility discovery. The “Volatility Share” is defined

as the contribution of a market volatility to the volatility of the common volatility:

V S1 =
ψ2

1 σ2
v1

ψ2
1 σ2

v1 +ψ2
2 σ2

v2

and V S2 =
ψ2

2 σ2
v2

ψ2
1 σ2

v1 +ψ2
2 σ2

v2

(4.14)

4.2.3 Common factor in Volatilities

The previous specification supposes that the conditional variances are driven by a common factor.

To check the validity of this assumption, I estimate a Multivariate GARCH model on the data, and

117



4.2. MODELING

Figure 4.1: Conditional volatilities of Cash and Futures markets
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The graphs plot the conditional volatilities of Cash and Futures market estimated in a Bivariate VECM

with CCC-Garch errors.

I extract the log conditional variances. With those conditional variances. I do a classical factor

analysis.

The data are comprised of futures and cash markets prices of some metals traded on the London

Metals Exchange (LME). It is the same commodities that were studied in chapter 1: Tin (Ti),

Aluminium (Al), Nickel (Ni) and Lead (Le), Copper (cu). Here I focus on the comparison between

the two main securities that are the cash market and the 3-month futures contract. The cash market

is the market 1 and the futures market is the market 2. I estimate Bivariate VECM models with

errors driven by a CCC-Garch model. This corresponds to the VECM-ASV without the volatility

terms v1t and v2t in the variances equations 4.1. Figure 4.1 shows some instances of common

evolution of conditional variances. It is clear from those graphs that the conditional volatilities

of cash and futures move perfectly closely and exhibits common factor behavior. I compute the

volatility gap (VolatilityCash −VolatilityFutures = residuals). Their plot in Figure 4.2 and ADF test

in Table ?? shows that the non stationarity of those residuals can strongly be rejected. Later after

the estimation of the VECM-ASV, a more refined analysis is done. Figure 4.13 shows the common

persistence in the conditionnal volatility. Then after the removal of the estimated common factor,

figure 4.14 shows that there is no persistence anymore in the remaining part.
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Figure 4.2: Volatility gap between Cash and Futures markets
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4.3 Estimation: MCMC method and Gibbs sampler

The VECM-ASV model specified in equation 4.2 incorporates unobserved random variables. Markov

Chain Monte Carlo (MCMC) procedure in Bayesian framework is adapted for estimation purpose

(Tsay, 2005). For this, I have to specify details of the likelihood and the prior distributions of all

the parameters.

4.3.1 MCMC method

I start by regrouping the parameters using Tsay (2005) notations. Let Gi = (hi1, . . . ,hin)
′

and G =

[G1,G2]. The parameters of the mean equation are B ≡ vec [α : Γ] where the vec operator stacks the

columns of matrix into one column.

The volatility equation parameters ω = (a01,a11,a02,a12)

The VECM (4.1) is represented as

R = B̃X +U

with T = sample size . U ≡ [ε0, . . .εT ]

R ≡ [∆P1, . . .∆PT ] B̃ = [α : Γ]. Γ ≡ [Γ1, . . . ,ΓK]

X =
[
β ′Y−1, ∆X

]′
. Y−1 ≡ [P0, . . .PT−1].

∆X ≡ [∆X0, . . .∆XT ] with ∆Xt−1 ≡
[

∆P
′
t−1 . . .∆P

′
t−K

]

The likelihood is defined as
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f (R|X ,B,w) =

ˆ

f (R|X ,B,H) f (H|w)dH

A difficulty is added to this Bayesian framework by the presence of the volatility vector H

playing the role of augmented parameters. As suggested Tsay (2005), by Conditioning on H,

I have the distribution functions f (R|X ,H,B). the distribution f (H|,ω). The prior distribution

p(B,w) = p(B)p(w) is separated such that the prior distributions for the mean and volatility are

independent. To estimate the parameters using a Gibbs sampling, it is the straightforward to draw

random samples and compute the empirical moments from the following conditional posterior dis-

tributions:

f (β |R,X ,B,w) , f (H|R,X ,B,w) , f (w|R,X ,B,H)

To perform the simulations. a multivariate GARCH model is first estimated on the residuals of

an estimated VECM model. The estimated values are used to initialize the prior distributions of the

parameters of interest. Then a Gibbs sampling algorithm is performed.

4.3.2 Estimation procedure

To estimate the VECM-ASV model, I start by estimating a VECM with GARCH errors. The mean

equation parameters are used to initialize α =B and the conditional variances to initialize H. Using

the extracted σ1t and σ2t , the common factor is extracted as the first principal component of their

PCA and to obtain initial values of ψ1 and ψ2. I then do the regression 4.4 and 4.5 by OLS to

initialize the parameters of the variance equation.

The following steps are repeated 1000 times, and the firsts 100 values are discarded, to generate

empirical distribution of the parameters to estimate:

1. The prior distribution of the α is assumed to be a bivariate normal distribution with mean

AL0 and variance C0. To obtain the posterior, I estimate α̂ from the Weighted Least-Squared

regression:

[
∆P1t/σ1t

∆P2t/σ2t

]
= α

[
β ′Y−1t/σ1t

β ′Y−1t/σ2t

]
+U, U ∼ N (0, I)

Then the posterior distribution of α is a bivariate normal distribution with mean AL∗ and

variance C∗ such that
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AL∗ =C∗ (C−1
0 AL0 +Var(α̂)−1α̂

)−1
and variance C∗ =

(
Var(α̂)−1 +C−1

0

)−1
.

The realizations of α are drawn from this posterior.

2. The volatility vector H is drawn element by element from the following conditional posterior

distribution

f (ht |R,X ,Ht ,α,ω) ∝ f (at |ht ,α,∆Pt ,β
′Pt−1)× f (ht |ω)

∝ φN (0,Ht) (at)×φN (A0log(ht), |Σv) (log(ht+1))×φN (A0log(ht−1), |Σv) (log(ht))

with Σv =

(
σ2

v1
0

0 σ2
v2

)
and φN (m,V ) (x) the density function at x of a N (m,V ) .

To draw from this density, I do a Griddy-Gibbs sampling by fixing h2 and drawing h1 from

the density, and then fixing the h1, h2 is drawn from the density. The process is repeated

500 times to obtain h1 and h2 that are independent. To draw the h1 for instance, I compute

the values of the previous density on a grid of the interval [0,1.5× var(a1t)] to obtain an

empirical density of h1. Then I draw randomly a value in [0,1]. and I obtain the draw of h1

by inverting the cumulative empirical density at this value.

3. A PCA is performed to obtain new values of ψ1, ψ2 and the common factor.

4. The prior distribution of ω = A0 is a multivariate normal distribution with mean ω0 and

variance Cw0. The posterior distribution is f (A0|R,X ,Ht ,α) = f (A0|R,Ht ,α) is a bivariate

normal distribution with mean ω∗ and variance Cw∗ such that

ω∗ =Cw∗ (Cw−1
0 ω0 +nΣ−1

v ht

)−1
and variance C∗ =

(
nΣ−1

v +C−1
0

)−1
.

5. Using the drawn ω , H and Vt , the variance errors is computed as v1t = log
(
σ2

1t

)
− a01 +

a11log(Vt−1) and v2t = log
(
σ2

2t

)
−a02 +a12log(Vt−1).

6. The conjugate prior distribution for each
(
σ2

vi

)
i=1,2 is (mλ )/σ2

vi
∼ χ2

m. The posterior distribu-

tion is the inverted Chi-squared distribution with m+n−1 degrees of freedom (mλ +∑
n
l=2 vil)/σ2

vi
∼

χ2
m+n−1. The new variances

(
σ2

vi

)
i=1,2 are drawn from this distribution.

Finally the value of each parameter is estimated as the mean of the empirical distribution. Thoses

values are used in the formulas to obtain the different Volatility discovery measures.
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Table 4.1: Simulation results

Volatility Permanent

Share (VS) Volatility (PV)

a11 a12 Mk1 Mk2 Mk1 Mk 2

0.98 0.50 59.66 40.34 63.52 36.48

(0.34) (0.34) (0.01) (0.01)

The Table reports the price and volatility discovery measure estimated in a bivariate VECM-ASV model.

4.4 Simulation

To analyse the pefomance of the estimation strategy in computing volatility discovery in the VECM-

ASV framework, a simulation exercise is performed in the setting is the following

VECM-ASV(1):

∆Pt = −αβ ′Pt−1 + εt

εt = H
1/2
t ηt

Ht =

(
σ1t 0

0 σ2t

)(
1 ρ

ρ 1

)(
σ1t 0

0 σ2t

)

log
(
σ2

1t

)
= 0+a11 × log

(
σ2

1t−1

)
+ v1t

log
(
σ2

2t

)
= 0+a12 × log

(
σ2

1t−1

)
+ v2t

with β1 = 1, σ2
v1
=σ2

v2
= 0.05,

(
α1 α2

)
=
(

0.025 −0.025
)

,
(

a11 a12

)
=
(

0.98 0.50
)

,

In this setting, the prices are cointegrated and the coefficient of cointegrated is 1. The common

factor in the volatility equation is completly driven by the market 1. So volatility discovery happens

in market 1. We simulate the setting 1000 times, in each setting the MCMC is simulated 100 times

and average values are taken.

The table presents the simulation results. It shows that the estimation strategy select market 1

as dominating the volatility discovery process.
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4.5. EMPIRICAL APPLICATION

Figure 4.3: Convergence of MCMC algorithm: Permanent Volatility Share
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4.5 Empirical application

4.5.1 Cash and Futures markets volatility

Using the VECM-ASV framework, I investigate the relative contribution to volatility discovery of

futures and cash markets on some metals traded on the London Metals Exchange (LME). It is the

same commodities that were studied in chapter 1: Tin. Aluminium, Lead, Copper, Molybdenum

and Steel billet. Here I focus on the comparison between the two main securities that are the

cash market and the 3-month futures contract. I study the relative relevance of these contracts in

transmitting volatility. The overnight information

The data for each of the metals under study is comprised of the cash official prices. the 3-month

futures official prices. the daily volume. the high and low daily official prices. They are extracted

from the database Eikon of Thomson Reuters. The data range is from January 2010 to December

2015.

The data on the base metals have been analyzed descriptively and are shown to be cointegrated.

Analysis of volatility discovery The Table 4.2 presents the results of the VECM-ASV models

estimated for each metal. For most of the metals. the contribution of the futures market to volatility

discovery is bigger than that of the cash market. For Aluminum and Tin, the Cash market dominates

the futures in volatility discovery with contribution of 56% and 52.47%. To check if there is link

between Volatility discovery and the price discovery, I compute the main price discovery measures

IS and PT on those assets. The results I obtain vary by stocks. Overall the results shows that for
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4.5. EMPIRICAL APPLICATION

Table 4.2: Estimation results

Volatility Permanent Information Share (IS) Permanent

Share (VS) Volatility (PV) Upper Lower Transitory (PT)

Cash Fut Cash Fut Cash Fut Cash Fut Cash Fut

Euro50 04.11 95.89 13.86 86.13 99.20 60.69 39.30 0.79 90.9 9.1

Copper 23.46 76.54 49.10 50.90 65.03 96.28 3.71 34.96 24.2 75.7

Molybdenum 49.00 51.00 49.00 51.00 99.7 95.98 4.01 0.26 79.4 20.5

Aluminum 56.2 43.8 50.40 49.6 89.9 81.04 18.9 10.05 56.9 43.1

Tin 52.47 47.53 50.5 49.5 94.13 90.44 9.55 5.86 55.8 44.1

Lead 17.53 82.46 32.55 67.44 98.30 99.85 0.14 1.69 22.2 77.8

Steel Billet 4.19 95.80 17.23 82.76 64.93 97.7 2.28 35.06 18.1 81.8

The Table reports the price and volatility discovery measure estimated in a bivariate VECM-ASV model.

Aluminum and Tin, price discovery and Volatility discovery happen in the cash market; for copper

and Molybdenum, price discovery happens in the cash market and volatility discovery in the futures

market; For Lead, price discovery and Volatility discovery happen in the Futures market.

4.5.2 Euro Stoxx 50 index Futures

The Euro Stoxx 50 index is comprised of 50 major European equity prices and futures contracts on

this index are intensively traded. The data are the index values and the continuous nearby futures

contract series extracted from the modules Times and Sales of the database Eikon of Thomson

Reuters. I have tick-by-tick data for January 23th of 2017.

The results of the measures computed on the VECM-ASV models are presented in Table 4.2.

The contribution of the volatility from the Futures market is 95.89% for Volatility Share and 86%

for Permanent Volatility measure. At the same time on this data the contribution to price formation

is dominated by cash market with Information Share of the Cash market in the interval 66% to

99%. and a PT measure of 90.9%. The literature discusses a lot about where between Index and

its Futures, informed trading happens. The results show that for Euro50Stoxx informed trading

happens on Cash market, and suggest that Volatility trading happens in Futures market.
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4.6. VOLATILITY DISCOVERY AND RV

4.6 Volatility Discovery and Realized Variance

The first part of this chapter presented a VECM-ASV framework that is suitable for Low frequency

data. When High frequency data are available, an analysis of volatility discovery can be somewhat

simplified by using non parametric estimation of volatility. In this section, I study volatility dis-

covery on intraday data for assets listed and traded on multiples markets. I consider the Dow Jones

stocks; they are traded simultaneously on NYSE and NASDAQ. The data come from the NYSE

TAQ Database and cover the period from March 2011 to May 2011.

4.6.1 Realized Variance Cointegration

The observed prices of cross-listed assets on different markets are cointegrated as highlighted in

the literature on price discovery measure (Hasbrouck 1995). In addition, as claimed by the frame-

work developed in this study, their volatilities should also share a common persitent component

cointegrated. I showed it using conditional variances extracted from GARCH models of daily data

for futures contracts. It appears also to be true for High frequency data and even when using other

volatility measures. Figures 4.7. 4.4 and 4.8 plot the daily realized volatility of the Dow Jones

stocks on NYSE and NASDAQ. For all the stocks it appears clearly that indeed their volatilities are

driven by a common component.

Realized volatility is another way of capturing the total volatility in a day. I use them as input to

compute Volatility discovery for each stock. That is for each stock, I build the time series of daily

Realized variances. And I estimate the Volatility Share by simply applying Hasbrouck (1995) and

Harris et al. (2002a) methodology to a VAR of Realized volatility:

(
∆RV1t

∆RV2t

)
=−αβ ′

(
RV1t−1

RV2t−1

)
+Γ1

(
∆RV1t−1

∆RV2t−1

)
+ . . .+ΓK

(
∆RV1t−K

∆RV2t−K

)
+ εt (4.15)

The daily RV is computed with intraday prices at the sampling interval of 2 min to limit mi-

crostructure noises effects.

The results for each stock are in the Table 4.3. The Table presents the Volatility Share estimated

with the VECM-ASV model on the different assets.

I observe that using realized volatility, for most of the stock the NYSE dominates the Volatility

discovery process.
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4.6. VOLATILITY DISCOVERY AND RV

Table 4.3: Volatility Share and Permanent Volatility measures for NYSE on Realized Volatility

Stocks IRIS VSu VSl PV VSdiag

AXP 49.866 99.340 0.127 28.857 16.116

BA 50.008 99.955 0.077 57.775 63.188

CAT 50.320 99.489 1.776 62.131 77.656

CVX 49.993 99.880 0.093 49.607 43.703

DD 50.018 99.791 0.279 55.519 57.232

DIS 50.002 99.893 0.117 51.862 52.191

GE 49.871 98.818 0.672 38.371 36.252

GS 50.017 99.855 0.211 52.466 59.291

HD 50.044 99.802 0.374 55.796 65.328

IBM 49.957 99.770 0.058 35.612 20.237

JNJ 49.986 99.755 0.191 47.889 43.712

JPM 50.058 99.957 0.273 73.819 86.429

KO 50.245 100.0 0.977 99.790 100.000

MCD 51.182 99.100 5.477 71.129 85.888

MMM 50.008 99.849 0.183 54.984 54.930

MRK 49.802 98.477 0.741 46.870 32.732

NKE 50.005 96.194 3.825 44.884 50.125

PFE 49.998 99.930 0.062 48.509 46.642

PG 49.994 99.767 0.207 45.790 47.093

TRV 52.237 99.727 8.816 85.349 96.994

UNH 49.438 96.646 1.157 31.511 25.653

UTX 50.229 99.976 0.935 86.317 97.446

VZ 50.058 99.609 0.623 63.429 61.470

WMT 49.990 99.864 0.094 46.576 40.923

XOM 51.989 99.521 8.093 78.466 94.417

AAPL 49.996 99.890 0.095 47.194 0.462

CSCO 50.119 99.286 1.187 58.957 0.624

INTC 49.442 88.345 9.661 43.493 0.453

MSFT 50.011 98.228 1.817 49.403 0.506

Note: The Volatility Share is the “Information Share” measure and the Permanent Volatility is The Perma-

nent Transitory measure estimated on a VAR of Realized Volatility. VSdiag is the VS computed with zero

correlation. IRIS is defined in the first chapter.
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4.6. VOLATILITY DISCOVERY AND RV

4.6.2 Determinants of volatility discovery

Table 4.4: Correlation between Volatility Discovery measures. liquidity and Volume market Share
by trade size. and volatility of volume for NYSE

Small size Medium size Big size Liquidity Volatility of Volume

IRIS -0.059 0.192 0.273 0.097 0.214

PV -0.011 0.191 0.168 0.099 0.252

VS -0.06 0.47 0.56 0.27 0.67

VS lower 0.013 0.133 0.273 0.124 0.116
VS upper -0.092 0.013 -0.124 -0.088 0.067

Correlation of the different Volatility Discovery measures (computed using Realized

Volatility) with liquidity and Trade size variables

It appears clearly that for the variables tested. the Volatility of the volume is the best determinant of

volatility discovery. It is followed by the market share in big size trade. This result is coherent with

some studies in the literature that suggest strong linkages between the volatility of volume and price

volatility, eventough they are not done in the context of cross listed assets (Epps and Epps, 1976;

Tauchen and Pitts, 1983). In absolute terms, those coefficients remains meanwhile low, implying

the existence of others important sources of volatility discovery. In the literature for example, Wang

(2014). Ranaldo (2004) and Ni et al. (2008) show strong linkages between the aggressiveness of

the limit order book and the future volatility.

4.6.3 Comparison of VECM-ASV and Realized Variance approaches

Here we compare the results on volatility discovery measures when using the two approaches pre-

viously presented. An intensive comparison is very difficult due to the timing and complexity of

MCMC for large datasets. For this, we use the data of AAPL and Euro50 as they are highly liquid

but we will rely only on one week of data. For the VECM-ASV approach, the series of 2 min

Returns are used to produce for a given day, the contribution to volatility discovery. To compute

the contribution for the same day using the Realized variance cointegration, Realized variances are

computed for each 2 min. The RV obtained are then processed in the VECM of RV and volatil-

ity discovery measure are computed. For the asset under investigation, the results from the two

approaches are similar. For Euro50 the futures markets dominates the volatility discovery with a

Volatility Share of 95% and PV of 86%, when computed in the VECM-ASV setup. The contribu-

tion to volatility discovery computed in the second framework is also high for Futures market. The

Cash market contributes to only 26.48% of volatility.
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4.7. ABOUT SEASONALITY

Table 4.5: Estimation results

VECM-
ASV

VECM of RV

Volatility Permanent Volatility Permanent

Share (VS) Volatility (PV) Share (VS) Volatility (PV)

V S1 V S2 PV1 PV2 V S1u V S1l V S1 PV1

APPL 52.14 47.86 50.46 49.54 93.90 20.53 57.51 61.29

Euro50 04.11 95.89 13.86 86.13 25.38 27.59 26.48 40.56

4.7 About Seasonality

The literature almost agreed on the empirical fact that intraday variance have a U-shaped pattern.

That is the volatility is high at the begining of the day and at the end of the day.

Andersen and Bollerslev (1997)showed how this intraday seasonality can be captured, and pre-

sented a Flexible Fourier Form (FFF) approach to obtain intraday periodic components of the

volatility. Nuria et al. (2017) uses this FFF to study the impact of using of this seasonality on

volatility transmission studies. They compare the behavior of VAR model of daily variances and

Impulse response function when seasonality is ignored versus when seasonality is removed. Their

main result is that the persistence in volatility and in Impulse Response Functions is for a part due

to the seasonal component. Such that when the retruns are deseasonalized before analyses, the lag

of the VAR is significantly reduced.

Here, I want to check if taking into account this seasonality can impact the results of contri-

bution to volatility discovery. For this, I compute the periodic component for each asset using the

FFF presented in Andersen and Bollerslev (1997).

The study of the intraday variance shows that it is not strictly U-shaped, but still we observed

that it is high at the begining of the day and stable during the rest of the day. The figure shows

the seasonal component for the 25 assets of the NYSE, we see that they have the same type of

periodicity.

The study of the intraday variance shows that it is not strictly U-shaped, but still we observed

that it is high at the begining of the day and stable during the rest of the day. The figure shows

the seasonal component for the 25 assets of the NYSE, we see that they have the same type of

periodicity.

The results (Table 4.5) show globally that NYSE remains the dominant market in volatility

discovery, for most of the assets there is a coherence between initial results and the deseasonalized
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Figure 4.5: Intraday volatility Seasonal components
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Figure 4.6: Seasonal components of AXP for 64 days

0 50 100 150 200 250 300

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

CS
S1

[, 1
:64

]

Each curve (color) is for one day, it is the final volatility intraday seasonal (periodic) component .

study. Meanwhile, there are some assets for which NYSE is dominant with raw returns, while

NASDAQ becomes dominant when seasonality is removed. Many things can be the cause of these

shifts: First, if the intraday periodic component is not well represented in the data deseasonlising

can change the structure of the data. For example the figure 4.6 shows each day estimated seasonal

components for American Express (AXP). It can be seen that it is not very stable across the days.

A second reason might be that if the seasonal component is not well identified and estimated then

removing it might delete more than the periodicity in the observations.

4.8 Conclusion

The derivatives instruments of securities are generally considered as improving the price discovery

mechanism. For example, futures markets are known to facilitate the price discovery and the liquid-

ity of a security. Meanwhile, little is known on how the uncertainty on information is transmitted to
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the asset. The literature is rich in investigating on which market informed trading is happening and

this paper innovates in proposing a framework to study where volatility on information enters the

market. I build a VECM with stochastic volatility that specifies explicitly the common persistent

behavior of volatilities among the two markets. I show that indeed the data supports the assumption

of common permanent factor between the conditional volatilities. This allows to define measures

of markets’ contribution to volatility discovery. The estimation of the model relies on an intensive

MCMC simulations and Gibbs sampling.

In a first application on daily data, I estimate the VECM-ASV model to compute the contribu-

tion of 3-month futures and the cash market to volatility discovery of some metals traded on the

London Metal exchange. The data range is from January 2010 to December 2015. The results show

that price discovery and volatility discovery do not necessarily have the same determinants. In fact,

for most of the metals, the contribution of the futures market to volatility discovery is bigger than

that of the cash market. Only for Molybdenum, the Cash market dominates the futures in volatility

discovery. To check if there is link between Volatility discovery and the price discovery. I compute

the main price discovery measures IS and PT on those assets. The results I obtain vary by stocks.

For Aluminum. Tin and Molybdenum, the IS and PT of the Cash market is the highest. Overall

the results shows that for Aluminum and Tin, price discovery and Volatility discovery happen in

the cash market; for copper and Molybdenum, price discovery happens in the cash market and

volatility discovery in the futures market; For Lead, price discovery and Volatility discovery hap-

pen in the Futures market. I then consider the intraday EuroStoxx 50 Index and futures contracts

on this index. The Futures market contributes for more than 90% to volatility discovery while price

discovery happens for around 90% on the Cash market.

There are many ways to evaluate the volatility of financial assets prices. When High frequency

data are available. the Realized volatility offers a good summary of the volatility in a period. I show

that Realized volatility are driven by a common component and how Contribution of a market to

volatility discovery can be measured. By applying Hasbrouck (1995) and Harris et al. (2002c)

methodologies on the time series of realized volatility, I compared NYSE and NASDAQ in the

formation of permanent volatility of Dow Jones stocks. And NYSE appears to be dominant market

in this respect. An analysis of the correlation between the Volatility discovery measure and some

trading activity variables shows that the domination in volatility of volume and in Market share of

big volume trade are determinants of prices volatility discovery dominance. But the low figures

obtained also suggests the existence of others important determinants.

Overall the results shows that dominating the price discovery does not necessarily implies dom-

inating the volatility discovery. This opens rooms for further research in order to understand the

determinant of volatility discovery. There are certainly more to say about the volatility transmis-
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sion process by a cross section analysis with high frequency data. A deep and complete analysis

will require the availability of a rich datasets of trade and quotes activities that can provide enough

variables to investigate the determinants of volatility discovery.
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Table 4.6: Estimation results

a01 a11 a02 a12 λ σv PV1 PV2 V S1 V S2

Euro50 Mean -0.021 0.002 -14.016 0.124 1.000 0.005 0.411 0.9589 0.1386 0.86

SD 0.479 0.031 0.504 0.035 0.000 0.001 0.018 0.018 0.433 0.433

Copper Mean -8.785 0.318 -8.172 0.372 0.981 6.490 0.491 0.509 0.460 0.540

SD 0.520 0.031 0.411 0.027 0.004 1.565 0.003 0.003 0.035 0.035

Molybdenum Mean -7.950 0.450 -7.461 0.491 0.981 8.564 0.490 0.510 0.490 0.510

SD 0.424 0.024 0.391 0.030 0.005 2.576 0.003 0.003 0.018 0.018

Alumni Mean -11.312 0.106 -11.561 0.093 0.979 6.941 0.504 0.496 0.562 0.438

SD 0.440 0.028 0.408 0.027 0.004 1.402 0.003 0.003 0.169 0.169

Tin Mean -8.913 0.203 -9.062 0.190 0.973 6.974 0.505 0.495 0.525 0.475

SD 0.441 0.029 0.464 0.031 0.003 1.122 0.000 0.000 0.074 0.074

133



4.9. APPENDIX D

Figure 4.7: Realized volatility of Nyse and Nasdaq
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Figure 4.8: Realized volatility of Nyse and Nasdaq
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4.9. APPENDIX D

4.9 APPENDIX D

4.9.1 MCMC results

4.9.2 Realized volatility Results

Table 4.7: Deseasonalised , Volatility Share and Permanent Volatility measures for NYSE

Stocks IRIS VSu VSl PV VSdiag

AXP 50.009 99.646 0.392 52.239 52.521

BA 49.876 98.685 0.826 43.282 38.565

CAT 50.054 99.757 0.458 55.094 65.331

CVX 49.994 99.931 0.047 46.339 40.504

DD 50.007 99.875 0.152 52.147 54.813

DIS 50.038 99.456 0.696 50.586 56.142

GE 50.412 98.722 2.891 48.940 69.347

GS 50.016 99.962 0.103 60.893 73.139

HD 50.051 99.021 1.179 52.051 54.642

IBM 50.077 99.848 0.459 62.848 75.173

JNJ 49.781 98.669 0.462 36.640 25.750

JPM 49.968 99.806 0.067 38.122 25.663

KO 49.844 99.100 0.282 40.488 23.823

MCD 50.102 99.345 1.059 56.248 61.785

MMM 50.179 99.964 0.748 82.811 95.359

MRK 51.788 98.933 7.898 66.424 88.096

NKE 50.588 92.751 9.404 52.075 56.470

PFE 50.022 99.938 0.149 57.151 70.821

PG 49.785 98.691 0.457 34.390 25.901

TRV 49.904 99.209 0.411 40.342 34.172

UNH 50.003 99.887 0.126 47.943 52.709

UTX 49.927 99.504 0.205 41.415 29.208

VZ 51.364 99.908 5.400 88.404 98.318

WMT 49.950 99.690 0.111 36.454 26.413

XOM 49.933 99.339 0.393 43.359 37.322

AAPL 50.132 99.982 0.546 84.945 0.968

CSCO 50.364 99.974 1.472 88.537 0.982

INTC 49.988 99.731 0.222 46.905 0.452

MSFT 49.951 98.126 1.683 47.605 0.473

Note: The results ard obtained using deseasonnalized return as inAndersen et al. (2000). Volatility

Share is the “Information Share” measure and the Permanent Volatility is The Permanent Transitory mea-

sure estimated on a VAR of Realized Volatility. VSdiag is the VS computed with zero correlation. IRIS is

defined in the first chapter.
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Figure 4.9: Histograms of the parameters (a)
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Figure 4.10: Histograms of the parameters (b)
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Figure 4.11: Histograms of the parameters (b)
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Figure 4.12: Euro Stoxx Index and June 2017 Futures prices
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Figure 4.13: ACF of Conditionnal variances from the VECM ASV
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Figure 4.14: Residuals autocorrelation of the VECM-ASV
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