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Abstract

We consider a Schumpeterian model of endogenous growth with creative de-
struction in which we introduce a non-renewable natural resource. We char-
acterize the optimum and the equilibrium paths, and we derive the precise
levels of economic policy instruments that allow the implementation of the
optimum. Moreover, we study the effects of these policies on the relevant
steady-state variables, in particular the rate of extraction of the resource.
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1 Introduction

It may seem paradoxical to ask whether positive infinite growth is possible
despite the fact that the production process uses non-renewable natural re-
sources. For several decades, this question has given birth to an important
economic literature, most notably in growth theory. This literature has es-
tablished that under some properties of the resource and some technological
characteristics, positive long-run growth is possible even if the stock of the
natural resource is finite.

In fact, many questions can be addressed and the following ones seem
especially relevant to us:

• Is continuous growth compatible with a finite stock of natural re-
sources ?

• What is the optimal path, and what are its properties ? In particular,
even if positive growth is possible, is it optimal ?

• What are the properties of the equilibrium path ? Is it optimal ? If
not, are there economic policies that allow the implementation of the
optimum ? More generally, what are the effects of these policies ?

In the 1970s, Dasgupta and Heal (1974), Solow (1974), Stiglitz (1974),
and Garg and Sweeney (1978), among others, analyzed the problem in ”stan-
dard” growth models (“à la Ramsey”). They showed that under certain
technological conditions, positive long-run growth is possible in the presence
of non-renewable natural resources. Moreover, they studied the optimal and
the equilibrium paths. More recently, this analysis was relaunched within the
context of endogenous growth models. In this new framework, the first-order
conditions that characterize the optimum are, in some cases, not fulfilled
at equilibrium, essentially because of the intertemporal externalities arising
from the fact that knowledge is a public good. Indeed, if Barbier (1999) and
Aghion and Howitt (1998) focus mainly on optimality aspects, and Scholz
and Ziemes (1999) on equilibrium, Schou (1996) and Grimaud (2000) make
use of a model of horizontal innovations to show that while positive optimal
long-run growth is possible, the equilibrium path is not optimal.

In this paper, we use a Schumpeterian model of endogenous growth (i.e.,
with vertical innovations) “à la Aghion-Howitt (1992)” to tackle this prob-
lem which has generally been done with “à la Romer (1990)” models and
raise the same questions as above. In fact, our results partly resemble those
obtained by authors working with “standard” growth models (e.g., Stiglitz
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(1974), and Garg and Sweeney (1978)), but we also find noticeable differ-
ences that raise new questions that we investigate. Moreover, we employ a
very simple framework (in particular, we assume that there is a single inter-
mediate good) so as to avoid computational complexity and to highlight the
relevant phenomena.

In our model, the natural resource is necessary but non-essential (as de-
fined by Dasgupta and Heal (1979)), and a positive long-run growth is always
possible if the R&D sector is productive enough. However, we find that this
positive long-run growth may be non-optimal, because the optimum could
also be characterized by a negative growth of output. As in Schou’s (1996)
paper, we show that, at equilibrium, growth (which can be positive or neg-
ative) is not optimal. However, contrary to Schou who finds that growth is
under-optimal, we show that it may be either under or over-optimal. We
then demonstrate that there exist economic policy tools that allow the im-
plementation of the optimum and we compute the precise levels of these tools
that equate both paths. We also perform some comparative statics exercises
to analyze how the relevant variables of the model, in particular, the rate
of extraction of the resource, are affected by these policy tools. Throughout
the paper, we focus on optimum and equilibrium along the balanced growth
paths only, i.e., on paths along which the growth rate of any variable is
constant.

The remainder of the paper is organized in five sections. In section 2,
we present the model. We characterize the optimum in section 3, and the
equilibrium in section 4. In the latter section, we also compare the optimum
and the equilibrium and we analyze the impact of the economic policy tools
on the relevant variables. Section 5 is devoted to the implementation of the
optimum by means of these tools. A summary and some concluding remarks
are given in section 6.

2 The model

There are four goods in the economy: an homogeneous good (Y ) used only for
consumption (c), an intermediate good (x), labor (L) and a non-renewable
resource (R).

At each date t, the final output is produced by a competitive sector
according to

Yt = Atx
α
t R1−α

t 0 < α < 1, (1)

where xt and Rt are the amounts of intermediate good and resource used
to produce Yt, and At is the level of technology at time t : see (3) below.
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Concerning the intermediate good sector, we use the Aghion-Howitt ap-
proach (see Aghion-Howitt (1998), chapter 2). We assume that the labor
supply is fixed and has two competing uses. First, it can produce the inter-
mediate good, one for one. Second, it can be used for research. Normalizing
the total flow of labor to one (L = 1), we have, at each time t :

1 = xt + nt, (2)

where xt is the amount of labor used in manufacturing (recall that, as in
Aghion and Howitt, due to the one for one technology, xt is also the amount
of intermediate good) and nt is the amount of labor used for research.

If one unit of labor is used for research, innovations arrive randomly with
a Poisson arrival rate λ > 0. Each innovation τ replaces the old one τ − 1 (τ
is an index for innovations), and is such that

Aτ = γAτ−1, γ > 1, for all τ. (3)

An innovation consists in a new technology that is embodied inside a
new kind of intermediate good. This new intermediate good will then be
produced by a monopoly and sold to the final sector until replaced by a
new good (when the next innovation occurs). Following Aghion and Howitt,
we assume that the amount of labor used for research is determined by an
arbitrage condition which states that the wage (i.e., the cost of one unit of
labor) is equal to the expected value of this unit used for research.

If we denote by S0 the initial stock of resource, the stock at t is given by

St = S0 −
∫ t

0

Rνdν , (4)

and we assume that there are no extraction costs.

Starting from equation (1), we have gY = gA +(1−α)gR (where gz = ż
z

is
the growth rate of any variable z). Assume that we are at steady-state ; the
resource constraint

∫ +∞
0

Rtdt ≤ S0 can be rewritten
∫ +∞

0
R0e

(gY −gA)t/(1−α) ≤
S0. This integral converges if and only if gA > gY , in other words, if and only
if knowledge grows faster than output.

The utility function of the infinitely lived representative agent is∫ ∞

0

c1−ε
t

1− ε
e−ρtdt, (5)

where ρ is a positive rate of time preference and 1/ε is the intertemporal
elasticity of substitution.
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3 Welfare analysis

This section essentially tackles two objectives. First, we set out to obtain
a characterization of balanced optimal growth path. Second, we study the
impact of parameter variations on this path, and we compare our results with
those of more standard ”exogenous growth models” (e.g. Stiglitz (1976) and
Garg and Sweeney (1978)).

In a first step, it is useful to observe that, on average, the law of motion
of At is

Ȧt = (γ − 1)λntAt, for all t. (6)

Indeed, if nt is the quantity of labor devoted to research at t, then the
expected level of the random variable A at t + ∆t is

E(At+∆t) = λnt∆tγAt + (1− λnt∆t)At = At + λ(γ − 1)ntAt∆t

that yields (6) when ∆t tends to zero.
We are now ready to characterize the optimal path.

3.1 Existence and characterization of the steady-state
optimum

The program of the social planner is to maximize the utility

∫∞
0

1

1− ε
(At(1− nt)

αR1−α
t )1−εe−ρtdt

subject to

Ȧt = λ(γ − 1)ntAt (µt)

Ṡt = −Rt (νt).

Proposition 1 A balanced optimal growth path is a set of quantities and
growth rates that take the following values

no =
α

ε

(
1− ρ

λ(γ − 1)

)
+ 1− α (7)

xo = 1− no (8)

go
A =

−αρ + λ(γ − 1)(ε + α− αε)

ε
(9)

go
Y = go

c =
λ(γ − 1)− ρ

ε
(10)

go
R = go

S =
λ(γ − 1)(1− ε)− ρ

ε
. (11)
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The (unique) transversality condition is

(1− ε)λ(γ − 1) < ρ. (12)

This condition ensures that no < 1. In order to have no ≥ 0, it is further-

more necessary that ε > α
1−α

(
ρ

λ(γ−1)
− 1

)
.

First of all, observe that, since ε is positive, the transversality condition
is equivalent to go

R = go
S < 0.

A second remark is that when the tranversality condtion holds, the inte-
gral in the stock constraint (4) is convergent. Then, since the resource stock
is exhausted along an optimal path, we obtain

R0 = −gAS0 = (ρ− λ(γ − 1)(1− ε))S0/ε.

Thirdly, since (1) yields go
Y = go

A + (1− α)go
R, we have go

Y < go
A (because

go
R < 0). That is, along the optimal path, the level of technological knowledge

in the economy grows faster than output.
Fourth, observe from (10) that growth is positive if and only if λ(γ−1)−

ρ ≥ 0, and thus 1− ρ/λ(γ− 1) ≥ 0 : along an optimal path, output grows if
and only if the effectiveness of the R&D sector is greater than the psycholog-
ical discount rate. Hence, an optimal negative growth of output is possible :
we confirm, in an endogenous growth framework, the opinion of Solow (1974-
a) who said : ”even when the technology and the resource base could permit
a plateau level of consumption per head, or even a rising standard of living,
positive social time preference might in effect lead society to prefer eventual
extinction, given the drag exercised by exhaustible resources”.

We can gather these remarks as follows.

If ρ < λ(γ − 1), we have α
1−α

(
ρ

λ(γ−1)
− 1

)
< 0 < 1 − ρ

λ(γ−1)
. In this

case, we know that go
Y > 0. The transversality condition is satisfied only if

ε > 1 − ρ/λ(γ − 1). Then, we have no < 1. Since α
1−α

(
ρ

λ(γ−1)
− 1

)
< 0 and

ε > 0, we have ε > α
1−α

(
ρ

λ(γ−1)
− 1

)
: therefore no > 0.

If ρ > λ(γ − 1), we have 1 − ρ
λ(γ−1)

< 0 < α
1−α

(
ρ

λ(γ−1)
− 1

)
. Then we

know that go
Y < 0. Since ε is positive, we have ε > 1 − ρ

λ(γ−1)
, and thus

(1 − ε)λ(γ − 1) > ρ : in other words, the transversality condition is always

satisfied and no < 1. Finally, no is positive only if ε > α
1−α

(
ρ

λ(γ−1)
− 1

)
. In

this case, the optimal rate of growth is negative because the effectiveness of
the R&D sector (λ(γ − 1)) is lower than the psychological discount rate (ρ).
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These results are summarized in Figure 1.

Optimum exists only if Optimum exists only if

ε > 1− ρ
λ(γ−1)

ε > α
1−α

[ ρ
λ(γ−1)

− 1]

Then, go
Y > 0 Then, go

Y < 0

-
ρ

s
λ(γ − 1)

Figure 1: Existence of interior optimum

Remark : if ρ > λ(γ − 1), and ε tends to α
1−α

[ ρ
λ(γ−1)

− 1], then no tends

to zero (no R&D). Thus, go
A also tends to zero and go

Y tends to (1 − α)go
R.

This is the case where we have the quickest decay.

Proof 1 The current value Hamiltonian of the program presented above is

H =
1

1− ε
A1−ε

t (1− nt)
α(1−ε)R

(1−α)(1−ε)
t + µtλ(γ − 1)ntAt − νtRt.

where µt and νt are the costate variables.

The first order conditions ∂H/∂nt = 0 and ∂H/∂Rt = 0 yield

µt =
αA−ε

t (1− nt)
α(1−ε)−1R

(1−α)(1−ε)
t

λ(γ − 1)
(13)

and νt = (1− α)A1−ε
t (1− nt)

α(1−ε)R
(1−α)(1−ε)−1
t . (14)

Moreover, ∂H/∂At = ρµt − µ̇t and ∂H/∂St = ρνt − ν̇t yield

gµ = ρ− λ(γ − 1)

α
+

λ(γ − 1)(1− α)

α
nt (15)

and gν = ρ. (16)

At steady state, all variables grow at constant rates. Thus go
A = λ(γ−1)no

t

is constant, and then no
t and xo

t = 1 − no
t are constant. From now on, we

thus can drop the time subscripts.
From (13), we obtain gµ = −εgo

A + (1 − α)(1 − ε)go
R = −ελ(γ − 1)no +

(1− α)(1− ε)go
R.
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Then, using (15), we have

ρ− λ(γ − 1)

α
+

λ(γ − 1)(1− α + εα)no

α
= (1− α)(1− ε)go

R. (17)

From (14), we obtain gν = (1 − ε)go
A + ((1 − α)(1 − ε) − 1)go

R = (1 −
ε)λ(γ − 1)no − (ε + α− αε)go

R. Using (16), we have

ρ− (1− ε)λ(γ − 1)no = (αε− ε− α)go
R. (18)

Eliminating go
R between (17) and (18) gives, after some calculations,

no =
α

ε

(
1− ρ

λ(γ − 1)

)
+ (1− α),

that is, the value given by (7).

From this result, all growth rates (9) - (10) - (11) can be easily computed.
Using (13), (15) and the fact that go

A = λ(γ−1)no, the first transversality
condition,

lim
t→+∞

µtA
o
te
−ρt = 0,

implies

ρ− λ(γ − 1)

α
+

λ(γ − 1)(1− α)

α
no + λ(γ − 1)no − ρ < 0.

This inequality comes from no < 1 and thus, using (7), (1− ε)λ(γ − 1) < ρ
(see (12)).

Using (11) and (16) the second transversality condition,

lim
t→+∞

νtS
o
t e
−ρt = 0,

implies go
S < 0, and thus (1− ε)λ(γ − 1) < ρ.

Hence, there is a unique transversality condition given by (12).

3.2 Properties of the steady-state optimal path

Our objective is now to present some properties of the optimal path and to
compare them with (more standard) properties that have been obtained in
“exogenous growth models”. For instance, Stiglitz (1974) uses the Cobb-
Douglas technology Y = Kα1Lα2Rα3eηt, where η is the rate of technological
progress (Garg and Sweeney (1978) use the same technology).
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The main results are stated in Table 1: there, we present the signs of
the partial derivatives of no, go

A, go
Y and go

R with respect to the corresponding
parameters of the model in columns. Letters S and GS indicate that similar
results have been obtained by Stiglitz and Garg-Sweeney, respectively.

ξ = λ ξ = γ ξ = ρ ξ = ε

∂no

∂ξ
> 0 > 0 < 0 < 0

if go
Y > 0

∂go
A

∂ξ
> 0 > 0 < 0 < 0

if go
Y > 0

S S S S
GS GS GS

∂go
Y

∂ξ
> 0 > 0 < 0 < 0

if go
Y > 0

S S S
∂go

R

∂ξ
< 0 if ε > 1 < 0 if ε > 1 < 0 < 0

if go
Y > 0

Table 1: Properties of the optimal path

• First of all, as noted above, growth is positive if and only if λ(γ−1) > ρ,
while in Stiglitz (1974) it is positive if and only if η/α3 > ρ (see formula
(31)). Both results are very close; indeed, in our Schumpeterian model,
the term λ(γ − 1), which characterizes the effectiveness of the R&D
sector, can be seen as the exogenous part of technological progress (that
is, η in Stiglitz).

Let us now comment the effects of an increase in λ or γ on the relevant
variables. When λ or γ increases, it becomes socially more efficient to
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invest in the R&D sector (relative to the production of the intermediate
good), thus no increases (and xo decreases). More investment in this
sector means a higher growth of technological knowledge, that is, go

A

increases (see (6)). The social planner will thus choose a higher growth
of output; yet, if the elasticity of marginal utility, ε, is higher than
one (which means that consumers derive relatively more utility from
a uniform path of consumption and thus of output), then a smaller
growth rate of the resource extraction will soften the increase of go

Y ,
because go

Y = go
A + (1− α)go

R. This explains our result in the last line
of Table 1 : ∂go

R/∂λ < 0 if ε > 1.

In Stiglitz (1974) (see p.134), it is shown that the sensitivity of this
rate with respect to the rate of technological progress η depends on the
inverse of the intertemporal elasticity of substitution ε : ∂(Ro/So)/∂η
is positive (resp. negative) if ε is higher (resp. lower) than one. The
present model confirms these results.

• An increase in ρ means that households obtain more utility from cur-
rent consumption relative to future consumption. Then, investment
in R&D, which implies a sacrifice today for the sake of future gains,
does not interest them. As a result, no must decrease, and by conse-
quence go

A will do so, too. Moreover, a higher ρ means a lower growth of
consumption, because consumers prefer present consumption, and thus
lower output growth. Then, go

R will also decrease, because the social
planner, in order to produce more today, will extract the resource with
less care for its future exhaustion.

• An increase in ε means that the elasticity of marginal utility increases :
households will derive more utility from a uniform consumption path,
ceteris paribus. If go

Y > 0, then a social planner will not invest in
R&D (investing would imply a higher consumption tomorrow) and
thus no and go

A will decrease. At the same time, he will choose a lower
consumption growth rate (i.e., output growth rate) to achieve a flatter
path, and therefore a lower growth rate of the resource extraction. If
go

Y < 0, the opposite results stem from the same fact : the planner tries
to flatten the consumption path, and thus lowers go

A and go
R.

In Stiglitz (1974), we have ∂(Ro/So)/∂ε ≥ 0 (resp. ≤ 0) if η/α3 ≥
ρ (resp. ≤ ρ) ; our result is similar. Recall that, in both models,
conditions η/α3 ≥ ρ and λ(γ − 1) ≥ ρ are necessary and sufficient for
the economy to grow at a positive rate.
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4 Equilibrium

4.1 Existence and characterization of the steady-state
equilibrium

4.1.1 Basic assumptions and behavior of agents

The price of good Y is normalized to one and wt, pt, p
R
t and rt are, respec-

tively, the wage, the price of the intermediate good, the price of the re-
source and the interest rate on a perfect financial market. In order to elim-
inate the two market failures arising from the monopolistic character of the
intermediate-good sector and from the intertemporal spillover, we use two
public tools : a research subsidy (σ) and a demand subsidy for the interme-
diate good (θ). We now examine the behavior of the different agents.

a) At each time t, the profit in the final sector is

πY
t = Atx

α
t R1−α

t − pt(1− θt)xt − pR
t Rt.

Differentiating with respect to xt and Rt and equating to zero gives the
two following first order conditions :

xt =

(
αAt

pt(1− θt)

) 1

1− α
Rt (19)

pR
t = (1− α)At

(
xt

Rt

)α

. (20)

b) In the intermediate good sector, the monopoly at time t maximizes the
profit πm

t = ptxt − wtxt where the demand function is given by (19).
This maximization yields

xt =

(
α2At

(1− θt)wt

) 1

1− α
Rt, (21)

or, equivalently,

pt =
wt

α
. (22)

Now, let us look at the R&D side.
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Assume that an innovation occurs at t. Then the profit at s(s > t)
is a random variable π̃s that takes the value πm

s > 0 with probability
exp(− ∫ s

t
λnudu) (the probability that there is no innovation between

t and s), and 0 with probability 1 − exp(− ∫ s

t
λnudu). The expected

value of π̃s is E(π̃s) = πm
s exp(− ∫ s

t
λnudu) and its present value at t is

πm
s exp(− ∫ s

t
(ru + λnu)du). Thus, the value of an innovation at t, that

is, the sum of the present values of expected profits, is

Vt =

∫ ∞

t

πm
s e−

∫ s
t (ru+λnu)duds. (23)

At t, the cost of one unit of labor per unit of time is wt(1− σt). Simul-
taneously, the probability of an innovation is λ, that gives the expected
pay-off λVt. Hence, the arbitrage condition is (see for instance Aghion-
Howitt (1998), chapter 2)

wt(1− σt) = λVt. (24)

c) On the competitive natural resource market, the maximization of the
profit function ∫ ∞

t

pR
s Rse

− ∫ s
t rududs, for all t

subject to Ṡs = −Rs, Ss ≥ 0, Rs ≥ 0, s ≥ t, leads to the “Hotelling
rule” :

ṗR
t

pR
t

= rt, ∀ t. (25)

As usual, the transversality condition of this problem is

lim
t→+∞

St = 0,

that is, an asymptotic exhaustion of the resource stock.

d) The government’s budget constraint is∫ ∞

0

(θtptxt + σtwtnt − Tt)e
− ∫ t

0 rududt = 0 (26)

where Tt is a lump-sum tax used to finance the research subsidy (σtwtnt)
and the subsidy for the intermediate good (θtptxt). θt and σt are cho-
sen by the government in order to maximize welfare (see section 5 and
proposition 6 below). The choice of any profile (Tt)

+∞
t=0 simultaneously

determines the profile of government borrowings, so that the govern-
ment’s budget constraint is satisfied at each time t.
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e) Finally, the representative household maximizes the utility function

∫ ∞

0

c1−ε
t

1− ε
e−ρtdt

subject to

Ḃt = wt + pR
t Rt + πm

t − Tt − ct, for all t,

where Bt is the stock of bonds at t.

At each time t, the research sector borrows wt(1 − σt)nt = Ḃt from
households on the financial market. Once one innovation has occured,
the monopolist uses its profits πm

t to make the interest payments. Thus,
we have πm

t = rtBt + π̂m
t , where π̂m

t (which can be positive or negative)
is the profit distributed to the household which owns the firm. Observe
that, on the financial market, the households’ total lendings are wt +
pR

t Rt+πm
t −Tt−ct. Replacing πm

t by ptxt−wtxt, Tt by −θtptxt−σtwtxt,
and ct by yt = pt(1− θt)xt− pR

t Rt, we obtain exactly wt(1−σt)nt, that
is, the research sector’s borrowings.

The above maximization leads to the usual condition :

ċt

ct

=
rt − ρ

ε
. (27)

4.1.2 Computation of the equilibrium

Until now we used time subscripts for the two subsidies θ and σ ; indeed
we do not see any reason why they would not be time dependent outside
the steady-state. Henceforth, we drop time subscripts for these two variables
since, as we said before, we only study optimum and equilibrium at steady-
state and similar studies (for example Barro and Sala-i-Martin (1995)) show
that these tools are constant in this case. In Proposition 2, we show that with
θ and σ constant, we can characterize the steady-state equilibrium paths (we
use the symbol e for equilibrium, except for prices, that do not appear at
optimum).

Proposition 2 A balanced equilibrium growth path is a set of quantities,
prices and rates of growth that take the following values :
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Quantities :

ne =
λγ(1− α)(α + ε(1− α))− α(1− σ)ρ

(λα(1− σ) + λγ(1− α))(α + ε(1− α)) + α(1− σ)λ(γ − 1)(ε− (1− α)(1− ε))

(28)

xe = 1− ne (29)

Ae
t = A0e

ge
At (30)

Y e
t = ce

t = Ae
t (x

e)α(Re
t )

1−α (31)

Re
t = R0e

ge
Rt (32)

Prices :

r =
ελ(γ − 1)ne + αρ

α + ε(1− α)
(33)

wt =
α2Ae

t

(1− θ)(xe
t)

1−α
(Re

t )
1−α (34)

pt =
wt

α
(35)

pR
t = (1− α)Ae

t

(
xe

pt

)α

(36)

Rates of growth :

ge
n = ge

x = gr = 0 (37)

ge
Y = ge

c = gw = gp =
r − ρ

ε
=

λ(γ − 1)ne − ρ(1− α)

α + ε(1− α)
(38)

ge
A = (γ − 1)λne (39)

ge
S = ge

R = ge
Y − gpR =

λ(γ − 1)(1− ε)ne − ρ

α + ε(1− α)
(40)

gpR = r (41)

Proof 2 Let us observe that in proposition 2, several formulas (namely (29),
(31), (34), (35), (36), (39) and (41)) come directly from the definition of the
model and the agents’ behavior. In order to obtain the others, we proceed
in two stages. First, we obtain (33), (38) and (40), that is to say r, ge

Y and
ge

R as functions of ne. Second, we calculate ne, the quantity of labor devoted
to research, that is, the central variable of the model.

From (6), (20) and (25), we have ge
A = (γ − 1)λne, gpR = ge

A − αge
R,

and gpR = r. Thus we have ge
R = (λ(γ − 1)ne − r)/α. In the same way,

from (1), (6) and (27), we have ge
Y = ge

A + (1 − α)ge
R, ge

A = (γ − 1)λne and
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ge
c = ge

Y = (r− ρ)/ε. Thus we obtain ge
R = ((r− ρ)/ε− (γ− 1)λne))/(1−α).

Simplifying ge
R, we obtain r = (ελ(γ − 1)ne + αρ)/(α + ε(1−α)), that is the

formula (33) in proposition 1.
Replacing r by this value in ge

R = (λ(γ − 1)ne − r)/α and ge
Y = (r− ρ)/ε

gives easily ge
R = (λ(γ − 1)(1 − ε)ne − ρ)/(α + ε(1 − α)) and ge

Y = (λ(γ −
1)ne− ρ(1−α))/(α + (1−α)), that is, formulas (40) and (38) in proposition
2.

Now our objective is to compute ne. We start from the arbitrage condition
(24) : wt(1− σ) = λVt, in which Vt is given by (23). In order to calculate Vt,
we first observe that r and ne are constant at the steady-state. Second, we
have to calculate the profit πm

t = ptxt−wtxt in the intermediate good sector.
Since pt = wt/α (see (22)) and using the expression of xt given by (21), we
have

πm
t =

AtR
1−α
t

(1− θ)
1

1−α

π̃m
t , (42)

where we have π̃m
t = (1− α)α

1+α
1−α w̃

α
α−1

t and w̃t = wt/AtR
1−α
t . In fact, we

introduce these two variables because they are constant at the steady-state.
The free entry condition, wt(1− σ) = λVt, can be written

w̃AtR
1−α
t (1− σ) = λ

∫ ∞

t

AsR
1−α
s

(1− θ)
1

1−α

(1− α)α
1+α
1−α w̃

α
α−1 e−(r+λne)sds

where As = γAt,∀s > t, because there is an innovation at time t (see(3)),
and where Rs = Rte

ge
Rs at the steady state. After integration and simplifica-

tion, we obtain

w̃
1

1−α (1− σ) =
λγ(1− α)α

1+α
1−α

r + λne − (1− α)ge
R

1

(1− θ)
1

1−α

.

From (21), we have

xt =

(
α2At

(1− θ)wt

) 1
1−α

Rt =
α

2
1−α

(1− θ)
1

1−α

(
AtR

1−α
t

wt

) 1
1−α

=
α

2
1−α

(1− θ)
1

1−α

1

w̃
1

1−α

,

that gives w̃
1

1−α = α
2

1−α /xt(1− θ)
1

1−α .

Replacing w̃
1

1−α by this expression in the aforementioned free entry con-
dition gives

xe =
α(1− σ)(r + λne − (1− α)ge

R)

λγ(1− α)
. (43)
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Now, using (33) for r and (40) for ge
R, we obtain the expression of ne given

by (28).

Remark : observe that the rate of subsidy θ does not appear in quantities
(in particular in ne), in prices, nor in growth rates at steady-state (see propo-
sition 2). In fact, we impose this subsidy in order to eliminate the distorsion
due to the monopoly status of the intermediate firm. Nevertheless, we see
that this subsidy does not modify the equilibrium values, because it affects p
and w the same : both effects compensate each other. Thus, one instrument
is enough to implement the optimum.

4.1.3 Existence of the steady-state equilibrium

In this section, we assume that there is no public intervention. Thus, we
assume σ = 0 in proposition 2. We then obtain results that closely resemble
those obtained at the optimum (see 3.1 and 3.2 above).

First, if σ = 0 in (28), we obtain, after some calculations,

ne =
λγ(1− α)(α + ε(1− α))− αρ

λ(α + ε(γ − α))
. (44)

Then, we can see that ne < 1 is equivalent to ε > 1− (γ + ρ/λ)/(γ − 1 +
γ(1 − α)). Similarly, we have ne > 0 if and only if ε > α(ρ/(λγ(1 − α)) −
1)/(1− α).

Secondly, using (44) and (40), we calculate the rate of growth of the flow
of extraction (which is equal to the rate of growth of the stock of resource at
the steady-state) :

ge
S = ge

R =
λγ(γ − 1)(1− ε)(1− α)− γρ

α + ε(γ − α)
. (45)

From (45), we have ge
R < 0 if and only if ε > 1− ρ/(λ(γ − 1)(1− α)).

Thirdly, using (44) and (33), we find the interest rate without intervention

r =
εγ(γ − 1)λ(1− α) + αρ

α + ε(γ − α)
. (46)

Now, using (46) and (38), we obtain the rate of growth without interven-
tion

ge
Y =

λγ(γ − 1)(1− α)− ρ(γ − α)

α + ε(γ − α)
. (47)
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Then, from (47), we observe that growth is positive if and only if ρ <
λγ(γ − 1)(1− α)/(γ − α).

Thus, we have two possible cases :
If ρ < λγ(γ− 1)(1−α)/(γ−α), we can verify that we have 1− ρ/(λ(γ−

1)(1−α)) > 1− (γ + ρ/λ)/(γ− 1 + γ(1−α)) > α(ρ/λγ(1−α)− 1)/(1−α).
In this case, equilibrium exists (ge

R < 0) only if ε > 1− ρ/(λ(γ − 1)(1− α)),
and we have 0 < ne < 1 and ge

Y > 0.
If ρ > λγ(γ − 1)(1− α)/(γ − α), we have α(ρ/λγ(1− α)− 1)/(1− α) >

1− (γ + ρ/λ)/(γ− 1 + γ(1−α)) > 1− ρ/(λ(γ− 1)(1−α)). Here, an interior
equilibrium exists (no > 0) if ε > α(ρ/(λγ(1−α))− 1)/(1−α), and we have
ge

Y < 0.

These results are summarized in Figure 2, which can be likened to Figure
1 above.

Equilibrium exists only if Equilibrium exists only if

ε > 1− ρ
λ(γ−1)(1−α)

ε > α
1−α

[ ρ
λγ(1−α)

− 1]

Then, ge
Y > 0 Then, ge

Y < 0

-
ρ

s
λγ(γ − 1)(1− α)

γ − α

Figure 2: Existence of interior equilibrium

Remark : if ρ > λγ(γ−1)(1−α)
γ−α

, and ε tends to α
1−α

[ ρ
λγ(1−α)

−1], then ne tends

to zero (no R&D). Thus ge
A also tends to zero and ge

Y tends to −ρ(1−α)
α+ε(1−α)

(see

(38)). This is the case where we have the quickest decay at equilibrium.

4.2 Properties of the steady-state equilibrium path

As done for the optimum (3.2), the impact of variations of different param-
eters of the model on ne, r and on the rates of growth ge

A, ge
Y and ge

R is
presented in Table 2.
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ξ = λ ξ = γ ξ = ρ ξ = ε

∂ne

∂ξ
> 0 > 0 < 0 < 0

if ge
Y > 0

∂ge
A

∂ξ
> 0 > 0 < 0 < 0

if ge
Y > 0

∂ge
Y

∂ξ
> 0 > 0 < 0 < 0

if ge
Y > 0

∂ge
R

∂ξ
< 0 < 0 < 0 < 0

if ε > 1 if ε > 1 if ge
Y > 0

∂r

∂ξ
> 0 > 0 > 0 > 0

if ge
Y > 0

Table 2: Properties of the equilibrium path

The results depicted in Table 2 closely resemble those obtained at the
optimum: see Table 1. Recall that the latter table presented the effects of
parameter variations arising from the social planner’s decisions. In Table 2,
the effects of the same parameter variations are shown, only this time they
result from market mechanisms.

• An increase in λ or γ means that the R&D sector becomes more pro-
ductive, inducing R&D firms to hire more workers. Because of the
intertemporal externality on knowledge accumulation (see (39)), the
rate of growth of knowledge, ge

A, will also increase. In the meantime,
more research will make the growth rate of output, ge

Y , higher. In-
deed, more research in the R&D sector implies that R&D firms will
borrow more, and consequently, that the interest rate, r, will increase.
For consumers, a higher interest rate means a higher growth rate of
consumption, and thus a higher ge

Y (see (38)).

Moreover, we know (see (38) and (40)) that the resource extraction
growth rate, ge

R, is equal to the difference between the wage growth
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rate, gw, and the resource price growth rate, gpR ; that is, ge
R is equal to

the growth rate of the relative price between labor and resource (w/pR).
In fact, gw is equal to (r − ρ)/ε (see (38)), and gpR to r (see (41)) :
this is the Hotelling rule. Thus, if the elasticity of marginal utility, ε,
is higher than one, gw will be less sensitive to an increase in r than gpR .
Then, if ε > 1 (resp. < 1), and if λ or γ increases, gw will increase less
(resp. more) than gpR , which is why ge

R will decrease (resp. increase).
In other words, when the productivity of the R&D sector increases,
the resource price increases relative to the wage.

• An increase in ρ means a higher taste for present consumption (relative
to the future). In this case, the representative household will lend less
because it prefers to consume today, and thus r will increase. Therefore,
investment in R&D, ne, will decrease, and so will ge

A. The increase in ρ
will, however, dominate the increase in r in (38), and ge

Y will decrease.
Indeed, consumers derive more utility from present consumption, thus
they have no interest in increasing ge

c(= ge
Y ).

Finally, the decrease in gw and the increase in gpR make the effect on
ge

R obvious (see (40)): ge
R decreases.

• When ge
Y > 0, the effects of an increase in ε closely resemble those

obtained above for an increase in ρ. A higher ε means that consumers
are more interested in a uniform path of consumption : thus, they will
lend less (have less interest in future gains) ans r will increase. Then
ne and ge

A will decrease.

There are two opposite effects on ge
Y (see (38)): an increase in r and an

increase in ε, but it is the latter that dominates the former. Consumers
prefer a more uniform consumption path : ge

c(= ge
Y ) decreases.

At the end, the effect on ge
R is unambiguous (as for the previous case):

ge
R decreases when ε grows because gw will decrease while gpR will in-

crease; that is, the resource price will increase faster than the wage if
the elasticity of marginal utility takes higher values.

4.3 Comparison between optimum and equilibrium

Here, we continue to assume that there is no public intervention (σ = 0) at
equilibrium. Before making a comparison between optimum and equilibrium,
it is useful to define the range of parameters in which this comparison is
possible. This is done in the following proposition :
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Proposition 3 Let us consider interior solutions only. An optimal path and
an equilibrium path both exist in the following cases :

Case a : ρ <
λγ(γ − 1)(1− α)

γ − α
, if ε > 1− ρ

λ(γ − 1)

Case b :
λγ(γ − 1)(1− α)

γ − 1
< ρ < λ(γ−1), if γ <

1

α
and ε > 1− ρ

λ(γ − 1)
,

or if γ >
1

α
and ε >

α

1− α
[
ρ− λγ(1− α)

λγ(1− α)
]

Case c : ρ > λ(γ − 1), if γ <
1

α
and ε >

α

1− α
[

ρ

λ(γ − 1)
− 1],

or if γ >
1

α
and ε >

α

1− α
[

ρ

λγ(1− α)
− 1].

Proof 3 In order to prove the proposition, it suffices to recall Figures 1 and
2, and to observe that λγ(γ − 1)(1− α)/(γ − α) is lower than λ(γ − 1).

Case a) An optimum path exists if ε > 1−ρ/λ(γ−1) and an equilibrium
path exists if ε > 1 − ρ/λ(γ − 1)(1 − α). We have 1 − ρ/λ(γ − 1) > 1 −
ρ/λ(γ − 1)(1− α). Thus, the result follows.

Case b) An optimum path exists if ε > 1−ρ/λ(γ−1) and an equilibrium

exists if ε >
α

1− α
[

ρ

λγ(1− α)
−1]. It can be verified that

α

1− α
[

ρ

λγ(1− α)
] <

1− ρ

λ(γ − 1)
, except when γ >

1

α
. The result follows.

Case c) An optimum path exists if ε > α(ρ/γ(γ− 1)− 1)/(1−α) and an

equilibrium path exists if ε >
α

1− α
[

ρ

λγ(1− α)
− 1]. It can be verified that

α

1− α
[

ρ

λγ(1− α)
−1] <

α

1− α
[

ρ

λ(γ − 1)
−1], except when γ >

1

α
. The result

follows.

Now, we consider the cases in which the two paths exist and we make a
comparison in the following proposition.

Proposition 4 We have no > ne, go
Y > ge

Y and go
R > ge

R (resp. go
R < ge

R) if
ε < 1 (resp. ε > 1), except in the following case :

ρ > λ(γ − 1), γ < 1/α and ε <
ρ− λ(γ − 1)

λ(γ − 1)2
,

where we have no < ne, go
Y < ge

Y and go
R < ge

R (resp. go
R > ge

R) if ε < 1 (resp.
ε > 1).

Remark : in the last case, we have go
Y < ge

Y < 0.
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Proof 4 First, we compare no (see (7)) and ne (see (44)). It can easily be
demonstrated that no > ne if and only if ε > (ρ− λ(γ − 1))/λ(γ − 1)2. Then
we can distinguish two cases.

If ρ < λ(γ−1), an optimum exists (and thus an equilibrium exists) only if
ε > 1−ρ/λ(γ−1) (see Fig 1). In this case we have (ρ−λ(γ−1))/λ(γ−1)2 <
0 < 1− ρ/λ(γ − 1), and thus no > ne.

Moreover, let us observe that go
Y > 0.

If ρ > λ(γ − 1), an optimum exists (and thus an equilibrium also exists)
only if ε > α(ρ/(λ(γ−1))−1)/(1−α). Here, we have go

Y < 0. Two sub-cases
can be distinguished.

If γ > 1/α, we have
0 < (ρ − λ(γ − 1))/λ(γ − 1)2 < α(ρ/(λ(γ − 1)) − 1)/(1 − α), and thus

no > ne.
If γ < 1/α, we have
0 < α(ρ/(λ(γ − 1)) − 1)/(1 − α) < (ρ − λ(γ − 1))/λ(γ − 1)2. Then if

ε > (ρ−λ(γ− 1))/λ(γ− 1)2, we have no > ne. But if α(ρ/λ(γ− 1)− 1)/(1−
α) < ε < (ρ− λ(γ − 1))/λ(γ − 1)2, we have no < ne.

Now, we compare go
Y (see (10)) and ge

Y (see (47)). It can be demonstrated
that go

Y > ge
Y if and only if ε > (ρ − λ(γ − 1))/λ(γ − 1)2, which is exactly

the condition that gives no > ne. Then, we can proceed in exactly the same
manner and obtain the same result : we have go

Y > ge
Y , except in the case

(ρ > λ(γ − 1); γ < 1/α; α(ρ/λ(γ − 1)− 1) < ε < (ρ− λ(γ − 1))/λ(γ − 1)2),
where we have go

Y < ge
Y < 0.

Finally, we compare go
R = (λ(γ−1)(1− ε)no−ρ)/(α+ ε(1−α))(see (18))

and ge
R = (λ(γ−1)(1−ε)ne−ρ)/(α+ε(1−α)) (see (40)). Clearly, if no > ne,

we have go
R > ge

R (resp. go
R > ge

R) if ε < 1 (resp. ε > 1). If no < ne, we have
go

R < ge
R (resp. go

R > ge
R) if ε < 1 (resp. ε > 1).

Let us make some comments on proposition 4.
Clearly, the steady-state path is not optimal. In fact, we distinguish two

cases : in the first one, we have no > ne and go
Y > ge

Y (in other words, there
is not enough labor in research and development at equilibrium, and thus
not enough growth). Moreover, if ε > 1 (resp. < 1), then Ro/So = −go

R >
Re/Se = −ge

R (resp. Ro/So < Re/Se): see Fig 3. Observe that the same
result has been obtained by Schou (1996) in an endogenous growth model
with horizontal innovations. In the second case, we have no < ne, go

Y < ge
Y ,

and Ro/So < Re/Se (resp. Ro/So > Re/Se) if ε > 1 (resp. ε < 1): see
Fig 4. This result, obtained in a model with vertical innovations, does not
appear in Schou. However, we could probably obtain it in a Schou/Scholz-
Ziemes/Grimaud horizontal innovations framework, by slightly modifying
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the model, namely by changing the production function for the final good as
suggested by Benassy (1998).

Remark : we have just seen that in the particular case where ρ > λ(γ −
1), γ < 1/α and ε <

ρ− λ(γ − 1)

λ(γ − 1)2
, we had no < ne, go

Y < ge
Y and go

R < ge
R

(resp. go
R > ge

R) if ε < 1 (resp. ε > 1). We can interpret this result by
underlining that it occurs when the technology parameter γ is low, that is,
when γ < 1/α. Then, we can see that the combination of the “business
stealing effect”, and the positive externality due to R&D (both described
by Aghion and Howitt (1998)) results in a domination of the former. Let
us illustrate this by focusing on the extreme case when γ tends to 1, that
is, when the size of the technological step due to a new invention is nil. In
this case (see (6)), we clearly see that the positive external effect of R&D
becomes null. On the contrary, at equilibrium, people will still work in the
R&D sector, because Vt (the discounted pay off to the next innovation) stays
positive at steady-state. Thus the “business stealing effect” remains positive
in this case, and dominates the positive externality. That is why we have
ne > no.

6

-

6

-

Extractions
rates

ρ

1 1 εε

Ro/So

Re/Se

Re/Se

Ro/So

Fig 3 : extraction rates and
elasticity of marginal utility (ε)

when no > ne.

Fig 4 : extraction rates and
elasticity of marginal utility (ε)

when no < ne.

s s

4.4 Effects of public policies on equilibrium

In the two preceeding sections, 4.2 and 4.3, where we have assumed that
there was no public intervention, we saw that, in general, an equilibrium
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is not optimal. We now study the effects of the rate of subsidy σ on the
steady-state variables at equilibrium.

Proposition 5 ne, ge
Y and r are increasing functions of σ. Moreover, we

have ∂ge
R/∂σ > 0 (resp. ∂ge

R/∂σ < 0) if ε < 1 (resp. ε > 1).

Proof 5 From (28) it can be proved after some calculations that ∂ne/∂σ is
positive if ε > 1−(γ+ρ/λ)/(γ−1+γ(1−α)). Above we saw (see for instance
Fig 2) that if ρ > λγ(γ−1)(1−α)/(γ−α), an interior equilibrium exists only
if ε > α(ρ/(λγ(1−α))− 1)/(1−α), which is higher than 1− (γ + ρ/λ)/(γ−
1 + γ(1 − α)) (see p. 15) : thus, in this case, we have ∂ne/∂σ > 0. If we
consider the case ρ < λγ(γ−1)(1−α)/(γ−α), we know that an equilibrium
exists if ε > 1 − ρ/λ(γ − 1)(1 − α). But, it can be verified that in this case
we have 1− ρ/(λ(γ − 1)(1− α)) > 1− (γ + ρ/λ)/(γ − 1 + γ(1− α)). Thus,
we always have ∂ne/∂σ > 0.

Since ∂ne/∂σ is positive, we immediately have ∂re/∂σ > 0 from (33) and
∂ge

Y /∂σ > 0 from (38).
Finally, from (40), we have ∂ge

Y /∂σ > 0 if ε < 1, and ∂ge
R/∂σ < 0 if

ε > 1.

The first part of proposition 5 (ne, ge
Y and r increasing functions of σ) is

not surprising. Indeed, a higher σ stimulates research, and thus stimulates
growth. The second part (effects of σ on ge

R, hence on the extraction rate
Re/Se = −ge

R) can be understood as follows : from (40), we have ge
R =

ge
Y − gpR = (r − ρ)/ε − r, since ge

Y = gw = gp = (r − ρ)/ε (see (38)) and
gpR = r (see (41)). The resource extraction rate is then Re/Se = −ge

R =
ρ/ε− r(1− ε)/ε. When σ increases, the growth rate ge

Y = gw = gp increases,
but simultaneously gpR increases, and the total effects on Re/Se depend on
ε.

If ε = 1, the two effects compensate each other and we always have
Re/Se = ρ.

If ε < 1, the effect on ge
Y is higher than the effect on gpR . Thus, the ex-

traction rate Re/Se decreases. If ε > 1, the inverse result obtains : Re/Se

increases. These results are summarized in Fig 5 and Fig 6, where we rep-
resent the trajectories of the pair (Re/Se, ge

Y ) between point E (equilibrium
without public intervention) and point O (optimum) when σ progressively
increases from zero to its optimal value.

Let us observe that these results are alike the ones obtained by Stiglitz
(1974) and that we have here found again at the optimum (see 3.2 above).
At equilibrium, an increase in σ has the same effects as a positive shock on
technological progress, equivalent to an increase in Stiglitz’s η, or an increase
in λ or γ in our endogenous growth model.
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Fig 5 : effects of an increase
of σ, when ε < 1

Fig 6 : effects of an increase
of σ, when ε > 1

Re/Se Re/Se

ge
Y ge

Y
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s

R

R

R

E

O

s

s µ

µ

O

E

5 Implementation of optimum

Let us now calculate the optimal σ that leads to an optimal equilibrium path.

Proposition 6 If

σ =
λ(γ − 1)(γε + 1)− ρ

λ(γ − 1)[γ(ε− (1− α)(1− ε)) + 1− ε] + ρ(γ(1− α)− 1)
,

then the equilibrium path is optimal.

Proof 6 We are searching σ such as no (see (7)) and ne (see (28)) be equal.
Simple computations allow us to find σ.

Remark : as we said above, θ does not intervene in a policy aimed at the
implementation of the optimum.

The analysis of the sign of σ shows that σ > 0 when no > ne, and
that σ < 0 when no < ne. These results were predictable. We have just
seen (proposition 5) that ne and ge

Y are increasing functions of σ, and that
∂ge

R/∂σ > 0 (resp. < 0) for ε < 1 (resp. > 1) ; clearly then, when no >
ne, go

Y > ge
Y , and go

R > ge
R (resp. go

R < ge
R) for ε < 1 (resp. ε > 1), without

any economic policy, then σ will be positive. Indeed, a subvention on the
wage paid to workers in the R&D sector will conduce R&D firms to hire
more of them, and thus to perform more research. That is why ne and ge

Y
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will increase, and get closer to their optimal values. This first case (under-
optimal equilibrium growth) corresponds to the unique case of Schou: we may
also find the same results in a Schou/Scholz-Ziemes/Grimaud framework if
we implement the optimal path.

In the opposite case (no < ne, go
Y < ge

Y and go
R < ge

R (resp. go
R > ge

R) if
ε < 1 (resp. ε > 1), of course, σ will be negative. The reverse occurs: a tax
on the wage paid to R&D workers will induce the firm to hire less workers,
thus ne and ge

Y will decrease and approach their optimal values. We could
probably have the same in Aghion-Howitt (1998) chapter 5, if we interpret
their model as a vertical innovations model.

6 Conclusion

In this paper, we have considered a simple endogenous growth model
with creative destruction. First, we studied the optimal steady-state growth
path ; more specifically, we gave the conditions under which growth is positive
along this path. Our aim was also to analyze the steady-state equilibrium.
In particular, we characterized the economic policies necessary to implement
the optimum.

We showed that, at the steady-state, both optimal and equilibrium growth
can be either positive or negative, depending on the value of the psychological
discount rate of the economy, relative to the values of the R&D technology
parameters. We also proved that the equilibrium growth path is not optimal.
In fact, we distinguished between two cases. In the first one, equilibrium
growth is under-optimal, and the equilibrium resource extraction growth rate
is under (over) optimal if the elasticity of marginal utility is lower (higher)
than one; this case corresponds to the results established by Schou (1996).
But we found a second case in which we obtained the opposite result, i.e.,
equilibrium growth is over-optimal and so is the extraction growth rate if the
elasticity of marginal utility is smaller than one.

Next, we proposed an economic policy which allows the implementation
of the optimum. We showed that in the first case mentioned above, it corre-
sponds to a subsidy for the wage paid to R&D workers; moreover, an increase
in this subsidy will make the equilibrium growth rate of resource extraction
higher or lower, depending, once again, on whether the elasticity of marginal
utility is higher or lower than one. In the second case (over-optimal equilib-
rium growth), economic policy consists in a tax on the R&D wage (here, the
effect on the resource extraction growth rate depends also on the elasticity
of marginal utility).

Finally, we showed that increasing the subsidy (or tax) has the same
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effects on the steady-state equilibrium variables as an increase of the technical
progress parameters in Stiglitz (1974).

Further research could, for instance, study the transitional dynamics of
the model. Several other extensions are also possible. For instance, we could
extend our analysis to frameworks that take capital into account, or gener-
alize our model by considering a continuum of intermediate goods, instead
of only one (see for instance Aghion-Howitt, chapter 5, for an analysis of the
optimum in this case).
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