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We show that even in the absence of data on individual decisions, the distribution of
individual attitudes towards risk can be identified from the aggregate conditions that
characterize equilibrium on markets for risky assets. Taking parimutuel horse races
as a textbook model of contingent markets, we allow for heterogeneous bettors with
very general risk preferences, including non-expected utility. Under a standard single-
crossing condition on preferences, we identify the distribution of preferences among
the population of bettors and we derive testable implications. We estimate the model
on data from U.S. races. Specifications based on expected utility fit the data very poorly.
Our results stress the crucial importance of nonlinear probability weighting. They also
suggest that several dimensions of heterogeneity may be at work.
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INTRODUCTION

THE LITERATURE DEVOTED TO THE EMPIRICAL ESTIMATION of individual attitudes to
risk is by now quite large. To quote but a few recent examples:1

 Barsky, Juster, Kimball,
and Shapiro (1997) used survey questions and observations of actual behavior to measure
relative risk aversion. Results indicate that this parameter varies between 2 (for the first
decile) and 25 (for the last decile), and that this heterogeneity is poorly explained by
demographic variables. Guiso and Paiella (2006) reported similar findings, and used the
term “massive unexplained heterogeneity.” Chiappori and Paiella (2011) observed the
financial choices of a sample of households across time, and used these panel data to show
that while a model with constant relative risk aversion well explains each household’s
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choices, the corresponding coefficient is highly variable across households (its mean is
4�2, for a median of 1�7). Distributions of risk aversions have also been estimated using
data on television games (Beetsma and Schotman (2001)), insurance markets (Cohen and
Einav (2007), Barseghyan, Molinari, O’Donoghue, and Teitelbaum (2013), Barseghyan,
Molinari, and Teitelbaum (2016)), or risk sharing within closed communities (Chiappori,
Samphantharak, Schulhofer-Wohl, and Townsend (2014)).

These papers, and many others, rely on data on individual behavior. Indeed, a widely
shared view posits that microdata are indispensable to analyze attitudes towards risk, par-
ticularly in the presence of observed or unobserved heterogeneity. The present paper
challenges this claim. It argues that, in many contexts, the distribution of risk attitudes
can be nonparametrically identified, even in the absence of data on individual decisions.
We only need to use the aggregate conditions that characterize an equilibrium, provided
that such equilibria can be observed on a large set of different menus of choices for the
same population. The crux of our argument is that the equilibrium mapping reveals infor-
mation about the distribution of risk attitudes within the population under consideration.
While a related approach has often been used in other fields (e.g., empirical industrial
organization), it is much less common for the estimation of a distribution of individual
attitudes towards risk.2

In practice, we focus on “win bets” placed in horse races that use parimutuel betting.
Bettors choose which horse to bet on, and those who bet on the winning horse share the
total amount wagered in the race (minus the organizer’s take). This has several attractive
properties for our purposes. First, a win bet is simply a state-contingent asset. Second,
observing the odds of a horse—the rate of return if it wins—is equivalent to observing its
market share. Third, large samples of races are readily available. Finally, the decision we
model is discrete (which horse to bet on), and the stochastic process that generates a win
is very simple.

Each race can be represented as a menu of choices, which consists of probabilities
and odds; we can simultaneously observe or at least estimate both the odds and the win-
ning probability of each horse. Bettors choose between high return/low probability horses
(longshots) and low return/high probability horses (favorites). If bettors were risk-neutral,
equilibrium odds would be directly proportional to winning probabilities. In general, the
mapping from probabilities to odds is more complex; it reflects the response of bettors to
given menus of risky choices. If we observe a large enough number of races with enough
variation in odds and winning probabilities, and the population of bettors has the same
distribution of preferences in all races, then we can learn about this distribution by ob-
serving the mapping from race odds to probabilities.

We analyze two sets of questions. The first one is testability: given any representation of
individual decision under uncertainty, does our general model generate testable restric-
tions on equilibrium patterns—as summarized by the relationship between probabilities
and odds? And can more specific formulations (e.g., expected utility) be tested against
the general model? The second is identifiability: under which conditions is it possible to
recover the distribution of individual preferences from equilibrium patterns? Our goal
here is to minimize the restrictions we a priori impose on the distribution of preferences.

We show that only four surprisingly mild assumptions are needed. The first one is that
when choosing between bets, agents only consider their direct outcomes: the utility de-
rived from betting on a horse with a given winning probability does not depend on the

2Chabi-Yo, Leisen, and Renault (2014) is a notable exception. They extended the standard CAPM analysis
to allow for skewness risk. By applying small noise expansions to get closed-form formulas, the authors showed
how the cross-sectional distribution of preferences maps into equilibrium prices.
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characteristics of other horses. While this assumption does rule out a few existing frame-
works (e.g., those based on regret theory), it is compatible with the vast majority of mod-
els of decision-making under uncertainty. Second, we assume that each agent bets the
same amount in every race. Whether nonparametric tests and identification like those we
develop below could be constructed with endogenous bet amounts or would require infor-
mation at the individual level is an open question. Third, agents’ decisions regarding bets
are, in our model, based on the true distribution of winning probabilities. Note, however,
that we do not impose that valuations be linear in probabilities; on the contrary, we al-
low for the type of probability weighting emphasized by modern decision theory, starting
with Yaari’s dual model or Kahneman and Tversky’s cumulative prospect theory. Finally,
we assume that heterogeneity of preferences is one-dimensional, and satisfies a standard
single-crossing condition. The corresponding heterogeneity may affect utility, probabil-
ity weighting, or both; in that sense, our framework is compatible with a wide range of
theories. Our methods can also be extended to at least some forms of multidimensional
heterogeneity; we address this briefly, but we leave a more general treatment for future
research.

Our main theoretical result states that, under these conditions, an equilibrium always
exists and is unique. We then show that we can both identify and test the model. We derive
strong testable restrictions on equilibrium patterns. When these restrictions are fulfilled,
we can identify the distribution of preferences in the population of bettors; in particular,
we can compare various classes of preferences and distributions.

We then provide an empirical application of these results. In our setting, the concept of
normalized fear of ruin (NF) provides the most adequate representation of the risk/return
trade-off. Normalized fear of ruin directly generalizes the fear-of-ruin index introduced
in an expected utility setting by Aumann and Kurz (1977). Bettors value returns (odds)
as well as the probability of winning. The NF simply measures the elasticity of required
return with respect to probability along an indifference curve in this space. As such, it
can be defined under expected utility maximization, in which case it does not depend on
probabilities; but also in more general frameworks, with probability weightings or various
non-separabilities. We show that the identification problem boils down to recovering the
NF index as a function of odds, probabilities and a one-dimensional heterogeneity param-
eter. We provide a set of necessary and sufficient conditions for a given such function to
be rationalizable as an NF. These conditions provide the testable restrictions mentioned
above, both for the general model and for specific versions. We also show that under these
conditions, the distribution of NF is nonparametrically identified.3

Finally, we estimate our model on a sample of more than 25,000 races involving some
200,000 horses. Since the populations in the various “markets” must, in our approach,
have similar distributions of preferences, we focus on races taking place during weekdays,
on urban racetracks. Since we observe market shares, the single-crossing assumption al-
lows us to characterize the one-dimensional index of each marginal bettor (i.e., the rank
of the bettor indifferent between two horses). We specify a very general value function
that depends on the winning probability, the corresponding return, and this index, based
on orthogonal polynomials. We use the indifference conditions to estimate the winning
probabilities and parameters by a simple log-likelihood maximization. The advantage of
such a strategy is that it allows for nonparametric estimation of both a general model

3Appendix B of the Supplemental Material (Chiappori, Salanié, Salanié, and Gandhi (2019)) extends these
results to the case when bettors decide which races they will bet on. For reasons discussed below, we do not
explicitly consider that decision in our empirical exercise.



4 CHIAPPORI, SALANIÉ, SALANIÉ, AND GANDHI

(involving unrestricted non-expected utility with general one-dimensional heterogeneity)
and several nested submodels (including homogeneous and heterogeneous versions of
expected utility maximization, Yaari’s dual model, and rank-dependent expected utility).

Our empirical conclusions are quite striking. First, the type of preferences that are
routinely used in the applied literature (e.g., constant relative or absolute risk aversion)
are incompatible with the data. They imply restrictive conditions on the shape of the NF
functions that our estimates clearly reject.4 This suggests that the parametric approaches
adopted in much applied work should be handled with care, as they may imply unduly
restrictive assumptions.

Second, models relying on an expected utility (EU) framework do not perform well;
their fit is quite poor, even for heterogeneous versions of the model. Moreover, single-
crossing restrictions are violated for approximately half of our sample, thus casting a
doubt on whether a one-dimensional index is enough to capture the impact of hetero-
geneity. In fact, our preferred models are relatively parsimonious versions of homoge-
neous rank-dependent expected utility (RDEU) preferences, and of homogeneous NEU
preferences. In both cases, the main role is played by distortions of probabilities.5 In-
troducing heterogeneity within the NEU framework further improves the fit, but only
slightly; this last conclusion must be taken with a pinch of salt, since we may be reaching
the limits of what our data can robustly say.

Related Literature

The notion that testable restrictions may be generated regarding the form of the equi-
librium manifold is not new, and can be traced back to Brown and Matzkin (1996) and
Chiappori, Ekeland, Kubler, and Polemarchakis (2002, 2004); the latter, in addition, in-
troduced the idea of recovering individual preferences from the structure of the mani-
fold. But to the best of our knowledge, these papers have not led to empirical applica-
tions. Our contributions here are most closely related to the literature on estimating and
evaluating theories of individual risk preferences, and also to the literature on identifi-
cation of random utility models. There is now a large literature that tests and measures
theories of individual risk preference using laboratory methods (see, e.g., Camerer and
Kunreuther (1989), Harless and Camerer (1994); and Bruhin, Fehr-Duda, and Epper
(2010)). There is also a sizable literature that directly elicits individual risk preferences
through survey questions (see, e.g., Barsky et al. (1997), Bonin, Dohmen, Falk, Huff-
man, and Sunde (2007), Dohmen, Falk, Huffman, Sunde, Schupp, and Wagner (2011))
and correlates these measures with other economic behaviors. The literature that stud-
ies risk preferences as revealed by market transactions is much more limited. Most of it
has focused on insurance choices (see, e.g., Cohen and Einav (2007), Sydnor (2010); and
Barseghyan et al. (2013) and Barseghyan, Molinari, and Teitelbaum (2016)) and gam-
bling behavior (see, e.g., Andrikogiannopoulou and Papakonstantinou (2016)). However,
all of these studies fundamentally exploit individual-level demand data to estimate risk
preferences and document heterogeneity.

The literature on estimating risk preferences from market-level data has almost ex-
clusively used a representative agent paradigm. Starting with Weitzman (1965), betting

4For instance, under such commonly used representations as CARA or CRRA preferences, any given in-
dividual is either always risk-averse or always risk-loving. However, under our preferred specification, a given
bettor may be risk-averse for some bets and risk-loving for others.

5See Barberis (2013) for a recent analysis of probability weighting,
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markets have served as a natural source of data for representative agent studies of risk
preferences due to the textbook nature of the gambles that are offered. In the context of
racetrack betting, Jullien and Salanié (2000) and Snowberg and Wolfers (2010) provided
evidence showing that a representative agent with nonlinear probability weighting better
explains the pattern of prices at the racetrack as compared to an expected utility maxi-
mizing representative agent. Aruoba and Kearney (2011) presented similar findings using
cross-sectional prices and quantities from state lotteries. These representative agent stud-
ies of betting markets stand in contrast to a strand of research that has emphasized belief
heterogeneity as an important determinant of equilibrium in security markets. Ottaviani
and Sorensen (2010) and Gandhi and Serrano-Padial (2015) argued that heterogeneity
of beliefs and/or information of risk-neutral agents can explain the well-known favorite-
longshot bias that characterizes many betting markets. Gandhi and Serrano-Padial fur-
thermore estimated the degree of belief heterogeneity revealed by equilibrium patterns.
In contrast, our aim here is to fully explore the consequences of heterogeneity in prefer-
ences. Specifically, we nonparametrically identify and estimate heterogeneous risk pref-
erences from market-level data. Furthermore, our theoretical framework, while excluding
heterogeneity in beliefs, allows for heterogeneity in probability weighting across agents;
and our nonparametric approach allows us to compare this and other theories (such as
heterogeneity in risk preferences in an expected utility framework).

Finally, our paper makes a contribution to the identification of random utility models of
demand. Random utility models have become a popular way to model market demand for
differentiated products following Bresnahan (1987), Berry (1994), and Berry, Levinsohn,
and Pakes (1995). A lingering question in this literature is whether preference hetero-
geneity can indeed be identified from market-level observations alone. Along with Chiap-
pori, Gandhi, Salanié, and Salanié (2009), our paper shows that a nonparametric model
of vertically differentiated demand can be identified from standard variation in the set
of products available across markets. In particular, we exploit a one-dimensional source
of preference heterogeneity that satisfies a standard single-crossing condition consistent
with vertically differentiated demand. We show that the identification of inverse demand
from the data allows us to nonparametrically recover this class of preferences. This stands
in contrast to the work by Berry and Haile (2014, 2016), which relies on a combination of
index restrictions and instrumental variables.6 We instead show identification of random
utility by imposing the single-crossing structure.

We present the institution, assumptions, and the structure of market equilibrium in
Section 1. In Section 2, we explain the testable restrictions on observed demand behavior
implied by the model, and we show that these restrictions are sufficient to identify prefer-
ences. Section 3 describes the data, while Section 4 discusses the estimation strategy. We
describe our results in Section 5, and we end with some concluding remarks. Some proofs
are in the Appendix. The text also refers to the Supplemental Material (Chiappori et al.
(2019)) for additional elements.

1. THEORETICAL FRAMEWORK

Parimutuel

We start with the institutional organization of parimutuel betting. Consider a race with
horses i = 1� � � � � n. We focus on “win bets,” that is, bets on the winning horse: each dollar

6See also Gautier and Kitamura (2013) on the binary choice model and Kitamura and Stoye (2016) for the
random utility model.
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bet on horse i pays a net return of Ri dollars if horse i wins, and is lost otherwise. Ri is
called the odds of horse i, and in parimutuel races it is determined by the following rule:
all money wagered by bettors constitutes a pool that is redistributed to those who bet
on the winning horse, apart from a share t corresponding to taxes and a “house take.”
Accordingly, if si is the share of the pool corresponding to the sums wagered on horse i,
the payment to a winning bet of $1 is

Ri + 1 = 1 − t

si
� (1)

Hence, odds are not set by bookmakers; instead, they are determined by the distribution
(s1� � � � � sn) of bets among horses. Odds are mechanically low for those horses on which
many bettors laid money (favorites), and they are high for longshots.7 Since market shares
sum to 1, these equations together imply

1
1 − t

=
∑
i

1
Ri + 1

� (2)

Hence, knowing the odds (R1� � � � �Rn) allows to compute both the take t and the shares
in the pool (s1� � � � � sn).

Probabilities

We now define an n-horse race (p, t) by a vector of positive probabilities p =
(p1� � � � �pn) in the n-dimensional simplex, and a take t ∈ (0�1). Note that pi is the objec-
tive probability that horse i wins the race. Our setting is thus compatible with traditional
models of decision under uncertainty, in which all agents agree on the probabilities of the
various states of the world, and these probabilities are correct. This framework singles
out preferences as the driving determinant of odds; it accords well with empirical work
that shows how odds reflect most relevant information about winning probabilities.8 It
is also consistent with the familiar rational expectations hypothesis; in fact, we will show
that a rational expectations equilibrium exists and is unique in our setting. It is important
to stress, however, that our framework is also compatible with more general models of
decision-making. In particular, it allows for the type of probability weighting that charac-
terizes many non-expected utility functionals, whereby the actual decision process may
involve arbitrary increasing functions of the probabilities. Moreover, these probability
weights may be agent-specific, as we shall see. In other words, our general framework en-
compasses both “traditional” models, in which agents always refer to objective probability
and heterogeneity only affects preferences, and more general versions in which different
agents weigh probabilities differently. The only strong restriction we will impose bears on
the dimension of the heterogeneity, not on its nature.

Following the literature to date,9 we endow each bettor with a standardized bet amount
that he allocates to his most preferred horse in the race. In particular, we do not allow
participants to bet heterogeneous amounts. Therefore, the shares (si) in the pool defined
above can be identified to market shares. Any bettor looks on a bet on horse i as a lottery

7According to this formula, odds can even be negative, if si is above (1 − t); it never happens in our data.
8See Sung and Johnson (2008) and Ziemba (2008) for recent surveys on the informational efficiency of

betting markets.
9See Weitzman (1965), Jullien and Salanié (2000), Snowberg and Wolfers (2010), among others.
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that pays Ri with probability pi, and pays (−1) with probability (1 − pi). We denote this
lottery by (Ri�pi), and call it a gamble. By convention, throughout the paper we index
horses by decreasing probabilities (p1 > · · ·>pn > 0), so that horse 1 is the favorite.

Risk-Neutral Bettors

As a benchmark, consider the case when bettors are risk-neutral, and thus only consider
the expected gain associated to any specific bet.10 Equilibrium then requires expected
values to be equalized across horses. Since bets (net of the take) are redistributed, this
yields

piRi − (1 −pi)= −t�

which, together with (2), gives probabilities equal to

pn
i (R1� � � � �Rn)=

1
Ri + 1∑

j

1
Rj + 1

= 1 − t

1 +Ri

= si� (3)

By extension, for any set of odds (R1� � � � �Rn), we will call the above probabilities pn
i risk-

neutral probabilities. These probabilities are exactly equal to the shares si in the betting
pool, as defined in (1) and (2). Many stylized facts (for instance, the celebrated favorite-
longshot bias) can easily be represented by comparing the “true” probabilities with the
risk-neutral ones—more on this below.

1.1. Preferences Over Gambles

We consider a continuum of bettors, indexed by a parameter θ. Each bettor θ is char-
acterized by a valuation function V (R�p�θ), defined over the set of all possible gambles
(R�p). In a given race, θ bets on the horse i that gives the highest value to V (Ri�pi� θ).
As usual, V (·� ·� θ) is only defined ordinally, that is, up to an increasing transform. We
consequently normalize to zero the value V (−1�p�θ)≡ 0 of losing 1 with certainty.

Note that each V (·� ·� θ) is a utility function defined on the space of gambles. As such, it is
compatible with expected utility, but also with most non-expected utility frameworks; one
goal of this paper is precisely to compare the respective performances of these various
models on our data. Finally, the main restriction implicit in our assumption is that the
utility derived from betting on a given horse does not depend on the other horses in the
race; we thus rule out models based, for instance, on regret theory,11 and more generally,
any framework in which the valuation of a bet depends not only on the characteristics of
the bet but also on the whole set of bets available.

We will impose several assumptions on V . We start with very weak ones:

ASSUMPTION 1: For each θ, (R�p) �→ V (R�p�θ) is continuously differentiable almost
everywhere; and it is increasing with R and p.

10Clearly, a risk-neutral player will not take a bet with a negative expected value unless she derives some
fixed utility from gambling (see Conlisk (1993)). The assumption we maintain in this paper is that this “utility
of gambling” does not depend on the particular horse on which the bet is placed: conditional on betting, bettors
still select the horse that generates the highest expected gain.

11See, for example, Gollier and Salanié (2006).
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Differentiability is not crucial; its only role is to simplify some of the equations. Our
framework allows for a kink at some reference point, for instance, as implied by prospect
theory. The second part of the assumption reflects first-order stochastic dominance: bet-
tors prefer bets that are more likely to win, or that have higher returns when they do.
We now introduce another technical requirement, which we will use when proving the
existence of a rational expectations equilibrium:

ASSUMPTION 2:For any θ, R, p> 0:
• for any p′ > 0, there exists R′ such that V (R�p�θ) < V (R′�p′� θ);
• for any R′, there exists p′ > 0 such that V (R�p�θ) > V (R′�p′� θ).

Assumption 2 is very weak: it only requires that any higher return can be compensated
by a lower probability of winning, and vice versa.

The Normalized Fear of Ruin (NF)

The trade-off between risk and return is crucial in decision-making under uncertainty;
and we aim to quantify it using observed choices. This trade-off can be described in several
ways. One is the marginal rate of substitution12 w:

w(R�p�θ)≡ Vp

VR

(R�p�θ) > 0�

Since each utility function V (·� ·� θ) is only defined up to an increasing transform, the
properties of w fully determine the bettors’ choices among gambles. We chose to focus
on a slightly different index, which we call the normalized fear of ruin (NF):

NF(R�p�θ)≡ p

R+ 1
Vp

VR

(R�p�θ)= p

R+ 1
w(R�p�θ) > 0�

Using NF rather than more traditional measures of risk-aversion has several advantages.
It is unit-free, as it is the elasticity of required return with respect to probability on an
indifference curve:

NF = −∂ log(R+ 1)
∂ logp

∣∣∣∣
V

�

As such, it measures the local trade-off between risk and return. Moreover, it has a
“global” interpretation for the type of binomial lotteries we are dealing with. The NF
index of a risk-neutral agent is identically equal to 1. An index above 1 indicates that the
agent is willing to accept a lower expected return p(R + 1) − 1 in exchange for an in-
crease in the probability p. Conversely, if an agent with an index below 1 is indifferent
between betting on a favorite (p�R) and a longshot (p′ < p, R′ > R), then it must be
that the expected return on the longshot is below that on the favorite. For instance, in a
representative agent context, the favorite-longshot bias can be explained by the represen-
tative agent having a NF index below 1. However, our approach allows for heterogeneous
bettors and can accommodate the existence of bettors with different NF indices.

12Throughout the paper, we use subscripts to indicate partial derivatives.
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FIGURE 1.—The fear of ruin.

The Expected Utility Case

In an expected utility framework, the NF index has a simple expression. With a zero
utility u(−1� θ)= 0 from losing the bet, we have that

V (R�p�θ)= pu(R�θ)�

and therefore

NF(R�p�θ) = 1
R+ 1

u

uR

(R�θ)�

so that the NF index13 is independent from the probability p. Geometrically, NF(R) is
the ratio of two slopes on the graph of the utility function: that of the chord linking the
points (−1�0) (losing the bet) and (R�u(R)) (winning it), and that of the tangent to the
utility graph at (R�u(R)) (see Figure 1).

The properties of the NF index in the expected utility case are well-known.14 A sufficient
condition for an agent to have a higher NF index than another agent at all values of R is
that the former be more risk-averse than the latter.15 Consequently, if the agent is risk-
averse, then his NF index is larger than 1; if he is risk-loving, it is smaller than 1.

While the NF index need not be monotonic in R, specific functional forms generate
additional properties. For example, an agent with constant absolute risk-aversion is either
risk-averse (her NF(R) is above 1 and increasing) or risk-loving (and then her NF is below
1 and decreasing). The same “fanning out” holds with constant relative risk-aversion.
These are testable predictions; and as we shall see, our more flexible estimates show NF
indices that tend to fan in rather than fan out, and sometimes cross the NF = 1 line.

13The ratio u/uR was called the fear-of-ruin index by Aumann and Kurz (1977)—hence our choice of the
name for NF.

14See Foncel and Treich (2005).
15Recall that u is more risk-averse than v if there exists an increasing and concave function k such that

u = k(v). Given our normalization u(0) = v(0) = 0, this implies that k is such that k(x)/x decreases with x.
This property is equivalent to u having a higher NF index than v at any value of R (Foncel and Treich (2005)).
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1.2. Single-Crossing Assumption

Our next assumption imposes a single-crossing property that drives our approach to
identification.

ASSUMPTION 3—Single-crossing: 1. The heterogeneity parameter θ is a scalar.
2. Consider two gambles (R�p) and (R′�p′), with p′ <p. If, for some θ, we have

V (R�p�θ)≤ V
(
R′�p′� θ

)
�

then for all θ′ > θ,

V
(
R�p�θ′) < V

(
R′�p′� θ′)�

Given first-order stochastic dominance as per Assumption 1, if θ prefers the gamble
with the lowest winning probability (p′ < p), then it must be that its odds are higher
(R′ >R), so that the gamble (R′�p′) is riskier. Assumption 3 states that if θ prefers the
riskier gamble, any agent θ′ above θ will, too. The single-crossing assumption thus imposes
that agents can be sorted according to their “taste for risk”: higher θ’s prefer longshots,
while lower θ’s prefer favorites.

Assumption 3 has a well-known differential characterization, which we state without
proof:16

LEMMA 1: Suppose that V is differentiable everywhere on some open set O. Then As-
sumption 3 holds on O if and only if, for any (R�p�θ) in O, the marginal rate of substitution
w(R�p�θ), or equivalently, the normalized fear-of-ruin index NF(R�p�θ), is decreasing in θ.

Since Assumption 3 only refers to an ordering of θ, without loss of generality we nor-
malize θ to be uniformly distributed on the interval [0�1]. This essentially makes θ a
quantile of the distribution of “preference for riskier bets.” The precise scope of the
single-crossing condition can be better seen on a few examples.

1. Expected Utility

As above, we normalize to zero the utility of losing the bet, so that

V (R�p�θ)= pu(R�θ)�

Single-crossing holds if and only if the normalized fear of ruin is decreasing in θ. A suffi-
cient condition is that lower θ’s be more risk-averse at any value of R. For instance, in the
CARA case, consider a population of bettors indexed by their absolute risk-aversion λ:

u(R�λ) = exp(λ)− exp(−λR)

λ
�

where λ has a c.d.f. Fλ. Then

NF(R�p�λ) = 1
R+ 1

u

uR

= exp
(
λ(1 +R)

) − 1
λ(1 +R)

16See, for instance, Athey (2001, 2002).
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increases with λ. If we define θ = 1 − Fλ(λ), then, by construction, θ is uniformly dis-
tributed on [0�1] and NF decreases in θ, so that Assumption 3 holds. Note also that NF is
in fact an increasing function of λ(R+ 1), so that the normalized fear of ruin “fans out”:
for any given λ (or θ), it moves away from the risk-neutral level of 1 as odds increase.

A similar result holds for CRRA functions, with an additional twist. If W > 1 denotes
the agent’s wealth, then easy calculations give

NF(R�p�γ�W ) = W +R

1 − γ

(
1 −

(
W − 1
W +R

)1−γ)
�

which is increasing in the relative risk-aversion index γ. Again, Assumption 3 holds if
we define θ as 1 − Fγ(γ) where Fγ is the c.d.f. of γ. However, an agent’s choice now
also depends on the agent’s wealth. The latter can be seen as either an alternative or an
additional source of heterogeneity. That is, we can model a population of bettors with
identical relative risk-aversion γ but different initial wealth W and define θ = FW (W );
since NF(R�p�γ�W ) is also increasing in W , the model will still satisfy the single-crossing
assumption. More ambitiously, we could move beyond Assumption 3 and consider agents
who differ in both wealth and risk-aversion, generating bi-dimensional heterogeneity; we
will return to this issue in Section 2.3.

This point is more general: in the absence of individual data, we cannot possibly dis-
tinguish between heterogeneity in “preferences,” in wealth, and in background risk, for
instance; we can only estimate the resulting heterogeneity in attitudes towards lotteries.

2. Rank-Dependent Expected Utility Theory

RDEU enriches the previous framework by allowing for a nonlinear weighting of prob-
abilities: the utility V can be written

V (R�p�θ)= G(p�θ)u(R�θ)�

For Assumption 1 to hold, the probability weighting function G must increase in p and
the utility function u must increase in R. In general, both functions may vary with θ.

Now remember that V is only defined up to an increasing transformation: we can only
hope to identify its indifference curves, whose slope is NF. In the RDEU case, the NF
index is a product of two terms:

NF(R�p�θ)= p

R+ 1
Vp

VR

= 1
R+ 1

u

uR

pGp

G
� (4)

The first term is the NF index for an expected utility maximizer with utility u, which is
the elasticity of u(R�θ) with respect to the gross return (R + 1). The second term is the
elasticity of G(p�θ) with respect to the probability p of a win. It is the NF index that
would obtain if u were linear in R for all θ, as in the “dual expected utility” model of
Yaari (1987):

V (R�p�θ)= G(p�θ)(R+ 1)�

For Yaari-like preferences, the NF index is independent of R; and single-crossing requires
that Gp/G, which is positive, be decreasing in θ. In words, this means that larger θ’s put
more weight on small probabilities. Again, this allows us to account for some heterogene-
ity in beliefs. Note that since Yaari’s model sets the elasticity of u to 1, we can identify the
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elasticity of G and its variations with θ in this more restricted model. However, with only
one dimension of variation in θ, it is difficult to account for heterogeneity in both u and
G simultaneously in the RDEU model. What we can and will do is test heterogeneity in
u versus heterogeneity in G.

3. Extensions and Limitations

Many other families of preferences, such as cumulative prospect theory, also fit within
our setting—although the single-crossing condition becomes more complicated. Oth-
ers may only be accommodated under some restrictions. For instance, the reference-
dependent theory of choice under risk of Köszegi and Rabin (2007) yields a choice func-
tional that fits our framework as long as it respects stochastic dominance. We could also
incorporate ambiguity-aversion in the “exponential tilting” form introduced by Hansen
and Sargent (e.g., in their 2007 book, or Hansen (2007)). However, in our very simple
choice problems with static decision-making, it is observationally equivalent to increased
risk-aversion.17

Our approach has two main limitations. First, we require that agents only pay attention
to realized consequences. Some models of decision under uncertainty relax this assump-
tion; regret theory and disappointment-aversion, for instance, are only compatible with
our setting in restricted cases. Second, we only allow for one dimension of heterogene-
ity. Our approach is only compatible with models involving heterogeneity in both prefer-
ences and beliefs if these two dimensions are governed by the same parameter. Multidi-
mensional nonparametric heterogeneity is a very difficult problem, which is left for future
work; for the time being, we shall simply provide a short discussion of a possible approach
(see Section 2.3).

1.3. Market Shares and Equilibrium

The winning probabilities p and the take t are assumed exogenous and characterize
a race. In contrast, the odds are endogenous: the bettors’ behavior determines market
shares, which in turn determine odds through the parimutuel rule (1). In this setting,
it is natural to rely on the concept of rational expectations equilibria: agents determine
their behavior given their anticipations on odds, and these anticipations are fulfilled in
equilibrium. We now show that for our framework, a rational expectations equilibrium
exists. Moreover, our characterization of the equilibrium condition in terms of the single-
crossing assumption will provide the key to the identification of preferences.

Focus on a given race with n horses, and assume that the win probabilities p and odds
R are given, and known to all agents. Each agent then optimizes on which horse to bet
on. As a simple consequence of the single-crossing condition, the choices bettors make
partition them into a sequence of intervals:

LEMMA 2:Suppose that p and R are such that all market shares are positive: si > 0 for
all i = 1� � � � � n. Then, under Assumptions 1, 2, and 3, there exists a family (θj)j=0�����n, with
θ0 = 0 < θ1 < · · ·< θn−1 < θn = 1, such that:

• for all i = 1� � � � � n, if θi−1 < θ< θi, then bettor θ strictly prefers to bet on horse i than on
any other horse;

17If we let ambiguity-aversion depend on observables (for instance, it may be more prominent in races with
younger horses), then we could distinguish it from risk-aversion. Gandhi and Serrano-Padial (2015) made use
of a related strategy.
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• for all i = 1� � � � � n− 1, we have

V (pi�Ri� θi)= V (pi+1�Ri+1� θi)� (5)

Lemma 2 states that if we rank horses by increasing odds in a race, bettors will self-
select into n intervals; in each interval, all bettors bet for the same horse. The bounds of
the intervals are defined by an indifference condition: for i = 1� � � � � n − 1, there exists a
marginal bettor θi who is indifferent between betting on horses i and i + 1. As a simple
corollary and since we normalized the distribution of θ to be uniform, the market share si
of horse i = 1� � � � � n is

si = θi − θi−1�

which yields

θi =
i∑

j=1

sj�

Recall that odds are determined from market shares as in (1) and (2); therefore, in
equilibrium, one must have θi = θi(R), where

θi(R)≡

∑
j≤i

1
Rj + 1

∑
j

1
Rj + 1

� i = 1� � � � � n� (6)

At a rational expectations market equilibrium, bettors must choose optimally given
odds and probabilities, as expressed in (5); and odds must result from market shares,
which is what the equalities θi = θi(R) impose. This motivates the following definition:

DEFINITION 1: Consider a race (p� t). R = (R1� � � � �Rn) is a family of equilibrium odds
if and only if (2) holds and

∀ i < n V
(
pi�Ri� θi(R)

) = V
(
pi+1�Ri+1� θi(R)

)
� (7)

We then prove existence and uniqueness. The result is a particular instance of a more
general result in Gandhi (2006), but its proof in our setting is quite direct:

PROPOSITION 1: Under Assumptions 1, 2, and 3, for any race (p� t), there exists a unique
family −t < R1 ≤ · · · ≤ Rn of equilibrium odds.

Hence, to each race, one can associate a unique rational expectations equilibrium, with
positive market shares. This result gives a foundation to our assumption that bettors share
common, correct beliefs. From an empirical viewpoint, however, only the odds are directly
observable; probabilities have to be estimated. Fortunately, probabilities can be uniquely
recovered from odds:

PROPOSITION 2: Under Assumptions 1, 2, and 3, for any R ranked in increasing odds,
there exists a unique race (p� t) such that R is a family of equilibrium odds for (p� t).
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As already observed, the rules of parimutuel betting allow us to infer the value of the
track take t from odds, using (2). On the other hand, the relationship between odds and
probabilities results from preferences. The function p(R) = (p1(R)� � � � �pn(R)) implic-
itly defined in Proposition 2 thus conveys some information on the underlying prefer-
ences of bettors. Since choices are fully determined by the marginal rates of substitution
w = VR/Vp, we shall say hereafter that p(R) characterizes any market equilibrium as-
sociated to V . Finally, Propositions 1 and 2 extend in a straightforward manner to the
homogeneous case in which bettors are identical: each bettor must then be indifferent
among all horses, in the spirit of Jullien and Salanié (2000).

2. TESTABLE IMPLICATIONS AND IDENTIFIABILITY

Assume for the moment that we observe the same population of bettors18 faced with
a large number of races (p� t). In each race, individual betting behavior leads to equilib-
rium odds R and market shares s, which are observable; we also observe the identity of
the winning horse for each race. We also assume that the relationship between winning
probabilities and equilibrium odds p(R) is known. In fact, this relationship could be esti-
mated very flexibly from a rich enough data set; but our actual estimation strategy, which
we expose in Section 4, will not rely on such a direct estimation of probabilities.

We focus here on the empirical content of our general framework. Specifically, we con-
sider two questions. One is testability: does the theory impose testable restrictions on the
form of the function p(R)? The second issue relates to identifiability: given p(R), is it
possible to uniquely recover the distribution of individual preferences, that is, in our set-
ting, the normalized fear of ruin NF(R�p�θ)? We shall now see that the answer to both
questions is positive.

2.1. Testable Implications

We start with testability. Since V increases in p, we can define � as the inverse of V
with respect to p:

∀ R�p�θ �
(
V (R�p�θ)�R�θ

) = p�

One can then define a function G as

G
(
R�p�R′� θ

) = �
(
V (R�p�θ)�R′� θ

)
� (8)

In words, G(R�p�R′� θ) is the winning probability p′ that would make a gamble (R′�p′)
equivalent, for bettor θ, to the gamble (R�p). Now we can rewrite the equilibrium condi-
tions in Definition 1 as

∀ i < n pi+1(R)= G
(
Ri�pi(R)�Ri+1� θi(R)

)
� (9)

where θi(R) was defined in (6). We immediately obtain several properties of G:

PROPOSITION 3:Let Assumptions 1, 2, and 3 hold. If p(R) characterizes market equilibria
associated to some family V , then there exists a function G(R�p�R′� θ) such that

18Strictly speaking, we only need the distribution of preferences to be constant. Appendix B of the Supple-
mental Material considers the case when bettors endogenously decide whether to bet in each race, so that the
distribution of preferences of bettors in a race depends on some of its characteristics. We provide assumptions
under which the identification result still holds.
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(i) G is continuously differentiable, increasing with R and p, decreasing with θ if R′ >R,
and decreasing with R′;

(ii) Gp/GR is independent of R′;
(iii) G(R�p�R�θ)= p;
(iv) (9) holds for any family R1 <R2 < · · ·<Rn.

Of the four properties in Proposition 3, (ii) and (iv) are the main restrictions that our
theory imposes on observed odds and probabilities. Property (iv) states that the winning
probability pi+1(R), which could depend on the whole family of odds (R1� � � � �Rn), can be
computed from only four numbers: the pair of odds Ri and Ri+1, the index of the marginal
consumer θi(R) (which can be directly inferred from market shares, as argued above), and
the probability pi(R) of the horse ranked by bettors just above (i+ 1). Hence, pi(R) and
θi(R) are sufficient statistics for the (n−2) odds that are missing from this list. Moreover,
G does not depend on the index i, on the number of horses n, nor on the take t. Finally,
property (ii) dramatically restricts the variation in G. These and the other two properties
of G listed in Proposition 3 will provide directly testable predictions of our model.19

2.2. Exhaustiveness and Identification

Take some function p(R) that satisfies the conditions we just derived. Pick a particular
i (say, i = 1); then, by Proposition 3, for each race and each horse i, pi+1(R) can only
depend on the four variables (Ri, pi(R), Ri+1, θi(R)). The corresponding relationship
nonparametrically identifies the function G and generates a first set of testable restric-
tions; a second set follows from the fact that the resulting G does not depend on the
choice of i.

We now show that the four properties in Proposition 3 are sufficient. From any p(R)
associated to a G function that satisfies all four properties, we can recover a function
NF(R�p�θ) such that p(R) characterizes the market equilibria associated to any risk pref-
erences V whose normalized fear of ruin is NF. In turn, recovering the normalized fear of
ruin NF allows to nonparametrically identify preferences, that is, to ordinally identify the
function V . Specifically, the following holds:

PROPOSITION 4: Suppose that the function p(R) satisfies the restrictions in (9) for some
function G. Let S4 be the domain over which (9) defines G, and assume that properties
(i)–(iii) in Proposition 3 hold for G over S4. Define S3 to be the set of (R�p�θ) such that
(R�p�R′� θ) belongs to S4 for some R′ >R.

Then there exists a unique (up to increasing transforms) function V (p�R�θ) defined on S3

such that p(R) characterizes the market equilibria associated to V .
Moreover, V verifies the single-crossing property, and its normalized fear of ruin NF is

NF(R�p�θ)= p

R+ 1
Gp

GR

(
R�p�R′� θ

)
�

From an empirical viewpoint, Proposition 4 proves two results. First, the properties (i)–
(iv) stated in Proposition 3 are in fact sufficient: since they are strong enough to ensure
the existence of a family V satisfying our assumptions, no other testable implications can

19In the homogeneous case in which bettors are identical, the results extend directly, with the only change
that G does not depend on θ anymore. Similar statements are valid for the following results.
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be found. Second, the MRS function w is uniquely identified. Indeed, for (8) to hold, it
must be that

Vp

VR

(R�p�θ)= Gp

GR

(
R�p�R′� θ

)
for all R′�

which property (ii) of Proposition 3 makes possible. This defines w (and NF) uniquely,
and consequently, the family V is identified up to an increasing function of θ. Hence,
under our assumptions, aggregate data are enough to recover heterogeneous individual pref-
erences without any parametric assumption.20

Proposition 4 qualifies this conclusion in one respect: identification only holds on the
support S3 of the random variables that we defined. This has an important consequence
in our setting. Assume that no race has more than n horses. The favorite in each race,
by definition, has the largest market share, and so we will always observe θ1 > 1/n. Since
identification relies on boundary conditions in the θi’s, it follows that we cannot hope to
recover the family of functions V (·� ·� θ) for θ < 1/n. (More formally, the set S3 contains
no point (R�p�θ) with θ < 1/n.)

2.3. Multidimensional Heterogeneity

We assumed so far that heterogeneity was one-dimensional, and could be described by
a single parameter θ. As already mentioned in Section 1.2, we might want to go beyond
this and allow for more dimensions of heterogeneity. We sketch here how it can be done
in two dimensions. Assume that agents differ in two characteristics, described by scalar
parameters θ and η. Without loss of generality, we normalize the marginal distributions of
θ and η to be independent uniform distributions over [0�1]. This can be done by applying
the quantile transforms θ′ = Fθ(θ) and η′ = Fη|θ(η|θ).

Now consider two gambles (R�p) and (R′�p′) such that p′ <p (therefore, R′ >R). We
impose the single-crossing property in each of the two dimensions. That is, if, for some
(θ�η), we have

V (R�p�θ�η) < V
(
R′�p′� θ�η

)
�

then for all θ′ > θ,

V (R�p�θ�η) < V
(
R′�p′� θ′�η

)
�

and for all η′ >η,

V (R�p�θ�η) < V
(
R′�p′� θ�η′)�

The interpretation is as before: for any given η, higher θ’s prefer longer shots; and sim-
ilarly, for any given θ, higher η’s prefer longer shots. These conditions imply that the
equation for the marginal bettor(s) (θ�η)

V (R�p�θ�η)= V
(
R′�p′� θ�η

)
implicitly defines a function

η= φ
(
θ;R�p�R′�p′)

that can be represented by a decreasing curve in the (θ�η) plane. Figure 2 shows how
bettors select horses in the plane for a three-horse race R1 <R2 <R3. The main difficulty

20Appendix A of the Supplemental Material specializes this result to the case of expected utility.
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FIGURE 2.—Market shares with two-dimensional heterogeneity (n = 3).

is that the total market share of horse i = 2� � � � � n − 1 is given by the area between two
isolevel curves of the function φ, so that for i < n, the cumulative market shares are

Si =
i∑

j=1

sj =
∫ 1

0
φ(θ;Ri�pi�Ri+1�pi+1)dθ

and we can only identify (and in fact overidentify) the function

�
(
R�p�R′�p′) ≡

∫ 1

0
φ

(
θ;R�p�R′�p′)dθ =E

(
Si|Ri = R�pi = p�Ri+1 =R′�pi+1 = p′)�

This contrasts with the one-dimensional case: if θ is irrelevant, then these isolevel curves
are horizontal lines and market shares directly identify the relevant structure of the distri-
bution of preferences. Identification is still possible under specific assumptions regarding
the form of the heterogeneity. Assume, for instance, that

V (R�p�θ�η)= pexp
(
θa(R�p)+ηb(R�p)

)
�

or, equivalently (since any increasing transformation can be applied to V ),

logV (R�p�θ�η)= logp+ θa(R�p)+ηb(R�p)� (10)

This quasi-linear representation, while restrictive, is standard in industrial organization
and in contract theory. It is easy to see that if the functions a and b are increasing in R
and do not vary too much in p (deviations from expected utility are small), then bettors
with higher θ and η bet on longer shots. Moreover, the function φ is affine:

φ
(
θ;R�p�R′�p′) = − 1

b
(
R′�p′) − b(R�p)

(
θ
(
a
(
R′�p′) − a(R�p)

) + log
p

p′

)
�

and we can integrate over θ to get the following equation:

Si = �(Ri�pi�Ri+1�pi+1)= −
1
2
(
a(Ri+1�pi+1)− a(Ri�pi)

) + log
pi

pi+1

b(Ri+1�pi+1)− b(Ri�pi)
� (11)
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This equation identifies (in fact overidentifies) the functions a and b, up to some constants
that are irrelevant for the identification of preferences.21

3. DATA

Our entire analysis up to now has assumed a stable family of preferences V (R�p�θ)
across the races in the data. This family of preferences can change with observable co-
variates X , and thus we should interpret the analysis up to now as being done conditional
on X .

The race data consist of a large sample of thoroughbred races (the dominant form
of organized horse racing worldwide) in the United States, spanning the years 2001
through 2004. The data were collected by professional handicappers from the racing por-
tal paceadvantage.com, and a selection of the race variables that they collect were shared
with us. In particular, for each horse race in the data, we have the date of the race, the
track name, the race number in the day, the number of horses in the race, the final odds
for each horse, and finishing position for each horse that ran. Excluded from the data are
variables that the handicappers use for their own competitive purpose, such as various
measures of the racing history of each horse.

For the present analysis, we focus on the data from year 2001. For this year, we have
races from 77 tracks spread over 33 states. There were 100 races in which at least one
horse was “purse only,” meaning that it ran but was not bet upon and hence was not
assigned betting odds. In 461 races, two horses were declared winners; and in three races,
there was no winner. After eliminating these three small subsamples, we had 447,166
horses in 54,169 races, an average of about 8.3 horses per race. Figure 3 shows that almost
all races have 5 to 12 horses. We eliminated the other 606 races. We also dropped 44 races

FIGURE 3.—Frequency distribution of the number of horses per race.

21Appendix C of the Supplemental Material includes a proof of this claim.

http://paceadvantage.com
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TABLE I

CHARACTERISTICS OF THE SAMPLE

Number of Horses in Race Odds θ

Min 5 0�05 0�145
P25 7 3�70 0�623
P50 8 8�10 0�851
P75 10 18�80 0�964
Max 12 200�00 1�000

in which one horse has odds larger than 200—a very rare occurrence. That leaves us with
a sample of 442,636 horses in 53,523 races.

Table I gives some descriptive statistics. The betting odds over horses in the data range
from extreme favorites (odds equaling 0�05, i.e., horses paying 5 cents on the dollar), to
extreme longshots (odds equaling 200, i.e., horses paying 200 dollars on the dollar). The
mean and median odds on a horse are 15�23 and 8�10, respectively: the distribution of
odds is highly skewed to the right. In our sample, 18.3% of horses have R ≥ 25 (odds of
20 or more), 6.2% of horses have R ≥ 50, but only 0.7% have R≥ 100. Also, the race take
(t in our notation) is heavily concentrated around 0�18: the 10th and 90th percentiles of
its distribution are 0�165 and 0�209.

Figure 4 plots the raw distribution of odds up to R = 100. It seems fairly regular, with
a mode at odds of R = 2�5; but this is slightly misleading. Unlike market shares, odds are

FIGURE 4.—Distribution of odds, R ≤ 100.
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TABLE II

NUMBER OF HORSES IN EACH SUBSAMPLE

Weekday Weekend

Rural 42�027 31�663
Urban 216�802 152�144

not a continuously distributed variable: they are rounded at the track. This rounding is of
no consequence for the econometric methods we use in this paper.22

We built two 0–1 covariates. The first one uses the date at which a race was run to sep-
arate weekday and weekend races. To build our second covariate, we hand-collected the
zip code of each racetrack, and we used it to classify each track on an urban/rural scale,
thanks to the 2000 Rural-Urban Commuting Area Codes classification of the Census Bu-
reau. Thus, our two main covariates for a race are Weekend/Weekday and Urban/Rural.
Table II shows that most races are run in an urban setting, and slightly more on weekdays
than on weekends. In order to focus on a relatively homogeneous sample, the results we
report in the rest of this paper were obtained on the largest subsample: the 26,525 races
run on weekdays in an urban setting, with 216,802 horses.

4. ESTIMATION STRATEGY

The fundamental equation of our model can be seen as determining all win probabilities
recursively in any given race:

∀ i < n pi+1(R)=G
(
Ri�pi(R)�Ri+1� θi(R)

)
� (12)

In this relationship, the odds R and interval limits θ are directly recovered from the
data. Our empirical strategy aims at estimating both the probabilities p and the func-
tion G.

If the value function V is known (possibly up to some parameters), then the function
G can be derived from (8). Then, for each race, the system of equations (12), along with
the adding up constraint

∑n

i=1 pi = 1, allow us to compute the winning probabilities and
therefore the likelihood of the event that the observed winner has indeed won the race.
Maximizing the likelihood over all races then yields estimates of the relevant parameters.
Note that this approach is a direct generalization of Jullien and Salanié (2000), in two
directions: we consider heterogeneous preferences, instead of assuming homogeneous
bettors; and we represent preferences in a much more flexible manner than that paper,
which focused on specific classes of EU (CARA, HARA) and non-EU (RDEU, CPT)
functions.

The flexible form we use for the function V is based on orthogonal polynomials. To
motivate it, let us start with the benchmark of risk-neutrality. Then V coincides with the
expected gain, up to normalization. We choose again to normalize the utility of losing the
bet to zero, and we normalize the utility of winning to be 1 when odds are RM = 6, which
is close to the median odds for the marginal bettors in the sample. Then risk-neutrality
would give

V (R�p�θ)= p
R+ 1
RM + 1

�

22See Appendix D of the Supplemental Material for more information on rounding.
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This suggests that a flexible generalization could use the following form:

V (R�p�θ)= p
R+ 1
RM + 1

exp
(
K(R�p�θ)

)
�

with the specification

K(R�p�θ)=
∑
k�m≥0

αkmAk(R)Bm(p)+
∑

k�l≥1;m≥0

βklmPk(Rθ)Ql(θ)Bm(p)� (13)

The first sum corresponds to the homogeneous case for which all types share the same
utility functions. In this formula, (Ak) is a family of polynomials chosen to be orthogonal
over the distribution of R; we normalize them so that Ak(RM) = 0 for all degrees k ≥ 0.
Departures from the expected utility case are captured by the family (Bm) of polynomials,
which we chose to be orthogonal over the distribution of the risk-neutral probabilities
given by (3).

The heterogeneous case requires a third argument θ, which appears in the second sum.
Here, utilities depend directly on θ through the family (Ql) of orthogonal polynomials
over the distribution of marginal bettors’ types (θ). Since higher θ’s tend to bet on horses
with higher odds R, we center and standardize the distribution on odds for each value
of θ. That is, we define the variable Rθ = (R − E(R|θ))/√V (R|θ) and instead of using
the 3-tuple (R�p�θ), we use (Rθ�p�θ) as argument of the specification.23 We chose a
family of polynomials (Pk) to be orthogonal over the distribution of Rθ, and once more
we normalize them to equal zero when R =RM . As in the homogeneous case, departures
from the expected utility case are captured by the family (Bm) of orthogonal polynomials.

These are very flexible specifications, that could approximate any continuous value
function to any degree of precision. Even in an expected utility context, we do not impose
that the von Neumann–Morgenstern utility be either always concave or always convex;
and the normalized fear or ruin may cross the threshold of 1 and fan in or fan out. The
price to pay for flexibility is that the monotonicity conditions on V cannot be directly
imposed on this form, and will have therefore to be tested ex post on the estimated mod-
els. Specifically, V must be increasing in p (which requires that 1 + pKp ≥ 0) and in R
(which requires 1 + (R + 1)KR ≥ 0). Similarly, our single-crossing assumption cannot be
translated into simple restrictions on the parameters; rather, we shall check the empirical
relevance of the assumption on our preferred estimates. The normalized fear of ruin is

NF(R�p�θ)= 1 +pKp(R�p�θ)

1 + (R+ 1)KR(R�p�θ)
�

and Assumption 3 requires that it decrease in θ. We will check this condition on all horses
i < n in each race. Finally, the indifference conditions are, in each race and for i < n,

log(pi)+ log(Ri + 1)+K(Ri�pi� θi)

= log(pi+1)+ log(Ri+1 + 1)+K(Ri+1�pi+1� θi)� (14)

23We estimate the conditional expectation and dispersion over the sample (θi�Ri), (θi�Ri+1), excluding the
longest shot i = n in each race.
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which we need to solve for the probabilities pi. Define

Xi = 1
Ri + 1

exp
(∑

j<i

(
K(Rj�pj� θj)−K(Rj+1�pj+1� θj)

))

with the usual convention
∑

∅ = 0. Since probabilities must sum to 1 in each race, we get

pi = Xi

n∑
j=1

Xj

� (15)

Under EU, this explicitly gives probabilities, since K and therefore the X terms do
not depend on p. Under NEU, the system of equations has to be solved numerically for
each race.24 Recovering the probabilities allows to compute the log-likelihood function
for each race, and therefore for the total sample, as follows:

logL =
∑
c

logpc
w(c)�

where w(c) stands for the index of the winning horse in race c. Maximizing this likelihood
provides estimates of the coefficients α and β. Notice that this likelihood function, as well
as the one in Jullien and Salanié (2000), assumes serial independence between consec-
utive races. However, the presence of a varying number of horses in common between
two races would make accounting for this potential correlation very complex. Another
important limitation we share with the existing literature is the assumption that each bet-
tor bets a fixed amount. If bettors were to bet different amounts, but these amounts only
depended on, say, individual wealth and were independent of horse and race character-
istics, this could be fixed with a re-weighting of the distribution of bettors’ types. In that
case, each marginal bettor would still be identified, as would his preferences. On the other
hand, in the absence of data on individual decisions, we do not have much to say in the
case when the amount bet depends on probabilities and odds.

5. RESULTS

We estimate six classes of models, all of which are nested in the general specification
given above. Four classes are defined by the distinction between expected utility models
and non-expected utility models, and the distinction between homogeneous preferences
(whereby all agents have the same attitude towards risk) and heterogeneous preferences
(for which we will have to check ex post the validity of the single-crossing assumption).
We also introduce two subclasses in the non-expected utility homogeneous class, cor-
responding to the Yaari (1987) dual model and to the rank-dependent expected utility
model (Quiggin (1982), Abdellaoui (2002)). In each class, we still face multiple degrees
of freedom, as we can freely vary the number and degrees of the various polynomials.
Since many of these models are nested, we shall use the Bayesian information criterion
(BIC) to select the best model in each class, and to compare the performances of these
models across classes.25

24We used the R package nleqslv for that purpose.
25We could have used the Akaike information criterion (AIC) instead. These two criteria mainly differ

in parsimony. The AIC subtracts twice the number of parameters from the log-likelihood, whereas the BIC
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TABLE III

AN OVERVIEW OF MODELS’ FIT

Family BIC Number of Parameters 2 logL

Risk-neutral −92�124�3 0 −92�124�3
EU homogeneous +49�9 2 +70�3
EU heterogeneous +56�7 3 +87�3
Yaari homogeneous +29�7 2 +50�1
RDEU homogeneous +61�2 2 +81�6
NEU homogeneous +73�1 1 +83�3
NEU heterogeneous idem idem idem

Table III provides an overview of our results. We multiplied the value of the log-
likelihood by 2 in order to facilitate χ2 tests. The first line summarizes the benchmark
of risk-neutrality, for which the expected return is the same for each horse in any given
race. This specification is parameter-free, of course. Each of the following lines describes
the best model (as selected by BIC) in a given class. For each class, we list the gain in the
value of BIC relative to the risk-neutral benchmark, the number of parameters, and the
gain in (twice the) likelihood, compared to the risk-neutral benchmark. It is clear that all
selected models perform significantly better in terms of likelihood than the risk-neutral
model. What matters, though, is how they perform once the number of parameters they
use is taken into account.

This table suggests some surprising conclusions. First, heterogeneity does not seem to
play a major role. Indeed, the BIC indicates that, in the comparison between homoge-
neous EU and heterogeneous EU or between homogeneous NEU and heterogeneous
NEU, adding heterogeneity helps little or not at all. Second, non-expected utility seems
to matter much more, when compared to expected utility. This is all the more remarkable
that while we were able to estimate thousands of models under EU, we only estimated
a few hundreds under NEU. From a computational point of view, each NEU model is
much more costly to estimate than a EU model since we need to solve a nonlinear system
of equations for each race. As a result, Table III underestimates how much NEU overper-
forms over EU. Third and finally, two homogeneous models dominate: a homogeneous
RDEU model with two parameters, and a general homogeneous NEU specification with
only one parameter. The next subsections give more information about the estimated
shape of preferences in each class. They also discuss whether our preferred models satisfy
our theoretical requirements, and in particular the single-crossing condition.

5.1. Homogeneous Expected Utility

We start with the simplest specification, in which all bettors are expected utility maxi-
mizers with the same attitude towards risk. This can be compared with the “representa-
tive agent” model in Jullien and Salanié (2000). The only restriction we have to check ex
post is whether utilities are indeed increasing with respect to odds and probabilities. This
turns out to hold for all models we estimated.26 The estimated parameters are significantly

penalizes it by the logarithm of the number of observations. With our 26,525 races, this amounts to 10�2 rather
than 2 times the number of parameters. Our experience with AIC is that the number of parameters in the
selected models becomes unwieldy, leading to estimates that are sometimes wiggly and do not seem very robust.

26For brevity, we relegate to Appendix F of the Supplemental Material the values and standard errors of the
parameter estimates (Table S1).
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FIGURE 5.—Normalized fear of ruin in the homogeneous expected utility case.

different from zero at a 5% confidence level; the risk-neutral benchmark is thus clearly
rejected. The same remark holds for all estimated models.

Figure 5 plots the normalized fear of ruin as a function of odds, along with a 95% con-
fidence band. Remember that NF above 1 reflects risk-aversion. The representative agent
appears to be first risk-loving, then slightly risk-averse, then risk-loving again. These es-
timates are quite different from those reported in Jullien and Salanié (2000). The expla-
nation for this discrepancy lies in their parametric approach; they only considered HARA
preferences, and they found that within that class, a risk-loving CARA function fit their
data best. Our flexible approach shows that assuming a specific functional form is dan-
gerous. For instance, HARA preferences imply a “fanning out” pattern for the fear of
ruin: it increases with the odds if and only if it is larger than 1. But our estimated fear of
ruin is non-monotonic and crosses the value 1: the data clearly reject the HARA frame-
work.

These preferences indicate that when comparing horses with odds around 6, the rep-
resentative agent basically only cares about the expected return, while for other compar-
isons, he behaves in a more risk-loving way, thereby giving a risk premium to relative
outsiders. This is consistent with the pattern of expected returns. Figure 8 plots various
estimates of the expected return p(R + 1) − 1 on each horse as a function of its odds R
only. The reference “non-parametric” curve is computed from the raw data on odds and
on the identity of the winners. The other curves use the estimated probabilities from our
preferred model in each class, instead of the observed frequency of winning. The general
picture conforms to the well-known favorite-longshot bias: bettors choose longshots too
frequently, so that favorites offer a better expected return. But the nonparametric curve
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TABLE IV

QUANTILES OF THE MARGINAL
BETTORS’ TYPES θi

Quantile Value of θ

P10 0�375
P25 0�600
P50 0�821
P75 0�938
P90 0�976

appears to flatten for odds between 5 and 10; this helps explain why the NF index of our
“representative agent”goes slightly above 1 on this interval.27

5.2. Heterogeneous Expected Utility

We now turn to heterogeneous expected utility models. Since preferences are now in-
dexed by θ, it is important to examine first the distribution of θi, that is, of the types of
the bettors who are indifferent between a horse and the next one in a race. The quantiles
of θi are collected in Table IV. As Figure 6 makes clear, the distribution of θi in our sam-
ple is much more skewed to the right than the distribution of θ among bettors, which is

FIGURE 6.—Density of the marginal bettors’ types θi .

27In an experimental study that examines individual choices between binomial lotteries, Chark, Chew, and
Zhong (2016) observed that the favorite-longshot bias is reversed for small probabilities when the expected
return is high enough. We do not observe such a reversal; this may be because the expected return in horse
races is low, and even negative, while they only proposed lotteries with positive expected returns.
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FIGURE 7.—Normalized fear of ruin in the heterogeneous expected utility case.

normalized to be uniform over [0�1]. There are very few small θi’s; in fact, since none of
our races has more than 12 horses, we cannot observe any θi below 1/12. More generally,
our observations correspond to the edges of “market share” intervals; and there are many
more for outsiders, whose market share by definition is smallest.

The preferred model according to BIC only has four parameters.28 Figure 7 plots the
estimated normalized fear of ruin.The five Pxx solid curves plot NF(R�θ) as a function
of R for the heterogeneous EU preferences that correspond to the quantiles given in
Table IV. The “homogeneous” curve plots the values of NF we found in the homogeneous
case.

Figure 5 showed that the estimated preferences under homogeneity were quite com-
plex. Under heterogeneity, these preferences appear as the aggregation of heterogeneous
preferences of bettors whose attitude towards risk leads them to self-select into different
betting patterns. The individual preferences now are simpler: in particular, for each type,
the fear of ruin is almost systematically monotonic with the odds. On the other hand, the
fear-of-ruin index often crosses the value 1 that separates risk-aversion from risk-loving.
The rejection of HARA preferences seems to be a robust finding, even after we account
for aggregation and self-selection. Heterogeneity of preferences also modifies the analy-
sis of the favorite-longshot bias illustrated in Figure 8. Since those bettors who bet on a
particular range of horses set the relative price (i.e., the relative odds) for these horses
only, allowing for heterogeneity leads to a better fit to the observed expected return. Still,
the range 4–8 for odds appears to be special.

An important caveat in our analysis is that the single-crossing property is not always sat-
isfied. This can be seen directly in Figure 7, since some of the curves intersect each other,

28See Table S2 in Appendix F of the Supplemental Material.
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FIGURE 8.—The favorite-longshot bias.

or are even ranked in the “wrong” order. This is especially true for high types and high
odds. We computed analytically the derivative of NF with respect to θ for our preferred
estimates. The normalized fear of ruin increases significantly in θ for more than half of
marginal bettors θi, which indicates a robust violation of our single-crossing assumption.29

One natural interpretation is that the expected utility assumption is simply not supported
by our data, leading to spurious violations of the single-crossing assumption. An alter-
native explanation is that a more complex, multidimensional form of heterogeneity is
required to adequately model betting patterns; this calls for further work.30

5.3. Homogeneous Non-expected Utility

In the NEU case, the results in Table III also support the view that heterogeneity plays
at best a minor role. This is why we focus in this part on the homogeneous case.

29Recall that we selected specifications by rewarding parsimony. It is possible that this exacerbates the vio-
lations of the restrictions, in that more flexible specifications would have been more likely to accommodate the
restrictions. We chose to err on the side of a more aggressive approach to testing.

30Appendix E of the Supplemental Material gives more information on the pattern of these violations.
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5.3.1. Yaari’s Dual Model

Yaari’s (1987) model is a natural entry point into the very rich class of non-expected
utility models. Comparing the nonlinearity in odds V (p�R) = pu(R) of expected util-
ity to nonlinearity in probabilities V (p�R) = G(p)(R + 1) as in the dual theory nicely
frames the question posed by Snowberg and Wolfers (2010): what matters most, pref-
erences or perceptions? By comparing choice patterns across types of bets, they found
that a representative “dual” bettor explained the data better than a representative ex-
pected utility bettor. Relatedly, Gandhi and Serrano-Padial (2015) assumed that bettors
are risk-neutral, but in contrast to our rational expectations equilibrium, they allowed for
heterogeneous beliefs. They estimated a model in which roughly 70% of the agents have
correct beliefs, while beliefs are noisier for the remaining bettors. Note, however, that
they did not impose as much structure as we do, through our single-crossing assumption.

In our richer framework, we can benchmark these two theories using only win bets. As
shown in Table III, under homogeneity, expected utility fits the data better than the dual
model, although the estimated model allows for quite complex distortions.31 In a sense,
preferences thus seem to matter more than probability distortions in this comparison of
opposite models; but we will see that further estimates will lead us to qualify this state-
ment.

We can study these distortions through the lens of the normalized fear-of-ruin in-
dex. With a functional V (p�R) = G(p)(R + 1), the indifference equations V (pi�Ri) =
V (pi+1�Ri+1) identify G up to a multiplicative constant. In principle, this constant could
be recovered by imposing G(1) = 1; but this point is too far out of the range of observed
(risk-neutral) probabilities to be of any use. This should be kept in mind when looking at
Figure 9, which plots G(p) as obtained from our preferred model. The figure does suggest
that higher probabilities are more likely to be underweighted; this is in accordance with
the favorite-longshot bias, and with numerous empirical and experimental observations
(see, e.g., Wakker (2010)).

5.3.2. The RDEU Model

The RDEU model allows for nonlinearities in both the probability distortion function
and the utility from a gain:

V (R�p) =G(p)u(R)�

where, as usual, u is normalized to have u(−1) = 0. It clearly offers much more latitude
than expected utility; but it still incorporates much more structure than the general NEU
specification we shall discuss next. As explained in Section 1.2, both functions G and u
jointly determine the normalized fear-of-ruin index:

NF(R�p)= pG′(p)
G(p)

u(R)

(R+ 1)u′(R)
;

and in the above product, both terms (the elasticity of G with respect to p, and the fear-of-
ruin index associated to an expected utility maximizer) are only identified up to a common
positive constant. Figure 10 draws this elasticity as a function of the winning probability on
our preferred Yaari and RDEU homogeneous estimates. In the Yaari specification, this

31See Table S3 in Appendix F of the Supplemental Material. Here V is the product of p(R+ 1) and of the
exponential of a polynomial of degree 3 in p.
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FIGURE 9.—The probability distortion function (up to a multiplicative constant) in the Yaari case.

elasticity is uniquely identified; in the RDEU specifications, we can only draw conclusions
on its variations. In both cases, the elasticity is rather flat at first, and then decreases for
probabilities above 0�3.

5.3.3. The General NEU Model

Table III also shows that a general, homogeneous NEU model performs better than a
homogeneous RDEU model. The former model also requires only one parameter, which
makes it especially parsimonious. This should be contrasted to the findings in Barseghyan
et al. (2013) and many other works, which argue that probability distortions are sufficient
to explain the choices of deductible in car or auto insurance. These new estimates may
point to directions for which the RDEU model is too demanding. Unfortunately, they are
difficult to summarize, and we could not find a general feature that would make the NEU
model appear superior based on arguments other than statistical fit.32

A simple way to contrast the patterns predicted by the different homogeneous models
is to plot the normalized fear of ruin NF(R�p) as a function of p for several fixed values
of R. This is done in Figure 11 for our four homogeneous specifications, from EU to NEU
via Yaari and RDEU. In each panel, we plotted p �→ NF(R�p) for the nine deciles of R
(P10 to P90) and the nine deciles of p conditional on R. Since NF does not depend on

32Here is a curious illustration of this similarity. Recall from (13) that all models are the product of p(R+1)
and of the exponential of a polynomial K in (R�p). For the RDEU model, K is a linear polynomial in R, plus a
quadratic polynomial in p (Table S4 in Appendix F of the Supplemental Material); while for the NEU model, K
is a polynomial in R, times a quadratic polynomial in p (Table S5). This shows both the power of our estimation
strategy and the difficulty of understanding analytically the different effects.
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FIGURE 10.—The elasticity of the probability distortion function (up to a multiplicative constant in the
RDEU case).

p for EU, the first panel plots horizontal segments for each value of R. For Yaari, NF
only depends on p and the points align nicely on a single curve. Clearly, that curve is
the exception to an inverse U-shaped pattern that appears for EU, RDEU, and NEU.
NEU seems to require less departure from smoothness than EU and to accommodate
more moderately negative risk-aversion than RDEU, giving the main role to probability
distortions.

At this point, our impression is that it is difficult to identify a pattern when comparing
these two estimated models. A natural extension would be to test for popular specifica-
tions like cumulative prospect theory:

V (p�R�θ)= G+(p�θ)u+(R�θ)+G−(1 −p�θ)u−(θ)�

Nonparametric estimation of three separate functions is out of reach, for numerical rea-
sons. We could, of course, resort to parametric specifications, but this is precisely what we
have tried to avoid in this paper.
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FIGURE 11.—Normalized fear of ruin for four homogeneous models.

CONCLUDING REMARKS

We have argued that it is possible to recover information on the distribution of individ-
ual preferences from the sole structure of the equilibrium relationship between prices (in
our case, odds) and economic fundamentals (here, probabilities), even in the absence of
micro data about individual behavior. We only used four assumptions: agents only care
about direct outcomes; the amounts they bet are statistically independent of the lottery
they face; they evaluate their decisions using the true probabilities (possibly up to agent-
dependent systematic deformations); and a standard single-crossing restriction applies.
Then, an equilibrium always exists and is unique. Moreover, the observation of equilib-
rium patterns overidentifies the distribution of preferences in the population; and under-
lying assumptions can be tested. Similar ideas have been suggested in several theoretical
contributions; but to our knowledge, they have not been taken to data in a systematic
way. We provided an empirical investigation of a textbook example, namely, horse races.
Our approach could presumably be generalized to more complex frameworks, including
insurance and financial markets—but much remains to be done in this direction.

The following three points give a concise summary of our empirical findings:
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• It is possible to provide a pretty good description of observed behavior using par-
simonious models. While the functional forms we use are highly flexible, the models se-
lected by the BIC (Bayesian information criterion) rely on a very small number of param-
eters.

• However, obtaining a good empirical fit requires departing not only from standard
functional forms such as CARA and CRRA, but from the expected utility framework
altogether.

• A simple RDEU model performs as well as the most general NEU specifications.
On the other hand, the Yaari dual model is clearly dominated.

Finally, a distinctive feature of our approach is that we consider heterogeneous models
as well as homogeneous ones. Our conclusions are mixed on this point. From a method-
ological standpoint, we show that one-dimensional heterogeneous models of this type can
be identified from the data. However, the single-crossing restriction that underlies our
approach is not always satisfied by our estimates. Moreover, heterogeneous models do
not perform much better than homogeneous ones. It remains to be seen whether this
conclusion is linked to the restrictions we impose, most notably the one-dimensionality
of heterogeneity. As we showed in Section 2.3, some models with multidimensional het-
erogeneity can be estimated using strategies that directly generalize our approach. This
should be a fruitful program for future research.

APPENDIX: PROOFS

PROOF OF LEMMA 2: From the single-crossing assumption, the set of agents that
strictly prefer horse i to horse j > i is an interval containing 0. Similarly, the set of agents
that strictly prefer horse i to horse j < i is an interval containing 1. Therefore, the set
of agents that strictly prefer horse i to all other horses is an interval. The single-crossing
assumption also implies that these intervals are ranked by increasing i; and that the set of
agents indifferent between horse i and horse (i+ 1) is a singleton. Q.E.D.

PROOF OF PROPOSITION 1: From Definition 1, given a race (p, t), we have to find a
family R such that, for all i < n,

V

(
pi�Ri� (1 − t)

∑
j≤i

1
Rj + 1

)
= V

(
pi+1�Ri+1� (1 − t)

∑
j≤i

1
Rj + 1

)
�

From the first-order stochastic dominance assumption, the right-hand side is increasing
with Ri+1, and is strictly below the left-hand side at Ri+1 = Ri. Moreover, Assumption 2
implies that the right-hand side is strictly above the left-hand side for Ri+1 high enough.
Thus, this equality defines a unique Ri+1, such that Ri+1 >Ri. The single-crossing assump-
tion then ensures that the difference between the right-hand side and the left-hand side
is growing in θ at the right of (1 − t)

∑
j≤i

1
Rj+1 . Since, in addition, VR > 0, this proves that

Ri+1 is an increasing function of Ri, and a non-decreasing function of each Rj , j < i. It-
erating this remark, we get that each Ri+1 is an increasing function of R1. Replacing in
(2), we get an equation in R1 which has at most one solution. Existence follows from the
fact that (R1� � � � �Rn) forms an increasing sequence, so that by setting R1 high enough,
we get 1/(1 − t) >

∑
j 1/(1 + Rj); and from the fact that when R1 goes to −t, we get

1/(1 − t) <
∑

j 1/(1 +Rj). Q.E.D.
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PROOF OF PROPOSITION 2: If we know the odds, then we know the take and the market
shares, from (1) and (2); and we also know the indexes θi(R) of marginal bettors, from
(6). There only remains to find a family p solution to the system

∀ i < n V (Ri�pi� θi)= V (Ri+1�pi+1� θi)�

Let us focus on positive probabilities. From the first-order stochastic dominance assump-
tion, the right-hand side is increasing with pi+1, and is strictly above the left-hand side at
pi+1 = pi. From Assumption 1, it is also strictly below the left-hand side when pi+1 goes
to zero; therefore, pi+1 is uniquely defined, and pi+1 <pi. Moreover, pi+1 is an increasing
function of pi, and thus of p1. Finally, p1 is uniquely determined by p1 + ∑

i<n pi+1 = 1
(existence follows from checking the cases p1 → 0 and p1 = 1). Q.E.D.

PROOF OF PROPOSITION 3: Property (iv) holds, as a simple rewriting of (7). Properties
(i)–(iii) follow directly from Assumptions 1–3 and the definition of G in (8). For example,
recall that the single-crossing assumption states that, for all R<R′ and θ < θ′,

V (R�p�θ)≤ V
(
R′�p′� θ

) ⇒ V
(
R�p�θ′)< V

(
R′�p′� θ′)�

This is equivalent to

p′ ≥G
(
R�p�R′� θ

) ⇒ p′ >G
(
R�p�R′� θ′)�

and thus G must be decreasing with θ, as required in property (i). Q.E.D.

PROOF OF PROPOSITION 4: Let us define a function w by

w(R�p�θ)= Gp

GR

(
R�p�R′� θ

)
�

where, by property (ii) of Proposition 3, the RHS does not depend on R′.
The function w is positive by property (i) in Proposition 3. Now, choose some V whose

marginal rate of substitution Vp/VR is equal to w. We can impose VR > 0 and Vp > 0. Since

Vp

VR

(R�p�θ)= Gp

GR

(
R�p�R′� θ

)
�

there must exist a function G̃ such that

G
(
R�p�R′� θ

) = G̃
(
V (R�p�θ)�R′� θ

)
�

Then (i) implies that G̃ is increasing with V . Moreover, from (iii), it must be the case that
G̃ is the inverse of V with respect to p. Let us now prove that V verifies the single-crossing
assumption. Assume that V (R�p�θ) ≤ V (R′�p′� θ), for R<R′. Since G̃ is the inverse of
V , we get

G̃
(
V (R�p�θ)�R′� θ

) =G
(
R�p�R′� θ

) ≤ p′�

Since, from property (i), G is decreasing with θ when R<R′, we obtain that for θ′ > θ,

G̃
(
V

(
R�p�θ′)�R′) =G

(
R�p�R′� θ′)<p′�



34 CHIAPPORI, SALANIÉ, SALANIÉ, AND GANDHI

Since G̃ is the inverse of V , we get V (R�p�θ′) < V (R′�p′� θ′), so that V verifies the
single-crossing assumption, as announced. Finally, since G̃ is the inverse of V , property
(iv) can be rewritten as

∀ i < n V
(
Ri�pi(R)�θi(R)

) = V
(
Ri+1�pi+1(R)�θi(R)

)
�

which is exactly the set of equilibrium conditions in Definition 1. Thus, p(R) characterizes
the market equilibria associated to V . Q.E.D.
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