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Summary

This thesis investigates several topics in Microeconomic Theory, with a focus on incorpo-

rating information control into mechanism design, checking the robustness of mechanisms,

and providing a foundation for inconsistent collective decision-making. This work helps to

optimize information transmission and acquisition in organizational communications, adver-

tisement and policy design. It also sheds light on how inconsistent group decisions derive from

heterogeneity in group members, and proposes ways to restore efficiency. The thesis consists

of three chapters, each of which is self-contained and can be read separately.

The first chapter studies a mechanism design environment where the principal has con-

trol over the agents’ information about a payoff-relevant state. The principal commits to an

information disclosure policy where each agent observes a private signal, while the principal

directly observes neither the true state nor the signal profile. Examples include (1) assess-

ing whether a new product matches consumers’ preferences through their feedback on sample

product trials, and (2) gathering intelligence by authorizing investigators to collect various

aspects of information. I establish optimality of individually uninformative and aggregately

revealing disclosure policy, where (i) each agent obtains no new information about the state af-

ter observing any realization of his own signal, but (ii) the principal can nevertheless infer the

true state from the agents’ reports about their signals. Furthermore, this optimal disclosure pol-

icy admits simple and intuitive implementation (such as certain types of blinded experiments,

or restrictions on access to certain information) under additional assumptions. If attention is

restricted to linear settings, I characterize a class of environments (including those satisfying

the standard regularity conditions in mechanism design) where an equivalence result holds

between private disclosure and public disclosure.

The second chapter, co-authored with Takuro Yamashita, is motivated by Chung and Ely

(2007), who establish maxmin and Bayesian foundations for dominant-strategy mechanisms

in private-value auction environments. We first show that similar foundation results for ex

post mechanisms hold true even with interdependent values if the interdependence is only

cardinal. Conversely, if the environment exhibits ordinal interdependence, which is typically
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the case with multi-dimensional environments, then in general, ex post mechanisms do not

have foundation. That is, there exists a non-ex-post mechanism that achieves strictly higher

expected revenue than the optimal ex post mechanism, regardless of the agents’ high-order

beliefs.

The third chapter shows that dynamic inconsistency in collective decision-making can de-

rive from heterogeneity in group members’ outside options (i.e. opportunity costs that individ-

uals have to pay in order to join the group), even if individuals share the same exponentially

discounting time preference. This model of endogenous dynamic inconsistency facilitates

the analysis of welfare consequences, since time-consistent individual preferences allow for

a well-defined measurement of social welfare. We further characterize the optimal Bayesian-

persuasion information disclosure policy, which takes the form of upper revealing rules, to

alleviate the welfare distortion caused by inconsistent collective decisions. Our framework

proves to be highly adaptable to various contexts, including provision of public facilities and

assignment on team work.



Résumé

Cette thèse étudie plusieurs sujets dans la théorie microéconomique, en mettant l’accent sur

l’intégration du contrôle de l’information dans la conception des mécanismes, la vérification

de la robustesse des mécanismes et la création d’une base pour une prise de décision collective

incohérente. Ce travail permet d’optimiser la transmission et l’acquisition de l’information

dans les communications organisationnelles, la publicité et la conception de politiques. Il

met également en lumière la façon dont les décisions de groupe inconsistantes découlent de

l’hétérogénéité des membres du groupe et propose des moyens de restaurer l’efficacité. La

thèse comprend trois chapitres, chacun étant autonome et pouvant être lu séparément.

Le premier chapitre étudie un environnement de conception de mécanisme dans lequel

le principal a le contrôle sur les informations des agents concernant un état pertinent. Le

principal s’engage à une politique de divulgation d’informations où chaque agent observe un

signal privé, tandis que le principal n’observe directement ni l’état vrai ni le profil du sig-

nal. Les exemples incluent (1) l’évaluation si un nouveau produit correspond aux préférences

des consommateurs grâce à leurs commentaires sur les essais de produits échantillon, et

(2) la collecte de renseignements en autorisant les enquêteurs à recueillir divers aspects de

l’information. J’établis l’optimalité d’une politique de divulgation individuellement non in-

formative et révélatrice, où (i) chaque agent n’obtient aucune nouvelle information sur l’état

après avoir observé la réalisation de son propre signal, mais (ii) le principal peut néanmoins

déduire l’état réel des rapports des agents sur leurs signaux. En outre, cette politique de

divulgation optimale admet une mise en œuvre simple et intuitive (comme certains types

d’expériences en aveugle, ou des restrictions sur l’accès à certaines informations) sous des

hypothèses supplémentaires. Si l’attention est limitée aux paramètres linéaires, je caractérise

une classe d’environnements (y compris ceux qui satisfont aux conditions de régularité stan-

dard dans la conception des mécanismes) où un résultat d’équivalence est maintenu entre la

divulgation privée et la divulgation publique.

Le deuxième chapitre, co-écrit avec Takuro Yamashita, est motivé par Chung et Ely (2007),

qui établissent les fondements maxmin et bayésien des mécanismes de stratégie dominante

iii
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dans les environnements d’enchères à valeur privée. Nous montrons d’abord que les résultats

de fondation similaires pour les mécanismes ex post restent vrais même avec des valeurs

interdépendantes si l’interdépendance n’est que cardinale. Inversement, si l’environnement

présente une interdépendance ordinale, ce qui est typiquement le cas avec les environnements

multidimensionnels, alors en général, les mécanismes ex post n’ont pas de fondement. C’est-

à-dire qu’il existe un mécanisme non ex post qui réalise des recettes attendues strictement plus

élevées que le mécanisme ex post optimal, quelles que soient les croyances élevées des agents.

Le troisième chapitre montre que l’incohérence dynamique dans la prise de décision col-

lective peut provenir de l’hétérogénéité des options extérieures des membres du groupe (c.-à-d.

Coûts d’opportunité que les individus doivent payer pour rejoindre le groupe) même si les indi-

vidus partagent le même temps exponentiel préférence. Ce modèle d’incohérence dynamique

endogène facilite l’analyse des conséquences sur le bien-être, puisque les préférences indi-

viduelles en fonction du temps permettent une mesure bien définie du bien-être social. Nous

caractérisons en outre la politique de divulgation d’informations bayésienne-persuasion op-

timale, qui prend la forme de règles révélatrices supérieures, pour atténuer la distorsion du

bien-être causée par des décisions collectives incohérentes. Notre cadre s’avère très adapt-

able à divers contextes, tels que la fourniture d’équipements publics et l’affectation au travail

d’équipe.
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Chapter 1

Private Disclosure with Multiple Agents1

Shuguang Zhu2

April 15, 2018

Abstract

We study a mechanism design environment where the principal has control

over the agents’ information about a payoff-relevant state. The principal commits

to an information disclosure policy where each agent observes a private signal,

while the principal directly observes neither the state nor the signal profile. We

prove the optimality of individually uninformative and aggregately revealing dis-

closure policy, where (i) each agent obtains no new information about the state

after observing any realization of his own signal, but (ii) the principal can infer the

true state from the agents’ reports about their signals. Furthermore, this optimal

disclosure policy admits simple and intuitive implementation (such as certain type

of blinded experiments) under additional assumptions. If attention is restricted to

linear settings, we characterize a class of environments (including those satisfy-

ing the standard regularity conditions in mechanism design) where an equivalence

result holds between private disclosure and public disclosure.

1I am indebted to Takuro Yamashita for his inspiration and guidance at every stage of my research work. I also

thank, in alphabetical order, Yu Awaya, Tilman Börgers, Gabriel Carroll, Jacques Crémer, Daniel Garrett, Renato

Gomes, Christian Hellwig, Johannes Hörner, Doh-Shin Jeon, Daniel Krähmer, Heng Liu, Qingmin Liu, Thomas

Mariotti, David Miller, Jérôme Renault, Andrew Rhodes, Alex Smolin, Chunan Wang, and participants in TSE

Student Workshop 2017, EWMES 2017 and SAEe 2017 for extremely valuable comments and suggestions on

this project.
2Toulouse School of Economics, University of Toulouse Capitole, France. shuguang.zhu@tse-fr.eu
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2 CHAPTER 1. PRIVATE DISCLOSURE WITH MULTIPLE AGENTS

1.1 Introduction

We consider a broad range of situations where the principal (denoted by “She”; while “He”

denotes the agent) has considerable control over agents’ information about a payoff-relevant

state, before she designs the mechanism. The principal can reveal some signals about the

state to agents in the manner of private disclosure, where signals are individually chosen and

secretly sent to each agent3; however, the principal cannot directly observe either the state or

the signal profile.

In practice, the assumption that the principal designs a disclosure policy of something she

cannot observe is well founded. Imagine a situation (due to Lewis and Sappington, 1994)

where the seller lacks information about potential buyers’ tastes for her new product. By

offering product samples, the seller is able to control the amount of information about her

product that is available to different buyers. After gathering feedback, the seller gains a better

knowledge of whether the product characteristics match with buyers’ preferences. Another

example is about how an intelligence agency sends off investigators or spies to collect con-

fidential information. By authorizing each person to investigate only a particular aspect, the

intelligence agency effectively controls what and how precisely investigators learn about the

targeted information.

We work in a general environment where the principal can implement stochastic outcomes,

not necessarily with the help of transfers. Our model fits various classical settings, including

private value, interdependent value, and a wide class of objectives. At the first stage, the prin-

cipal can commit to any information disclosure policy which generates private signals to each

agent. At the second stage, the principal can commit to any mechanism whose outcome de-

pends on agents’ reports about their private types and signals. The principal’s problem is to

design a private disclosure mechanism, consisting of the information disclosure policy and the

associated mechanisms, so as to optimize her objective function. Thus, in terms of method-

ology, we are closer to the Bayesian persuasion model (e.g., Kamenica and Gentzkow, 2011;

Kolotilin, Mylovanov, Zapechelnyuk, and Li, 2017; Yamashita, 2017) than to the cheap-talk

model adopted in the informed-principal literature.4 However, unlike the Bayesian persuasion

3Our private disclosure setting can easily accommodate the case of public disclosure, through sending per-

fectly correlated signals to all agents.
4See Myerson (1983), Maskin and Tirole (1990, 1992) and Mylovanov and Tröger (2012). In these papers,

only cheap-talk signals are available for the principal during the information disclosure process. Thus, the fol-

lowing mechanism in equilibrium induced by each realization of the state – which is privately observed by the

principal – must be the best choice for the principal among all feasible mechanisms given the agents’ equilibrium

strategies. This requirement imposes additional incentive compatible constraints on the principal side, which
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model where the sender’s payoff is exogenously given, in our paper the sender (who is the

principal) has an endogenous payoff, which is defined as the expected payoff of the mechanis-

m design after the disclosure process.

Our main finding is that, in the optimal private disclosure mechanism, individual agent

gets no new information about the state after observing one’s own signal, while the principal

can infer the realization of the state from agents’ reports. We name this property “individually

uninformative and aggregately revealing” (or IUAR for short). We also show that through

IUAR disclosure policy, the principal gets the same payoff as if she could directly observe the

state and implement state-varying allocation rules. To the best of our knowledge, we are the

first to prove the optimality of IUAR disclosure policy. A comparison between our result and

other disclosure policies (e.g., Eső and Szentes, 2007; Bergemann and Pesendorfer, 2007) is

made in the next session.

We encounter difficulties of multidimensional screening (e.g., Rochet and Choné, 1998;

Haghpanah and Hartline, 2014; Carroll, 2017) when solving the principal’s problem. This

is because allocation rules at the second stage must provide enough incentives for agents to

truthfully report both their types and signals. To circumvent this difficulty, we first consider

a relaxed problem where the principal has strong control over the disclosure process in the

sense that she can observe the whole signal profile.

In this relaxed problem, the principal can make allocation rules contingent on the informa-

tion only if it is disclosed in the signal profile. Intuitively, the more accurate the signal is, the

better she can align the outcome with the state, while the harder it becomes to make agents

truthfully report their types. In other words, the principal faces a tradeoff between flexibility

and implementability (e.g., Eső and Szentes, 2007; Yamashita, 2017). However, we find that

the optimal private disclosure policy is (1) individually uninformative: conditional on observ-

ing any signal, each agent’s posterior belief about the state coincides with the common prior;

and (2) aggregately revealing: agents’ signals are correlated in a particular way such that the

true state can be pinned down by the whole signal profile (Proposition 1). In short, with strong

control over the disclosure process, the principal is free from the tradeoff.

Next, we consider the original problem where the principal has weak control over the

disclosure process in the sense that she has no access to the signal profile, as in Eső and

Szentes (2007), Bergemann and Pesendorfer (2007) and Li and Shi (2017). It turns out that

the principal can exploit the correlation among signals to elicit agents’ truthful reports for

free. More specifically, when there are four or more agents, without introducing any additional

assumption, the optimal private disclosure policy with strong control can be implemented in

makes the problem intractable without restrictions on the environment.
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weak-control settings based on the “(N − 1) majority rule” (Theorem 1). When there are

three (or two) agents, by allowing the principal to punish all agents by a uniformly worst

outcome (or to use arbitrary transfers), we can still implement the IUAR disclosure policy

(Theorem 2, 3).

We point out that the optimality of IUAR disclosure policy is quite robust, thus can be

applied to various contexts. Besides the general payoff environment, we also allow corre-

lations among agents’ types and the state. We can even relax, to a certain extent, the no-

communication assumption among agents, which is a key assumption for private disclosure.

In Section 1.6.3 we provide a variation of the IUAR disclosure policy that is immune to in-

formation sharing among any subset of agents (excluding a very limited number of agents)

(Theorem 5).5

We also show that the IUAR disclosure policy can be implemented through a more prac-

tical way, called sample-product approach (Section 1.5). The basic process is to (i) conduct

individual trials where each consumer is offered a randomized Choice Pair (similar to a blind-

ed experiment), and (ii) collect consumers’ reports about their preferred choices. In particular,

two states are distinguishable if we can find two consumers and a Choice Pair, such that

feedbacks coincide in one state but are different in the other state. We prove that the IUAR

information structure can be built on consumers’ feedbacks under a richness assumption on

the sample product, which says any pair of states are distinguishable (Theorem 4).

It is worth noting that the optimality of IUAR disclosure policy does not exclude the pos-

sibility of some other disclosure policies to be optimal. Actually, the full disclosure policy

(together with the allocation rule) in some papers is optimal only when it achieves the same

expected payoff for the principal as in our optimal private disclosure mechanism. If we re-

strict our attention to linear settings with independent private information (as in, e.g., Eső and

Szentes, 2007; Yamashita, 2017), then we can characterize a class of environments (including

those satisfying the standard regularity conditions) where an equivalence result holds between

private disclosure (which is IUAR at optimality) and public disclosure (which is full disclosure

at optimality).

The rest of the paper is organized as follows. Section 1.2 reviews the related literature.

Section 1.3 presents the setup. In Section 1.4, we first solve the optimal mechanism giv-

en by a relaxed problem where the principal has strong control over the disclosure process,

and then prove that it is also implementable in the original problem. Section 1.5 provides a

sample-product approach to implement the IUAR disclosure policy. Section 1.6 establishes

5In Appendix B.2.8, we show that the IUAR disclosure policy is robust to the presence of certain number of

faulty agents in the sense of Eliaz (2002).
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the equivalence result between public and private disclosure, and discusses the assumptions

on the environment. Section 1.7 concludes and provides several applications. Omitted proofs

can be found in Appendix A and the Supplemental Material (Appendix B).

1.2 Related Literature

The optimality of IUAR property appears to conflicts with the recurring finding of the opti-

mality of full disclosure in literature. One reason is that only public signals are considered

in these papers. In the investigation of winner’s curse, Milgrom and Weber (1982), followed

by Ottaviani and Prat (2001), discover the linkage principle, which suggests that the seller

should commit to fully revealing her information that is affiliated with the buyers’ valuation-

s. Yamashita (2017) shows that it is optimal for a mechanism designer to disclose all the

relevant information in a class of linear environments where the principal’s and agents’ infor-

mation are affiliated. A common feature of these papers is that flexibility effect dominates

implementability effect, resulting in the optimality of full disclosure. What makes our private

disclosure mechanism distinct from these papers is that: a public signal can only induce a

degenerate distribution of agents’ posterior belief over the others’ signals; but on receiving

a private signal, each agent will form a posterior belief about the opponents’ signals which

is correlated with his posterior belief about the state. This correlation provides the principal

more (or more precisely, full) flexibility to adjust the allocations to the true state.

Another reason that sets our result apart from the literature is that we don’t impose ad

hoc restrictions on the information structure available to the principal. Eső and Szentes (2007)

consider an auction environment where an informed seller commits to a private disclosure pol-

icy before conducting an auction; moreover, they restrict attention to independently distributed

private signals among the agents. They suggest that the seller should make available all her

information to the buyers, for the sake of improving efficiency. However, this is because their

independence assumption on agents’ signals essentially excludes the possibility for the seller

to exploit the correlation of private signals to achieve the aggregately revealing property.

Bergemann and Pesendorfer (2007) also consider an auction environment where the seller

can jointly decide the accuracy of bidders’ information about their valuation and the alloca-

tions. Their model is a special case of ours, where (i) agents’ private information is only

consisting of the signals sent by the principal, and (ii) conditional on one’s signal, each agen-

t’s valuation is independent of the other agents’ signals. (See Footnote 19.) They show that

optimal information structures can be represented by monotone partitions. However, if we

relax this restriction on the information structure and consider the general disclosure policy
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as in our setup, then the optimality of IUAR disclosure policy also applies to their auction

environment.

Regarding the IUAR information structure, the most closely related work is Liu (2015),

who defines the “individually uninformative correlating device” to characterize the correla-

tions implicitly captured by partition models for incomplete information games.6 Particularly,

no individual updates the likelihood ratio between two arbitrary states upon any private ob-

servation generated from the correlating device. In fact, the IUAR disclosure policy satisfies

this definition. Despite this common feature, the context Liu considers is distinct from ours.

In Liu (2015), the individually uninformative information structure is exogenously given as

an assumption, in order to decompose an arbitrary partition model into the conjunction of a

non-redundant partition model (which shares the same set of hierarchies of beliefs), and a

correlation device (which specifies the strategic correlations). While in our paper, we provide

a rationale for using such information structure, because it is derived from the maximizing

problem.

Börgers, Hernando-Veciana, and Krähmer (2013) define the complementarity (or substi-

tutability) of two signals, which describe a phenomenon where one signal could become more

(or less) valuable when the other signal becomes available. They show that in an auction en-

vironment, information disclosure does not increase the seller’s expected revenue if signals

are complements (since this will increase bidders’ information advantage); while disclosing

the information does no harm to the seller if signals are substitutes (because this can reduce

bidders’ information advantage). In our paper, the necessity of private signals is in line with

their findings. Particularly, the signals privately observed by agents in the IUAR disclosure

policy are essentially complements for each other, thus allowing agents to acquire information

about the others’ signals would undermine the implementation of the mechanism.

Krähmer (2017) studies information design in auctions with the assumptions: each bid-

der’s information structure is drawn from a bidder-specific collection of random variables,

where each random variable is a signal only informative about this bidder’s valuation for the

object; and the auctioneer can commit to any correlated distribution of the signal profiles, so

that bidders’ posterior valuations get correlated which allows full-rent extraction through the

Crémer-McLean mechanism (where transfers are necessary). By including a fully-revealing

signal in each agent’s set of possible signals, and choosing a sequence of correlated distribu-

tions converging to the degenerate distribution where fully-revealing signals are selected for

all bidders with probability 1, the auctioneer can approximately achieve the first-best outcome,

and the disclosure policy is almost aggregately revealing.

6See Appendix B.2.2 for a discussion about how it is related to our paper.
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1.3 The Model

1.3.1 Payoff environment

We consider an environment with a finite set I = {1,2, . . . ,N} of risk-neutral agents, where

N ≥ 2, and a finite set A (∋ a) of social alternatives. Each agent i ∈ I has a private type vi

drawn from a finite subset of di-dimensional Euclidean space, denoted by Vi ⊆ R
di , which is

independently distributed according to the probability measure Fi(vi). Let V = ∏
N
i=1Vi, and

FV = ∏
N
i=1 Fi be the joint distribution over V .

The information controlled by the risk-neutral principal – that is, the state of the world –

is denoted by θ ∈ Θ ⊆ R
d , which is endowed with a probability measure F0(θ). Assume that

|Θ|= T < ∞,7 then we write F0(θ = θt) = αt > 0, for t = 1,2, . . . ,T , where ∑
T
t=1 αt = 1. The

principal and agents share a common prior for (v,θ) ∈V ×Θ, where F0 and (Fi)i∈I are mutu-

ally independently distributed. It’s worth noting that such mutual independence assumption is

just for ease of presentation. In Appendix B.2.3, we prove that our main result (Theorem 1)

remains valid even if there exists certain correlation among (F0,F1, . . . ,FN).

The utility of each agent i is given by ui(a,v,θ), and the principal’s utility is given by

u0(a,v,θ). The principal can implement any lottery of the social alternatives, thus a feasible

allocation x ∈ ∆(A ) is a probability measure over A . Agents and the principal evaluate

allocation x according to the expected utility, which is given by

ui(x,v,θ) =
∫

a∈A

ui(a,v,θ)dx(a), for i = 0,1, . . . ,N.8

1.3.2 Information disclosure policy

The signal space is denoted by M = ∏
N
i=1 Mi, where each Mi collects all possible signals mi

that agent i can privately observe, which potentially enables the principal to induce different

posterior beliefs over θ across agents.9 The information disclosure policy is defined as (M,Ξ),

7See Subsection 1.6.2 for discussions about the case where we relax the finiteness assumptions on the set of

states, as well as the set of social alternatives and agents’ type spaces.
8Essentially, the critical assumption we need is the linearity of utility functions with respect to allocations, as

well as the convexity of the set of feasible allocations.
9The possibility of inducing different posteriors in more practical contexts is studied in literature. For ex-

ample, Appendix A of Anderson and Renault (2006) provides a model of advertising products with multiple

characteristics. Because consumers have heterogeneous preferences on product characteristics, it is feasible for

sellers to communicate different information about final payoffs to different consumers, by describing particular

product characteristics.
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where the measurable mapping Ξ : Θ → ∆(M) specifies the distribution of private signal pro-

files generated by the disclosure policy under each state of the world. Ξ and F0 induce a joint

distribution over Θ×M, denoted by Φ, such that for any A ⊆ Θ and B ⊆ M, we have
∫

A×B
dΦ(θ ,m) =

∫

θ∈A

∫

m∈B
dΞθ (m)dF0(θ).

Let Λ ∈ ∆(M) be the marginal distribution of Φ over M. Similarly, we define Λi ∈ ∆(Mi) as

the marginal distribution of Φ over Mi.

The conditional distribution over Θ given any m ∈ M is denoted by Ψm(θ) ∈ ∆(Θ). From

the standard results in probability theory,10 Ψm(θ) is well-defined, provided that Θ is a com-

plete, separable metric space (or in other words, a Polish space). Moreover, for any m ∈ M

and A ⊆ Θ, we have ∫

θ∈A
dΨm(θ) =

∫
θ∈A dΦ(θ ,m)∫
θ∈Θ dΦ(θ ,m)

.

Similarly, for each i, we define Ψmi
∈ ∆(Θ×M−i) as the conditional distribution over Θ×M−i

given any mi ∈ Mi.

1.3.3 Mechanism

The principal selects (without knowing the state of the world) the information disclosure pol-

icy, which generates a privately observed signal for each agent. We assume that the principal

has “weak control” over the disclosure process in the sense that she cannot observe the re-

alization of m. This setting can be rationalized by assuming that the principal hires a third

party to conduct a series of individual experiments for each agent. Essentially, each agent

i’s private information includes the “exogenous” type vi and the “endogenous” type mi. By

the revelation principle we can restrict attention to direct mechanisms, where messages from

agents to the principal are drawn from V ×M. The associated direct mechanism consists of a

tuple (V,M,x), where x : V ×M → ∆(A ) specifies the lottery of social alternatives that will

be implemented by the principal on receiving agents’ reports about their private information.

Each agent i with vi after observing his own signal mi will form a posterior belief Ψmi

about θ and the other agents’ signals m−i. When agent i reports (v̂i, m̂i) and all the other

agents report truthfully, the interim utility of agent i is defined as

Ui(v̂i, m̂i;vi,mi) =
∫

v−i

∫

θ ,m−i

ui

(
x(v̂i,v−i, m̂i,m−i),vi,v−i,θ

)
dΨmi

(θ ,m−i)dF−i(v−i).

We consider Bayesian Nash equilibrium where truth-telling by all agents constitutes the e-

quilibrium strategy profile. Since agents have multi-dimensional private information, (v̂i, m̂i)

10See Faden (1985), for example.
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will be a misreport as long as v̂i 6= vi or m̂i 6= mi. Thus, the mechanism has to satisfy agents’

Bayesian incentive compatibility (BIC) constraints

Ui(vi,mi;vi,mi)≥Ui(v̂i, m̂i;vi,mi), ∀(vi,mi) 6= (v̂i, m̂i),

and interim individual rationality (IIR) constraints

Ui(vi,mi;vi,mi)≥ 0, ∀(vi,mi) ∈V ×M.

1.3.4 Principal’s problem

The principal chooses the private disclosure mechanism, denoted by (Ξ,x), to maximize her

ex ante expected utility, which is consisting of the information disclosure policy (M,Ξ) and

the associated direct mechanism (V,M,x). The timing is as follows:

1. The principal makes public (Ξ,x), to which we assume that the principal can commit

during the whole game.

2. Each agent i privately observes his own signal mi generated by (M,Ξ), and then simul-

taneously reports v̂i and m̂i to the principal.

3. After observing the whole report profile (v̂, m̂), the principal implements the social al-

ternatives according to x(v̂, m̂).

We assume for the moment that agents cannot communicate during the game. In Section 1.6.3

we relax this assumption and allow a subset of agents to share information about their signals.

We also rule out the possibility of collusion among agents. The principal’s problem, denoted

by (P), is defined as follows:

(P) sup
Ξ, x

∫

θ

∫

m

∫

v
u0

(
x(v,m),v,θ

)
dFV (v)dΞθ (m)dF0(θ)

s.t. ∀i,(mi,vi) 6= (m′
i,v

′
i) :

BICmi,vi→m′
i,v

′
i

∫

v−i

∫

θ ,m−i

ui

(
x(vi,v−i,mi,m−i),v,θ

)
dΨmi

(θ ,m−i)dF−i(v−i)

≥
∫

v−i

∫

θ ,m−i

ui

(
x(v′i,v−i,m

′
i,m−i),v,θ

)
dΨmi

(θ ,m−i)dF−i(v−i),

IIRmi,vi

∫

v−i

∫

θ ,m−i

ui

(
x(vi,v−i,mi,m−i),v,θ

)
dΨmi

(θ ,m−i)dF−i(v−i)≥ 0.

We can immediately see the tradeoff faced by the principal: choosing more informative dis-

closure policy could make it more difficult to satisfy the BIC constraints and leave more in-

formation rent to the agents; however, less informative signals would increase the difficulty of
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implementing the proper allocation for each state, because the principal relies on the informa-

tion revealed by the disclosure policy to determine the allocation.

It is worth noting that the signal profile is realized before agents make any report. As a

result, the principal cannot make her disclosing strategy contingent on agents’ private types

v. One may wonder whether the principal can do strictly better in an alternative setting where

she can commit to an information disclosure policy Ξ : Θ×V → ∆(M) and ask each agent i

to report vi before the signal profile is realized. In Appendix B.2.1, we show that the optimal

private disclosure mechanism in Theorem 1, 2, 3 already achieves the best outcome in this

alternative setting. Thus, it is without loss of generality to adopt the framework of this paper.

1.4 Optimal Private Disclosure Mechanism

In this section, we characterize the optimal private disclosure mechanism defined by (P). To

give an outline of how we proceed, we first consider a relaxed problem where the principal

has “strong control” over the information disclosure process, in the sense that she directly

observes the signal profile m received by all agents. Then we show that the principal can

exploit the particular information structure derived from the relaxed problem to elicit agents’

truthful reports about the signal profile.

1.4.1 Relaxed problem: Strong control

Let (P1) be the relaxed problem of (P), where the principal has strong control over the dis-

closure process, so that agents cannot lie about their private signals. Since we have fewer

BIC constraints, the value of the relaxed problem – that is, the principal’s maximum expected

payoff in (P1) – is as an upper bound of the original problem (P).

(P1) sup
Ξ, x

∫

θ

∫

m

∫

v
u0

(
x(v,m),v,θ

)
dFV (v)dΞθ (m)dF0(θ)

s.t. ∀i,mi,vi 6= v′i :

BICvi→v′i|mi

∫

v−i

∫

θ ,m−i

ui

(
x(vi,v−i,mi,m−i),v,θ

)
dΨmi

(θ ,m−i)dF−i(v−i)

≥
∫

v−i

∫

θ ,m−i

ui

(
x(v′i,v−i,mi,m−i),v,θ

)
dΨmi

(θ ,m−i)dF−i(v−i),

IIRvi|mi

∫

v−i

∫

θ ,m−i

ui

(
x(vi,v−i,mi,m−i),v,θ

)
dΨmi

(θ ,m−i)dF−i(v−i)≥ 0.

Now we construct the following problem, denoted by (P∗), where no information disclo-

sure policy is involved, but the principal can privately observe the true state and commit to an
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allocation rule x : V ×Θ → ∆(A ).11

(P∗) sup
x

∫

θ

∫

v
u0

(
x(v,θ),v,θ

)
dFV (v)dF0(θ)

s.t. ∀i,vi 6= v′i :

BICvi→v′i

∫

θ

∫

v−i

ui

(
x(vi,v−i,θ),v,θ

)
dF−i(v−i)dF0(θ)

≥
∫

θ

∫

v−i

ui

(
x(v′i,v−i,θ),v,θ

)
dF−i(v−i)dF0(θ)

IIRvi

∫

θ

∫

v−i

ui

(
x(vi,v−i,θ),v,θ

)
dF−i(v−i)dF0(θ)≥ 0.

We can prove that the value of (P∗) is an upper bound of the value of (P1). The basic idea is

that, by pooling the signals for each agent, we can relax the incentive constraints and enlarge

the set the implementable mechanisms.

Lemma 1. (P∗) is an relaxed problem of (P1), and thus an relaxed problem of (P).

Proof. See Appendix A.1.

Skreta (2011) considers a similar information disclosure problem to (P1), except that the

principal can observe the state and make use of her information to determine the allocation

(even without disclosing it to the agents). Due to the inscrutability principle (Myerson, 1983),

it is optimal for the principal to reveal no information to the agents, which is exactly given by

(P∗) if we restate her results in our notations. However, Proposition 1 says that the principal’s

ability to directly observe and utilize the true state is not necessary to implement the optimal

mechanism. In other words, the value of (P1) can achieve the upper bound given by (P∗), even

though the principal does not have more information about θ than m.

Proposition 1. The value of (P1) is equal to the value of (P∗).

Before we prove the proposition, we first construct the information disclosure policy ΦS

(induced by ΞS and F0, where the superscript “S” stands for “strong control”). Let Mi =

{1,2, . . . ,T} for all i, and let

ΦS(θt ,m) =

{
αt

T
, if ml1 ≡ ml2 +(l1 − l2)t (mod T ), ∀l1, l2 ∈ I

0, otherwise

11We assume that the feasible set of (P∗) is nonempty; that is, there exists one allocation rule satisfying all

(BICvi→v′i
) and all (IIRvi

). This is not a demanding assumption in most cases, for example, if A includes a

social alternative a /0 where all agents opt out and get their own reservation utility, then the allocation rule which

implements a /0 with probability 1 under all (v,θ) will be such a feasible candidate.
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for any (θt ,m) ∈ Θ×M.12 The following lemma summarizes several nice properties of this

information structure.

Lemma 2. ΦS satisfies the following properties:

(i) For any m ∈ M, there exists at most one θ such that ΦS(θ ,m)> 0.

(ii) For any i,mi and θ , there exists a unique m−i ∈ M−i such that ΦS(θ ,mi,m−i)> 0.

(iii) For any i and mi, the marginal of ΨS
mi

over Θ, denoted by ΨS
mi
(θ), equals F0.

(iv) The marginal of ΦS over Θ is F0.

Proof. See Appendix A.2.

Property (i) says the information policy is aggregately revealing, since after observing any

signal profile that occurs with strictly positive probability, the principal can infer the realiza-

tion of θ . This property enables the principal to make the allocation rule fully flexible with the

state. Property (ii) shows that, after receiving any signal, each agent’s posterior belief always

exhibits a perfect correlation between the state and the opponents’ signal profile (that occurs

with strictly positive probability). Property (iii) proves that this disclosure policy is individu-

ally uninformative in the sense that, each individual signal reveals no new information about

the state of the world, compared with the common prior. Property (iv) shows that ΦS indeed

meets the requirement of a feasible information disclosure policy. Next, we give the proof of

Proposition 1.

Proof of Proposition 1. Let {x∗(v,θ)}(v,θ)∈V×Θ be the solution to (P∗).13 Let Θ+(m) := {θ ∈
Θ | ΦS(θ ,m) > 0}. From property (i), Θ+(m) has at most one element. Let θ+(m) : M →
Θ stand for its unique element if Θ+(m) is not empty. From property (ii), we can define

12An equivalent way to define ΦS is that: m1 is uniformly distributed over {1,2, . . . ,T} and independent of θ ;

while conditional on θ = θt , we have mi = m1 +(i−1)t mod T for any i ≥ 2. The use of uniform distributions

and modulo operation is crucial for individually uninformative disclosure policy. Similar idea is used to pro-

vide enough incentives for agents to take equilibrium strategies in recommendation games and communication

networks. (See, e.g., Kalai, Kalai, Lehrer, and Samet, 2010; Renou and Tomala, 2012; Peters and Troncoso-

Valverde, 2013)
13The existence of the solution to (P∗) is straightforward. Since we assume that Θ, V and A are all finite

subsets, (P∗) is essentially a finite-dimensional linear programming problem whose feasible set is compact and

nonempty. It follows that there exists a global maximizer. See Lemma 5 for the existence of optimal mechanisms

without the finiteness assumptions.
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a mapping m+
−i : Θ×Mi → M−i, such that ΦS

(
θ ,mi,m

+
−i(θ ,mi)

)
> 0 for any (θ ,mi). We

construct the allocation rule xS:

xS(v,m) =

{
x∗
(
v,θ+(m)

)
, if Θ+(m) 6= /0

x̃, otherwise

where x̃ is an arbitrary element in ∆(A ). The choice of x̃ has no effect on the implementation

because any m such that Θ+(m) = /0 will never occur. Next, we show that the private disclosure

mechanism (ΦS,xS), which can also be written as (ΞS,xS), satisfies all the constraints in (P1)

and achieves the upper bound given by x∗. Pick any i,mi,vi 6= v′i, since we have

∫

v−i

∫

θ ,m−i

ui

(
xS(v′i,v−i,mi,m−i),v,θ

)
dΨS

mi
(θ ,m−i)dF−i(v−i)

=
∫

v−i

∫

θ
ui

(
xS(v′i,v−i,mi,m

+
−i(θ ,mi)),v,θ

)
dΨS

mi
(θ)dF−i(v−i)

=
∫

v−i

∫

θ
ui

(
x∗(v′i,v−i,θ),v,θ

)
dF0(θ)dF−i(v−i),

then immediately (BICvi→v′i|mi
) and (IIRvi|mi

) are satisfied, due to the fact that x∗ satisfies the

constraints (BICvi→v′i
) and (IIRvi

). On the other hand, the principal’s ex ante expected utility

under the private disclosure policy (ΦS,xS) is given by
∫

v

∫

θ

∫

m
u0

(
xS(v,m),v,θ

)
dΞS

θ (m)dF0(θ)dFV (v)

=
∫

v

∫

θ
u0

(∫

m
xS(v,m)dΞS

θ (m),v,θ
)

dF0(θ)dFV (v)

=
∫

v

∫

θ
u0

(
x∗(v,θ),v,θ

)
dF0(θ)dFV (v),

where the last equality comes from the fact that fixed any θ , any m ∈ M satisfying Ξθ (m)> 0

must also satisfy Φ(θ ,m)> 0, and thus induces the same allocation rule x∗(·,θ). To conclude,

(ΦS,xS) constitutes a solution to problem (P1), and achieves the value of (P∗).

1.4.2 Original problem: Weak control

We come back to the original problem (P) where the principal cannot directly observe the

signal profile. Then, multidimensional screening problems arise, since agents could misreport

both their private types and signals. We prove that the solution to (P1) can actually be imple-

mented in (P) when there are four or more agents. This is because the IUAR disclosure policy

constructed in Proposition 1 has a particular correlated structure which enables the principal

to elicit truthful reports of the signal profile for free. The cases with two or three agents are

discussed in the next subsection.
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Theorem 1. When N ≥ 4, the value of (P) is equal to the value of (P∗). The solution to (P),

written as (ΦW ,xW ) (induced by ΞW , whose superscript “W” stands for “weak control”), is

given by:

ΦW (θt ,m) =

{
αt

K
, if ml1 ≡ ml2 +(l1 − l2)t (mod K), ∀l1, l2 ∈ I

0, otherwise;

xW (v,m) =





x∗
(
v,θ+(m)

)
, if Θ+(m) 6= /0

x∗
(
v,θ+

−i(m)
)
, if Θ+(m) = /0, and ∃i such that Θ+

−i(m) 6= /0

x̃, otherwise,

where x̃ is an arbitrary probability measure over A , K is a prime number satisfying K ≥
max{T,N},14 Mi = {1,2, . . . ,K} for each i∈ I, Θ+

−i(m) :=
{

θt ∈Θ |ml1 ≡ml2 +(l1−l2)t (mod K),∀l1, l2 ∈
I \{i}

}
, and θ+

−i(m) denotes its unique element if Θ+
−i(m) 6= /0.

Proof. See Appendix A.3.

The basic idea to induce agents to truthfully report their privately observed signals is to

apply the “(N − 1) majority rule”, that is, the allocation for each agent is determined by the

opponents’ reported signal profile rather than his own signal. When there are four or more

agents, we can show (in Lemma 11) that the truthful report of signal profile by (N − 1) a-

gents can uniquely pin down the true state.15 Meanwhile, any report of signal profile off the

equilibrium path can be induced by at most one agent’s unilateral deviation from truth-telling

equilibrium strategy. In other words, let Di collect all possible signal profiles induced by

misreport of only agent i, that is,

Di :=
⋃

θ∈Θ

⋃

mi∈Mi

((
Mi \{mi}

)
×{m+

−i(θ ,mi)}
)
,

then we have Di and D j are disjoint for any i 6= j. Thus, if only agent i misreports his signal,

the principal observing (m̂i,m−i) can infer the true state θ = θ+
−i(m̂i,m−i) from m−i and assign

14We can always find such K because there are infinitely many prime numbers by Euclid’s theorem. The use

of prime numbers is to give a unified way of proving the theorem, because when there are a limited number of

agents, choosing |Mi| = |Θ| cannot guarantee that the principal could identify which agent takes the unilateral

deviation and what is the true state. For example, we assume that K = |Θ| = N = 4, and the principal receives

a signal profile (1,1,1,3). Clearly, there exists some agent who misreports his signal; however, the principal

cannot distinguish between two situations that both could induce such signal profile. Specifically, either the true

state is θ4 and the true signal profile is (1,1,1,1), but agent 4 misreports 3; or the true state is θ2 and the true

signal profile is (1,3,1,3), but agent 2 misreports 1.
15Similar property is named Nonexclusivity in Information by Postlewaite and Schmeidler (1986), who adopt

this property to derive the sufficient conditions for implementation of social choice correspondences in differen-

tial information economies.
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the corresponding allocation x∗(·,θ) which is invariant with agent i’s report, so as to make

agent i indifferent between telling the truth and misreporting.16

The IUAR disclosure policy frees the principal from the tradeoff between keeping the

mechanism more flexible with the true state, and leaving less information rent for agents.17

By making each agent’s posterior belief about the others’ signals (perfectly) correlated with his

posterior belief about the state, the principal achieves both goals at the same time. However,

in single-agent case, if we keep the aggregately-revealing property, then there is no room for

uncertainty in the agent’s posterior belief about the state. Thus, the existence of multiple

agents is indispensable for Theorem 1.

Also, the nature of private disclosure is critical for Theorem 1. To make (ΦW ,xW ) function

properly, the principal must guarantee that each agent’s information about the state is restricted

to his own signal. Specifically, since any two signals can uniquely pin down the true state,18

once an agent knows another agent’s signal – possibly by side communication or “peeping”

– he will know the true state and may find it profitable to deviate. Thus, the principal has to

completely ban information sharing among any pair of agents. In Subsection 1.6.3 we relax

this assumption by constructing a variation of (ΦW ,xW ) that is robust to information sharing

among any subset of agents (excluding a very limited number of agents).

It’s worth noting that Theorem 1 is also robust to various assumptions on the principal’s

access to information. To see this, even though the principal has no private information, she

can achieve the same payoff as if she could directly observe both the state and the signal

profile. Thus, if the principal also observes a (noisy) signal about the state, it is still optimal

for her to simply ignore this private information and conduct the mechanism developed in

Theorem 1.

We don’t impose particular restrictions on the set of feasible information structures that

can be used by the principal. This makes our result distinct from Bergemann and Pesendorfer

(2007). To see this, they consider the auction environment, where the timing is close to ours,

except that bidders can only learn about their valuations v∈V =×i∈IVi through private signals

(mi)i∈I generated by an information structure determined by the seller. The reason why opti-

mal information structures take the form of monotone partitions is due to their assumption on

the information structure, which says conditional on agent i’s signal mi, agent i’s valuation vi

16If all agents truthfully report their signals, we have already proved in Proposition 1 that agents will also

report their true types. As for signal profiles which only can be obtained from misreporting by at least two

agents, the associated allocations are irrelevant because we only consider unilateral deviations.
17For example, in Ottaviani and Prat (2001), Eső and Szentes (2007) and Yamashita (2017), the flexibility

effect plays a dominant role, resulting in the optimality of full disclosure.
18See the proof of Lemma 2-(i).
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is independent of the others’ private signals m−i.
19 Apparently, our disclosure policy doesn’t

satisfy this assumption. Let θ = (vi)i∈I be the state, and construct ΦW as before. From prop-

erty (ii) of Lemma 2, fixed any mi, there exists a bijection between V and {m+
−i(v) | v ∈ V},

which means vi cannot be independent of m−i. If we remove such restriction and allow the

seller to adopt arbitrary information structure, then the optimality of IUAR disclosure policy

also applies to their paper.

1.4.3 Two or three agents

When N ≤ 3, we can no longer construct the allocation rule as in case N ≥ 4, because

there could exist i 6= j such that Di ∩D j 6= /0. For instance, let m = (m1,m2,m3) and m′ =

(m1,m
′
2,m

′
3) be two signal profiles which will be sent with strictly positive probabilities in

ΦW , satisfying m2 6= m′
2 and m3 6= m′

3. If m is the true signal profile and agent 2 misre-

ports m′
2, then from the “majority rule” defined in the previous subsection, the allocation for

off-equilibrium-path signal profile (m1,m
′
2,m3) is xW (·,m1,m

′
2,m3) = x∗(·,θ+

−2(m)). Similar-

ly, if m′ is the true signal profile and agent 3 misreports m3, we get exactly the same off-

equilibrium-path signal profile (m1,m
′
2,m3); but the allocation should be xW (·,m1,m

′
2,m3) =

x∗(·,θ+
−3(m

′)). Notice that θ+
−2(m) 6= θ+

−3(m
′), then xW is not well-defined at (·,m1,m

′
2,m3) if

x∗(·,θ+
−2(m)) 6= x∗(·,θ+

−3(m
′)) . Essentially, to make (ΦW ,xW ) function properly, any unilat-

eral deviation from truthfully reporting one’s signal must not affect the principal’s inference

about the true state.

Definition 1 (“Innocuous Unilateral Deviation”). An aggregately revealing information dis-

closure policy (M,Ξ) is immune to unilateral deviation if:

(1) Undetected unilateral deviations do not affect the principal’s inference about θ , that is,

fixed ∀θ ∈ Θ, and ∀m ∈ M such that Ξθ (m) > 0, we have: Ξθ ′(m′
i,m−i) = 0, ∀i ∈ I,

∀m′
i 6= mi and ∀θ ′ 6= θ ;

(2) On detecting any unilateral deviation, the principal’s inference about θ is still not af-

fected, that is, fixed ∀m ∈ M satisfying Ξθ (m) > 0 for some θ , and ∀m′
i 6= mi such that

19This conditional independence assumption is indispensable to how they define interim utilities. To be

precise, given the auction mechanism (q, t), the interim utility of bidder i who observes mi and reports m̂i is

Ui(mi, m̂i) = Evi,m−i
[viqi(m̂i,m−i) | mi]−Em−i

[ti(m̂i,m−i) | mi]. Since we have

Evi,m−i
[viqi(m̂i,m−i) | mi] =

∫

vi,m−i

viqi(m̂i,m−i)dΨmi
(vi,m−i) =

∫

vi

∫

m−i

viqi(m̂i,m−i)dΨmi,vi
(m−i)dΨmi

(vi),

the condition to justify Ui(mi, m̂i) = E[vi | mi] ·Em−i
[qi(m̂i,m−i) | mi]−Em−i

[ti(m̂i,m−i) | mi], as in their paper, is

that Ψmi,vi
(m−i) = Ψmi

(m−i), which implies m−i is independent of vi conditional on mi.
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Ξθ ′(m′
i,m−i) = 0 for all θ ′ ∈ Θ, we have: Ξθ ′(m′

i,m
′
j,m−i j) = 0, ∀ j 6= i, ∀m′

j ∈ M j and

∀θ ′ 6= θ .

From the previous results, immediately we have that (M,ΞW ) satisfies the innocuous uni-

lateral deviation property if and only if N ≥ 4. In fact, when there are less than four agents,

Lemma 3 shows that any IUAR disclosure policy violates the innocuous unilateral deviation

property. Thus, if the individually uninformative property is indispensable for implementing

the solution to (P∗), then (ΦW ,xW ) no longer work. See Appendix B.3.1 for an example. Next,

we prove Theorem 1 for cases with two or three agents by introducing certain assumptions.

Lemma 3. When N = 2,3, aggregately revealing and innocuous unilateral deviation imply

individually revealing, that is, Ψmi
(θ) ∈ ∆(Θ) is degenerate, ∀i ∈ I and ∀mi ∈ Mi.

Proof. See Appendix B.1.1.

Three agents

Notice that in (M,ΦW ), the state θ can be uniquely inferred from the truthful report of signals

by any two agents, then with three agents, any unilateral deviation from the equilibrium strat-

egy can be detected by the principal. Thus, the principal can provide enough incentives for

agents to truthfully report their signals by punishing all agents with a uniformly worst social

alternative if a misreport is detected.

Assumption 1. There exists a ∈ A such that

a ∈
⋂

i,v,θ

arg min
a∈A

ui(a,v,θ).

The existence of such uniformly worst alternative is a relatively mild assumption. For

example, if all agents’ utility functions are non-negative, then a social alternative which gives

each agent 0 utility under any possible realization of (v,θ) would satisfy this assumption. Such

alternative can be interpreted as punishing all agents with reservation utility, which is 0 in our

model. The following theorem characterizes the optimal private disclosure mechanism with

weak control for three agents.

Theorem 2. Under Assumption 1, the optimal private disclosure mechanism with weak con-

trol when N = 3 is given by (ΦW ,xW |3), where

xW |3(v,m) =

{
x∗
(
v,θ+(m)

)
, if Θ+(m) 6= /0

a, otherwise.
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Proof. See Appendix A.4.

Particularly, we adopt the same information disclosure policy ΦW as in Theorem 1, keep

the on-path allocation rules of xW unaffected, but modify the off-path allocation rules as fol-

lows: any unilateral deviation from truth-telling equilibrium will induce xW |3(·,m) = a, which

means the uniformly worst social alternative a is implemented with probability 1 conditional

on a misreport m is received by the principal.

Remark 1. The reason why we need the uniformly worst social alternative is that, the princi-

pal cannot distinguish the agent who misreports, given an off-equilibrium-path signal profile

induced by unilateral deviation. However, if the principal can tell which agent does not lie

about his signal, then we can relax Assumption 1 by requiring the existence of punishment for

any pair of agents rather than all agents; that is, for i = 1,2,3 there exists a−i ∈ A satisfying

a−i ∈
⋂

j 6=i,v,θ

arg min
a∈A

u j(a,v,θ).

In general, it is an open question whether such disclosure policy exists and how to characterize

it. In Appendix B.2.4, we prove that when T = 2 and N = 3, the IUAR disclosure policy ΦW

meets the requirement that the principal knows which pair of agents the liar belongs to. Then

observing any off-path signal profile m induced by unilateral deviation, the principal identifies

the truth teller i, and implements xW |3(·,m) = a−i, so that the liar is punished for sure. While

the on-path allocation rule is the same as xW .

Two agents

When N = 2, the previous construction does not work even with uniformly worst social al-

ternative, since the principal cannot tell whether there is unilateral deviation or not. See Ap-

pendix B.3.2 for an example. Notice that the disclosure policy ΦW induces correlated signals

among the agents, then potentially we can apply the Crémer-McLean mechanism to guarantee

that agents send the true signal profile to the principal.

We assume that transfers are allowed in the associated mechanisms, that is, a feasible

allocation is given by x̃ =
(
x,(pi)i∈I

)
∈ ∆(A )×R

N . The utility functions of the principal

and agents are transferable, which are the sum of non-monetary utilities and transfers. Let

ũi(x̃,v,θ) = ui(x,v,θ)+ pi be each agent i’s utility, and ũ0(x̃,v,θ) = u0(x,v,θ)−∑i∈I pi be

the principal’s utility. Immediately, we have that ũi(x̃,v,θ) is linear with respect to x̃ for

i = 0,1, . . . ,N, thus the new payoff environment is included in the original model, and all
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previous results remain valid. The upper bound of the value of (P) is given by the value of

(P∗), which is achieved by x̃∗ =
(
x∗,(p∗i )i∈I

)
.

We keep the information disclosure policy ΦW unaffected, and start from the allocation

rule xW |2(v,m) = x̃∗
(
v,θ+(m)

)
, for all (v,m)∈V ×M.20 In general, xW |2 alone is not Bayesian

incentive compatible under the disclosure policy ΦW , because agent i observing mi may find

it profitable to report m′
i 6= mi. The main idea to elicit agents’ truthful reports about m is to

further introduce additional transfers from agents to the principal as (ti)i∈I : M →R
N , besides

the transfers that are already included in x̃∗. Now given the other agents telling the truth, the

interim expected utility of agent i with (vi,mi) by reporting (v̂i, m̂i) is given by

Ũi(v̂i, m̂i;vi,mi) =
∫

v−i

∫

θ ,m−i

ũi

(
xW |2(v̂i,v−i, m̂i,m−i),vi,v−i,θ

)
dΨW

mi
(θ ,m−i)dF−i(v−i)

−
∫

m−i

ti(m̂i,m−i)dΨW
mi
(m−i),

where ΨW
mi
(m−i) is the marginal of ΨW

mi
(θ ,m−i) over M−i. We introduce the following as-

sumption which restricts agents’ non-monetary utility functions to be bounded.

Assumption 2. There exists H > 0 such that for any i ∈ I, a ∈ A , v ∈V and θ ∈ Θ, we have

|ui(a,v,θ)|< H.

By Assumption 2, the amount of violation of each Bayesian incentive compatibility con-

straints under xW |2 is finite. On the other hand, we can always construct ΦW such that for each

agent, the conditional distributions of the other agent’s signal on each possible realization of

his own signal are linearly independent (Lemma 13). By manipulating the transfers (ti)i∈I

in the same way as in the Crémer-McLean mechanism, the principal can provide the agents

sufficient incentives to truthfully report m.

Theorem 3. With transferable utilities and Assumption 2, the optimal private disclosure mech-

anism with weak control achieves the value of (P∗) for N = 2.

Proof. See Appendix A.5.

1.5 Implementation: Sample-product approach

In this section we build the IUAR disclosure policy in a more practical manner, called the

sample-product approach, which is illustrated as follows.21

20Since N = 2, we have Θ+(m) 6= /0 for all m ∈ M.
21In Appendix B.2.6, we provide an alternative way of implementation, that is, restrictions on agents’ access

to certain information.
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A seller, either producing some physical products or holding some financial instruments,

is always eager to know about the fundamentals of the market, such as the fashion trend,

consumer confidence, risk tolerance and market volatility. In practice, a frequently used ap-

proach is to let consumers try some sample products and infer from their feedbacks the target-

ed information. Moreover, these trials are usually carefully designed in the form of blinded

experiments, where consumers only get an overall ranking of testing experiences but hardly

understand the details of the sample products. Next, we show how these ideas could apply to

the implementation of IUAR disclosure policy.

Let S(∋ s) be the space of sample products, where each buyer i has a strict and complete

preference over S under each θ ∈ Θ, denoted by ≺θ
i .22 We assume that, the buyer can rank

any pair of sample products based on his overall testing experience, but he cannot recognize

the identity of each sample product, due to the deliberate design of trials by the seller. We say

a distinct pair of states (θ ′,θ ′′) is distinguishable in S, if there exist i, j ∈ I and s′,s′′ ∈ S such

that

s′ ≺θ ′
i s′′ s′ ≺θ ′

j s′′

s′ ≺θ ′′
i s′′ s′ ≻θ ′′

j s′′.
(1.1)

In other words, θ ′ and θ ′′ are distinguishable if we can find two buyers and a pair of sample

products such that, two buyers share the same preferred choice in one state while preference

discordance occurs in the other state. We say S is rich if all distinct pairs of states drawn from

Θ are distinguishable in S.

We illustrate the sample-product approach for T = 2. Assume that θ1 and θ2 are distin-

guishable, with buyers 1,2 and s′,s′′ satisfying s′ ≺θ1
1 s′′, s′ ≺θ1

2 s′′, s′ ≺θ2
1 s′′, and s′ ≻θ2

2 s′′.

The timing is: (i) both buyers are offered the same randomized Choice Pair (A,B) which is

independent of the state and satisfies

Pr
(
(A,B) = (s′,s′′)

)
=

1

2
, Pr

(
(A,B) = (s′′,s′)

)
=

1

2
;

(ii) each buyer i privately observes a test result mi ∈ {“A ≺ B”,“A ≻ B”} for i = 1,2, and then

simultaneously reports it to the seller.

This randomization guarantees that no buyer can infer the true state from one’s own test

result. The joint distribution of (θ ,m1,m2) is given by Table 1.1 (where buyer 1’s feedback

is listed in the first column and buyer 2’s feedback is listed in the first row), which replicates

(M,ΞW ) in the optimal private disclosure mechanism.

22For simplicity, we assume that ≺θ
i does not depend on agents’ private type profile v.
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Table 1.1: Joint distribution of (θ ,m1,m2)

θ = θ1 A ≺ B A ≻ B

A ≺ B α1
2 0

A ≻ B 0 α1
2

θ = θ1 A ≺ B A ≻ B

A ≺ B 0 α2
2

A ≻ B α2
2 0

Then we consider the general case with T ≥ 2. Fixed any (θ ′,θ ′′) that are distinguishable,

we get i, j ∈ I and s′,s′′ ∈ S satisfying (1.1). For any θ ∈ Θ \ {θ ′,θ ′′}, exactly one of the

following four cases happens: (i) s′ ≺θ
i s′′, s′ ≺θ

j s′′; (ii) s′ ≻θ
i s′′, s′ ≻θ

j s′′; (iii) s′ ≺θ
i s′′,

s′ ≻θ
j s′′; (iv) s′ ≻θ

i s′′, s′ ≺θ
j s′′. Buyers i and j are offered the same randomized Choice

Pair (A,B) as in the binary-state case. Immediately, when θ belongs to case (i) and (ii), we

have Ξθ (A ≺ B,A ≺ B) = Ξθ (A ≻ B,A ≻ B) = 1
2 ; when θ belongs to case (iii) and (iv), we

have Ξθ (A ≺ B,A ≻ B) = Ξθ (A ≻ B,A ≺ B) = 1
2 . Define Ii, j,s′,s′′(θ) = {θ̃ ∈ Θ | Ξθ = Ξθ̃}

as the collection of states such that, when offering sample products s′,s′′ to buyers i, j, the

distribution of feedbacks conditional on these states coincide with θ . Thus, Ii, j,s′,s′′(θ
′) and

Ii, j,s′,s′′(θ
′′) constitute a partition of Θ. It follows that the seller’s posterior belief about the

distribution of the state is F0

(
· | Ii, j,s′,s′′(θ

′)
)

if mi = m j, and is F0

(
· | Ii, j,s′,s′′(θ

′′)
)

if mi 6= m j;

while buyers’ knowledge about the state is still the common prior F0. We name this sample-

product procedure S(θ ′,θ ′′) since it separates θ ′ from θ ′′. The last step is to repeat this

procedure independently for all pairs of (θ ′,θ ′′), and after collecting all the feedbacks, the

seller can infer the true state.

Theorem 4. If Θ permits a rich S, then the sample-product approach can implement the indi-

vidually uninformative and aggregately revealing disclosure policy.

Proof. See Appendix A.6.

1.6 Discussion

1.6.1 Private disclosure vs. Public disclosure

In a public disclosure policy, denoted by ΦP, the realizations of signals across the agents are

always the same, that is, Mi = C for all i ∈ I, and for any θ ∈ Θ, we have

ΦP(θ ,m)> 0 =⇒ mi = m j, ∀i 6= j.

Obviously, public disclosure is a special case of private disclosure, but with simpler informa-

tion structure, which might be easier to implement in reality. A natural question is whether

private disclosure policy can achieve a better performance than the public disclosure policy.
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With multiple agents, the principal essentially has strong control over the disclosure pro-

cess, because she can exploit the perfect correlation of agents’ signal profile and elicit truthful

reports of the public signal for free. Let (ΦSP,xSP) be the optimal public disclosure policy

with strong control. When N ≥ 3, the principal can apply the “(N − 1) majority rule” where

the allocation rule with weak control xWP(v,m) satisfies

xWP(v,m) =

{
xSP
(
v,c ·1N

)
, if ∃i ∈ I, s.t. m j = c ∀ j 6= i

x̃, otherwise,

where x̃ is an arbitrary element of ∆(A ), and 1N = (1, . . . ,1) ∈ R
N ; while when there are two

agents, the principal can punish all agents by assigning a uniformly worst social alternative,

that is, xWP(v,m) = a if m1 6= m2. By the same argument as in Section 1.4.2, agents will

truthfully report the public signal to the principal. Thus, the optimal public disclosure policy

(ΦWP,xWP) achieves the performance of (ΦSP,xSP), given by

(Ppub) sup
Φ, x

∫

c

∫

θ

∫

v
u0

(
x(v,c ·1N),v,θ

)
dFV (v)dΨc(θ)dΛ(c)

s.t. ∀i,c ∈ C,vi 6= v′i :

BICvi→v′i|c

∫

v−i

∫

θ
ui

(
x(vi,v−i,c ·1N),v,θ

)
dΨc(θ)dF−i(v−i)

≥
∫

v−i

∫

θ
ui

(
x(v′i,v−i,c ·1N),v,θ

)
dΨc(θ)dF−i(v−i)

IIRvi|c

∫

v−i

∫

θ
ui

(
x(vi,v−i,c ·1N),v,θ

)
dΨc(θ)dF−i(v−i)≥ 0

∫

c
Ψc(·)dΛ(c) = F0(·).

Define Π(Ψc) as the principal’s expected payoff under the optimal BIC mechanism on receiv-

ing public signal c, that is,

Π(Ψc) = sup
x

∫

θ

∫

v
u0

(
x(v,c ·1N),v,θ

)
dFV (v)dΨc(θ)

s.t. ∀i,vi 6= v′i : (BICvi→v′i|c) and (IIRvi|c) hold.

Then (Ppub) becomes the standard Bayesian persuasion problem whose solution depends on

the shape of Π(Ψc) on its domain ∆(Θ), as well as the common prior F0. Let Π̂ be the con-

cave closure of Π, defined by Π̂(Ψc) := sup{z | (Ψc,z) ∈Conv(Π)}, where Conv(Π) denotes

the convex hull of the graph of Π. Thus, private disclosure policy achieves a strictly higher

expected payoff for the principal than public disclosure policy if and only if the value of (P∗)

is higher than Π̂(F0).
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Linear environment with independent private value

Yamashita (2017) considers linear environment with independent private values and one-

dimensional payoff types, where an allocation x=(qi, pi)
N
i=1 ∈R

2N consists of a non-monetary

allocation to agent i, named qi, and monetary transfer from agent i to the principal, named pi.

Let Q ⊆ R
N denote the feasible set of non-monetary allocations to the agents, which is as-

sumed to be convex since we allow randomized allocations; while no restriction is imposed on

p. Agent i’s payoff is qiyi(vi,θ)− pi, and the principal’s payoff is y0(q,v,θ)+∑
N
i=1 pi, where

y0, yi are bounded and continuous in all their arguments, y0 is linear with respect to q, and
∂yi

∂vi
> 0. Yamashita (2017) proves that Π(Ψc), as a function of Ψc, is convex and continuous

over ∆(Θ), and thus, by Jensen’s inequality, full revelation is optimal for public disclosure,

and the maximum ex ante expected payoff for the principal is given by

(P′
pub) sup

q(v,θ)∈Q

∫

θ

∫

v

(
y0

(
q(v,θ),v,θ

)
+

N

∑
i=1

qi(v,θ)γi(vi,θ)
)

dFV (v)dF0(θ)

s.t. Ev−i

[
qi(vi,v−i,θ)

]
≤ Ev−i

[
qi(v

′
i,v−i,θ)

]
, ∀i,θ ,vi < v′i,

where γi(vi,θ) = yi(vi,θ)− dyi(vi,θ)
dvi

1−Fi(vi)
fi(vi)

is the virtual value function, for i = 1, . . . ,N.

Lemma 4. In linear environment, the solution to (P1) is given by:

(P′
1) sup

Φ,q∈Q

∫

v

∫

θ

[
y0

(
χ(v,θ),v,θ

)
+

N

∑
i=1

χi(v,θ)γi(vi,θ)
]
dF0(θ)dFV (v)

s.t. ∀i,mi,vi < v′i :

Monvi<v′i

∫

θ ,m−i

(
Ev−i

[qi(v
′
i,v−i,m)]−Ev−i

[qi(vi,v−i,m)]
)

·
(
yi(v

′
i,θ)− yi(vi,θ)

)
dΨmi

(θ ,m−i)≥ 0,

where χi(v,θ) =
∫

m qi(v,m)dΞθ (m).

Proof. See Appendix B.1.2.

Lemma 4 characterizes the optimal private disclosure mechanism with strong control.

Then we provide a sufficient condition for an equivalence result between private disclosure

and public disclosure.

Proposition 2. If the monotonicity constraints in (P′
pub) are all slack, then the optimal pri-

vate disclosure mechanism achieves no better performance than the optimal public disclosure

mechanism.
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Proof. See Appendix B.1.3.

Proposition 2 characterizes a class of environments where full disclosure remains optimal

even if the principal can use private disclosure. In mechanism design literature we usually

impose certain version of regularity conditions on payoff environments to make the mono-

tonicity conditions irrelevant. Consider a single-object auction where the principal is pure-

ly revenue-maximizing, that is, Q := {q ∈ [0,1]N | ∑
N
i=1 qi ≤ 1} and y0 = 0. If we assume

the single-crossing condition: for any i,vi < v′i, j,v j,θ , we have γi(vi,θ) ≥ γ j(v j,θ) implies

γi(v
′
i,θ) > γ j(v j,θ), then the solution to the unconstrained problem of (P′

pub) automatically

satisfies all the monotonicity constraints.

On the other hand, the optimality of full disclosure fails when private disclosure is strictly

better than public disclosure. Notice that (P′
pub) and (P′

1) have the same form of objective

function, then the necessary condition for private disclosure to strictly improve the principal’s

expected payoff is that, (P′
1) permits a larger feasible set than (P′

pub).

Proposition 3. Any private disclosure mechanism that achieves strictly higher payoff than the

optimal public disclosure mechanism must send noisy signals about the states to some agent.

Proof. See Appendix B.1.4.

The optimal public disclosure mechanism requires that the monotonicity constraints should

be satisfied under all possible realizations of θ ; while the optimal private disclosure mecha-

nism only imposes an “interim” version of monotonicity constraints on the allocation rule,

where the amount of violation of the monotonicity constraint under some state potentially can

be offset by its slackness under other states. This serves as the main reason why it is beneficial

for the principal to send (completely) noisy signals about the state of the world to each single

agent.23

1.6.2 Finiteness assumption

So far, we have assumed that A , (Vi)i∈I and Θ are all finite sets, in order to (i) establish

the existence of the solution to (P), and (ii) facilitate the construction of the optimal private

disclosure policy. Next, we show that the finiteness assumption is innocuous.

23See Appendix B.3.3 for a numerical example to illustrate this idea.
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Existence of the solution to (P)

In Section 1.4 we establish the existence of the solution to (P) by showing that its relaxed

problem (P∗) has a solution which is also implementable in (P). Here we provide a sufficient

condition to guarantee that (P∗) admits an optimal mechanism x∗.

Lemma 5. Assume that A , (Vi)i∈I and Θ are all nonempty compact metrizable spaces, u0 and

(ui)i∈I are measurable and bounded functions, and are continuous on the domain A ×V ×Θ.

Then, the solution to the relaxed problem (P∗) exists, provided that there exists one mechanism

satisfying all (BICvi→v′i
) and (IIRvi

) constraints.

Proof. See Appendix B.1.5.

Lemma 5 directly follows from Theorem 13.5 in Kadan, Reny, and Swinkels (2017). We

can see that none of the previous finiteness assumptions is necessary for the existence of

solution to (P).

Disclosure policy for continuously distributed states

We now assume that Θ = [0,T ] ∈ R, subject to a continuous cumulative distribution function

F0(θ) with full-support density function f0(θ). Assume that conditions in Lemma 5 hold. As

in the discrete case, let {x∗(v,θ)}(v,θ)∈V×Θ be the solution to (P∗). Let Mi = Θ = [0,T ] for

i = 1, . . . ,N. Define

h(x) = x−max{n ∈ Z | n ≤ x

T
} ·T

as a natural generalization of the remainder in Euclidean division. We construct the following

information disclosure policy with strong control:

ΦS(θ ,m) =

{
f0(θ)

T
, if ms = h

(
mt +(s− t)θ

)
, ∀s, t ∈ I

0, otherwise.

It is easy to check that ΦS also satisfies all the properties in Lemma 2. To prove property (i)

and (ii), we make similar arguments as in discrete case by using the fact that, the restriction of

h(x) to any domain [a,b] such that b−a ≤ T is a bijection. Property (iii) is satisfied because

for any θ ∈ Θ and mi ∈ Mi we have

F0(θ | mi) =

∫
m−i,θ̃≤θ dΦS(θ̃ ,mi,m−i)
∫

m−i,θ̃≤T dΦS(θ̃ ,mi,m−i)
=

∫
θ̃≤θ

f0(θ̃)
T

dθ̃
∫

θ̃≤T
f0(θ̃)

T
dθ̃

=
F0(θ)

F0(T )
= F0(θ).
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Property (iv) holds because for any A ⊆ Θ we have
∫

θ∈A,m∈M
dΦS(θ ,m) =

∫

mi∈Mi

∫

θ∈A

∫

m−i∈M−i

dΦS(m−i | mi,θ)dΦS(θ | mi)dΦS(mi)

=
∫

mi∈Mi

∫

θ∈A
dF0(θ | mi)dΛS(mi)

=
∫

mi∈Mi

∫

θ∈A
dF0(θ)dΛS(mi) = F0(A).

Thus, we can define θ+(m) as before, and construct the allocation rule xS as follows:

xS(v,m) =

{
x∗
(
v,θ+(m)

)
, if Θ+(m) 6= /0

x̃, otherwise,

where x̃ is arbitrarily drawn from ∆(A ). Similar to Proposition 1, (ΦS,xS) is Bayesian in-

centive compatible and achieves the same expected payoff as x∗ in (P∗). By applying the

techniques we developed in Section 1.4.2, we can extend Theorem 1, 2, 3 to the case with

continuously distributed states. (See Section B.2.7.)

1.6.3 Information sharing among agents

We consider the same setup as in Section 1.3. For simplicity, we only consider the case with

four or more than four agents. Since Θ = {θ1, . . . ,θT} is a finite set, we rename θt as t for

t = 1, . . . ,T . Information sharing among agents is modeled in the following way: before agents

(simultaneously) report their own signals to the principal, each agent i knows Ei := (m j) j∈Ĩi
,

that is, the realizations of signals observed by agents in the subset Ĩi ⊆ I. Obviously, we have

i ∈ Ĩi.

We first construct the information disclosure policy, denoted by ΞIS. As before, define

Mi = {1, . . . ,K} for all i ∈ I, where K ≥ max{T,N} is a prime number. Let ε1, . . . ,εN−3 ∈
{1, . . . ,K} be mutually independent random variables, satisfying Pr(ετ = k) = 1

K
for τ =

1, . . . ,N−3 and k = 1, . . . ,K. Moreover, (ε1, . . . ,εN−3) is independent of θ . The signal profile

m = (m1, . . . ,mN) is defined as follows:




m1

...

mN−3

mN−2

mN−1

mN




=




0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

1 1 · · · 1

1 2 · · · N −2

1 22 · · · (N −2)2




·




θ

ε1

...

εN−3




mod K,
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where each signal mi is equal to the residue of the dot product of i-th row vector (denoted as

ζζζ i) and column vector (θ ,ε1, . . . ,εN−3) (denoted as εεε), modulo K.24

Lemma 6. ΞIS satisfies the following properties:

(i) For any Ĩ ⊆ I such that |Ĩ| ≤ N−3, the posterior belief about θ conditional on observing

truthful reports of (mi)i∈Ĩ , denoted by ΨIS
(mi)i∈Ĩ

(θ), coincides with F0.

(ii) Any truthful reports of (N − 2) signals uniquely pin down the realization of θ , as well

as (ε1, . . . ,εN−3) and the remaining two signals.

(iii) Any report of N signals reveals whether there exists unilateral deviation from truth-

telling, and, if so, the identity of the agent who misreports.

Proof. See Appendix B.1.6.

Here is the rough idea of how to prove Lemma 6. Because the congruence relation in mod-

ular arithmetics on the integers is compatible with addition, subtraction, and multiplication,

we proceed in a similar way to linear algebra. It is straightforward to show that (ζζζ i)i∈Ĩ are

linearly independent for any Ĩ ⊆ I such that |Ĩ|= N −2. Then the (N −2)-dimensional vector

εεε can be determined by (N − 2) equations induced by any (N − 2) signals. With (N − 3) or

less signals, there will be too many degrees of freedom to determine εεε . While with N signals,

there are more equations than variables so that the principal can perform a cross check on any

unilateral misreport.

By Lemma 6, if |Ĩi| ≤ N−3 for all i ∈ I, then ΞIS meets all the requirements for Theorem 1

to hold: the disclosure policy should be individually uninformative and aggregately revealing,

and be able to identify the agent who misreports.

Theorem 5. When N ≥ 4 and |Ĩi| ≤ N −3 for all i ∈ I, the optimal private disclosure mecha-

nism that is immune to information sharing among agents is given by (ΞIS,xIS):

xIS(v,m) =

{
x∗(v,θ), if ∃i ∈ I,∃θ ∈ Θ, s.t. θ = θ+(m−i j),∀ j ∈ I \{i}
x̃, otherwise,

where x̃ is arbitrarily drawn from ∆(A ), and θ+(·) is defined in the proof of Lemma 6.

Proof. See Appendix A.7.

24The residue is calculated in the way of standard modular arithmetic, except that when the dot product can be

exactly divided by K, we write mi = K instead of mi = 0.
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Theorem 5 says, as long as the principal guarantees that each agent knows up to (N − 3)

signals, the optimal disclosure mechanism won’t be affected by information sharing among

agents. In practice, the assumption in Theorem 5 is relatively easy to hold. For example,

the principal only needs to keep three agents’ signals absolutely secret from the other agents.

Also, the principal may divide agents into groups each including at most (N −3) agents, and

forbid any inter-group communication.

Information sharing can be modeled in a more general way: each agent i knows Ei := FEi
∈

∆
(

∏ j∈Ĩi
M j

)
where |Ĩi| ≤ N − 3, and the marginal distribution of FEi

over Mi is degenerate.

Basically, each agent knows the realization of his own signal, and receives a noisy information

about the others’ signals. The only restriction on agents’ communications is that, any “new”

information received by each agent about the others’ signals should involve at most (N − 4)

signals. Since

Pr(θ | Ei) = ∑
(m j) j∈Ĩi

Pr
(
θ | (m j) j∈Ĩi

,Ei

)
Pr
(
(m j) j∈Ĩi

| Ei

)

= ∑
(m j) j∈Ĩi

ΨIS
(m j) j∈Ĩi

(θ)FEi

(
(m j) j∈Ĩi

)
= ∑

(m j) j∈Ĩi

F0(θ)FEi

(
(m j) j∈Ĩi

)
= F0(θ),

Theorem 5 remains valid for this general version of information sharing. For instance, agents

— whose private information is assumed to only consist of the signals generated by ΞIS — may

communicate through an arbitrary network. Agents send and receive various messages (e.g.,

cheap-talk messages and verifiable messages) in arbitrary number of rounds. In equilibrium,

each agent acquires additional information about the signals observed by those who are either

directly or indirectly connected to him. Theorem 5 guarantees that x∗ can be implemented

through ΞIS as long as the network graph is disconnected and each connected sub-network has

at most (N −3) agents.

1.6.4 Ex post optimality

We have assumed that the principal commits to implementing x(v̂, m̂) if agents report (v̂, m̂).

Generally speaking, this assumption is indispensable to the implementation of the optimal pri-

vate disclosure mechanism; otherwise after observing agents’ truthful reports (v̂, m̂) = (v,m),

the principal would know (v,θ) =
(
v,θ+(m)

)
and solve maxx∈X (v,m) u0

(
x,v,θ+(m)

)
, where

X (v,m) =
⋂

i∈I

{x∗(vi, ṽ−i, θ̃) | (ṽ−i, θ̃) ∈V−i ×Θ},

which might contain allocations other than x∗(v,θ). However, if we restrict agents’ private

information to be derived from the information disclosure process only (as in Bergemann
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and Pesendorfer, 2007), then under certain conditions the principal has no incentive to deviate

from adopting the signal profile she actually receives, which is named as the ex post optimality

property.

Proposition 4. If Vi = {vi} for all i ∈ I, and all (IIRvi
) are slack in (P∗), then the optimal

private disclosure mechanism satisfies the ex post optimality property.

Proof. See Appendix B.1.7.

With all interim individual rationality constraints being slack, the principal already im-

plements the best outcome under each realization of the state by obeying the allocation rule.

Thus, the optimal private disclosure mechanism is still robust even if there is limited super-

vision on the principal’s ex-post execution. Examples satisfying the slackness condition in

Proposition 4 could be that, ui(·) for all i ∈ I are non-negative.

1.7 Conclusion

We study the problem where at the first stage, the principal secretly sends personalized signals

to each agent (without observing either the true state or the realized signal profile) according to

a private disclosure policy which she can commit to; then at the second stage she implements

the outcomes contingent on agents’ reports according to the allocation rule. We find that the

optimal disclosure policy is individually uninformative and aggregately revealing in the sense

that: it reveals no new information about the state to each single agent, while after gathering

agents’ truthful reports of the signal profile, the principal can infer the exact realization of the

state.

We also show that in a class of environments – including those satisfying the standard

regularity conditions – the optimal public disclosure mechanism achieves the same expected

payoff for the principal as the optimal private disclosure mechanism. This finding links the

individually uninformative result in our paper to the optimality of full disclosure in literature,

and throws light on the optimal information structure in a much more general setup. We

conclude the paper by providing some possible applications of the optimal private disclosure

mechanism.

1.7.1 Collection and transmission of confidential information

The spy story in the Introduction is a perfect example of applying the IUAR disclosure policy

to collection of confidential information. In reality, an intelligence agency, say, CIA, can
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effectively control what and how precisely spies learn about the confidential information, by

authorizing each spy to investigate a particular aspect. First of all, CIA should be able to infer

the targeted information after synthesizing spies’ reports, which implies the requirement of

aggregately revealing. But more importantly, CIA must restrict spies’ knowledge about the

secret in order to prevent information leaks, because some spy would betray or be caught by

the enemy. To meet this individually uninformative requirement in practice, spies are usually

not be told why CIA commands them to collect seemingly irrelevant information.

In a similar spirit, the IUAR disclosure policy provides a novel way for confidential infor-

mation transmission. Imagine that a sender wants to transmit a secret to a receiver through

a communication network, but ensures that none of the nodes in the network get any useful

information about the secret in order to prevent it from being leaked to some adversary (see,

for example, Renault, Renou, and Tomala, 2014). Assume that the network has a simple struc-

ture, where (i) each node is directly connected to the sender and the receiver, and (ii) no pair

of nodes are linked with each other. Then the optimal private disclosure mechanism defined

in Subsection 1.4.2 constitutes a secure communication protocol to transmit θ , where

(1) the sender and the receiver agree on the disclosure policy (M,ΞW );

(2) the sender secretly sends mi to node i according to ΞW
θ (m);

(3) after receiving m, the receiver deciphers the secret according to θ+(m).

Theorem 1 shows that this protocol (i) satisfies secrecy since the information structure is indi-

vidually uninformative, and (ii) is reliable because the confidential information can be aggre-

gately revealed even if there exists unilateral deviation from properly executing the protocol

(provided there are four or more nodes).

1.7.2 Differential privacy

Differential privacy, originally proposed by Dwork, McSherry, Nissim, and Smith (2006) and

formalized in Dwork (2006), is a definition of privacy in computer science which says the

outcomes generated by a randomized algorithm over two similar databases are approximately

the same. It ensures that the same conclusion will be reached, regardless of any individual’s

presence in the database, so that data users could learn relatively accurate group properties but

infers no personal identifiable information about any individual.25 In contrast to confidential

25Differential privacy has been adopted by some major technology companies, so as to seek approval to use

client data. For example, Google’s Chrome Web browser has implemented Randomized Aggregatable Privacy-
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information transmission, it is the input database rather than the output of the algorithm that

should be kept secret.

Although our paper is not in a statistics setting, the optimal private disclosure mechanism

meets the requirements of differential privacy. Particularly, we assume that there are more

than four agents, and let the signal profile m be the database and the inferred state θ+(m)

be the released result after processing the data. By Theorem 1, the state can be uniquely

inferred from any (N − 1) agents’ reports about their signals, which means the presence of

any individual signal in the database will not affect the outcome of the algorithm θ+(m).

Moreover, conditional on any realization of the state, individual signal is uniformly distributed,

which means that any data user who learns about the query result θ = θ+(m) gets no new

information about the signal observed by each single agent. Thus, our results potentially

applies to various real-world contexts where differential privacy is required to address the

privacy protection issues.

Preserving Ordinal Response (RAPPOR), a technology for crowdsourcing statistics subject to differential pri-

vacy, to collect data about Chrome clients, and learn statistics about unwanted or malicious hijacking of user

settings (Erlingsson, Pihur, and Korolova, 2014). Another example is the adoption of differential privacy tech-

nology by Apple starting from its iOS 10, which helps Apple discover the usage patterns of a large number of

users without compromising individual privacy.
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Chapter 2

On the Foundations of Ex Post Incentive

Compatible Mechanisms1

Takuro Yamashita2 Shuguang Zhu3

July 20, 2017

In private-value auction environments, Chung and Ely (2007) establish maxmin

and Bayesian foundations for dominant-strategy mechanisms. We first show that

similar foundation results for ex post mechanisms hold true even with interdepen-

dent values if the interdependence is only cardinal. This includes, for example,

the one-dimensional environments of Dasgupta and Maskin (2000) and Berge-

mann and Morris (2009b). Conversely, if the environment exhibits ordinal in-

terdependence, which is typically the case with multi-dimensional environments

(e.g., a player’s private information comprises a noisy signal of the common val-

ue of the auctioned good and an idiosyncratic private-value parameter), then in

general, ex post mechanisms do not have foundation. That is, there exists a non-

ex-post mechanism that achieves strictly higher expected revenue than the optimal

ex post mechanism, regardless of the agents’ high-order beliefs.

1We are grateful to Thomas Mariotti, Renato Gomes, Jiangtao Li, Pierre Boyer, Takakazu Honryo, Raphaël

Levy, Andras Niedermayer, Chengsi Wang, Yi-Chun Chen, Tilman Börgers, Takashi Kunimoto, and seminar

participants at Toulouse School of Economics, Mannheim (Center for Doctoral Studies in Economics), Hitotsub-

ashi University, and Decentralization Conference (Michigan). Takuro Yamashita also gratefully acknowledges

financial support from the European Research Council (Starting Grant #714693).
2Toulouse School of Economics, University of Toulouse Capitole, France. takuro.yamashita@tse-fr.eu
3Toulouse School of Economics, University of Toulouse Capitole, France. shuguang.zhu@tse-fr.eu
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2.1 Introduction

The recent literature on mechanism design provides a series of studies on the robustness of

mechanisms, motivated by the idea that a desirable mechanism should not rely too heavily on

the agents’ common knowledge structure.4 One approach taken in the literature is to adopt

stronger solution concepts that are insensitive to various common knowledge assumptions.

For instance, in private-value environments, Segal (2003) studies dominant-strategy incentive

compatible sales mechanisms. In interdependent-value environments, Dasgupta and Maskin

(2000) study efficient auction rules that are independent of the details under the concept of ex

post incentive compatibility.

However, a mechanism that achieves desired outcomes without the agents’ common knowl-

edge assumption does not immediately imply dominant-strategy or ex post incentive com-

patibility. In revenue maximization in private-value auction (under “regularity” conditions),

Chung and Ely (2007) fill in this gap by establishing the maxmin and Bayesian foundation of

the optimal dominant-strategy mechanism, in the following sense. Consider a situation where

the seller in an auction (principal) only knows a joint distribution of the bidders’ (agents) val-

uation profile for the auctioned object, which may be based on data about similar auctions in

the past. On the other hand, he does not have reliable information about the bidders’ beliefs

about each other’s value. For example, the bidders may have more or less information than

the seller, or may simply have a “wrong” belief (from the seller’s point of view) for vari-

ous reasons. Thus, the seller’s objective is to find a mechanism that achieves a good amount

of revenue regardless of the bidders’ (high-order) beliefs. Note that, in a dominant-strategy

mechanism, it is always an equilibrium for each bidder to report his true value, and therefore,

it always guarantees the same level of expected revenue. On the other hand, in non-dominant-

strategy mechanisms, expected revenue may vary with the bidders’ (high-order) beliefs. In

the definition of Chung and Ely (2007), there is a maxmin foundation for a dominant-strategy

mechanism if, for any non-dominant-strategy mechanism, there is a possible belief of the sell-

er with which the dominant-strategy mechanism achieves (weakly) higher expected revenue

than the non-dominant-strategy mechanism.5

In this paper, we examine the existence of such foundations for ex post incentive com-

patible mechanisms in interdependent-value environments. Our main observation is that the

4See, for example, Wilson (1985).
5 As a stronger concept, if the same belief can be found for any non-dominant-strategy mechanism with which

a dominant-strategy mechanism achieves (weakly) higher expected revenue, then there is a Bayesian foundation,

because, as long as the seller is Bayesian rational and has that particular belief, he finds it optimal to offer a

dominant-strategy mechanism, even though he can also offer any other mechanism.
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key property that guarantees such foundations is what we call the cardinal vs. ordinal in-

terdependence. To explain these concepts, imagine an auction problem, where each bidder’s

willingness-to-pay depends both on his own type and the other bidders’ types. If one type

of each bidder always has a higher valuation for the good than another type regardless of the

other bidders’ types (even if each type’s valuation itself may vary with the others’ types), then

we say that the environment exhibits only cardinal interdependence. Conversely, if the types

cannot be ordered in such a uniform manner with respect to the others’ types, then we say that

the environment exhibits ordinal interdependence.6

We first show that, in the environments with only cardinal interdependence, (both maxmin

and Bayesian) foundations exist for ex post mechanisms. This includes, for example, private-

value environments (in this sense, our result is a generalization of Chung and Ely (2007)),

and the one-dimensional environments of Dasgupta and Maskin (2000) and Bergemann and

Morris (2009b).

Conversely, if the environment exhibits ordinal interdependence, which is typically the

case with multi-dimensional environments (e.g., a player’s private information comprises a

noisy signal of the common value of the auctioned good and an idiosyncratic private-value

parameter), then in general, ex post mechanisms do not have foundation. That is, there exists

a non-ex-post mechanism that achieves strictly higher expected revenue than the optimal ex

post mechanism, regardless of the agents’ high-order beliefs.

Regarding the foundation results, Chen and Li (2016) consider a general class of private-

value environments where agents have multi-dimensional payoff types, and show that if the

environment satisfies the uniform-shortest-path-tree property, then the maxmin (and Bayesian)

foundation exists for dominant-strategy mechanisms. This property simply means that, for any

allocation rule the principal desires to implement, the set of binding constraints is invariant.

This holds true in the single-good auction environment of Chung and Ely (2007) with reg-

ularity, and in this sense, their result generalizes that of Chung and Ely (2007), keeping the

private-value assumption. Our work is a complement to Chen and Li (2016) in that we con-

sider interdependent-value environments. For our foundation result (Theorem 6), a similar

property to their uniform-shortest-path-tree property holds, which suggests that some of their

6 These interdependence concepts are obviously related to the “size” of interdependence (e.g., private-value

environments are special cases of cardinally interdependent cases). However, they are not necessarily corre-

sponding to each other. For example, if a bidder’s valuation in an auction is a sum of a function only of his own

type and another function of the others’ types, then however large is the second term, the environment never

exhibits ordinal interdependence. In this sense, a more appropriate interpretation is that these interdependent

concepts are related to the diversity of interdependence across types.
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argument may be applicable even in interdependent-value environments.

Regarding the no-foundation results, there are several papers in the literature that provide

examples or a restrictive class of environments in which (various versions of) foundations

for dominant-strategy or ex post mechanisms do not exist. For example, for interdependent-

value environments, Bergemann and Morris (2005) provide examples in the context of imple-

mentation of certain (“non-separable”) social choice correspondences, and Jehiel, Meyer-ter

Vehn, Moldovanu, and Zame (2006) provide an example for revenue maximization in sequen-

tial sales. Chen and Li (2016) also provide an instance of environment where, without their

uniform-shortest-path-tree property, there might not exist a foundation for dominant-strategy

mechanisms, even in private-value environments. Our work contributes to this line of research

by providing a general class of environments with a no-foundation result (instead of providing

examples), and the economic intuition based on the cardinal vs. ordinal interdependence.

Other closely related papers include Bergemann and Morris (2005) and Börgers (2013). In

interdependent-value environments, Bergemann and Morris (2005) show that any separable

social choice correspondence that is implementable given any (high-order) belief structure of

the agents must satisfy ex post incentive compatibility. In this sense, they provide another sort

of foundation for ex post incentive compatible mechanisms. Their separable social choice

correspondence necessarily admits a unique non-monetary allocation for each payoff-type

profile, and hence, in general, excludes revenue maximization as the principal’s objective.

Thus, our work is complementary to theirs in that we consider revenue maximization.

Börgers (2013) criticizes the foundation theorems by constructing a non-dominant-strategy

(or more generally, a non-ex-post) mechanism that yields weakly higher expected revenue

than the optimal dominant-strategy mechanism for any belief structure of the agents, while it

yields strictly higher expected revenue for some belief structures. Our no-foundation result

is stronger in that it provides a strict improvement in expected revenue for any (high-order)

belief structure, though under stronger conditions on the environment.

2.2 Model

There is a finite set of risk-neutral agents, 1,2, . . . , I. Agent i’s privately-known payoff type

is θi ∈ Θi ⊆ R
d , where |Θi| < ∞.7 A payoff-type profile is written as θ = (θ1, . . . ,θI) ∈

Θ1 × . . .×ΘI = Θ. The principal’s (subjective) prior belief for θ is given by f ∈ ∆(Θ), where

we assume f (θ)> 0 for all θ ∈ Θ.

7 Potential extensions to cases with continuous payoff type spaces are discussed in Section 2.5.
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Each agent i’s willingness-to-pay for qi ∈Qi ⊆R+ units of the good is denoted by vi(qi,θ).

We assume that 0 ∈ Qi, |Qi|< ∞,8 vi(0,θ) = 0, and vi(·,θ) is increasing for all θ . Moreover,

as a standard single-crossing condition, we assume that, for each θi 6= θ ′
i , and θ−i, we have

either

vi(qi,θi,θ−i)− vi(q
′
i,θi,θ−i)> vi(qi,θ

′
i ,θ−i)− vi(q

′
i,θ

′
i ,θ−i), ∀qi > q′i;

or

vi(qi,θi,θ−i)− vi(q
′
i,θi,θ−i)< vi(qi,θ

′
i ,θ−i)− vi(q

′
i,θ

′
i ,θ−i), ∀qi > q′i.

In the first (second) case, we denote θi ≻θ−i

i θ ′
i (θi ≺θ−i

i θ ′
i , respectively). Our assumption

throughout the paper is that ≺θ−i

i is a total ordering over Θi for any θ−i, although ≺θ−i

i can be

different from �θ ′
−i

i . Let

η = min
i,θi 6=θ ′

i ,θ−i,qi 6=q′i
|vi(qi,θi,θ−i)+ vi(q

′
i,θ

′
i ,θ−i)− vi(q

′
i,θi,θ−i)− vi(qi,θ

′
i ,θ−i)| (> 0).

In particular, this implies that, by taking qi > 0 = q′i,

|vi(qi,θi,θ−i)− vi(qi,θ
′
i ,θ−i)| ≥ η

for all θi 6= θ ′
i and θ−i.

Paying pi ∈ R to the principal, agent i’s final payoff is vi(qi,θ)− pi. The principal’s

objective is the total revenue, ∑i pi. The feasible set of q=(q1, . . . ,qI) is denoted by Q⊆∏i Qi,

where the shape of Q depends on the specific environment of interest.

For example, auctions, trading, and public-goods environments are in this class, with (or

without) interdependence. In terms of interdependence, our framework includes a typical

“common + private” environment studied in the auction literature: Imagine that each agent i

has a unit demand for the good, his payoff-type comprises (ci,di) ∈ Θi ⊆ R
2, where ci may

be interpreted as a “common-value” component and di may be interpreted as an idiosyncrat-

ic “private-value” component, and his valuation for the good is πi(c1, . . . ,cN)+ di for some

function πi.

2.2.1 Type space

The agents’ private information includes their own payoff types, their (first-order) beliefs

about their payoff types, and their arbitrarily higher-order beliefs. To model this, we intro-

duce type spaces as in Bergemann and Morris (2005).

8 As it becomes clearer, the finiteness of Qi is without loss of generality (though it simplifies the notation),

given that Θ is finite and we only consider finite mechanisms (including ex post incentive compatible mecha-

nisms).
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A (“known-own-payoff-type”) type space, denoted by T = (Ti, θ̂i, π̂i)
I
i=1, is a collection

of a measurable space of types Ti for each agent i, a measurable function θ̂i : Ti → Θi that

describes the agent’s payoff type, and a measurable function π̂i : Ti → ∆(T−i) that describes his

belief about the others’ types. Let β̂i(ti) denote the belief hierarchy associated with type ti (i.e.,

it describes ti’s first-order belief about θ−i, second-order belief, and so on, up to an arbitrary

high order). We say that T has no redundant types if for each i, mapping ti 7→ (θ̂i(ti), β̂i(ti))

is one-to-one.

In fact, there exists a (compact) universal type space T ∗ = (T ∗
i , θ̂

∗
i , π̂

∗
i )

I
i=1, such that any

type space without redundant types can be embedded into it, in the following sense.9

Lemma 7. Let T be a type space with no redundant types. Then, for each i, there exist

subsets T̂i ⊂ T ∗
i and bijections hi : Ti → T̂i such that:

1. θ̂ ∗
i (hi(ti)) = θ̂i(ti) for all ti ∈ Ti; and

2. π̂∗
i (hi(ti))[h−i(t−i)] = π̂i(ti)[t−i] for all ti ∈ Ti and t−i ∈ T−i,

where h−i(t−i) = (h1(t1), . . . ,hi−1(ti−1),hi+1(ti+1), . . . ,hI(tI)).

In what follows, we directly work with this universal type space.10 Specifically, let µ ∈
∆(T ∗) represent the principal’s prior belief over T ∗ such that µ({t|θ̂ ∗(t) = θ}) = f (θ) for

each θ , that is, the principal’s (first-order) belief for θ is given by f (θ), as assumed above.

The other information contained in µ captures the principal’s belief over the agents’ possible

belief structures. Let M ⊆ ∆(T ∗) represent the set of all such µ .

In some contexts, it may be reasonable to assume that (the principal believes that) the

agents do not have extreme (non-full-support) first-order beliefs. For example, instead of

assuming that each agent’s belief or knowledge is exogenous, one may be interested in a

situation where each agent engages in his own information acquisition (through which his

belief is updated), where the information acquisition cost is a linear function of relative entropy

(Sims (2003)). Then, it is infinitely costly for each agent to know other agents’ payoff types.

Formally, let M full ⊂M denote the set of µ such that every agent i has a full-support first-

order belief about the other agents. More precisely, for each agent i with type ti, let π̂∗1
i (ti) ∈

∆(Θ−i) denote his first-order belief, that is, π̂∗1
i (ti)[θ−i] =

∫
t−i|θ̂∗

−i(t−i)=θ−i
dπ̂∗

i (ti)[t−i] for each

θ−i. Then, M full is the set of all µ ∈ M such that µ
(
{t | ∀i,θ−i, π̂∗1

i (ti)[θ−i]> 0}
)
= 1.

9 For constructions of universal type spaces, see Mertens and Zamir (1985) and Brandenburger and Dekel

(1993).
10 The results would not change even if we allow for type spaces with redundant types, but more notation

would be involved.
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2.2.2 Mechanism

The principal designs a mechanism, denoted by (M,q, p), where Mi represents a message set

for each agent i, M = M1 × . . .×MI , q : M → Q = [0,1]I is an allocation rule, and p : M →R
I

is a payment function. Each agent i reports a message mi ∈ Mi simultaneously, and then he

receives the good with probability qi(m) and pays pi(m) to the principal. We assume that Mi

contains a non-participation message /0 ∈ Mi such that
(
qi( /0,m−i), pi( /0,m−i)

)
= (0,0) for any

m−i ∈ M−i.

We now introduce a class of mechanisms with ex post incentive compatibility (an EPIC

mechanism for short).

Definition 2. An EPIC mechanism is a mechanism Γ = (M,q, p) such that, for each i, (i)

Mi = Θi, and (ii) for each θ ∈ Θ and θi 6= θ ′
i ∈ Θi:

vi(qi(θ),θ)− pi(θ) ≥ 0,

vi(qi(θ),θ)− pi(θ) ≥ vi(qi(θ
′
i ,θ−i),θ)− pi(θ

′
i ,θ−i).

The expected revenue in the truth-telling (ex post) equilibrium in an EPIC mechanism is

given by:

R f (Γ) = ∑
θ

∑
i

pi(θ) f (θ).

Note that this does not depend on µ , and in this sense, R f (Γ) may be interpreted as a

“robustly guaranteed” expected revenue with respect to the agents’ beliefs and higher-order

beliefs. Let REP
f denote the maximum expected revenue among all EPIC mechanisms.

Applying the standard argument, the optimal mechanism among all EPIC mechanisms is

characterized by the corresponding virtual-value maximization. To explain this, let Fi(θi,θ−i)=

∑
θ̃i�

θ−i
i θi

f (θ̃i,θ−i) denote the cumulative distribution function of i’s payoff types given the

other agents’ payoff-type profile θ−i.

Agent i’s virtual valuation at payoff-type profile θ is given by:

γi(qi,θ) = vi(qi,θ)−
∑

θ̃i≻
θ−i
i θi

f (θ̃i,θ−i)

f (θ)

(
v+i (qi,θ)− vi(qi,θ)

)
,

where v+i (θi,θ−i) = min
θ̃i≻

θ−i
i θi

vi(θ̃i,θ−i) whenever the right-hand side is well-defined; oth-

erwise γi(qi,θ) = vi(qi,θ).

The following result is standard, so we omit its proof.
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Lemma 8.

REP
f = max

q:Θ→Q
∑
θ

∑
i

γi(qi(θ),θ) f (θ)

sub. to ∀i,θi,θ
′
i ,θ−i;

θi ≻θ−i

i θ ′
i ⇒ qi(θi,θ−i)≥ qi(θ

′
i ,θ−i). (M)

We assume that the solution exists in this maximization problem, which we denote by

qEP = (qEP
i (θ))i,θ . The corresponding payment rule is denoted by pEP = (pEP

i (θ))i,θ .11

As in Chung and Ely (2007), we further assume the following “regularity” condition

throughout the paper.

Assumption 3. There exists ε > 0 such that, for any distribution over Θ, f̃ , such that ‖ f̃ − f‖<
ε (in a Euclidean distance), the monotonicity constraints (M) are not binding in the problem

of REP
f̃

. In particular, this implies

REP
f = max

q:Θ→Q
∑
θ

∑
i

γi(qi(θ),θ) f (θ).

Of course, the conditions on the environment that imply the above assumption can vary

with the environment. For example, in an auction environment with Q = {q ∈ {0,1}N |∑i qi ≤
1}, the regularity assumption is satisfied if, for each i 6= j, and θ ,12

γi(θ)≥ γ j(θ)⇒∀θ ′
i > θi, γi(θ

′
i ,θ−i)> γ j(θ

′
i ,θ−i).

In a digital-good environment of Goldberg, Hartline, Karlin, Saks, and Wright (2006) with

Q = {0,1}N , the regularity assumption is satisfied under the strict monotone hazard rate con-

dition, i.e., for each i and θ ,
1−Fi(θ)

f (θ) is decreasing in θi. In a multi-unit sales environment as

in Mussa and Rosen (1978), the regularity assumption is satisfied under the strict monotone

hazard rate condition and concavity of each vi with respect to qi.

11 pEP is given as follows. For each i, θi and θ−i, (i) if there is no θ ′
i ≺

θ−i

i θi, then

pEP
i (θ) = vi(q

EP
i (θ),θ);

(ii) otherwise, letting θ ′
i ≺

θ−i

i θi be such that no θ ′′
i satisfies θ ′

i ≺
θ−i

i θ ′′
i ≺θ−i

i θi,

pEP
i (θ) = vi(q

EP
i (θ),θ)− vi(q

EP
i (θ ′

i ,θ−i),θ)+ pEP
i (θ ′

i ,θ−i).

12 Chung and Ely (2007) call it the single-crossing condition. A stronger sufficient condition is the combination

of the strict monotone hazard rate property (i.e., for each i and θ ,
1−Fi(θ)

f (θ) is decreasing in θi), and affiliation in f

(which includes independent f as a special case).
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The following notation is extensively used in the subsequent analysis. For each i and

qi > 0, define

Θ∗
i (qi,θ−i) = {θi ∈ Θi|qEP

i (θi,θ−i)≥ qi}

as the set of i’s payoff types whose allocation given θ−i is greater than or equal to qi in the

optimal EPIC mechanism. Note that, by monotonicity, if θi ∈ Θ∗
i (qi,θ−i) and θ ′

i ≻
θ−i

i θi, then

θ ′
i ∈ Θ∗

i (qi,θ−i). Let θ ∗
i (qi,θ−i) be the lowest element in Θ∗

i (qi,θ−i) with respect to ≺θ−i

i , that

is, for any θi ∈ Θ∗
i (qi,θ−i), we have θi ≻θ−i

i θ ∗
i (qi,θ−i). This θ ∗

i (qi,θ−i) is called i’s threshold

type with respect to qi given θ−i. Finally, let

Θ∗
−i(qi,θi) = {θ−i ∈ Θ−i|θi ∈ Θ∗

i (qi,θ−i)}

denote the set of θ−i with which θi is allocated greater than or equal to qi units in the optimal

EPIC mechanism.

2.2.3 Foundations

For a non-EPIC mechanism, expected revenue may vary with the agents’ belief structure,

and the principal—who does not know the agents’ belief structure—may not want to offer

a mechanism if the expected revenue is low for some possible belief structures. Following

Chung and Ely (2007), we say that there is a maxmin foundation for EPIC mechanisms if,

for any non-EPIC mechanism Γ = (M,q, p), there exists µ ∈ M such that, for any Bayesian

equilibrium σ∗, the expected revenue obtained in the equilibrium is less than REP
f , that is:

∫

t∈T
∑

i

pi(σ
∗(t))dµ ≤ REP

f .

If there exists a single µ ∈M that achieves the above inequality for all Γ, then we say that

there is a Bayesian foundation for EPIC mechanisms.13

13 These definitions are consistent with the verbal explanations of the corresponding definitions in Chung and

Ely (2007). However, in fact, the mathematical definitions of them in Chung and Ely (2007) are slightly different:

for example, their mathematical definition of maxmin foundation says that, for any non-EPIC mechanism Γ =

(M,q, p),

inf
µ∈M

[
max

σ∗:Bayesian equilibrium

∫

t∈T
∑

i

pi(σ
∗(t))dµ

]
≤ REP

f .

To see the difference, let R(µ) denote the term inside the bracket on the left-hand side (i.e., the expected revenue

given µ), and imagine a case where (i) R(µ) > REP
f for any µ , while (ii) for any ε > 0, there exists µ such that

R(µ)−ε < REP
f . That is, the non-EPIC mechanism Γ is a strict improvement over the optimal EPIC mechanism,
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In the context where (the principal believes that) the agents have full-support first-order

beliefs, we replace M by M full in the above definitions, and we say that there is a strong

maxmin / Bayesian foundation for EPIC mechanisms.

2.3 Without ordinal interdependence

First, we consider the case where, for each i, θ−i, and θ ′
−i, ≺

θ−i

i =≺θ ′
−i

i . This includes the

private-value environment (as in Chung and Ely (2007)) as a special case, but also includes

some interdependent-value environments. For example, assume that Θi ⊆R and vi(qi,θi,θ−i)

is an increasing function of θi for each given qi,θ−i. Because i’s payoff is affected by θ−i,

the environment exhibits interdependence, but it is only cardinal interdependence in the sense

that a higher value of θi corresponds to a higher type with respect to ≺θ−i

i for any θ−i.

On the other hand, even if vi is increasing in θi, if Θi ⊆ R
d with d > 1, it is possible to

have ≺θ−i

i 6=≺θ ′
−i

i for some θ−i and θ ′
−i. For example, consider an auction environment in which

each agent i’s payoff-type comprises (ci,di) ∈ Θi ⊆ R
2, where ci denotes a “common-value”

component and di denotes an idiosyncratic “private-value” component, and his valuation for

the good is πi(c1, . . . ,cN)+ di for some function πi strictly increasing in all the arguments.

Then, for (ci,di),(c
′
i,d

′
i) ∈ Θi such that ci < c′i and di > d′

i , it is possible that, given some c−i,

(ci,di) has a higher valuation for the good than (c′i,d
′
i) (i.e., πi(ci,c−i)+di > πi(c

′
i,c−i)+d′

i),

while given another c′−i, (ci,di) has a lower valuation than (c′i,d
′
i).

Such environments with ordinal interdependence are studied in the next section.

Definition 3. We have ordinal interdependence if there exists i, θ−i, and θ ′
−i such that ≺θ−i

i 6=≺θ ′
−i

i .

Generalizing Chung and Ely (2007) (for private-value auction environments), we show

that no ordinal interdependence implies the strong maxmin / Bayesian foundations for EPIC

mechanisms.

Theorem 6. With Assumption 3 and no ordinal interdependence, EPIC mechanisms have the

strong Bayesian (and hence strong maxmin) foundation.

Our proof for Theorem 6 is a direct extension of Chung and Ely (2007) in the private-value

setting to the interdependent-value environment. We provide a sketch of the proof here, and

the formal proof in the Appendix.

while it is not a uniform improvement. The verbal definition of Chung and Ely (2007) (which we follow in

this paper) suggests that there is no maxmin foundation, while their mathematical definition says there is. The

difference is not innocuous, because the non-EPIC mechanism we propose is indeed such a mechanism.
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First, we impose the non-singularity condition on the payoff-type distribution f , which

says that f satisfies certain full-rank conditions, and consider the Bayesian mechanism design

problem with a simple type space having a particular belief structure. We show that under such

a belief structure, it is without loss of generality to treat all participation constraints and all

“adjacent downward” incentive constraints with equality, and ignore all the other constraints.

Then we show that the total expected revenue in this Bayesian problem is maximized by the

optimal EPIC mechanism.

The next step is to relax the non-singularity assumption by choosing a sequence of non-

singular distributions which converge to the given payoff-type distribution. Since the optimal

EPIC mechanisms achieve the highest expected revenue over the sequence of simple type

spaces with the particular belief structure, by taking the limit, we show that the Bayesian

foundation also exists for any arbitrary payoff-type distribution, as long as Assumption 3 is

satisfied.14

2.4 With ordinal interdependence

In this section, we consider the environment that further satisfies the following conditions.

Assumption 4 (“Highest Payoff Type”). For each i, there exists θ̄i ∈ Θi such that, for each

θi ∈ Θi and θ−i ∈ Θ−i, we have θ̄i ≻θ−i

i θi.

Assumption 5 (“Richness”). For each i, qi, θi,θ
′
i and θ−i such that vi(qi,θi,θ−i)> vi(qi,θ

′
i ,θ−i),

there exists θ ′
−i such that θi ∈ Θ∗

i (qi,θ
′
−i) and θ ′

i /∈ Θ∗
i (qi,θ

′
−i).

The highest-payoff-type assumption is satisfied if Θ is a complete sublattice in R
d , vi(qi,θ)

is increasing in θ . The richness assumption connects the difference among i’s different payoff

types and the difference among their allocations. For example, consider an auction environ-

ment where each i’s payoff type is (ci,di) ∈Ci×Di(= Θi) where Ci,Di ⊆R, and his valuation

is πi(c)+ di. The richness assumption would be easily satisfied if each D j is rich enough so

that, if πi(ci,c−i)+di > πi(c
′
i,c−i)+d′

i for some ci,c
′
i ∈Ci, di,d

′
i ∈ Di and c−i ∈C−i, then we

can find some d−i such that agent i’s virtual value is the highest given (ci,di) (and (c−i,d−i))

but not given (c′i,d
′
i) (and (c−i,d−i)).

In this environment, EPIC mechanisms have the strong (maxmin and Bayesian) foundation

if and only if we do not have ordinal interdependence.

14In their paper, they show by example that, without the condition corresponding to Assumption 3, there may

not exist a Bayesian foundation.
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Theorem 7. Under Assumptions 3, 4, 5, EPIC mechanisms have the strong foundation if and

only if we do not have ordinal interdependence.

Before the formal proof of the theorem, we provide the basic intuition through the follow-

ing two examples.

Example 1. Assume I = 2, Θ1 = Θ2 = {1,2}, and Q = {0,1}2. Table 1 collects payoff-

type distribution f , agent 1’s valuation and virtual value at each payoff type profile, and the

corresponding optimal EPIC allocation for agent 1. For agent 2, assume that v2(θ) = θ2 + 1

for all θ so that the optimal EPIC allocation for him is (qEP
2 (θ), pEP

2 (θ)) = (1,2) for all θ .

Table 2.1: Auction environment of Example 1.

f ,v1,γ1,(q
EP
1 , pEP

1 ) θ2 = 1 θ2 = 2

θ1 = 1 1
6 , 2, 2, (1,1) 1

6 , 1, −1, (0,0)

θ1 = 2 1
3 , 1, 1

2 , (1,1) 1
3 , 2, 2, (1,2)

We have Θ∗
1(q1,θ2) = {1,2} if (q1,θ2) = (1,1) and Θ∗

1(q1,θ2) = {2} if (q1,θ2) = (1,2).

Hence, the threshold payoff type of agent 1 given θ2 = 1 (i.e., θ1 = 2) is assigned the goods

given θ2 = 2, but the non-threshold winning payoff type of agent 1 given θ2 = 1 (i.e., θ1 = 1)

is unassigned given θ2 = 2. This reversal of the order over agent 1’s payoff types is crucial for

the no-foundation result.

Now we consider a modification of the optimal EPIC mechanism, which asks agent 1’s

first-order belief. More specifically, agent 1 is asked to report his payoff type θ1 and his belief

for θ2 = 1, that is:

y(t1) =
∫

t2|θ̂2(t2)=1
dπ̂1(t1)[t2].

If he reports θ1 = 1 and first-order belief y ∈ [0,1], agent 1 obtains the goods by paying

(2− cosη) under θ2 = 1, but fails to get the goods and still needs to pay (1− sinη) under

θ2 = 2, where η = arc tan 1−y
y

. We keep the optimal EPIC allocations for both agents in the

other cases. It is easy to verify that the new mechanism is Bayesian incentive compatible over

the universal type space.

Because we are interested in the strong foundation, assume that (the principal believes

that) agent 1 always has a full-support first-order belief, that is, y ∈ (0,1) with (µ-)probability

one. Then, agent 1 with θ1 = 1 always pays strictly more than 1 regardless of his (full-support)

first-order belief and agent 2’s true payoff type: if θ2 = 1, agent 1 pays 2− cosη for some

η ∈ (0, π
2 ), which is strictly greater than 1; if θ2 = 2, agent 1 pays 1−sinη for some η ∈ (0, π

2 ),

which is strictly greater than 0.
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Therefore, this new mechanism raises strictly higher expected revenue than the optimal

EPIC mechanism, as long as agent 1 has a full-support first-order belief.

Example 2. Assume I = 2, Θ1 = {1,2,3}, Θ2 = {1,2} and Q = {0,1}2. We focus on agent

1 because the designer decides allocation rules for each agent separately in digital-goods auc-

tions. Table 2.2 collects payoff-type distribution f , agent 1’s valuation and virtual value at

each payoff type profile, and the corresponding optimal EPIC allocation for agent 1. Clearly,

agent 1’s preference exhibits ordinal interdependence.

Table 2.2: Auction environment of Example 2.

f ,v1,γ1,(q
EP
1 , pEP

1 ) θ2 = 1 θ2 = 2

θ1 = 1 1
6 , 3, 3, (1,2) 1

6 , 3, 3, (1,2)

θ1 = 2 1
6 , 2, 1, (1,2) 1

6 , 1, −1, (0,0)

θ1 = 3 1
6 , 1, −1, (0,0) 1

6 , 2, 1, (1,2)

We have Θ∗
1(q1,θ2) = {1,2} if (q1,θ2) = (1,1) and Θ∗

1(q1,θ2) = {1,3} if (q1,θ2) = (1,2).

Hence, neither of these two sets is the subset of the other one, which never happens when

we don’t have ordinal interdependence. Now we construct a new detail-free mechanism as

follows. When agent 1 reports θ1 = a1 and first-order belief y, agent 1 obtains the goods

by paying (3− cosη) under b1 and obtains the goods by paying (3− sinη) under b2, where

η = arg tan 1−y
y

. We keep the optimal EPIC mechanism for both agents in the other cases. It

is easy to check that the new mechanism is Bayesian incentive compatible over the universal

type space. Since we assume full-support beliefs, that is, y ∈ (0,1), then the payment from

agent 1 is always strictly greater than 2, the optimal EPIC payment rule, under both b1 and

b2. Thus the new mechanism raises strictly higher expected revenue than the optimal EPIC

mechanism regardless of the designer’s belief, resulting in no maxmin foundation for the EPIC

mechanisms.

The two examples above identify some cases where revenue improvement is possible.

Motivated by them, we define the concept of improvability as follows.

Definition 4 (“Improvability”). Revenue from i is improvable with respect to (θi,θ−i,θ
′
−i) if

there exists qi and q′i such that at least one of the following holds:

(i) θi ∈Θ∗
i (q

′
i,θ

′
−i)∩Θ∗

i (qi,θ−i), and θ ∗
i (qi,θ−i) /∈Θ∗

i (q
′
i,θ

′
−i), and θ ∗

i (q
′
i,θ

′
−i) /∈Θ∗

i (qi,θ−i);

(ii) θi ∈ Θ∗
i (q

′
i,θ

′
−i)\Θ∗

i (qi,θ−i), and θ ∗
i (q

′
i,θ

′
−i) ∈ Θ∗

i (qi,θ−i);

(iii) θi ∈ Θ∗
i (qi,θ−i)\Θ∗

i (q
′
i,θ

′
−i), and θ ∗

i (qi,θ−i) ∈ Θ∗
i (q

′
i,θ

′
−i).
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The examples essentially show that, given the optimal EPIC mechanism, if the revenue

from some agent i is improvable with respect to some (θi,θ−i,θ
′
−i), then the strong founda-

tion does not exist. Thus, we complete the proof of Theorem 7 by showing that the ordinal

interdependence necessarily implies the improvability. See the appendix for the formal proof.

Next, we study if EPIC mechanisms have the (not necessarily strong) foundation. The

following example suggests that the same mechanism as above does not generally work, if the

agents have non-full-support first-order beliefs.

Example 3. In the new mechanism proposed in Example 1, if we allow for non-full-support

beliefs, there exists a situation where agent 1 always correctly predicts agent 2’s payoff types.

Formally, let C = {t ∈ T |θ̂(t) = (1,1), π̂1(t1)[1] = 1}, C′= {t ∈ T |θ̂(t) = (1,2), π̂1(t1)[2] = 1},

and consider µ such that µ(C) = f (1,1) and µ(C′) = f (1,2). Because the optimal choice for

agent 1 is η∗ = 0 (or reporting y = 1 as his belief for θ2 = 1) if t ∈ C, and η∗ = π
2 (or

reporting y = 0) if t ∈C′, the equilibrium payments in the new mechanism coincide with those

in the optimal EPIC mechanism. Thus, without the full-support belief assumption, the new

mechanism in Example 1 only weakly improves the expected revenue.

Now we further modify the mechanism as follows. Unless agent 1 reports θ1 = 1 and

y = 0, the allocation is the same as the previous mechanism proposed in Example 1. If agent

1 reports θ1 = 1 and y = 0, then the following events happen: agent 1 does not buy the good

for any θ2, he pays M(> 3) if θ2 = 1 (i.e., when his belief turns out to be “wrong”), and the

principal offers price 3 for agent 2 (so that agent 2 buys only if θ2 = 2, i.e., when agent 1’s

belief turns out to be “right”), instead of price 2. It is easy to verify that the new mechanism

is Bayesian incentive compatible on the universal type space T ∗.

This new mechanism achieves a weakly higher expected revenue than in the optimal EPIC

mechanism. First, this weak improvement is obvious unless θ1 = 1 and y = 0. If θ1 = 1 and

y = 0, the principal earns M > 3 from agent 1 if θ2 = 1 (while the optimal EPIC mechanism

yields total revenue 3), and earns 3 from agent 2 if θ2 = 2 (while the optimal EPIC mechanism

yields total revenue 2).

To show a strict improvement in expected revenue for any µ ∈M , consider the case where

θ1 = 1 and θ2 = 2. Because f (1,2) > 0, it suffices to show that, for any y ∈ [0,1] reported

by agent 1, the new mechanism achieves a strictly higher revenue than 2, the revenue in the

optimal EPIC mechanism. First, as we see above, if y= 0 is reported, then the new mechanism

yields 3 (from agent 2), and hence there is a strict improvement. If y > 0, then agent 2 pays 2,

and agent 1 pays 1− sin(arc tan 1−y
y
)> 0, and hence, there is again a strict improvement.

Notice that the key for strict improvement is to use agent 1’s belief to modify the price for

agent 2. If agent 1 is correct, such modification is profitable for the principal. Otherwise, the



2.4. WITH ORDINAL INTERDEPENDENCE 47

principal collects a “fine” from agent 1, which is also profitable.

As suggested in the example, it seems impossible to raise any additional revenue from

an agent if he always correctly predicts the other agents’ payoff types.15 Instead, in such a

case, a natural alternative idea may be to use this agent’s prediction to raise additional revenue

from the other agents (and to fine him if his prediction turns out to be wrong in order for

the principal to “hedge”, as in the example above). Because this means that we need to be

able to change an agent’s allocation without changing the others’, we assume that the feasible

allocation set Q is a product set, Q = ∏i Qi.

In addition, even if an agent correctly predicts the occurrence of some θ−i (or its non-

occurrence), such information does not necessarily make the principal earn strictly more rev-

enue from the other agents (for example, imagine that any j( 6= i)’s virtual valuation is negative

given θ−i). Thus, we need a stronger version of the improvability.

Definition 5. We have the strong improvability if there exist i,θi,θ j,q j,θ−i j such that θ j ∈
Θ∗

j(q j,θi,θ−i j), and that revenue from i is improvable with respect to
(
θi,(θ j,θ−i j),(θ

∗
j (q j,θi,θ−i j),θ−i j)

)
.

Roughly, the strong improvability implies that, if agent i with θi correctly predicts that

−i’s payoff types are not θ ′
−i, then (given θ−i j) the principal can know that j’s type is not a

threshold type for some q j. Such information enables the principal to earn higher expected

revenue from j.

Proposition 5. Under Assumptions 4, 5 and Q = ∏i Qi, strong improvability implies no foun-

dation of EPIC mechanisms.

A natural question is, under which additional conditions, the ordinal interdependence im-

plies the strong improvability, so that EPIC mechanisms do not have the foundation if and

only if we do not have the ordinal interdependence. A sufficient condition is the following

richness condition on Q.

Assumption 6. For each i, θi, and θ−i, we have qEP
i (θi,θ−i) > 0, and for each θ ′

i 6= θi, we

have qEP
i (θi,θ−i) 6= qEP

i (θ ′
i ,θ−i).

A representative example is a monopoly problem with multiple buyers and multiple units

of trading.16 Note that this excludes some situations where the lowest payoff type of an agent

(given the other agents’ payoff types) is “excluded” from trading.

15See Yamashita.
16 See Mussa and Rosen (1978) and Segal (2003) (or their straightforward generalizations) for such environ-

ments, although they focus on private-value environments.
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Theorem 8. Under Assumptions 3, 6 and Q = ∏i Qi, EPIC mechanisms have the foundation

if and only if we do not have ordinal interdependence.

2.5 Discussion: Continuous payoff-type space

In the previous finite payoff-type setup, given the others’ payoff-type profiles, the difference in

valuations between any two payoff types is strictly positive and bounded away from 0, which

enables us to exploit the “gaps” in valuations and increase the payments. However, if we have

infinitely many payoff types, such “gaps” may not exist, since η defined in Section 2.2 could

be equal to 0, and then the previous construction no longer works.

In this sense, the continuous payoff-type space case is more complicated than the finite

case, and hence the analysis of the continuous case is beyond the scope of the current paper.17

Nevertheless, it may be interesting to note how our approach may be useful (with appropriate

modifications), even in the continuous case. The following example explains this.

We assume I = 2, Θ1 = {0,1}× [0,2](∋ (c1,d1)), Θ2 = {0,1}(∋ c2), and Q = {0,1}2.

Agent 1’s valuation for q1 = 1 is v1(c1,d1,c2) = c1c2 +d1, and agent 2’s valuation for q2 = 1

is v2(c2) = 1+ 8
7c2.18 One may interpret ci as a (binary) common-value component, and d1

as a private-value component for agent 1. Essentially, the only difference from the previous

sections is that agent 1 now has a continuous payoff-type space. The other specifications are

for simplicity.

For the principal’s prior for θ , assume that each ci takes 0 or 1 equally likely, independently

from c−i. Independently from c2, the density of d1 given c1 is:

f (d1|c1 = 0) =

{
3
4 if d1 ∈ [0,1],
1
4 if d1 ∈ [1,2],

f (d1|c1 = 1) =

{
1
4 if d1 ∈ [0,1],
3
4 if d1 ∈ [1,2].

17 Generalizing Theorem 6 to the continuous case (even in the private-value environment as in Chung and Ely

(2007)) may also be non-trivial.
18 We omit q1,q2 in the arguments of v1,v2 for brevity.



2.5. DISCUSSION: CONTINUOUS PAYOFF-TYPE SPACE 49

We can show that the optimal EPIC mechanism (q∗i , p∗i )i=1,2 is given as follows:

q∗1(c1,d1,c2) =

{
1 if c1c2 +d1 ≥ 3

4c2 +1,

0 otherwise,

p∗1(c1,d1,c2) = (
3

4
c2 +1)q∗1(c1,d1,c2),

q∗2(c1,d1,c2) =

{
1 if c2 = 1,

0 if c2 = 0,

p∗2(c1,d1,c2) =
15

7
q∗2(c1,d1,c2).

This mechanism can be interpreted as a posted-price mechanism, where the price for agent

2 is always 15
7 (so that only high-value type of agent 2 buys), and the price for agent 1 is

3
4c2 +1, varying with c2.

Our basic idea for improvement is very similar to the finite case in the previous section.

However, to explain the basic incentive issues, we first consider the following “bundling”

interpretation. Imagine that the seller is selling to agent 1 a right to obtain the good when

c2 = 0, and another right to obtain the good when c2 = 1. To buy the bundle, agent 1 pays 1

when c2 = 0 and 7
4 when c2 = 1, as in the optimal EPIC mechanism. Similarly, to buy only

when c2 = 1 (but not when c2 = 0), agent 1 pays 7
4 when c2 = 1. However, to buy only when

c2 = 0 (but not when c2 = 1), agent 1 pays 1− ε for a small ε > 0.

If agent 1’s purchase behavior is the same as in the optimal EPIC mechanism (in particular,

if agent 1 buys both when c2 = 0 and c2 = 1 as long as d1 ≥ 1 and c1 +d1 ≥ 7
4 ), then this new

mechanism achieves a strictly higher expected revenue. However, such a behavior may not be

incentive compatible. For example, if agent 1 believes that c2 = 0 with probability very close

to 1, then no payoff type of agent 1 would buy the bundle: even for the highest payoff-type

(i.e., (c1,d1) = (1,2)), it would be better to buy the good only when c2 = 0 (with price 1− ε)

than to buy the good for both c2 ∈ {0,1}. Such a deviation makes the expected revenue much

smaller than under the optimal EPIC mechanism.

To avoid this, we introduce the following side bet: if (and only if) agent 1 buys the bundle,

he can further buy a lottery that yields to the agent ε if c2 = 0, and −bε if c2 = 1 (for some

b ∈ (8
7 ,

9
7)). Furthermore, if agent 1 buys this lottery, then with probability ε , the principal

offers price 1 instead of 15
7 to agent 2 (and the principal continues to offer price 15

7 to agent 2

with the other probability 1− ε).

Then, as long as d1 ≥ 1 and c1 + d1 ≥ 7
4 + bε , agent 1 prefers to “buying the bundle and

the lottery” to “buying only when c2 = 0”, regardless of his belief. Whether or not he actually

buys the lottery depends on his belief. However, observe that regardless of the true state,
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the expected revenue of the principal from the lottery is always non-negative: if c2 = 0, the

principal pays ε to agent 1 while he earns additional revenue 1 from agent 2 with probability

ε (hence, the expected revenue gain is non-negative); if c2 = 1, the principal receives bε from

agent 1 while he loses revenue 8
7 from agent 2 with probability ε (hence, the expected revenue

gain is non-negative for b > 8
7 ). Therefore, the worst-case scenario for the principal is that

agent 1 never buys the lottery.

On the other hand, if d1 > 1 and c1 + d1 ∈ (7
4 ,

7
4 + bε), the worst-case scenario is that

agent 1 buys only when c2 = 0, even though he buys both for c2 ∈ {0,1} in the optimal EPIC

mechanism. This revenue loss occurs regardless of agent 1’s belief, and this is one of the

fundamental differences from the (generic) finite case where only the gain exists as long as

the agents have full-support first-order beliefs.

Nevertheless, the overall expected revenue change is strictly positive, at least for suffi-

ciently small ε , which is approximately:

(1− ε)Pr(d1 ∈ (1− ε,1), c1 +d1 <
7

4
)Pr(c2 = 0)

−ε Pr(d1 > 1, c1 +d1 <
7

4
)Pr(c2 = 0)

−Pr(d1 > 1,c1 +d1 ∈ (
7

4
,
7

4
+bε))Pr(c2 = 1)

≃ 3ε

16
− 3ε

64
− 7bε

64
,

which is positive if b < 9
7 . The first term (on the left-hand side) is because agent 1 whose

payoff type satisfies d1 ∈ (1− ε,1) and c1 + d1 <
7
4 does not buy in any state in the optimal

EPIC mechanism, while he buys when c2 = 0 in the modified mechanism. The second term

is because, for agent 1 whose payoff type satisfies d1 > 1 and c1 + d1 <
7
4 , the price he pays

in the modified mechanism (when c2 = 0) is smaller by ε . The third term is because agent 1

whose payoff type satisfies d1 > 1 and c1 + d1 ∈ (7
4 ,

7
4 + bε) buys both for c2 ∈ {0,1} in the

optimal EPIC mechanism, while he buys only when c2 = 0 in the modified mechanism.19

This is, of course, just one example, and whether a similar approach works more generally

is left to be determined. However, we believe that, as demonstrated in this example, our basic

idea of modifying mechanisms carries over even to some continuous environments.

19 There are other changes in agent 1’s behavior, but their effects on the expected revenue are o(ε), and hence

omitted.
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2.6 Conclusion

If the environment exhibits only cardinal interdependence (and certain regularity conditions),

then there exist the maxmin and Bayesian foundations for EPIC mechanisms, in the sense

of Chung and Ely (2007). If the environment exhibits ordinal interdependence, (and certain

additional conditions), then such a foundation may not exist.

In interdependent-value environments, Yamashita (2015) provides an alternative solution

concept (that is, incentive compatibility in value revelation), which is also robust to the a-

gents’ belief structure in a related sense and useful in the implementation of social choice

correspondences in undominated strategies. It may be interesting to investigate similar sorts

of foundation results for this alternative solution concept.
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Chapter 3

Dynamic Inconsistency In Collective

Decision1

Shuguang Zhu2

October 30, 2017

We show that dynamic inconsistency in collective decision-making can de-

rive from heterogeneity in group members’ outside options, even if individuals

share the same exponentially discounting time preference. This model of endoge-

nous dynamic inconsistency facilitates the analysis of welfare consequences, since

time-consistent individual preferences allow for a well-defined measurement of

social welfare. We further characterize the optimal Bayesian-persuasion informa-

tion disclosure policy, which takes the form of upper revealing rules, to alleviate

the welfare distortion caused by inconsistent collective decisions. Our framework

proves to be highly adaptable to various contexts, including provision of public

facilities and assignment on team work.

1I am indebted to Takuro Yamashita for his inspiration and guidance at every stage of my research work. I

also thank Alessandro Bonatti, Tilman Börgers, Alexandre de Cornière, João Correia-da-Silva, Jacques Crémer,

Christian Gollier, Renato Gomes, Johannes Hörner, and seminar participants at Asian Meeting of the Economet-

ric Society (2017) and China Meeting of the Econometric Society (2017) for extremely valuable comments and

suggestions on this project.
2Toulouse School of Economics, University of Toulouse Capitole, France. shuguang.zhu@tse-fr.eu
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3.1 Introduction

Collective decisions have drawn increasing scholarly attention because of the sophisticated

processes of aggregating individual preferences. Many economic decisions, such as house-

hold savings and consumption, board decisions and public goods provision, are essentially

intertemporal choices of consumption streams made by a group of decision makers. If group

members are heterogeneous in their outside options — opportunity costs that individuals have

to pay in order to join the group — then collective decision-making can exhibit dynamic

preference reversal3 under certain conditions. We establish a framework to explain this phe-

nomenon, and explore how dynamic inconsistency is linked to the distribution of group mem-

bers’ outside options. We also study the related welfare consequences, and characterize the

optimal Bayesian-persuasion mechanism to restore efficiency.

Classical economics usually treats firms and other organizations as time-consistent agents

who discount the future reward in an exponential manner; however, this way of modeling has

been questioned since economists recognize that heterogeneity of individuals could induce

time varying discount rates (e.g., Marglin, 1963; Feldstein, 1964; Becker, 1992). In the recent

two decades, time inconsistency has been studied by a fast-growing literature of behavioral

economics. From (quasi-)hyperbolic discounting (e.g., Loewenstein and Prelec, 1992; Laib-

son, 1997) and non-hyperbolic discounting (e.g., Bleichrodt, Rohde, and Wakker, 2009), to

multi-selves assumption (e.g., Fudenberg and Levine, 2006), behavioral economics success-

fully proves itself to be a powerful angle to test and explain time inconsistency of individual

preference.4 However, it is lacking in foundations to model inconsistent collective decisions

by using behavioral assumptions which are mainly suitable for individual preferences. Thus,

novel frameworks have to be developed for this direction of research.

A natural way is to enrich the structure of collective decision-making by introducing the

group leader (i.e., the Principal) whose objective represents the collective utility function,

and the group members (i.e., the Agents) with the standard exponential time preference. By

checking the group leader’s ranking of different temporal rewards, one can identify which

3That is, as the evaluation period moves forward, the decision maker would have an incentive to deviate from

her plan made in the early periods. A relative concept is static preference reversal, which violates the stationarity

studied in decision literature (Koopmans, 1960; Fishburn and Rubinstein, 1982). Particularly, the ranking of

two temporal payments is not pinned down by the difference in size and the relative delay, but also depends on

the distance from the evaluation period. Halevy (2015) has studied the relationship between these two types of

preference reversal.
4 Also, its applications to contract theory, mechanism design and public policy seem to be fruitful (e.g.,

O’Donoghue and Rabin, 1999; Galperti, 2015; Bisin, Lizzeri, and Yariv, 2015).
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factors give rise to time inconsistency. Gollier and Zeckhauser (2005), followed by Jackson

and Yariv (2014, 2015), have showed that heterogeneity in individual discount rates makes

collective decisions exhibit present bias.5 In this paper, we follow their two-layer setup of

collective decision with common consumption; while instead of assuming different discount

rates among group members, we highlight the heterogeneity of opportunity costs of joining the

group. We prove that if the principal lacks commitment devices, collective decisions exhibit

dynamic present bias if and only if agents have heterogeneous outside options (Theorem 9).

More precisely, as long as the principal initially prefers a later consumption, she would also

choose it even if the decision time is postponed; we can find a pair of consumptions such that

the principal initially prefers the later one to the earlier one, but when the decision time is

postponed, her preference gets reversed.

To illustrate this dynamic preference reversal, imagine that a utilitarian social planner

wants to construct the road system for a new community, which is expected to take two years.

While she can save one year of construction by cutting some branches and auxiliary facili-

ties. Due to pre-construction community planning, at the beginning households have to decide

whether to live in this area or to move out to get their yearly outside options6 elsewhere.

Participation is voluntary but reentry is not allowed.

Cutting the construction period does reduce the value of the road system, however, it saves

households’ waiting costs before the construction ends. Moreover, high-outside-option house-

holds prefer the one-year plan because it is inefficient to wait that long in the two-year plan;

while low-outside-option households prefer the latter since it generates enough surplus to

compensate for their opportunity costs. Under certain conditions the group leader should se-

lect the two-year plan which excludes high-outside-option households, in order to maximize

5Also known as decreasing rate of impatience. That is, decision makers prefer smaller immediate reward to

larger delayed reward; while the ranking is reversed when both alternatives are equally shifted into the future.

Gollier and Zeckhauser (2005) consider allocations of private consumptions across agents in each period, and

point out that the variation of each individual’s share of resources over time, which equalizes individual intertem-

poral marginal rates of substitution, is the driving force of inconsistency. While Jackson and Yariv (2014, 2015)

work on common consumption streams, where the planner allocate public goods over time, and find that the dif-

ference in individuals’ exponentially discounting rates changes the relative effect of individuals’ preferences on

the weighted average utility, and thus induces present bias. A common feature of these works is that they focus

on the aggregate preferences over temporal rewards and exclude any dynamic interactions between the group

leader and group members. In other words, they study static preference reversal.
6That is, the highest possible utility each household can obtain by living outside of this community each year.

It is natural to think that outside options are different among households because of the variety of income levels

and tastes for environment.
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social welfare7. However, since the social planner cannot make any credible announcement

about her future decision, high-outside-option households won’t move out of the community,

and their presence forces the social planner to take their interests into consideration and end

up with insufficient public facilities.

The above example explains how heterogeneous outside options generate dynamic incon-

sistency. The difference in outside options not only creates tensions of individual preferences

as heterogeneity of discounting factors does, but also entitles group members to nontrivial

participation decisions.8 Due to lack of commitment power, agents can affect the principal’s

future preference through their current participation decisions, resulting in an inefficient out-

come from the group leader’s initial perspective.9

We prove that such dynamic preference reversal arises when the liquidation rate — the

ratio of earlier consumption to later consumption — is at the intermediate level (Theorem 10).

Clearly, no dynamic preference reversal would occur in extreme cases. If the difference in

valuations between two consumptions is negligible, then by no means should the principal

take more time to wait for the later consumption. On the other hand, if the earlier consumption

generates too little surplus compared with the later one, then the earlier consumption is always

an inferior alternative. We also show that the range of liquidation rates that induce dynamic

preference reversals is determined by the distribution of agents’ outside options and the size

of consumption (Proposition 6, 7).

Our framework is quite suitable for analyzing the welfare consequences of dynamic time

inconsistency, because group members share the same exponential discounting preference,

which allows for a well-defined and comparable measurement of social surplus. Since ef-

ficient outcomes are not implemented due to dynamic preference reversals for intermediate

liquidation rates, we’re interested in whether the principal can improve the total welfare by

manipulating how agents learn about liquidation rates. We base our methodology on the

Bayesian persuasion literature (e.g., Rayo and Segal, 2010; Kamenica and Gentzkow, 2011),

and assume that the group leader can commit to a public disclosure rule on the liquidation rate

7Since the social planner’s objective is to maximize the total utility of the all households, including those who

move out, it is equivalent to maximize the net social surplus generated by the road system.
8Unlike Jackson and Yariv (2014), where agents always get positive surplus in the group, in our paper group

members may optimally choose to quit the group under voluntary participation.
9The key insight that inconsistency arises in multi-period decisions when decision makers have limited com-

mitment power, is closely related to Kydland and Prescott (1977), that is, there is no mechanism to induce the

future decision maker to take into consideration the influence of her action on current decisions of group mem-

bers with rational expectations. See Thomas and Worrall (1988) and Kocherlakota (1996) for more discussions

on the commitment issues.
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which is not directly observable by agents. We prove that the optimal information structure is a

censorship policy (e.g., Kolotilin, Li, Mylovanov, and Zapechelnyuk, 2015; Yamashita, 2016),

which completely reveals any realization of the liquidation rate higher than a threshold, while

conceals it otherwise.

The economic intuition that induces the optimality of upper revealing rule is basically to

synthesize both commitment and flexibility. Particularly, by pooling some intermediate liqui-

dation rates with low realizations, on receiving the pooling message group members will form

a posterior about the liquidation rate which secures the implementation of default option. This

censorship policy plays the similar role as commitment power does, to deter the participation

of high-outside-option group members in order to achieve the efficient outcome under these

intermediate liquidation rates. On the other hand, for the remaining intermediate liquidation

rates that cannot be included in the pooling message, the disclosure rule completely reveals

these realizations so that group members can adjust their participating decisions to achieve the

second-best outcome.

The suboptimality of complete information revelation from the sender’s perspective is

aligned with the literature on information disclosure (e.g., Morris and Shin, 2002; Angele-

tos and Pavan, 2007; Ganuza and Penalva, 2010; Kamenica and Gentzkow, 2011). In these

papers, the optimality of partial disclosure rule mainly derives from either preference conflicts

between the sender and receivers, or the frictions in games. Our paper differs from the liter-

ature by providing another incentive for the utilitarian sender to conceal certain information,

that is, partial disclosure policy makes up for the lack of commitment devices which would

otherwise induce dynamic inconsistency issues.

The remainder of our paper is organized as follows. Section 3.2 introduces the setup.

Section 3.3 shows how dynamic inconsistency derives from the heterogeneity of agents’ out-

side options. Section 3.4 characterizes when dynamic preference reversals occur, and studies

the resource size effect and group composition effect. Section 3.5 characterizes the optimal

Bayesian-persuasion information disclosure rule to restore efficiency. Section 3.6 rationalizes

the equilibrium refinement adopted in our model, and provides two applications to public fa-

cility provision and team work. Section 3.7 concludes with a brief discussion on combining

our framework with mechanism design. All omitted proofs are collected in the appendices.

3.2 The Model

We consider a discrete-time model, with t ∈ {0,1,2, . . .}. Let Cx
t represent a common con-

sumption (i.e. a public good) of x at time t. A group of risk-neural agents, with mass of 1
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labelled by i ∈ I = [0,1], make a collective decision on which common consumption to im-

plement in the group. We formalize the collective decision-making process by introducing a

utilitarian group leader (i.e. the principal, denoted by “She”; while “He” denotes the agent),

who aims to maximize the total utility of all agents. The principal’s objective is called the

collective utility function.

3.2.1 Agents’ actions and payoffs

We assume that agents share the same exponential discounting time preference with discount

factor normalized to be 1. The instantaneous utility function at time t for each agent i is

ui,t(x) = x. At the beginning of each period t, agents simultaneously choose their actions

at = (ai,t)i∈I ∈ ∏i∈I Ai,t ⊆ {0,1}I , where 1 means that the agent participates in the group,

while 0 means that the agent stays out of the group. Assume that all agents are initially in the

group; and that once an agent quits the group, he has no option for reentry, that is, Ai,t ≡ {0}
for all t > t̄ if ai,t̄ = 0.

Each agent i has a deterministic time-invariant per-period outside option wi,t = w(i) :

[0,1] 7−→ [0,W ], which serves as the opportunity cost of participating in the group. Thus,

the cumulative distribution function of agents’ outside options is given by

F(w) =
∫

w(i)≤w
di, for any w ∈ [0,W ].

Define α := sup{x | F(x) = 0} and β := inf{x | F(x) = 1}. If α < β , we can find two subsets

I1, I2 ⊆ I with strictly positive measure, such that w(i1) 6= w(i2) for any i1 ∈ I1 and any i2 ∈ I2.

If α = β , all agents share the same outside option, except for those who belong to a measure-

zero subset of I. We say that agents have heterogeneous outside options if and only if α < β .

From the time-t0 perspective, if an agent with outside option w expects to have common

consumption Cx
t (with t > t0), by quitting at time t̄, his net payoff is given by

Ui|t0(C
x
t ,w | t̄) =

{
−w(t̄ − t0), if t0 ≤ t̄ ≤ t

x−w(t̄ − t0), if t̄ ≥ t +1.

Obviously, the agent’s optimal quitting time is given by

t̄∗(Cx
t ,w, t0) =

{
t0, if x < w(t − t0 +1)

t +1, if x ≥ w(t − t0 +1),

subject to a tie-breaking rule that when agents get the same net payoff between quitting imme-

diately and staying until the public good is consumed, they choose the latter. Then the highest
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outside option of agents who don’t quit at time t0 is given by w̄(Cx
t , t0) =

x
t−t0+1 . The time-t0

valuation of Cx
t for an agent with outside option w is

Ui|t0(C
x
t ,w) =

{
0, if x < w(t − t0 +1)

x−w(t − t0 +1), if x ≥ w(t − t0 +1).

Obviously, individual agent’s decision is dynamic consistent.

Lemma 9. For any 0 ≤ t0 < t ′0 ≤ t < t ′, any w, and any x,x′, we have

Ui|t0(C
x
t ,w)

{
>

<

}
Ui|t0(C

x′
t ′ ,w) =⇒ Ui|t ′0(C

x
t ,w)

{
>

<

}
Ui|t ′0(C

x′
t ′ ,w).

Proof. Equivalently, we write Ui|t0(C
x
t ,w)=max{0,x−w(t−t0+1)}. If Ui|t0(C

x
t ,w)>Ui|t0(C

x′
t ′ ,w),

then we must have x−w(t−t0+1)>max{0,x′−w(t ′−t0+1)}. Notice that x−w(t−t ′0+1)>

x−w(t − t0 +1)> 0 and

[x−w(t − t ′0 +1)]− [x′−w(t ′− t ′0 +1)] = [x−w(t − t0 +1)]− [x′−w(t ′− t0 +1)]> 0,

then Ui|t ′0(C
x
t ,w) = x−w(t − t ′0 +1)> max{0,x′−w(t ′− t ′0 +1)}=Ui|t ′0(C

x′
t ′ ,w).

3.2.2 Principal’s problem

There are two common consumptions available for the group, denoted by {Cx
t1
,Cy

t2
} with t1 <

t2. Let I∗t = {i ∈ I | ai,t−1 = 1} denote the subset of active agents who have not quit the group

before time t. The valuation of common consumption Cx
t at time t0 for the principal is given

by

UP|t0(C
x
t | I∗t0) =

∫

i∈I∗t0

Ui|t0
(
Cx

t ,w(i)
)
di. (3.1)

In other words, the collective decision is made to maximize the total net payoff of the active

agents. We assume that the principal has no commitment device to convince the agent of

her future choice until time td such that 0 < td ≤ t1. The time between td and t1 might be

interpreted as the necessary period of preparation for implementing the common consumption

Cx
t1

. The principal essentially commits to implementing C
y
t2

by not starting preparing for Cx
t1

at time td . It is critical to assume td > 0; otherwise the principal could commit herself to her

time-0 decision and be free from dynamic inconsistency issues.
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3.2.3 Strategies and solution concept

We assume that agents’ outside options and all above settings are common knowledge within

the group. Moreover, all past actions are observable by agents and the principal. The timing

is as follows:

(i) At the beginning of each period 0,1, . . . , td − 1, active agents simultaneously choose

whether to stay in the group or not.

(ii) At the beginning of period td (before agents make their participation decisions), the

principal chooses C ∈ {Cx
t1
,Cy

t2
} after observing I∗td .

(iii) After observing C, agents decide their optimal quitting time.

We can see that the game essentially ends after the principal chooses C, because in stage (iii)

each active agent i’s optimal quitting time is simply given by t̄∗
(
C,w(i), td

)
. Thus, we only

need to study the finite-period game from time 0 to time td .

A pure strategy for agent i is a mapping si : H 7−→ {0,1}, where H =
⋃td−1

t=0

(
∏i∈I Ht

i

)
and

Ht
i = {0,1}t . An element of Ht

i is given by ht
i = (ai,0,ai,1, . . . ,ai,t−1), which denotes agent i’s

past actions before time t. An element of H is given by ht = (a0,a1, . . . ,at−1), which denotes

agents’ past action profiles before time t. Let Si collect agent i’s all feasible strategies that

satisfy the no-reentry condition.

A pure strategy for the principal is a mapping sP : {0,1}td×I 7−→ {Cx
t1
,Cy

t2
}. From (3.1)

we can see that the principal’s optimal choice only depends on the subset of active agents

at the end of period td − 1, i.e. I∗td . Thus, the principal’s strategy can also be written as

sP : 2I 7−→ {Cx
t1
,Cy

t2
}. Let SP collect the principal’s all possible strategies.

The solution concept we applied here is pure-strategy subgame perfect equilibrium with-

out coordination failure among agents, which is abbreviated to SPE-NCF hereafter. Define

Ui|0
(
(si)i∈I,sP,w(i)

)
= Ui|0

(
sP(h

td [(si)i∈I]),w(i)
)
, where htd [(si)i∈I] denotes the past actions

before time td induced by strategy profile (si)i∈I .

Definition 6. We say that
(
(s∗i )i∈I,s

∗
P

)
constitute a SPE-NCF strategy profile if:

1.
(
(s∗i )i∈I,s

∗
P

)
is a subgame perfect equilibrium;

2. For any Ĩ ⊆ I and any (s̃i)i∈Ĩ ∈ ∏i∈Ĩ Si, we have for any i ∈ Ĩ,

Ui|0
(
(s∗i )i∈I,s

∗
P,w(i)

)
≥Ui|0

(
(s̃i)i∈Ĩ,(s

∗
i )i∈I\Ĩ,s

∗
P,w(i)

)
.
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The only difference between our solution concept and the standard subgame perfect equi-

librium is that, we allow agents to form coalitions, so that they can jointly decide whether

to stay in the group or not. This equilibrium refinement is critical for our analysis, because

it induces a unique outcome by ruling out the “uninteresting” equilibriums with coordination

failure among agents.

To see this, if we have x < y, then agents with higher outside options would prefer the

earlier consumption Cx
t1

, while agents with lower outside options would prefer the later con-

sumption C
y
t2

. Since the principal maximizes the group’s total utility, the presence of agents

with higher (or lower) outside options will dispose the principal to choose earlier (or later)

consumption at time td . Roughly speaking, coordination failure among agents refers to the

situation where the joint participation of a subset of agents is able to drive the principal to

choose their preferred outcome, while the participation of only a fraction of them will end up

with a less-preferred outcome for them. This is often the case when individual agents have

limited effect on the equilibrium outcome, as is in our model with a continuum of agents.10

3.3 Dynamic Inconsistency: Present Bias

Jackson and Yariv (2014) define a static version of present-biased collective utility functions,

where the collective-decision maker evaluates future consumptions from a fixed-time perspec-

tive. Then present bias in their definition refers to a situation where the collective-decision

maker becomes more patient as the candidate pair of consumptions are both postponed. Mo-

tivated by this, we define the dynamic present bias:

Definition 7 (“Dynamic Present Bias”). Let Vt0(C
x
t ) : {0,1, . . .}2 ×R 7−→ R be a collective

utility function which defines the time-t0 valuation of Cx
t for the principal. Then V exhibits

dynamic present bias if for all 0 < t0 ≤ t1 < t2:

1. For all x and y, V0(C
x
t1
)≥V0(C

y
t2
) implies Vt0(C

x
t1
)≥Vt0(C

y
t2
);

2. There exist x and y such that V0(C
x
t1
)<V0(C

y
t2
) and Vt0(C

x
t1
)>Vt0(C

y
t2
).

A notable feature that distinguishes our definition from the one in Jackson and Yariv (2014)

is that the principal (i.e. the collective-decision maker) no longer stands at a fixed time. The

first part of the definition says that if the principal initially prefers an earlier consumption to a

later one, then as the decision time moves on, her preference doesn’t change. The second part

10See Subsection 3.6.1 for more discussions on the solution concept.
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states that, we can find a pair of consumptions such that initially the principal prefers the later

consumption, but as the decision time approaches the earlier consumption, her preference gets

reversed. Thus, dynamic present bias indicates increasing impatience as the decision time is

postponed.

We consider two scenarios. Scenario 1 is a hypothetical situation where the principal

makes a decision at the beginning of time 0 as if she could commit to it during the whole

game. After observing the principal’s time-0 decision, each agent chooses his own quitting

time. Because initially agents are all in the group, i.e I∗0 = I, the principal’s optimal time-0

choice is given by

max
C∈{Cx

t1
,C

y
t2
}
UP|0(C) =

∫

i∈I
Ui|0
(
C,w(i)

)
di,

which is actually the efficient outcome. Let Ceff be the solution to this problem.

Scenario 2 is the actual game defined in Section 3.2, where the principal’s decision time is

postponed to time td . Given agents’ equilibrium strategy profile s∗ = (s∗i )i∈I , which results in

the subset of active agents, denoted by I∗td(s
∗), the principal’s optimal time-td choice is given

by

max
C∈{Cx

t1
,C

y
t2
}
UP|td

(
C | I∗td(s

∗)
)
=
∫

i∈I∗td (s
∗)

Ui|td
(
C,w(i)

)
di,

which is named the equilibrium outcome Cequ. A collective decision rule is said to be dynamic

inconsistent if there exists discrepancy between time-0 choice (Ceff) and time-td choice (Cequ).

The following theorem proves that (utilitarian) collective decisions exhibit dynamic present

bias if and only if agents have heterogeneous outside options.

Theorem 9. Fixed any F ∈ ∆([0,W ]) and any 0 < td ≤ t1 < t2:

1. For all x and y, Ceff =Cx
t1

implies Cequ =Cx
t1

;

2. There exist x and y such that Ceff =C
y
t2

and Cequ =Cx
t1

, if and only if α < β .

We provide the formal proof in Appendix D.1.1. Here we illustrate how heterogeneity in

outside options could result in dynamic present-biased collective decisions by a three-period

binary-agent model. Time is denoted by {0,1,2}, where 3 means the end of period 2. The

principal’s decision time is td = 1, with two candidate common consumptions {C0.85
1 ,C1

2}. Let

I = {1,2}. Agents’ outside options are given by w(1) = 0 and w(2) = 0.4. Obviously, Agent

1 prefers C1
2 to C0.85

1 ; while Agent 2 prefers consuming C0.85
1 to quitting at time 0 (if C1

2 is

implemented). The principal maximizes the sum of both agents’ payoffs. On the one hand,
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because

UP|0(C
0.85
1 ) = U1|0(C

0.85
1 | 2)︸ ︷︷ ︸

Agent 1 quits at time 2

+ U2|0(C
0.85
1 | 2)︸ ︷︷ ︸

Agent 2 quits at time 2

= (0.85−0×2)+(0.85−0.4×2) = 0.9,

UP|0(C
1
2) = U1|0(C

1
2 | 3)︸ ︷︷ ︸

Agent 1 quits at time 3

+ U2|0(C
1
2 | 0)︸ ︷︷ ︸

Agent 2 quits at time 0

= (1−0×3)+0 = 1,

we get Ceff =C1
2 . On the other hand, if both agents do not quit at time 0, then at the principal’s

decision time td = 1, we have

UP|1
(
C0.85

1 | I∗1 = {1,2}
)
= U1|1(C

0.85
1 | 2)︸ ︷︷ ︸

Agent 1 quits at time 2

+ U2|1(C
0.85
1 | 2)︸ ︷︷ ︸

Agent 2 quits at time 2

= (0.85−0×1)+(0.85−0.4×1) = 1.3,

UP|1
(
C1

2 | I∗1 = {1,2}
)
= U1|1(C

1
2 | 3)︸ ︷︷ ︸

Agent 1 quits at time 3

+ U2|1(C
1
2 | 3)︸ ︷︷ ︸

Agent 2 quits at time 3

= (1−0×2)+(1−0.4×2) = 1.2.

Thus, in the subgame induced by I∗1 = {1,2}, the principal chooses C0.85
1 . Notice that both

agents get strictly positive payoffs in this subgame, then we get a unique SPE (and thus a

unique SPE-NCF) where both agents stay in the group at time 0 and C0.85
1 is implemented at

time 1, i.e. Cequ =C0.85
1 .

Intuitively, it is too costly to include Agent 2 (i.e. the high-outside-option agent) in the

group. If the principal could credibly announce her future choice at time 0, she would lead

Agent 2 to quit at the very beginning by committing to C1
2 . However, due to the lack of

commitment power at time 0, the presence of Agent 2 in the group compels the principal to

implement C0.85
1 . We can see that heterogeneity in outside options affects the principal’s de-

cision in two ways: (i) it creates conflicts of individual preferences; (ii) it induces different

quitting decisions among agents. This enables agents to alter the principal’s choice by their

non-trivial participation decisions. Also, agents’ voluntary participation is indispensable. Sup-

pose instead the principal could force Agent 2 to quit at time 0, then with Agent 1 to be the

only active agent, the principal’s equilibrium choice at time 1 would be C1
2 , which coincides

with the efficient choice.

Theorem 9 contributes to the study on inconsistency in collective decision-making, by pro-

viding a foundation for dynamic present bias based on time-consistent individual preferences.
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In behavioral economics, time inconsistency is usually modeled in an exogenous way, such as

quasi-hyperbolic discounting. In the above three-period example, assume that the collective

utility function at time t0 is given by

Vt0(ct0 ,ct0+1,ct0+2) = ct0 + r1

(
r2ct0+1 + r2

2ct0+2

)
,

where ct is the consumption at time t, and r1,r2 ∈ (0,1). One can easily check that if r2 > 0.85

and r1r2 < 0.85, then we have V0(C
0.85
1 ) < V0(C

1
2) and V1(C

0.85
1 ) > V1(C

1
2). However, our

model reproduces the pattern of dynamic present bias that can be explained by behavioral

models, without imposing “non-standard” assumptions on individual preferences. Moreover,

we show that such dynamic inconsistency in collective decision-making is resulted from the

heterogeneity in agents’ outside options.

It is worth noting that, dynamic present bias guarantees that preference reversals between

efficient choice and equilibrium choice only occur for some pair of candidate consumptions.

For example, if the later consumption is smaller than the earlier one, both efficient and equi-

librium choices will be the earlier larger consumption. Thus, it is the relative size of candidate

consumptions that matters. In the next section, we characterize when such preference reversal

happens by using a three-period model where the principal reallocates common consumptions

over time.

3.4 Dynamic Preference Reversal

We consider the same setup as in Section 3.2, except that time is restricted to {0,1,2} and the

principal’s decision time is td = 1. The utilitarian principal has resource y at time 2, which is

public goods. At time 1, the principal has access to a debt plan with borrowing rate δ ∈ [0,1],

which measures the effectiveness of reallocating resources from later periods to earlier periods.

If the principal decides to reallocate a fraction γ ∈ [0,1] of the total resource from time 2 to time

1, then she can provide agents with a common consumption stream (c1,c2) =
(
γδy, (1−γ)y

)
.

We assume that at time 0, the principal has no commitment device to convince the agents of

her time-1 choice.

We assume that agents have heterogeneous outside options, so that the collective decision

is present-biased. For simplicity, we assume that F(w) ∈ ∆([0,W ]) has full-support continu-

ous density. We first characterize when dynamic preference reversal arises in the benchmark

case where δ is common knowledge and realized at time 0. The timing is the same as in

Subsection 3.2.3, except that at stage (ii) the principal chooses from
{(

γδy, (1− γ)y
)}

γ∈[0,1]
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instead of binary choices. Lemma 10 proves that at stage (ii), the utilitarian principal actually

chooses between γ = 0 and γ = 1, i.e. the default option C
y
2 or the liquidation option C

δy
1 .11

Lemma 10. Given any I∗1 ⊆ I, principal’s optimal choice at time 1 is either γ = 0 or γ = 1.

Next we study the condition on δ to generate discrepancy between principal’s efficient

choice at time 0 and equilibrium choice at time 1. Let x = δy(≤ y). Anticipating C ∈ {Cx
1,C

y
2}

at time 1, agents participate at time 0 only if Ui|0(C,w(i)) ≥ 0. It follows that the highest

participating outside option at time 0 is w̄(Cx
1,0) =

x
2 (or w̄(Cy

2,0) =
y
3 ) if principal chooses Cx

1

(or C
y
2) at time 1.

Case 1. x
2 ≤ y

3 . Immediately, we have supi∈I∗1
w(i)≤ y

3 . From (D.1) in Appendix D.1.1 we

have that all agents who stay in the group until the public good is consumed always prefer C
y
2

to Cx
1. Thus, Ceff =Cequ =C

y
2. In other words, there is no dynamic preference reversal when

δ ≤ 2
3 .

Case 2. x
2 > y

3 . Define I(w) = {i ∈ I | w(i) ≤ w}, then we have I( y
3) ⊆ I∗1 ⊆ I( x

2) in any

SPE. Agents with any w ≤ y
3 get net gains under both Cx

1 and C
y
2. As for y

3 < w ≤ x
2 , they quit at

time 0 if principal chooses C
y
2, but quit at time 2 if principal chooses Cx

1. We first characterize

the condition under which Cx
1 is chosen in the subgame induced by I∗1 = I( x

2). Define ϕ|1(x) as

the difference between UP|1(C
x
1 | I( x

2)) and UP|1(C
y
2 | I( x

2)):

ϕ|1(x) =
∫ x

2

0
(x−w)dF(w)−

∫ x
2

0
(y−2w)dF(w).

Since we have

{
ϕ|1(

2y
3 ) =

∫ y
3

0 (w− y
3)dF(w)< 0, ϕ|1(y) =

∫ y
2

0 wdF(w)> 0,
d
dx

ϕ|1(x) =
1
2(

3x
2 − y) f ( x

2)+F( x
2)> 0,

by continuity of ϕ|1(x), there exists a unique x̂ ∈ (2y
3 ,y) such that ϕ|1(x̂) = 0. x̂ is the thresh-

old which determines principal’s equilibrium choice at time 1. If and only if x > x̂, the joint

participation of agents from subset I( x
2) will make high-outside-option agents’ interest out-

weigh low-outside-option agents’ interest, resulting in the SPE outcome Cx
1. Moreover, it is

the unique SPE-NCF outcome. To see this, suppose C
y
2 is also a SPE-NCF outcome, where

the subset of active agents before the principal make a decision is Ĩ ∈ I. First we must have

Ĩ ⊆ I( y
3), because any agent with w > y

3 gets negative payoff by consuming C
y
2. Then agents

with w ∈ I( x
2) \ Ĩ may jointly deviate from quitting at time 0 to staying in the group, which

11This property is derived from the linearity of agents’ utility function. Allowing for more general utility

functions seems not to add much more insights, but makes the model intractable.
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makes the principal choose Cx
1 and benefits all these agents, contradicting the definition of

SPE-NCF. Thus, Cequ =Cx
1 if and only if x > x̂.

Next, we characterize the condition that makes Cx
1 suboptimal from principal’s time-0

perspective. Define ϕ|0(x) as the difference between UP|0(C
x
1) and UP|0(C

y
2):

ϕ|0(x) =
∫ x

2

0
(x−2w)dF(w)−

∫ y
3

0
(y−3w)dF(w).

Since we have




ϕ|0(x̂) = ϕ|1(x̂)+
∫ x̂

2
y
3

(y−3w)dF(w)< 0,

ϕ|0(y) =
∫ y

3
0 wdF(w)+

∫ y
2

y
3

(y−2w)dF(w)> 0,

d
dx

ϕ|0(x) = F( x
2)> 0,

by continuity of ϕ|0(x), there exists a unique x̃ ∈ (x̂,y) such that ϕ|0(x̃) = 0. x̃ is the threshold

which determines principal’s optimal choice if she has commitment power at time 0. Thus,

Ceff =Cx
1 if and only if x > x̃.

We assume the tie-breaking rule that, when the principal is indifferent between the two

options, she implements the default option (i.e. C
y
2). Define δ̂ = x̂

y
and δ̃ = x̃

y
. Since x̂ < x̃, we

have the following results: (i) Ceff =Cequ =C
y
2 when 0 ≤ δ ≤ δ̂ , (ii) Ceff =C

y
2 and Cequ =Cx

1

when δ̂ < δ ≤ δ̃ , (iii) and Ceff =Cequ =Cx
1 when δ̃ < δ ≤ 1. Figure 3.1 illustrates Ceff, Cequ

and the principal’s time-0 payoff at different values of δ .

We can see that there is no collision between the efficient choice and the equilibrium

choice for extreme values of δ . Particularly, when δ is too low, the liquidation cost becomes

so large that even the presence of high-outside-option agents in the group could not make the

principal choose C
δy
1 . While if δ is high enough, C

δy
1 not only can be induced by the partic-

ipation of high-outside-option agents, but also becomes the efficient choice because the loss

in consumption due to reallocation is compensated by the gain from saving agents’ opportu-

nity costs. However, for intermediate δ , it is ex-ante efficient to choose C
y
2 and exclude the

agents with high outside options; however, those agents will crowd into the group and force

the principal to liquidate the future consumption in the final decision. In short, dynamic pref-

erence reversal only occurs for intermediate level of δ ∈ (δ̂ , δ̃ ]. We summarize this result in

the following theorem.

Theorem 10. Dynamic preference reversals arise when the effectiveness of reallocating re-

sources from later periods to earlier periods is at the intermediate level.

Because individual preferences are time consistent, the total welfare is well-defined by the

principal’s time-0 payoff. We clearly see from Figure 3.1 that dynamic preference reversals
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Figure 3.1: The principal’s time-0 payoff at Ceff and Cequ, respectively.

cause welfare loss, which is measured by difference between UP|0(C
y
2) and UP|0(C

δy
2 ), i.e.

the distance between the blue line and the red line at each δ . Moreover, the jump point

of the red line means that welfare loss reaches the severest level in the neighborhood of δ̂ ,

and gradually decreases as δ increases. In Section 3.5 we consider a situation where δ is

no longer common knowledge and the principal has control over how agents learn about δ

through public messages. We exploit the discontinuity of UP|0(C
equ) to construct the optimal

Bayesian-persuasion information structure.

3.4.1 Resource size effect

We have characterized the range of effectiveness of reallocation where the efficient outcome

is not achieved due to dynamic preference reversals. A natural question is whether this range

depends on the size of resources (y). If not, then the amount of resource has limited influence

on the principal’s decision; otherwise one has to be more vigilant against the size effect of

resources, because increasing total resources does not necessarily improve welfare, but could

give rise to detrimental inconsistency problems under certain circumstances.

We write the two thresholds δ̃ and δ̂ as functions of y by means of implicit function.
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Specifically, δ̃ (y) = x̃(y)
y

, where x̃(y) is given by

∫ y
3

0
(y−3w)dF(w) =

∫ x̃(y)
2

0
(x̃(y)−2w)dF(w);

and δ̂ (y) = x̂(y)
y

, where x̂(y) is given by

∫ x̂(y)
2

0
(x̂(y)−w)dF(w) =

∫ x̂(y)
2

0
(y−2w)dF(w).

Let eF(w) := f (w)w
F(w) be the elasticity of F(w). By definition F(w) is the distribution of

agents’ outside options, which can be viewed as the proportion of accepting agents when

consumption w is proposed by the principal. Then eF(w) measures the percentage change in

agents’ acceptance proportion induced by unit of percentage change in the group’s provision

of public goods. It turns out that eF(w) plays a decisive role in determining the properties of

δ̃ (y) and δ̂ (y).

Proposition 6. If eF(w) is monotonically increasing (or decreasing) in w, then both δ̃ (y) and

δ̂ (y) are monotonically decreasing (or increasing) in y.

The proposition states that, if the elasticity of F(w) is monotone, then the intermediate

range of δ where dynamic preference reversal arises will monotonically shift as the size of

resources varies. Intuitively, suppose that eF(w) is increasing, then if we raise y by one percent,

the relative measure of new comers (whose outside options are relatively high) compared

with the original active agents (whose outside options are relatively low) is increasing with

the current level of y. This has two effects on the principal’s decision. First, the utilitarian

principal caters more to the high-outside-option agents, which makes C
δy
1 more likely to be

the efficient outcome, and thus δ̃ (y) decreases. Second, the proportion of high-outside-option

agents in all active agents goes up, then it becomes easier for them to make the principal

choose the suboptimal choice. So δ̂ (y) also decreases.

An immediate corollary is that, if eF(w) is constant, then both δ̃ (y) and δ̂ (y) are invariant

with respect to y. It is equivalent to require that the distribution function F(w) take the form

of power functions, including the uniform distribution. In this case the range of dynamic pref-

erence reversal is independent of y, thus the amount of resources is positively correlated with

the total welfare. Otherwise, the changes in the size of y may alter the principal’s decision and

cause discontinuous variation of total welfare. For instance, C
y
2 is both the efficient and equi-

librium outcome at some δ = δ̂ (y0)− ε where ε > 0 is sufficiently small. Suppose F(w) has

an increasing elasticity, then we have that δ̂ (y) is decreasing in y. Now there is some “good”
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news that principal has access to a bit more resources, so that the resource increases from y0

to y1. However, more resources can induce a lower threshold δ̂ (y1)< δ < δ̃ (y1), resulting in

dynamic preference reversal of the principal. Notice that the welfare loss is significant near

the threshold, exceeding by far the potential gain brought by the increase in resources, thus

the “good” news could end up with an adverse outcome.

3.4.2 Group composition effect

Another interesting question is how dynamic inconsistency is related to the group composition

of agents’ outside options. It is striking that the elasticity function of the distribution of agents’

outside options again proves to be a prime indicator.

Proposition 7. For any two distributions F1(w) and F2(w), if eF1
(w) ≤ eF2

(w) for all w, then

given any y we have δ̃F1
(y)≥ δ̃F2

(y) and δ̂F1
(y)≥ δ̂F2

(y).

The above proposition establishes the link between the range of liquidation rate (δ ) which

leads to dynamic preference reversals, and the distribution of agents’ opportunity cost of par-

ticipation. Take any two groups, if the distribution of one group’s outside options has an

elasticity uniformly higher than the other group, then the former group is more likely to suffer

from dynamic inconsistency under lower liquidation rates compared with the latter one.

To better understand this result, we restrict to distributions with constant elasticity, which

take the form of power functions as we discussed before. Thus, the relative size of resource

plays no role in determining the two thresholds, and we can focus on the group composition

effect. We further normalize the upper bound of outside options to be 1, i.e. W = 1. Then the

possible set of distribution functions is given by C := {F : [0,1] 7→ [0,1] | F(w) = wr,r > 0},

and the elasticity eF is given by r. Pick any pair r1 < r2, and then we have F1(w) =wr1 ≥wr2 =

F2(w) for all w ∈ [0,1], which means F2 dominates F1 in the sense of first-order stochastic

dominance. Immediately, we have the following corollary.

Corollary 1. Given any pair of distributions F1,F2 ∈C, dynamic preference reversal for Group

1 occurs at (weakly) higher liquidation rates than Group 2 if and only if F2 first-order stochas-

tically dominates F1.

Roughly speaking, the group with outside options concentrated in the lower level will

more likely exhibit dynamic preference reversal under higher level of liquidation rates, and

vise versa. This result throws light on collective decisions in two aspects. First, it point out

that policy makers should pay close attention to the organizations they are faced with. When
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manipulating the liquidation rate through various policy instruments such as debt plans, tax

rates and subsidies, policy makers should be aware of the fact that the policy could impose

quite different effects on different entities. Second, it provide some guideline for composition-

al optimization of the group. Heterogeneity of group members’ outside option is inevitable in

reality, however, there always exists some room for the group leader to adjust the composition.

Given certain reallocation device, the group leader can make appropriate adjustments to the

distribution of agents’ outside options through, for instance, changing the initial members and

segmentation, so that the group’s decision is able to circumvent the inconsistency issues.

3.5 Welfare Improvement

3.5.1 Optimal Bayesian persuasion mechanism

In the benchmark case we assume that δ is common knowledge and realized at t = 0, and show

that social welfare is distorted under intermediate level of liquidation rates due to dynamic

preference reversals. In reality, the group leader usually has an information advantage over

the group members in assessing the effectiveness of reallocating resources. Thus it is mean-

ingful to ask whether the benevolent group leader can manipulate the information disclosure

rule to alleviate welfare loss. In this section we apply the Bayesian persuasion approach to

characterize the optimal disclosure rule.

Consider the previous three-period model, where agents’ outside options and the princi-

pal’s time-2 resource y are common knowledge, except that the liquidation rate δ is the state

of world subject to a common prior G[0,1] and is privately observed by principal at time 0.

Imagine that the principal is aimed at maximizing the expected total welfare by choosing an

message structure M0 before δ is realized at time 0. As is always assumed in Bayesian per-

suasion model, the principal can commit to that revealing rule in the whole time horizon.12

After observing δ , according to the disclosure rule, principal sends a public message m0 ∈ M0

which induces a time-0 posterior belief µ0 ∈ ∆([0,1]) shared among the agents. Then agents

decide whether to stay in the group, resulting in the participation subset I∗1 . At time 1, prin-

cipal observes I∗1 and chooses the fraction α of time-2 resource to be liquidated. Then the

common consumption stream (c1,c2) = (αδy,(1−α)y) is implemented and each agent who

12For instance, before observing the state of world, the principal can employ a third-party to certify the infor-

mation due to lack of the ability to generate hard evidence herself. The principal can also design a machine to

automatically reveal the realized state according to some preset program.
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participated at time 0 decides his optimal quitting time.13

First, since we consider pure-strategy SPE-NCF, I∗1 satisfies {i ∈ I | w(i) ≤ w∗}, where

w∗ ≤ y
2 is the upper bound of participating outside options. By Lemma 10, at time 1 the group

leader actually chooses between C
δy
1 and C

y
2. Given any δ , define w̄(δ ) as the minimum w∗

that make the group leader choose C
δy
1 at time 1 if δ is realized. Suppose w̄(δ ) > δy, since

w̄(δ ) equalizes the group leader’s time-1 objective function between choosing C
δy
1 and C

y
2,

that is,

∫ δy

0
(δy−w)dF(w)+

∫ w̄(δ )

δy
0dF(w) =

∫ w̄(δ )

0
(y−2w)dF(w)

⇐⇒
∫ δy

0
(δy+w− y)dF(w) =

∫ w̄(δ )

δy
(y−2w)dF(w)> 0,

which means δ > 1
2 , contradicting the fact that the highest possible value of w∗ is y

2 when

agents know δ = 1 at time 0. Thus, we only need to consider w̄(δ )≤ δy. Let

ϕ|1(δ ,w
∗) =

∫ w∗

0
(δy−w)dF(w)−

∫ w∗

0
(y−2w)dF(w) =

∫ w∗

0
(δy+w− y)dF(w),

then we have ϕ|1(δ , w̄(δ )) = 0, δy + w̄(δ )− y > 0,
dw̄(δ )

dδ
= − F(w̄(δ ))y

f (w̄(δ ))(δy+w̄(δ )−y) < 0, and

∃1
2 < δ < δ̂ such that w̄(δ ) = y

2 .14 Moreover, we have w̄(δ ) > δ̂y
2 if δ < δ̂ , w̄(δ ) < δ̂y

2 if

δ > δ̂ , and w̄(δ̂ ) = δ̂y
2 . It is also easy to check that w̄(1) = 0 and w̄(δ ) is continuous.

After receiving the principal’s message m0, agents form a posterior belief µ0 over all pos-

sible δ . Since w̄(δ ) is a decreasing function, and for any δ the group leader will choose C
δy
1

at time 1 if and only if w∗ > w̄(δ ), then agents’ participation decision sets a threshold δ such

that group leader will choose the default option if δ ′ ∈ [0,δ ] and choose the liquidation option

if δ ′ ∈ (δ ,1]. Define wµ0
(δ ) as the maximum participating outside option if the threshold is δ

and agents’ posterior belief is µ0, i.e.,

∫

δ ′∈[0,δ ]

(
y−3wµ0

(δ )
)
dµ0(δ

′)+
∫

δ ′∈(δ ,1]

(
δ ′y−2wµ0

(δ )
)
dµ0(δ

′) = 0

=⇒ wµ0
(δ ) = y

µ0(δ )+
∫

δ ′∈(δ ,1] δ
′dµ0(δ

′)

2+µ0(δ )
,

13At this stage δ becomes common knowledge because agents can infer the value of δ from (c1,c2).

14Since we have
dϕ|1(δ ,w

∗)
dw∗ = (δy+w∗− y) f (w∗), then starting from ϕ|1(δ ,0) = 0, ϕ|1(δ ,w

∗) first decreases

over (0,y− δy), then increases over (y− δy, y
2
). Notice that ϕ|1(δ̂ ,

δ̂y
2
) = 0 and

dϕ|1(δ ,w
∗)

dw∗ = yF(w∗) > 0, then

there exists 1
2
< δ < δ̂ such that as δ decreases, w̄(δ ) gradually increase until it reaches the upper bound y

2
. For

any δ < δ the leader will always chooses C
y
2.
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where the integral is defined in the sense of Lebesgue because we allow the posterior belief

µ to be arbitrary cumulative distribution. Immediately, we have that wµ0
(δ ) ≤ y

2 for all δ ,

wµ0
(1) = y

3 and wµ0
(δ ) is right-continuous with left limits, since µ0 is right-continuous with

left limits. The following proposition establishes the existence and uniqueness of pure-strategy

SPE-NCF given any µ0.

Proposition 8. After principal sending any message m0 ∈M0, the following game has a unique

pure-strategy SPE-NCF, satisfying

(1) I∗1 = {i ∈ I | w(i)≤ w∗(µ0) := wµ0
(δ ∗)}, where δ ∗ = min{δ | wµ0

(δ ) = w̄(δ )};

(2) The principal chooses C
δy
1 if δ > δ ∗, and C

y
2 if δ ≤ δ ∗.

We define the upper revealing truncation of µ0 at δ T as follows: replace m0 by a col-

lection of new messages {m′
0}∪{m0|δ}δ>δ T following the distribution π(m′

0) =
∫ δ T

0 dµ0(δ )

and π({m0|δ}δ∈Λ) = µ0({δ}δ∈Λ) for all Λ ∈ 2(δ
T ,1]. The posterior belief induced by m′

0 is

µ ′
0(δ ) := µ0[m

′
0](δ ) =

µ0(δ )
µ0(δ T )

for all δ ≤ δ T , and the posterior belief induced by m0|δ for any

δ > δ T is Pr(δ | m0|δ ) = 1. Let wµ0
(δ ,δ T ) := wµ ′

0
(δ ), then we have that, if δ < δ T ,

∫

δ ′∈[0,δ ]

(
y−3wµ0

(δ ,δ T )
)
dµ ′

0(δ
′)+

∫

δ ′∈(δ ,1]

(
δ ′y−2wµ0

(δ ,δ T )
)
dµ ′

0(δ
′) = 0

⇔
∫

δ ′∈[0,δ ]

(
y−3wµ0

(δ ,δ T )
)
dµ0(δ

′)+
∫

δ ′∈(δ ,δ T ]

(
δ ′y−2wµ0

(δ ,δ T )
)
dµ0(δ

′) = 0

⇔ wµ0
(δ ,δ T ) = y

µ0(δ )+
∫

δ ′∈(δ ,δ T ] δ
′dµ0(δ

′)

2µ0(δ T )+µ0(δ )
,

and if δ ≥ δ T , wµ0
(δ ,δ T ) = y

3 . Now we provide the optimal information structure in the

following theorem.

Theorem 11. The optimal information disclosure rule is an upper revealing truncation of the

common prior G[0,1] at δ T = δ SB, satisfying

δ SB := max
{

δ T ≤ δ̃ | max
δ̌≤δ T

χG(δ̌ ,δ
T )≤ 0

}
,

χG(δ̌ ,δ
T ) :=

∫

δ ′∈[0,δ̌ ]

(
y−3w̄(δ̌ )

)
dG(δ ′)+

∫

δ ′∈(δ̌ ,δ T ]

(
δ ′y−2w̄(δ̌ )

)
dG(δ ′).

The optimal information disclosure rule recaptures the so-called censorship policy as in

Kolotilin, Li, Mylovanov, and Zapechelnyuk (2015) and Yamashita (2016). The driving force,

which we mentioned in the introduction and will be discussed later, is a synthetical consider-

ation of providing substitute for commitment power and adjusting to the state of world.
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The technique we developed to characterize the optimal disclosure rule contributes to solv-

ing more general Bayesian persuasion problem in two aspects. First, we work on continuous

state space rather than the finite state space which is often assumed in standard Bayesian

persuasion literature. Due to the infinite dimensional environment, the mature graphical ap-

proach, which directly explores the concavity or convexity of Sender’s payoff as a function of

Receiver’s beliefs, is no longer applicable. Second, the standard recommendation approach

(e.g., Kamenica and Gentzkow, 2011), which sends straightforward signals to receivers to

guide their actions, fails to simplify the solving process. Instead of having only one receiver

or multiple receivers who are essentially separate from each other, in our model there is a con-

tinuum of receivers whose final payoffs are interdependent. In other words, for any posterior

belief induced by some message, we’re looking for a fixed point of a subgame rather than just

a maximizer of a single receiver’s payoff. In our approach, we proceed in a direct way: we

first characterize the equilibrium of the subgame induced by arbitrary posterior belief, then ex-

plore several properties possessed by the optimal rule, and finally pin down principal’s optimal

sending strategy.

3.5.2 Welfare consequences

Dynamic inconsistency harms social welfare for intermediate liquidation δ ∈ (δ̂ , δ̃ ), where

the welfare loss becomes severer as δ shifts from δ̃ to δ̂ . This is because near the right limit

of δ̂ , the change of principal’s time-1 decision causes a sudden drop in total utility, while

the potential gain from increasing the liquidated resource is gradual. To improve the social

welfare, the optimal disclosure rule should maximize the implementation of default option for

δ ∈ (δ̂ , δ̃ ), and meanwhile keep the other δ unaffected. The reason why we pool δ ∈ (δ̂ ,δ SB]

with δ ≤ δ̂ is as follows: (1) on receiving the pooling message, agents form a pessimistic

expectation about the actual liquidation rate, which will deter the participation of the high-

outside-option agents, resulting in implementing the default option; (2) welfare gains is larger

from amending the outcome under smaller δ ∈ (δ̂ , δ̃ ) than the larger ones, and pooling smaller

δ ∈ (δ̂ , δ̃ ) will provide less incentive for the high-outside-option agents to crowd in the group.

From Theorem 11 we immediately get the following corollary which assesses the performance

of the Bayesian persuasion mechanism.

Corollary 2. The optimal information disclosure rule fully restores efficiency if δ SB = δ̃ , and

partially alleviates the welfare loss due to dynamic inconsistency if δ SB < δ̃ .

We can see that Bayesian persuasion approach works pretty well in the sense that, with-

out further instruments such as payment rules, it always manages to restore some efficiency
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only by controlling the revealed information, and under certain condition it can thoroughly

eliminate the welfare distortion. The implication of this result is that, full transparency of

information within a group is suboptimal for collective decision processes. When suffering

from dynamic inconsistency issues, the group leader who maximizes the social welfare should

conceal the unfavorable news and completely reveal only the auspicious news.

3.6 Discussions and Applications

3.6.1 Solution concept

The solution concept we applied guarantees the determinacy of equilibrium outcome; other-

wise we would have to adopt alternative criteria such as the maxmin rule, where the collective

utility is evaluated according to the worst-case scenario, which would make the problem in-

tractable. In this subsection we provide some foundations for this refinement of equilibriums.

From the definition of SPE-NCF, one straightforward way is to allow agents to play a

cooperative game without transfers at stage (i). Take Proposition 8 for example, given the

posterior belief induced by the public message, every subgame perfect equilibriums can be

labeled by a threshold δn above which the principal chooses C
δy
1 . List all SPE in an ascending

order, i.e. δ1 < δ2 < .. . < δn < .. ., and the subset of active agents I∗
1(n) = {i ∈ I | w(i) ≤

wµ0
(δn)} satisfies I∗

1(1)⊇ I∗
1(2)⊇ . . .⊇ I∗

1(n)⊇ . . .. We can easily check that agents with w∈ I∗
1(1)

participate at time 0 is the unique core of the cooperative game, which exactly corresponds

to SPE-NCF. To prove this, pick any Ĩ 6= I∗
1(1), first we must have Ĩ ⊆ I∗

1(1) because any w ∈
Ĩ \ I∗

1(1) will get negative utility and can be better off by quitting at time 0. Then agents with

w ∈ {i ∈ I | y
3 ≤ w(i) ≤ wµ0

(δ1)} \ Ĩ form a coalition and participate at time 0, which can

alter the principal’s time-1 action and strictly make these agents better off. Thus, the only

participating subset that will not be blocked by any coalition of agents is I∗
1(1).

Another way to rationalize this equilibrium selection is to extend the simultaneous-move

game at stage (i) to a sequential game, where (1) each agent has one opportunity to decide

whether to quit the group before the principal’s decision time, (2) the decision order of agents

is common knowledge and deterministic, but can be arbitrary, and (3) agents can observe the

entire history of past decisions. In the three-period model in Section 3.4, the SPE-NCF is

actually the unique subgame perfect Nash equilibrium of the sequential game (Lemma 19 in

Appendix D.2.1).

As for the Bayesian persuasion model in Section 3.5, the SPE-NCF can be uniquely ap-

proximated by a sequence of subgame perfect Nash equilibriums of the corresponding sequen-
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tial games (Lemma 20 in Appendix D.2.1).15 The key point is to approximate the original

game with a continuum of agents by a sequence of sequential games with finitely many a-

gents. Immediately, in each finite sequential game, there exists a unique SPE; moreover, that

SPE is free from coordination failure among agents.16 Apply the upper hemi-continuity of

Nash correspondence, which has been extensively studied in Green (1984) and Fudenberg and

Levine (1988), we conclude that the sequence of subgame perfect equilibriums has a limit,

which is also a SPE in the original game. Because the payoff structures of the finite game

and the original game are almost the same when they get sufficiently close to each other, the

SPE approximated by the finite games is indeed SPE-NCF; otherwise in those finite games we

can find some agent who would deviate since the unique SPE is the one without coordination

failure.

3.6.2 Provision of public facilities

Our model is highly adaptable to the study of public facility provisions, and has strong ex-

planatory power for interpreting how dynamic inconsistency derives from the interactions be-

tween the social planner and households (or firms). A noticeable feature of public facilities is

that the construction usually proceeds in multiple stages and depreciation should be taken into

consideration. Assume that the public facility can generate value of 1 at the final stage which

takes T years to build. If the social planner terminates the construction at stage t0 ≤ T , then

its value at t ≥ t0 after depreciation is given by δ (t0, t), satisfying (i) δ (t0, t) is increasing on

t0 and decreasing on t, and (ii) δ (t0, t) ≥ δ (t0 − k, t − k) for all t ≥ t0 ≥ k > 0.17 Obviously,

our benchmark model is a special case where T = 2 and δ (t0, t)≡ 0 for all t > t0. Agents are

15We cannot directly apply Lemma 19 to the Bayesian persuasion model; instead, we get a weaker version of

it. This is because the principal’s action is to choose a subset of δ to implement C
δy
1 , which has infinitely many

cases; while when δ is common knowledge, the principal’s choice is binary.
16With finite agents, the distribution of outside options doesn’t have full-support density, then w̄(δ ) is de-

creasing and right-continuous with left limits. Define a correspondence w̄0(δ ) = {w | limδ ′↓δ w̄(δ ′) ≤ w ≤
limδ ′↑δ w̄(δ ′)}, which is obviously continuous. Through exactly the same argument we can find the minimum

δ ∗ such that wµ0
(δ ∗) = w̄0(δ ∗). It follows that δ ∗ satisfies: (1) wµ0

(δ ∗) ≥ w̄(δ ∗), and (2) wµ0
(δ ) < w̄(δ ) for

all δ < δ ∗. Thus, agents with w ≤ wµ0
(δ ∗) participate at time 0 and principal implements liquidation option if

and only if δ > δ ∗ constitute a subgame perfect equilibrium. There is no coordination failure because the par-

ticipation set is maximized. On the other hand, from backward induction we know that the finite extensive-form

game has a unique SPE, as long as we assume that agents prefer participation when indifference occurs. Thus,

uniqueness is also proved.
17It is natural to require that the value of more comprehensive facilities should exceed the value of less com-

prehensive ones after depreciating for equal length of periods.
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households who decide whether to settle down in this community or to move elsewhere.

Unlike the binary choices in the benchmark case, the planner has to determine the duration

of construction to maximize the social welfare, which is essentially an optimal stopping game;

however, the driving force of dynamic inconsistency is preserved. We assume no information

asymmetry for simplicity. Anticipating the planner stopping at t0, household with w who lives

in the community at time 0 will move out at t̄(w, t0) such that w = δ (t0, t̄(w, t0)); and the

highest outside option, denoted by w̄(t0), that participates at time 0 satisfies

UA|0(w̄(t0), t0) =
∫ t̄(w̄(t0),t0)

t=t0

δ (t0, t)dt − t̄(w̄(t0), t0) · w̄(t0) = 0.

The efficient duration of construction, denoted by tFB
0 , solves

max
t0∈[0,T ]

UP|0(t0) =
∫ w̄(t0)

0

(∫ t̄(w,t0)

t=t0

δ (t0, t)dt − t̄(w, t0) ·w
)

dF(w).

We can prove that the pure-strategy SPE-NCF is the one with the largest subset of active house-

holds at time 0; and the associated construction duration is tSB
0 . Then we have the following

proposition.

Proposition 9. Dynamic inconsistency occurs in the process of public facility provision if and

only if w̄(tSB
0 )> w̄(tFB

0 ).

Basically, the absence of planner’s commitment power leaves room for the high-outside-

option households to jointly stay in the community, so as to induce social planner to choose

the duration which is favorable to them but is ex ante inefficient.

3.6.3 Team work

Our framework is also suitable for modeling dynamic inconsistency in team work. For exam-

ple, the director of a laboratory (i.e. the principal) wants to conduct a research project and

decide the assignment among lab members. The research achievement will win honor for the

group, which, in essence, is a public good. The ultimate goal of the project requires long

periods of research, while the interim results are also promising, which enable the research

team to publish their achievements on an early date. In this context, agents represent units of

research time of the lab members. The heterogeneity of outside options comes from the facts

that lab members may have various expertise, and potentially they can work on other suitable

research projects.

We consider the three-period model in Section 3.4, where δ is common knowledge. An

interesting feature brought by the team work context is the network effect. We assume that
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the principal’s resource at time 2 depends on the subset of active agents who stay in the group

until the common consumption arrives, i.e. y(I∗1 ) : 2[0,1] 7→ R. Intuitively, research quality

can be affected by the total engaged time, composition of expertise and cooperation efficien-

cy. Since the subset of active agents in any SPE takes the form of I∗1 = {i ∈ I | w(i) ≤ w∗},

we write y(I∗1 ) = y(w∗). For simplicity, we assume that y(·) satisfies the Inada condition-

s: y(·) is continuously differentiable, y(0) = 0, y′(·) > 0, y′′(·) < 0, limw∗→0 y′(·) = +∞ and

limw∗→+∞ y′(·) = 0. Thus, anticipating that C
y
2 will be implemented, the highest outside option

among active agents, denoted as w̄(Cy
2), is well-defined by w̄(Cy

2) =
1
3y
(
w̄(Cy

2)
)
. Similarly, we

define w̄(Cδy
1 ) such that w̄(Cδy

1 ) = δ
2 y
(
w̄(Cδy

1 )
)
. Let κ = y

(
w̄(Cδy

1 )
)
/y
(
w̄(Cy

2)
)
.

To focus on the network effect on dynamic inconsistency, we assume that F(w) has con-

stant elasticity so that we can get rid of the resource size effect. In the benchmark case, the

two thresholds δ̂ and δ̃ are independent of y. Let δ̂ t and δ̃ t be the corresponding thresholds in

the team work model, then we provide the following result.

Proposition 10. δ̂ t ≡ δ̂ , and δ̃ t = δ̃/κ . The collective decision is present-biased if δ̃ > κδ̂ ,

future-biased if δ̃ < κδ̂ , and dynamic consistent if δ̃ = κδ̂ .

As is proved in Theorem 9, w̄(Cδy
1 )≥ w̄(Cy

2) is necessary to induce dynamic inconsistency.

Due to network effect, C
δy
1 attracts more team members who in return boost the value of C

δy
1 ,

and thus outperforms C
y
2 more frequently than in the benchmark case. Roughly speaking,

higher κ means stronger network effect. As a result, the intermediate range of liquidation

rates (δ ) inducing dynamic preference reversals will shrink as κ increases, which means that

moderate network effect mitigates dynamic inconsistency. However, too strong network effect

can also be noxious. Particularly, C
δy
1 may become ex ante optimal even for some relatively

small δ which is not large enough to support the implementation of C
δy
1 in SPE-NCF, giving

rise to future bias.

3.7 Conclusions

This paper establishes a framework where collective decisions made by a group of consistent

agents with exponential discounting time preferences could exhibit dynamic inconsistency.

We point out that the driving force is the heterogeneity of opportunity cost that agents have

to forgo in order to participate in the group. We further characterize the optimal information

disclosure rule, which takes the form of censorship policy, to restore the welfare distortion

caused by inconsistent collective decisions. Our framework proves to be quite adaptable to
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more general environment, and has considerable explanatory power in many applications such

as public facility provision and team work.

Application of behavioral economics in mechanism design has received considerable at-

tention in recent literature, where agents’ individual preferences are assumed to exhibit ir-

rational properties such as present bias, bounded rationality and overconfidence. Instead of

assuming nonstandard preferences, it is interesting to explore the new properties brought by

the endogenous dynamic inconsistency established in this paper. The standard setup will be

extended to three layers, where the grand principal designs the mechanism according to cer-

tain criterion, and the group leader makes collective decisions on the optimal signaling strategy

subject to group members’ actions.18 We expect to draw novel insights from this direction of

future research.

18See Appendix D.2.2 for an example.



Appendix A

Appendix for Chapter 1: Omitted Proofs

A.1 Proof of Lemma 1

It is easy to check that ui(x,v,θ) is linear with respect to x, for i = 0,1, . . . ,N. Let (Ξ+,x+)

be the solution to (P1). Define x̃(v,θ) :=
∫

m x+(v,m)dΞ+
θ (m) for each pair (v,θ) ∈V ×Θ. For

any vi 6= v′i,

∫

θ

∫

v−i

ui

(
x̃(vi,v−i,θ),v,θ

)
dF−i(v−i)dF0(θ)

=
∫

θ

∫

v−i

ui

(∫

m
x+(vi,v−i,m)dΞ+

θ (m),v,θ
)

dF−i(v−i)dF0(θ)

(1)
=
∫

θ

∫

v−i

∫

m
ui

(
x+(vi,v−i,mi,m−i),v,θ

)
dΞ+

θ (m)dF−i(v−i)dF0(θ)

=
∫

mi

∫

v−i

∫

θ ,m−i

ui

(
x+(vi,v−i,mi,m−i),v,θ

)
dΨ+

mi
(θ ,m−i)dF−i(v−i)dΛ+

i (mi)

(2)
≥
∫

mi

∫

v−i

∫

θ ,m−i

ui

(
x+(v′i,v−i,mi,m−i),v,θ

)
dΨ+

mi
(θ ,m−i)dF−i(v−i)dΛ+

i (mi)

=
∫

θ

∫

v−i

ui

(
x̃(v′i,v−i,θ),v,θ

)
dF−i(v−i)dF0(θ),

where (1) is due to the linearity of ui(x,v,θ) with respect to x, and (2) comes from the fact that

(Ξ+,x+) satisfies BICvi→v′i|mi
in (P1) for any mi. Thus, x̃ satisfies BICvi→v′i

in (P∗). Similarly,

we can check that x̃ satisfies IIRvi
in (P∗).

79
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Let x∗ be the solution to (P∗), then we have

∫

θ

∫

v
u0

(
x∗(v,θ),v,θ

)
dFV (v)dF0(θ)≥

∫

θ

∫

v
u0

(
x̃(v,θ),v,θ

)
dFV (v)dF0(θ)

=
∫

θ

∫

v
u0

(∫

m
x+(v,m)dΞ+

θ (m),v,θ
)

dFV (v)dF0(θ)

=
∫

θ

∫

m

∫

v
u0

(
x+(v,m),v,θ

)
dFV (v)dΞ+

θ (m)dF0(θ).

Thus, (P∗) is a relaxed problem of (P1), and is also a relaxed problem of (P).

A.2 Proof of Lemma 2

(i) Suppose there exist some m ∈ M and t1 6= t2 such that ΦS(θt1 ,m) > 0 and ΦS(θt2 ,m) > 0,

then pick any i ≤ N −1, and we have

{
mi+1 ≡ mi + t1 (mod T )

mi+1 ≡ mi + t2 (mod T ).

It follows that t1 ≡ t2 (mod T ). Since 1 ≤ t1, t2 ≤ T , then t1 = t2, contradicting that t1 and t2

are distinct numbers.

(ii) Without loss of generality, let θ = θt . For any j 6= i, we can define m j :=
(
mi +( j− i)t

)

mod T , since m j ∈ {1,2, . . . ,T}. Thus, m j ≡ mi +( j− i)t (mod T ). For any l1, l2 ∈ I \{i},

we have {
ml1 ≡ mi +(l1 − i)t (mod T )

ml2 ≡ mi +(l2 − i)t (mod T ).

Thus, ml1 −ml2 ≡ (l1 − l2)t (mod T ). By definition, ΦS(θt ,mi,m−i) =
αt

T
> 0. Suppose there

exist another m′
−i 6= m−i such that ΦS(θt ,mi,m

′
−i)> 0, then we must have m′

τ 6= mτ for some

τ 6= i, satisfying {
mτ ≡ mi +(τ − i)t (mod T )

m′
τ ≡ mi +(τ − i)t (mod T ).

It follows that mτ ≡ m′
τ (mod T ). Since 1 ≤ mτ ,m

′
τ ≤ T , we have mτ = m′

τ , which induces a

contradiction. Thus, such m−i is unique.

(iii) From property (ii) we immediately have that, agent i’s posterior belief about the probabil-

ity to have θt conditional on receiving mi is given by

Pr(θt | mi) =

∫
m−i

dΦS(θt ,mi,m−i)
∫

m−i,θ̃
dΦS(θ̃ ,mi,m−i)

=
αt

T

∑
T
t=1

αt

T

=
αt

∑
T
t=1 αt

= αt , ∀θt ∈ Θ.



A.3. PROOF OF THEOREM 1 81

(iv) Pick any θt ∈ Θ, from property (ii) we have

Pr(θt) = ∑
m∈M

ΦS(θt ,m) =
T

∑
mi=1

∑
m−i∈M−i

ΦS(θt ,mi,m−i) =
T

∑
mi=1

αt

T
= αt .

A.3 Proof of Theorem 1

Because ΦW is defined in the same way as ΦS, obviously ΦW preserves all the properties

in Lemma 2. To guarantee that we can construct such (ΦW ,xW ), it suffices to show that

x∗
(
v,θ+

−i(m)
)

is well-defined when Θ+(m) = /0 and Θ+
−i(m) 6= /0 for some i.

Lemma 11. Fixed any m ∈ M, if Θ+(m) = /0 and there exists i such that Θ+
−i(m) 6= /0, then

|Θ+
−i(m)|= 1, and Θ+

− j(m) = /0 for any j 6= i.

Proof of Lemma 11. (i) Pick any l1, l2 6= i such that l2 > l1, and suppose that there exists dis-

tinct θt1 ,θt2 ∈ Θ+
−i(m), then by definition we have

{
ml2 ≡ ml1 +(l2 − l1)t1 (mod K)

ml2 ≡ ml1 +(l2 − l1)t2 (mod K).

It follows that 0≡ (l2− l1)(t1−t2) (mod K), which means K exactly divides (l2− l1)(t1−t2) 6=
0. Because K is a prime number and 0 < l2 − l1 < N ≤ K, we must have K exactly divides

(t1 − t2). Notice that 1 ≤ t1, t2 ≤ T ≤ K, then we have t1 = t2, contradicting how we select t1

and t2. Thus, we have |Θ+
−i(m)|= 1.

(ii) Suppose there exists j 6= i such that Θ+
− j(m) 6= /0, then from (i) we have |Θ+

− j(m)|= 1, that

is, there exists a unique θt ′ ∈ Θ such that ml2 ≡ ml1 +(l2− l1)t
′ (mod K) for any l1, l2 ∈ I \{ j}.

Denote θ+
−i(m) as θt . Because N ≥ 4, we can find l1, l2 6= i, j such that l2 > l1 satisfying

{
ml2 ≡ ml1 +(l2 − l1)t (mod K)

ml2 ≡ ml1 +(l2 − l1)t
′ (mod K).

Then we have 0 ≡ (l2 − l1)(t − t ′) (mod K), and through exactly the same argument as in (i)

we have t = t ′. Now, by definition of θ+
− j(m), we have mi ≡ ml1 +(i− l1)t

′ (mod K) for any

l1 6= i, j. Notice that by definition of θ+
−i(m), we have ml1 ≡ mτ +(l1 − τ)t ′ (mod K) for any

τ 6= i, then we have mi ≡ mτ +(i− τ)t ′ (mod K). It follows that θ+(m) = θt ′ , contradicting

the assumption that Θ+(m) = /0.



82 APPENDIX A. APPENDIX FOR CHAPTER 1

Next, we check whether (ΦW ,xW ) satisfies all the constraints in (P). The interim expected

utility of agent i with vi observing mi by reporting (v̂i, m̂i) is

Ui(v̂i, m̂i;vi,mi) =
∫

v−i

∫

θ ,m−i

ui

(
xW (v̂i,v−i, m̂i,m−i),v,θ

)
dΨW

mi
(θ ,m−i)dF−i(v−i)

=
∫

v−i

∫

θ
ui

(
xW (v̂i,v−i, m̂i,m

+
−i(θ ,mi)),v,θ

)
dΨW

mi
(θ)dF−i(v−i)

=
∫

v−i

∫

θ
ui

(
x∗(v̂i,v−i,θ),v,θ

)
dF0(θ)dF−i(v−i),

which is independent of m̂i, regardless of what v̂i agent i reports to the principal. Thus, no

agent has incentive to misreport his signal, and we get (BICmi,vi→m′
i,v

′
i
) and (IIRmi,vi

) immedi-

ately from (BICvi→v′i
) and (IIRvi

). Notice that the principal’s expected payoff is
∫

v

∫

θ

∫

m
u0

(
xW (v,m),v,θ

)
dΞW

θ (m)dF0(θ)dFV (v)

=
∫

v

∫

θ
u0

(∫

m
xW (v,m)dΞW

θ (m),v,θ
)

dF0(θ)dFV (v)

=
∫

v

∫

θ
u0

(
x∗(v,θ),v,θ

)
dF0(θ)dFV (v),

which achieves the upper bound defined by the relaxed problem (P∗), then we conclude that

(ΦW ,xW ) is the optimal private disclosure mechanism when N ≥ 4.

A.4 Proof of Theorem 2

First, we prove the following lemma to show that any unilateral misreport by some agent will

be detected by the principal, and thus the punishment can be implemented.

Lemma 12. Under information disclosure policy ΦW , for any m such that Θ+(m) 6= /0, fixed

any agent i, there exists no other m′
i 6= mi such that Θ+(m′

i,m−i) 6= /0.

Proof of Lemma 12. Suppose there exist agent i, signal profile m such that Θ+(m) 6= /0, and

m′
i 6= mi satisfying Θ+(m′

i,m−i) 6= /0. Let θ+(m) = θt and θ+(m′
i,m−i) = θt ′ , then from N = 3

we can find j 6= k 6= i such that
{

m j ≡ mk +( j− k)t (mod K)

m j ≡ mk +( j− k)t ′ (mod K),

which means t = t ′. On the other hand, notice that
{

mi ≡ m j +(i− j)t (mod K)

m′
i ≡ m j +(i− j)t ′ (mod K),

then we have mi −m′
i ≡ (i− j)(t − t ′)≡ 0 (mod K), contradicting m′

i 6= mi.
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Compared with (ΦW ,xW ), we only modify the off-equilibrium-path allocations so as to

elicit truthful report from all agents, which means all (IIRmi,vi
) are satisfied and (ΦW ,xW |3)

achieves the same ex ante expected utility as (ΦW ,xW ). Thus the remaining thing is to check

(BICmi,vi→m′
i,v

′
i
) for any (mi,vi) 6= (m′

i,v
′
i). If mi = m′

i, then (BICmi,vi→m′
i,v

′
i
) holds from the

previous result in Section 1.4.1. If mi 6= m′
i, we have

∫

v−i

∫

θ ,m−i

ui

(
xW |3(v′i,v−i,m

′
i,m−i),v,θ

)
dΨW

mi
(θ ,m−i)dF−i(v−i)

=
∫

v−i

∫

θ
ui

(
a,v,θ

)
dF0(θ)dF−i(v−i)

=
∫

v−i

∫

θ

∫

a∈A

ui

(
a,v,θ

)
dx∗(v,θ)(a)dF0(θ)dF−i(v−i)

≤
∫

v−i

∫

θ

∫

a∈A

ui

(
a,v,θ

)
dx∗(v,θ)(a)dF0(θ)dF−i(v−i)

=
∫

v−i

∫

θ
ui

(
x∗(vi,v−i,θ),v,θ

)
dF0(θ)dF−i(v−i)

=
∫

v−i

∫

θ ,m−i

ui

(
xW |3(vi,v−i,mi,m−i),v,θ

)
dΨW

mi
(θ ,m−i)dF−i(v−i).

As a result, (ΦW ,xW |3) indeed constitutes the solution to (P) for N = 3.

A.5 Proof of Theorem 3

The disclosure policy, ΦW , is defined as before. Let ~Ψmi
=
(
Ψmi

(m−i)
)

m−i∈M−i
be the row vec-

tor representing agent i’s posterior belief about m−i after observing mi. Let Ψ :=
(
~Ψmi

)⊺
mi∈Mi

be the K ×K belief matrix induced by the information disclosure policy ΦW . First, we con-

sider the case where Ψ has full rank. Under the allocation rule xW |2(v,m) = x̃∗
(
v,θ+(m)

)
,

agent i observing mi may find it profitable to report m′
i 6= mi, and the amount of violation of

(BICmi,vi→m′
i,v

′
i
) also depends on which v′i agent i sends to the principal. Denote β

mi→m′
i

i as the

maximum gain from misreporting m′
i 6= mi when agent i observes mi, that is,

β
mi→m′

i

i = max
(vi,v

′
i)∈V 2

i

{
−
∫

v−i

∫

θ ,m−i

ũi

(
xW |2(vi,v−i,mi,m−i),v,θ

)
dΨW

mi
(θ ,m−i)dF−i(v−i)

+
∫

v−i

∫

θ ,m−i

ũi

(
xW |2(v′i,v−i,m

′
i,m−i),v,θ

)
dΨW

mi
(θ ,m−i)dF−i(v−i),0

}

which is finite by Assumption 2. Set β mi→mi

i equal to 0. Let~ti(mi) =
(
ti(mi,m−i)

)
m−i∈M−i

be

the column vector representing agent i’s transfer by reporting mi. Since Ψ has full rank and
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thus is invertible, we can find ti :=
(
~ti(mi)

)
mi∈Mi

solving




Ψ1(1) · · · Ψ1(K)
...

. . .
...

ΨK(1) · · · ΨK(K)







ti(1,1) · · · ti(K,1)
...

. . .
...

ti(1,K) · · · ti(K,K)


=




β 1→1
i · · · β 1→K

i
...

. . .
...

β K→1
i · · · β K→K

i


 .

Next, we show that (ΦW ,xW |2, t) satisfies the constraints in (P). It is feasible, that is, (xW |2, t)∈
∆(A )×R

N , because we can define p′i = pi − ti for each agent. Pick any (mi,vi) and (m′
i,v

′
i)

such that mi 6= m′
i, we have Ũi(vi,mi;vi,mi)−Ũi(v

′
i,m

′
i;vi,mi) =

∫

v−i

∫

θ ,m−i

ũi

(
xW |2(vi,v−i,mi,m−i),vi,v−i,θ

)
dΨW

mi
(θ ,m−i)dF−i(v−i)−~Ψmi

·~ti(mi)

−
∫

v−i

∫

θ ,m−i

ũi

(
xW |2(v′i,v−i,m

′
i,m−i),vi,v−i,θ

)
dΨW

mi
(θ ,m−i)dF−i(v−i)+~Ψmi

·~ti(m′
i)

≥−β
mi→m′

i

i −β mi→mi

i +β
mi→m′

i

i =−β mi→mi

i = 0,

which means agent i will never misreport his signal, regardless of his report about his type. On

the other hand, if agent i reports his true signal, he will find it optimal to also truthfully report

his private type. Thus, (ΦW ,xW |2, t) satisfies all (BICmi,vi→m′
i,v

′
i
). Notice that for any (mi,vi)

we have Ũi(vi,mi;vi,mi) =∫

v−i

∫

θ ,m−i

ũi

(
xW |2(vi,v−i,mi,m−i),vi,v−i,θ

)
dΨW

mi
(θ ,m−i)dF−i(v−i)−~Ψmi

·~ti(mi)

=
∫

v−i

∫

θ
ũi

(
x̃∗(vi,v−i,θ),v,θ

)
dF0(θ)dF−i(v−i)−0 ≥ 0,

then all (IIRmi,vi
) are also satisfied. Because the expected transfer with respect to t is 0 and

xW |2 achieves the same outcome as xW on the equilibrium path, we conclude that (ΦW ,xW |2, t)

is the solution to (P). The remaining thing is to extend our result to the case where Ψ does

not have full rank. The following lemma guarantees that we can always have a full-rank belief

matrix by enlarging the signal set.

Lemma 13. If Ψ is not invertible, then by adding finitely many additional signals to each

agent’s signal set, we can construct a new information disclosure policy which induces a full-

rank belief matrix.

Proof of Lemma 13. See Appendix B.1.8.

A.6 Proof of Theorem 4

Let ϒ :=
{
{θ ′,θ ′′} | θ ′ 6= θ ′′} be the collection of all unordered pairs in Θ, where each element

is labelled υ . Since there exists a rich S, we can separate any {θ ′
υ ,θ

′′
υ}∈ϒ by a sample-product
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procedure S(υ), where without loss of generality we assume that

s′υ ≺θ ′
υ

iυ
s′′υ s′υ ≺θ ′

υ
jυ

s′′υ
s′υ ≺θ ′′

υ
iυ

s′′υ s′υ ≻θ ′′
υ

jυ
s′′υ .

That is to say, the two buyers share the same preference under θ ′
υ , but have different rankings

under θ ′′
υ ; and buyer iυ ’s preferred sample product is the same under both states, but buyer

jυ ’s preference gets reversed as state varies. The Choice Pair (Aυ ,Bυ) in sample-product

procedure S(υ) takes the value from {(s′υ ,s′′υ),(s′′υ ,s′υ)} equally likely. Let {(Aυ ,Bυ)}υ∈ϒ be

mutually independent.

We first check that individual buyer will not gain any new information about the state

in this approach. Buyer i /∈ ⋃υ∈ϒ{iυ , jυ} does not take any trial, and thus has no means to

update his belief. Buyers, who take one or more trials, will get an independent testing result

in each trial which is either “Aυ ≺ Bυ” or “Aυ ≻ Bυ” with equal probabilities regardless of the

realization of the state, and thus will not update the prior F0, either.

Next, we show that the seller can infer the true state after collecting all the testing results.

The outcome of sample-product procedure S(υ) is denoted by oυ ∈ {o′υ ,o
′′
υ}, where o′υ means

the two buyers share the same feedback, that is, miυ = m jυ ; and o′′υ means they have opposite

feedbacks, that is, miυ 6= m jυ . On observing oυ , the subset of states that will occur with strictly

positive probabilities in the seller’s posterior belief, denoted by P(oυ), satisfies: P(o′υ) =

IS(υ)(θ
′
υ) and P(o′′υ) = IS(υ)(θ

′′
υ ). Let o = (oυ)υ∈ϒ be the realized testing result profile, then

to meet the aggregately revealing requirement, P(o) =
⋂

υ∈ϒ P(oυ) must have a unique

element. Suppose there exist θ1 6= θ2 both belonging to P(o), then {θ1,θ2} ⊆ P(oυ) for all

υ ; particularly, this is true for υ̃ corresponding to sample-product procedure S(θ1,θ2). But

then we get a contradiction, since S(θ1,θ2) separates θ1 from θ2 which means we can never

have {θ1,θ2} ⊆ P(oυ̃).

A.7 Proof of Theorem 5

We prove that (ΞIS,xIS) satisfies all the constraints in (P). Since |Ĩi| ≤ N − 3, by Lemma 6,

agent i knowing Ei cannot update his belief about θ . Moreover, the principal can identify the

agent who misreports and infer the true state from the other agents’ reports. Property (iii)

guarantees that it is feasible to make xIS unchanged by unilateral deviation. Thus, given the

other agents telling the truth, the interim expected utility of agent i with vi knowing Ei by
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reporting (v̂i, m̂i) is

∫

v−i

∫

θ ,m−i

ui

(
xIS(v̂i,v−i, m̂i,m−i),v,θ

)
dΨIS

Ei
(θ ,m−i)dF−i(v−i)

=
∫

v−i

∫

θ
ui

(
x∗(v̂i,v−i,θ),v,θ

)
dF0(θ)dF−i(v−i),

which is independent of m̂i, regardless of what v̂i agent i reports to the principal. Thus, no

agent has incentive to misreport his signal, and we get (BICmi,vi→m′
i,v

′
i
) and (IIRmi,vi

) immedi-

ately from (BICvi→v′i
) and (IIRvi

). Notice that the objective function is

∫

v,θ

∫

m
u0

(
xIS(v,m),v,θ

)
dΞIS

θ (m)dF0(θ)dFV (v) =
∫

v,θ
u0

(
x∗(v,θ),v,θ

)
dF0(θ)dFV (v),

which achieves the upper bound defined by (P∗), then (ΞIS,xIS) is optimal.



Appendix B

Supplemental Material to Chapter 1

B.1 Omitted Proofs

B.1.1 Proof of Lemma 3

First, we consider the case N = 3, and let i, j,k ∈ {1,2,3}. Suppose there exist agent i and

mi ∈ Mi such that Ξθ̃ (mi, m̃−i)> 0 and Ξθ̂ (mi, m̂−i)> 0 for some θ̃ 6= θ̂ and m̃−i, m̂−i ∈ M−i.

Immediately, we have m̃−i 6= m̂−i; otherwise aggregately revealing property is violated. Sup-

pose m̃ j = m̂ j for some j 6= i, then for k 6= i, j we have m̃k 6= m̂k and Ξθ̃ (m̃k,mi, m̃ j) > 0

and Ξθ̂ (m̂k,mi, m̂ j) > 0, which contradicts (1) of innocuous unilateral deviation property.

Thus, m̃ j 6= m̂ j and m̃k 6= m̂k. Consider the signal profile (mi, m̂ j, m̃k), and we must have

Ξθ̃ (mi, m̂ j, m̃k) = 0; otherwise we have Ξθ̃ (mi, m̂ j, m̃k)> 0 and Ξθ̂ (mi, m̂ j, m̂k)> 0, contradict-

ing (1). It follows that unilateral deviation is detected for (mi, m̂ j, m̃k), since Ξθ (mi, m̂ j, m̃k) =

0, ∀θ ∈Θ. Then by (2) of innocuous unilateral deviation property, we must have Ξθ (mi, m̂ j,mk)=

0, ∀θ 6= θ̃ and ∀mk ∈ Mk, contradicting that Ξθ̂ (mi, m̂ j, m̂k)> 0. Thus, for any agent i and any

mi ∈ Mi, there exists at most one θ such that Ξθ (mi,m−i)> 0 for some m−i ∈ M−i.

Second, we assume that N = 2. Suppose there exist agent i and mi ∈Mi such that Ξθ̃ (mi, m̃ j)>

0 and Ξθ̂ (mi, m̂ j)> 0 for some θ̃ 6= θ̂ and m̃ j, m̂ j ∈ M j. Through the same argument as in case

N = 3, we have m̃ j 6= m̂ j, which contradicts (1).

B.1.2 Proof of Lemma 4

On receiving mi, the interim expected payoff of agent i with type vi by reporting v̂i is given by

Ui(vi, v̂i | mi) =
∫

v−i

∫

θ ,m−i

qi(v̂i,v−i,m)yi(vi,θ)− pi(v̂i,v−i,m)dΨmi
(θ ,m−i)dF−i(v−i).

87



88 APPENDIX B. SUPPLEMENTAL MATERIAL TO CHAPTER 1

Then fixed any vi < v′i, from (BICvi→v′i|mi
) and (BICv′i→vi|mi

) we can derive the monotonicity

condition (Monvi<v′i
). On the other hand, Bayesian incentive compatibility requires that truth-

ful report of one’s type is the best response for each agent with any type if the other agents tell

the truth, that is,

vi ∈ argmax
v̂i

Ui(vi, v̂i | mi).

Let Ui(vi | mi) = maxv̂i
Ui(vi, v̂i | mi) =Ui(vi,vi | mi). By Envelope Theorem we have

dUi(vi | mi)

dvi
=
∫

v−i

∫

θ ,m−i

qi(vi,v−i,m)
dyi(vi,θ)

dvi
dΨmi

(θ ,m−i)dF−i(v−i).

Then we have

Ui(vi | mi) =Ui(vi | mi)+
∫ vi

vi

∫

v−i

∫

θ ,m−i

qi(ṽi,v−i,m)
dyi(ṽi,θ)

dvi
dΨmi

(θ ,m−i)dF−i(v−i)dṽi,

where vi = minVi. Based on integration by parts, the principal’s ex ante total expected pay-

ments can be written as follows:

∫

θ

∫

m

∫

v

N

∑
i=1

pi(v,m)dFV (v)dΞθ (m)dF0(θ) =
∫

m

∫

θ

∫

v

N

∑
i=1

pi(v,m)dFV (v)dΨm(θ)dΛ(m)

=
N

∑
i=1

∫

mi

∫

vi

(∫

v−i

∫

θ ,m−i

qi(v,m)yi(vi,θ)dΨmi
(θ ,m−i)dF−i(v−i)

−
∫ vi

vi

∫

v−i

∫

θ ,m−i

qi(ṽi,v−i,m)
dyi(ṽi,θ)

dvi
dΨmi

(θ ,m−i)dF−i(v−i)dṽi

)
dFi(vi)dΛi(mi)

=
N

∑
i=1

∫

mi

(∫

v

∫

θ ,m−i

qi(v,m)yi(vi,θ)dΨmi
(θ ,m−i)dFV (v)

−
∫

vi

∫

v−i

∫

θ ,m−i

qi(vi,v−i,m)
dyi(vi,θ)

dvi

(
1−Fi(vi)

)
dΨmi

(θ ,m−i)dF−i(v−i)dvi

)
dΛi(mi)

=
N

∑
i=1

∫

mi

(∫

v

∫

θ ,m−i

qi(v,m)yi(vi,θ)dΨmi
(θ ,m−i)dFV (v)

−
∫

v

∫

θ ,m−i

qi(v,m)
dyi(vi,θ)

dvi

1−Fi(vi)

fi(vi)
dΨmi

(θ ,m−i)dFV (v)
)

dΛi(mi)

=
N

∑
i=1

∫

mi

∫

v

∫

θ ,m−i

qi(v,m)
(

yi(vi,θ)−
dyi(vi,θ)

dvi

1−Fi(vi)

fi(vi)

)
dΨmi

(θ ,m−i)dFV (v)dΛi(mi)

=
∫

θ ,m

∫

v

N

∑
i=1

qi(v,m)γi(vi,θ)dFV (v)dΦ(θ ,m).
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Thus, the principal’s objective function becomes

∫

θ ,m

∫

v

(
y0

(
q(v,m),v,θ

)
+

N

∑
i=1

qi(v,m)γi(vi,θ)
)

dFV (v)dΦ(θ ,m)

=
∫

v

∫

θ

[
y0

(
χ(v,θ),v,θ

)
+

N

∑
i=1

χi(v,θ)γi(vi,θ)
]
dF0(θ)dFV (v),

where χi(v,θ) =
∫

m qi(v,m)dΞθ (m).

B.1.3 Proof of Proposition 2

Since none of the monotonicity constraints in (P′
pub) is binding, the principal’s maximum ex

ante expected payoff through public disclosure is equal to

Πpub = sup
q(v,θ)∈Q

∫

θ

∫

v

(
y0

(
q(v,θ),v,θ

)
+

N

∑
i=1

qi(v,θ)γi(vi,θ)
)

dFV (v)dF0(θ).

Let (Φ,q) be any candidate solution to problem (P′
1). Since for any (v,m) ∈ V ×M, we have

q(v,m) ∈ Q, then from the convexity of Q we get

χ(v,θ) =
∫

m
q(v,m)dΞθ (m) ∈ Q,

which means

∫

v

∫

θ

[
y0

(
χ(v,θ),v,θ

)
+

N

∑
i=1

χi(v,θ)γi(vi,θ)
]
dF0(θ)dFV (v)≤ Πpub.

Notice that the optimal public disclosure mechanism is also a feasible private disclosure mech-

anism, then we conclude that the principal gets the same maximum expected payoff between

private disclosure and public disclosure.

B.1.4 Proof of Proposition 3

Take any private disclosure mechanism that exhibits full disclosure, then for any i,mi, the

marginal of Ψmi
(θ ,m−i) over Θ is degenerated, which means we can rewrite the constraints

in (P′
1) as follows: for any i, mi, vi < v′i, we have
∫

θ ,m−i

(
Ev−i

[qi(v
′
i,v−i,m)]−Ev−i

[qi(vi,v−i,m)]
)(

yi(v
′
i,θ)− yi(vi,θ)

)
dΨmi

(θ ,m−i)≥ 0

⇐⇒
∫

m−i

Ev−i
[qi(v

′
i,v−i,m)]−Ev−i

[qi(vi,v−i,m)]dΨmi
(m−i) ·

(
yi(v

′
i,θ)− yi(vi,θ)

)
≥ 0

⇐⇒ Ev−i,m−i
[qi(v

′
i,v−i,m) | mi]≥ Ev−i,m−i

[qi(vi,v−i,m) | mi].
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Let
(
q∗i (v,m)

)
i,v,m

be the solution to (P′
1), and define q+i (v;θ) =

∫
m q∗i (v,m)dΞθ (m), then we

have for any i,θi,vi < v′i,

Ev−i
[q+i (v

′
i,v−i,θ)] =

∫

mi

Ev−i,m−i
[q∗i (v

′
i,v−i,m) | mi]dΛi(mi | θ)

≥
∫

mi

Ev−i,m−i
[q∗i (vi,v−i,m) | mi]dΛi(mi | θ) = Ev−i

[q+i (vi,v−i,θ)],

which means
(
q+i (v,θ)

)
i,v,θ

is feasible in the optimal public disclosure problem (P′
pub). Since(

q+i (v,θ)
)

i,v,θ
induces the same expected payoff as

(
q∗i (v,m)

)
i,v,m

, we conclude that any pri-

vate information mechanism that exhibits full disclosure achieves at most the same payoff as

in the optimal public disclosure mechanism. Thus, creating some uncertainty over θ for some

agent is necessary for private disclosure mechanism to strictly outperform public disclosure

mechanism.

B.1.5 Proof of Lemma 5

We prove the lemma by checking the assumptions of Theorem 13.5 in Kadan, Reny, and

Swinkels (2017), hereafter KRS. Notice that (P∗) is pure adverse selection problem, then we

don’t have agents’ action spaces and signal spaces as in KRS, which means their Assumptions

5.6-5.9 are irrelevant. As in KRS, for each agent i ∈ I, we define the single-agent-i model,

where the “reward space” is Ri = A ×V−i ×Θ and the type space is Ti = Vi. Since (vi)i∈I

and θ are mutually independent in our setup, we have that for any (ri, ti) =
(
(a,v−i,θ),vi

)
∈

Ri ×Ti, agent i’s utility function is ũi(ri, ti) = ui(a,v,θ) and the principal’s utility function is

ũ0(ri, ti) = u0(a,v,θ). A mechanism for this single-agent-i model is a probability measure

xi : Vi → ∆(Ri).

First we show that Assumptions 5.1-5.5 in KRS are satisfied in the single-agent-i model.

Under the conditions of Lemma 5, we only need to check Assumption 5.4, that is, for any

ti ∈ Vi, for any c ∈ R, the closure of L(ti,c) := {ri ∈ Ri | ũ0(ri, ti) ≥ c} is compact. Since u0

is continuous, we have L(ti,c) is a closed subset of Ri. Notice that A , (Vj) j 6=i and Θ are all

compact sets, then their Cartesian product Ri is also compact. Then L(ti,c) is compact due to

the fact that closed subsets of a compact set are also compact.1

1Let X be the topological space containing Ri. Let O be an indexing set and F = {Po | o ∈ O} be an arbitrary

open cover for L(ti,c). Since X \ L(ti,c) is open, it follows that F together with X \ L(ti,c) is an open cover

for Ri. Thus, Ri can be covered by a finite number of sets, denoted by P1, . . . ,PK , drawn from F together with

possibly X \ L(ti,c). Since L(ti,c) ∈ Ri, we have that {P1, . . . ,PK} cover L(ti,c), and it follows that L(ti,c) is

compact.
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Next, we check the consequence of interim individual rationality constraints. As in Ex-

ample 11.7 in KRS, the fact that agents can opt out after learning their types imposes the

following restriction on the feasible mechanisms:

∫

Ri

ũi(ri, ti)dxi(ri | ti)≥ 0,

which satisfies the conditions of Corollary 11.1 in KRS. It follows that the single-agent-i

model possesses a solution as long as the feasible set is nonempty. Thus, such restriction on

the mechanism imposed by the (IIRvi
) constraints does no harm.

Finally, we apply Theorem 13.5 in KRS and complete the proof since the above argument

holds for any single-agent-i model.

B.1.6 Proof of Lemma 6

To prove Lemma 6, we first prove the following lemma:

Lemma 14. Define θ and K as in Subsection 1.6.3. Let ω1 ∈ {1, . . . ,K} be a random variable

which is independent of θ and follows the discrete uniform distribution. Define ω2 = A ·θ +

B ·ω1 mod K, where A,B are two non-zero integers such that K cannot exactly divide B. Then

for any event E which induces a conditional distribution of ω2, denoted by FE ∈∆({1, . . . ,K}),
we have F0(θ | E ) = F0(θ) for any θ .

Proof of Lemma 14. For any θ ∈ {1, . . . ,T} and ω2 ∈ {1, . . . ,K}, we can uniquely pin down

ω1. Suppose not, then there exist ω1 6= ω ′
1 satisfying

{
ω2 = A ·θ +B ·ω1 mod K

ω2 = A ·θ +B ·ω ′
1 mod K,

which means B · (ω1 −ω ′
1) ≡ 0 (mod K). Notice that the prime number K cannot exactly

divide B, then (ω1 −ω ′
1) ∈ [1−K,K −1] must be exactly divided by K, which is impossible.

Then we have

Pr(ω2 | θ) = Pr
(
ω1 s.t. A ·θ +B ·ω1 ≡ ω2 (mod K) | θ

)
= Pr(ω1 | θ) = Pr(ω1) =

1

K
.

It follows that

Pr(θ | ω2) =
Pr(θ ,ω2)

Pr(ω2)
=

Pr(ω2 | θ)Pr(θ)

∑θ Pr(ω2 | θ)Pr(θ)
=

1
K

Pr(θ)

∑θ
1
K

Pr(θ)
= Pr(θ).
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Then we have

F0(θ | E ) = ∑
ω2

Pr(θ | ω2,E )Pr(ω2 | E ) = ∑
ω2

Pr(θ | ω2)FE (ω2)

= ∑
ω2

Pr(θ)FE (ω2) = Pr(θ)∑
ω2

FE (ω2) = F0(θ).

Next, we prove Lemma 6. We distinguish four cases depending on how many signals in

(mi)i∈Ĩ that are drawn from {mN−2,mN−1,mN}. We begin with properties (i) and (ii):

Case 1. If Ĩ ⊆ {1, . . . ,N − 3}, then we always have |Ĩ| ≤ N − 3. Since mi = εi for i =

1, . . . ,N−3, by mutual independence of (θ ,ε1, . . . ,εN−3), we have ΨIS
(mi)i∈Ĩ

(θ) = F0(θ) for all

θ ∈ Θ.

Case 2. Ĩ = I̊ ∪{N −2+n}, where I̊ ⊆ {1, . . . ,N −3} and n ∈ {0,1,2}. Notice that

mN−2+n = θ +2n · ε1 + · · ·+(τ +1)n · ετ + · · ·+(N −2)n · εN−3 mod K,

then if |I̊| ≤ N −4 (and thus |Ĩ| ≤ N −3), there exists τ ∈ {1, . . . ,N −3}\ I̊ such that

θ +(τ +1)n · ετ ≡ mN−2+n −∑
i∈I̊

(i+1)n ·mi − ∑
i∈{1,...,N−3}

i/∈I̊, i 6=τ

(i+1)n · εi (mod K).

Let ω1 be ετ , and ω2 be the residue of the right hand side, modulo K. The event E corresponds

to the realization of (mi)i∈Ĩ . Then we have θ +(τ + 1)n ·ω1 ≡ ω2 (mod K). Since K cannot

exactly divide (τ +1)n, from Lemma 14 we get ΨIS
(mi)i∈Ĩ

(θ) = F0(θ). So we establish property

(i) for this case. If |I̊|= N −3 (and thus |Ĩ|= N −2), we have

θ ≡ mN−2+n −∑
i∈I̊

(i+1)n ·mi (mod K). (R1)

Thus, θ is uniquely pinned down by (mi)i∈Ĩ , which establishes property (ii).

Case 3. Ĩ = I̊ ∪{N −2+n1,N −2+n2}, where I̊ ⊆ {1, . . . ,N −3} and n1,n2 ∈ {0,1,2}.

We further distinguish three cases depending on the value of (n1,n2).

(Case 3.1) If (n1,n2) = (0,1), then we have





mN−2 = θ + ∑
i∈{1,...,N−3}\I̊

εi +∑
i∈I̊

mi mod K

mN−1 = θ + ∑
i∈{1,...,N−3}\I̊

(i+1)εi +∑
i∈I̊

(i+1)mi mod K.
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If |I̊| ≤ N −5 (and thus |Ĩ| ≤ N −3), there exist τ1,τ2 ∈ {1, . . . ,N −3}\ I̊ such that





θ + ετ1
+ ετ2

≡ mN−2 −∑
i∈I̊

mi − ∑
i∈{1,...,N−3}
i/∈I̊, i 6=τ1,τ2

εi (mod K)

θ +(τ1 +1)ετ1
+(τ2 +1)ετ2

≡ mN−1 −∑
i∈I̊

(i+1)mi − ∑
i∈{1,...,N−3}
i/∈I̊, i6=τ1,τ2

(i+1)εi (mod K).

Then we have

τ1θ +(τ1 − τ2)ετ2
≡ (τ1 +1)mN−2 −mN−1 −∑

i∈I̊

(τ1 − i)mi − ∑
i∈{1,...,N−3}
i/∈I̊, i 6=τ1,τ2

(τ1 − i)εi (mod K).

Since K cannot exactly divide (τ1 − τ2), then from Lemma 14 we get ΨIS
(mi)i∈Ĩ

(θ) = F0(θ). If

|I̊|= N −4 (and thus |Ĩ|= N −2), there exists only one τ1 ∈ {1, . . . ,N −3}\ I̊, then

τ1θ ≡ (τ1 +1)mN−2 −mN−1 −∑
i∈I̊

(τ1 − i)mi (mod K). (R2-1)

Since τ1 cannot be exactly divided by K, then θ is uniquely pinned down by (mi)i∈Ĩ .

(Case 3.2) If (n1,n2) = (0,2), then we have





mN−2 = θ + ∑
i∈{1,...,N−3}\I̊

εi +∑
i∈I̊

mi mod K

mN = θ + ∑
i∈{1,...,N−3}\I̊

(i+1)2εi +∑
i∈I̊

(i+1)2mi mod K.

If |I̊| ≤ N −5 (and thus |Ĩ| ≤ N −3), there exist τ1,τ2 ∈ {1, . . . ,N −3}\ I̊ such that





θ + ετ1
+ ετ2

≡ mN−2 −∑
i∈I̊

mi − ∑
i∈{1,...,N−3}
i/∈I̊, i6=τ1,τ2

εi (mod K)

θ +(τ1 +1)2ετ1
+(τ2 +1)2ετ2

≡ mN −∑
i∈I̊

(i+1)2mi − ∑
i∈{1,...,N−3}
i/∈I̊, i 6=τ1,τ2

(i+1)2εi (mod K).

Then we have

τ1(τ1 +2)θ +(τ1 − τ2)(τ1 + τ2 +2)ετ2
≡ R

(
(mi)i∈Ĩ,(εi)i∈{1,...,N−3}

i/∈I̊, i 6=τ1,τ2

)
(mod K),

where

R = (τ1 +1)2mN−2 −mN −∑
i∈I̊

(τ1 − i)(τ1 + i+2)mi − ∑
i∈{1,...,N−3}
i/∈I̊, i 6=τ1,τ2

(τ1 − i)(τ1 + i+2)εi.
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Since (τ1 − τ2)(τ1 + τ2 + 2) cannot be exactly divided by K, then from Lemma 14 we get

ΨIS
(mi)i∈Ĩ

(θ) = F0(θ). If |I̊|= N −4 (and thus |Ĩ|= N −2), then we have

τ1(τ1 +2)θ ≡ (τ1 +1)2mN−2 −mN −∑
i∈I̊

(τ1 − i)(τ1 + i+2)mi mod K. (R2-2)

Since K cannot exactly divide τ1(τ1 +2), then θ is uniquely pinned down by (mi)i∈Ĩ .

(Case 3.3) If (n1,n2) = (1,2), then we have




mN−1 = θ + ∑
i∈{1,...,N−3}\I̊

(i+1)εi +∑
i∈I̊

(i+1)mi mod K

mN = θ + ∑
i∈{1,...,N−3}\I̊

(i+1)2εi +∑
i∈I̊

(i+1)2mi mod K.

If |I̊| ≤ N −5 (and thus |Ĩ| ≤ N −3), there exist τ1,τ2 ∈ {1, . . . ,N −3}\ I̊ such that




θ +(τ1 +1)ετ1
+(τ2 +1)ετ2

≡ mN−1 −∑
i∈I̊

(i+1)mi − ∑
i∈{1,...,N−3}
i/∈I̊, i 6=τ1,τ2

(i+1)εi (mod K)

θ +(τ1 +1)2ετ1
+(τ2 +1)2ετ2

≡ mN −∑
i∈I̊

(i+1)2mi − ∑
i∈{1,...,N−3}
i/∈I̊, i 6=τ1,τ2

(i+1)2εi (mod K).

Then we have

τ1θ +(τ1 − τ2)(τ2 +1)ετ2
≡ R

′
(
(mi)i∈Ĩ,(εi)i∈{1,...,N−3}

i/∈I̊, i 6=τ1,τ2

)
(mod K),

where

R
′ = (τ1 +1)mN−1 −mN −∑

i∈I̊

(τ1 − i)(i+1)mi − ∑
i∈{1,...,N−3}
i/∈I̊, i 6=τ1,τ2

(τ1 − i)(i+1)εi.

Since K cannot exactly divide (τ1 − τ2)(τ2 +1), by Lemma 14 we get ΨIS
(mi)i∈Ĩ

(θ) = F0(θ). If

|I̊|= N −4 (and thus |Ĩ|= N −2), then we have

τ1θ ≡ (τ1 +1)mN−1 −mN −∑
i∈I̊

(τ1 − i)(i+1)mi (mod K). (R2-3)

Since τ1 cannot be exactly divided by K, then θ is uniquely pinned down by (mi)i∈Ĩ .

Case 4. Ĩ = I̊ ∪{N −2,N −1,N}, where I̊ ⊆ {1, . . . ,N −3}. We have




mN−2 = θ + ∑
i∈{1,...,N−3}\I̊

εi +∑
i∈I̊

mi mod K

mN−1 = θ + ∑
i∈{1,...,N−3}\I̊

(i+1)εi +∑
i∈I̊

(i+1)mi mod K

mN = θ + ∑
i∈{1,...,N−3}\I̊

(i+1)2εi +∑
i∈I̊

(i+1)2mi mod K.
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If |I̊| ≤ N −6 (and thus |Ĩ| ≤ N −3), there exist τ1,τ2,τ3 ∈ {1, . . . ,N −3}\ I̊ such that





θ + ∑
i=τ1,τ2,τ3

εi ≡ mN−2 −∑
i∈I̊

mi − ∑
i∈{1,...,N−3}
i/∈I̊, i 6=τ1,τ2,τ3

εi (mod K)

θ + ∑
i=τ1,τ2,τ3

(i+1)εi ≡ mN−1 −∑
i∈I̊

(i+1)mi − ∑
i∈{1,...,N−3}
i/∈I̊, i6=τ1,τ2,τ3

(i+1)εi (mod K)

θ + ∑
i=τ1,τ2,τ3

(i+1)2εi ≡ mN −∑
i∈I̊

(i+1)2mi − ∑
i∈{1,...,N−3}
i/∈I̊, i 6=τ1,τ2,τ3

(i+1)2εi (mod K).

Then we have

τ1τ2(τ1 +2)θ +(τ1 +2)(τ1 − τ3)(τ2 − τ3)ετ3
≡ R

′′
(
(mi)i∈Ĩ,(εi) i∈{1,...,N−3}

i/∈I̊, i6=τ1,τ2,τ3

)
(mod K),

where

R
′′ = (τ1 +2)mN − (τ1 +2)(τ1 + τ2 +2)mN−1 +(τ1 +1)(τ1 +2)(τ2 +1)mN−2

−∑
i∈I̊

(τ1 +2)(τ1 − i)(τ2 − i)mi − ∑
i∈{1,...,N−3}
i/∈I̊, i6=τ1,τ2,τ3

(τ1 +2)(τ1 − i)(τ2 − i)εi.

Since K cannot exactly divide (τ1+2)(τ1−τ3)(τ2−τ3), then from Lemma 14 we get ΨIS
(mi)i∈Ĩ

(θ)=

F0(θ). If |I̊|= N −5 (and thus |Ĩ|= N −2), then we have

τ1τ2(τ1 +2)θ ≡ (τ1 +2)mN − (τ1 +2)(τ1 + τ2 +2)mN−1

+(τ1 +1)(τ1 +2)(τ2 +1)mN−2 −∑
i∈I̊

(τ1 +2)(τ1 − i)(τ2 − i)mi (mod K). (R3)

Since K cannot exactly divide τ1τ2(τ1 +2), θ is uniquely pinned down by (mi)i∈Ĩ .

Similarly, we can prove that when |Ĩ|=N−2, truthful reports of (mi)i∈Ĩ uniquely pin down

εi for all i ∈ {1, . . . ,N −3}\ I̊. Then with εεε =
(
θ ,(εi)i∈{1,...,N−3}

)
at hand, the remaining two

signals is given by mi = ζζζ iii · εεε mod K for i ∈ I \ Ĩ. Thus, we finish the proof of properties (i)

and (ii).

Next, we prove property (iii). From (ii), we can define a mapping

θ+ :
{

truthful report (mi)i∈Ĩ s.t. |Ĩ|= N −2
}
→ Θ,

which is given by conditions R1, R2-1, R2-2, R2-2, R2-3 and R3. Notice that in each con-

dition, none of the coefficients of (mi)i∈Ĩ can be exactly divided by K. Thus, we must have
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θ+((mi)i∈Ĩ) 6= θ+((mi)i∈Ĩ\{ j},m
′
j) for any m j 6= m′

j.
2

Given an arbitrary report profile m where there exists at most one misreport, pick any

N −2 signals (mi)i∈Ĩ , and by property (ii) we can calculate the remaining two signals. If they

both coincide with the reports, then there is no misreport; otherwise, some agent lies about

his signal. Suppose that unilateral deviation from truth-telling is detected and the principal

cannot tell who misreports, that is, there exist i, j and m′
i 6= mi,m

′
j 6= m j such that no unilateral

deviation is detected for both (m′
i,m−i) and (m′

j,m− j). By property (ii), N − 2 signals m−i j

pin down the state θ = θ+(m−i j), as well as the remaining two signals, denoted by m̂i, m̂ j. It

follows that m′
i = m̂i, m j = m̂ j (because (m′

i,m−i) is a truthful report), and mi = m̂i, m′
j = m̂ j

(because (m′
j,m− j) is also a truthful report), contradicting m′

i 6= mi,m
′
j 6= m j. We conclude

that the agent who misreports can be identified by the report of N signals.

B.1.7 Proof of Proposition 4

By assumption, the solution to (P∗), denoted by {x∗(θ)}θ∈Θ, also solves the following uncon-

strained problem

sup
x(θ)∈∆(A )

∫

θ
u0

(
x(θ),v,θ

)
dF0(θ).

It follows that x∗(θ) ∈ argsupx u0(x,v,θ) for any θ ∈ Θ. After observing any truthful reports

m ∈ M from the agents, the principal knows the true state is θ+(m), and the allocation deter-

mined by the optimal private disclosure mechanism (ΞW ,xW ) is given by xW (m)= x∗
(
θ+(m)

)
.

Thus, the principal already optimizes her payoff by obeying the allocation rule.

2Take condition R2-1 for example. Suppose there exist mN−2 6= m′
N−2 satisfying

{
τ1θ ≡ (τ1 +1)mN−2 −mN−1 −∑i∈I̊(τ1 − i)mi (mod K)

τ1θ ≡ (τ1 +1)m′
N−2 −mN−1 −∑i∈I̊(τ1 − i)mi (mod K),

then we have 0≡ (τ1+1)(mN−2−m′
N−2) (mod K), which is impossible because K cannot exactly divide (τ1+1).

Thus, a change of one signal must induce a different state.
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B.1.8 Proof of Lemma 13

We start from the information disclosure policy ΦS defined in Section 1.4.1 where Mi =

{1,2, . . . ,T}. The associated belief matrix ΨS is given by

ΨS =




αT α1 · · · αT−1

αT−1 αT · · · αT−2

...
...

. . .
...

α1 α2 · · · αT



,

which is a circulant matrix3 generated by the row vector ~α = (α1,α2, . . . ,αT ). The associated

polynomial of circulant matrix ΨS is given by

f (x) = α1 +α2x+ · · ·+αT xT−1.

Let ρm = e
2πm

T i be the complex T th root of unit, for m= 0,1, . . . ,T −1, where i is the imaginary

unit. Then circulant matrix ΨS has eigenvalue

ηm =
T−1

∑
k=0

αk+1e
2πmk

T i = f (ρm), for m = 0,1, . . . ,T −1.

Thus, ΨS is nonsingular if and only if ηm 6= 0 for any m ∈ {0,1, . . . ,T − 1}. In other words,

the necessary and sufficient condition for ΨS to be invertible is that, none of the complex

T th roots of unit is the root of polynomial f (x). If ΨS has full rank, then we have found such

invertible Ψ. Otherwise, pick T different prime numbers τ1,τ2, . . . ,τT such that T < τ1 < τ2 <

· · ·τT , and for each r ∈ {1,2, . . . ,T} define Mr
i = {1,2, . . . ,τr} for each i ∈ I, and construct the

information disclosure policy Φr as follows

Φr(θt ,m) =

{
αt

τr
, if ml1 ≡ ml2 +(l1 − l2)t (mod τr), ∀l1, l2 ∈ I

0, otherwise.

Then for each r, the induced belief matrix Ψr is given by

Ψr =




ατr
α1 · · · ατr−1

ατr−1 ατr
· · · ατr−2

...
...

. . .
...

α1 α2 · · · ατr



,

3See Gray et al. (2006) for a review of the properties possessed by circulant matrices.
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which is a circulant matrix generated by row vector ~αr = (α1,α2, . . . ,ατr
), where αt = 0 for

any t > T . Next, we are going to prove that there exists some r such that Ψr has full rank. The

associated polynomial of Ψr is given by

fr(x) = α1 +α2x+ · · ·+ατr
xτr−1.

Suppose that for all r = 1, . . . ,T we have Ψr is singular, which means there exists a complex τ th
r

root of unit, denoted by ρmr
= e

2πmr
τr

i for some mr ∈ {0,1, . . . ,τr −1}, satisfying fr(ρmr
) = 0.

Notice that αt = 0 for any t > T , then we have f (ρmr
) = 0, which means {ρmr

}T
r=1 are the

roots of f (x). Moreover, we can prove that they are T different roots. Because 0 ≤ 2πmr

τr
< 2π

for each r, the mapping from mr

τr
to ρmr

is a bijection. Suppose we can find r < r′ such that

ρmr
= ρmr′ , which means we must have mr

τr
=

mr′
τr′

, then we have mrτr′ = mr′τr. It follows

that τr′ exactly divides mr′τr, which is impossible because τr′ is a prime number and τr′ > τr

and τr′ > mt ′ . Notice that the degree of polynomial f (x) is equal to T − 1, then from the

fundamental theorem of algebra we know that f (x) has, counted with multiplicity, exactly

T − 1 roots in the complex plane, contradicting the fact that we already find T distinct roots.

Thus, there must exist some r̂ ∈ {1, . . . ,T} such that Ψr̂ is nonsingular.

B.2 Additional Results

B.2.1 Alternative timing

Consider an alternative timing as follows:

1. The principal makes public (Ξ,x), where Ξ : Θ×V → ∆(M) and x : V ×M → ∆(A ), to

which we assume that the principal can commit during the whole game.

2. Each agent i observes his own private type vi, and then simultaneously reports v̂i to the

principal.

3. Each agent i privately observes his own signal mi generated by Ξθ ,v̂, and then simulta-

neously reports m̂i to the principal.

4. The principal implements the social alternatives according to x(v̂, m̂).

First we consider the following relaxed problem where the signal profile m is directly observed

by the principal so that each agent i cannot report m̂i 6= mi, and participation is mandatory after
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stage 2.

sup
Ξ, x

∫

θ

∫

v

∫

m
u0

(
x(v,m),v,θ

)
dΞθ ,v(m)dFV (v)dF0(θ)

s.t. ∀i, vi 6= v′i :
∫

v−i

∫

θ

∫

m
ui

(
x(vi,v−i,m),v,θ

)
dΞθ ,vi,v−i

(m)dF0(θ)dF−i(v−i)

≥ max
{

0,
∫

v−i

∫

θ

∫

m
ui

(
x(v′i,v−i,m),v,θ

)
dΞθ ,v′i,v−i

(m)dF0(θ)dF−i(v−i)
}
.

Define x̃(v̂i,v−i,θ) =
∫

m x(v̂i,v−i,m)dΞθ ,v̂i,v−i
(m), and the above problem becomes:

sup
Ξ, x

∫

θ

∫

v
u0

(
x̃(v,θ),v,θ

)
dFV (v)dF0(θ)

s.t. ∀i, vi 6= v′i :
∫

v−i

∫

θ
ui

(
x̃(vi,v−i,m),v,θ

)
dF0(θ)dF−i(v−i)

≥ max
{

0,
∫

v−i

∫

θ
ui

(
x̃(v′i,v−i,m),v,θ

)
dF0(θ)dF−i(v−i)

}
,

whose value is no larger than the value of (P∗). Since the optimal private disclosure mech-

anism in Theorem 1, 2, 3 already achieves the value of (P∗), we conclude that our result is

robust to this alternative timing.

B.2.2 Relationship with Liu (2015)

Following the definition given by Liu (2015), we construct a non-redundant partition model

〈Ω,(Πi,Pi)i∈I,g〉, where (i) Ω = Θ is the state space, (ii) each agent i’s information partition

on Ω contains only one element, that is, Πi = {Θ}, (iii) agents share a common prior on Ω, that

is, Pi = F0 for any i ∈ I, (iv) g : Ω → {x∗(·,θ)}θ∈Θ specifies the associated direct mechanism

the principal will implement at each state, that is, g(θ) = x∗(·,θ) for any θ ∈ Θ. Moreover,

the set of belief hierarchies, denoted by δ (Ω), satisfies that each belief hierarchy contains a

unique element, because it is common knowledge that all agents share the same prior belief

about the distribution of the associated direct mechanisms to be implemented.

As in Liu (2015), a correlating device 〈(Cθ )θ∈Θ,(q
θ
i )θ∈Θ,i∈I〉 on 〈Ω,(Πi,Pi)i∈I,g〉, where

each Cθ ⊆ ×i∈ICi and each qθ
i is a probability measure with a support Cθ , satisfies for all i,

θ ,θ ′ ∈ Θ: (1) Cθ
i = Cθ ′

i , and (2) the marginal distributions of qθ
i and qθ ′

i over Cθ
i coincide

with each other. Then we can prove the following results.
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Proposition 5. The optimal information disclosure policy ΦS is an correlating device. Any

aggregately-revealing correlating device on partition model 〈Ω,(Πi,Pi)i∈I,g〉 is the solution to

(P1). The reverse is also true if x∗(·,θ) 6= x∗(·,θ ′) for any θ 6= θ ′.

Proof. By definition of ΦS, for any i and θt , each mi ∈ Mi will occur with strictly positive

probability, since we can always define m j :=
(
mi +( j− i)t

)
mod T for all j 6= i, and then

ΦS(θt ,mi,m−i)> 0. Thus, condition (1) is satisfied. Notice that

q
θt

i [mi] =
∑m−i

Φ(θt ,mi,m−i)

∑m Φ(θt ,mi,m−i)
=

Φ
(
θt ,mi,m

+
−i(θt ,mi)

)

∑mi
Φ
(
θt ,mi,m

+
−i(θt ,mi)

) =
αt

T
αt

T
·T =

1

T
,

for any θ and mi, then condition (2) is also satisfied. Thus, ΦS is a correlating device.

Because correlating device does not change each agent i’s belief about the distribution of

the state of the world, the interim expected utility for each agent is based on the common

prior F0. Since the correlating device is aggregately revealing, the principal can infer the

true state from m, and implement the correct mechanism x∗
(
·,θ+(m)

)
. Notice that x∗ is the

solution to (P∗), then agents will participate in the mechanism and truthfully report v. Thus,

any aggregately-revealing correlating device is the optimal information disclosure policy that

solves (P1).

Pick any solution (Ξ,x) to (P1), and we denote the resulting partition model as 〈Ω̃,(Π̃i, P̃i)i∈I, g̃〉.
Since the value of (P∗) is achieved by (Ξ,x), then for any m ∈ Mθ = {m ∈ M | Φ(θ ,m)> 0},

we have x(·,m)= x∗(·,θ). Suppose there exists m′ ∈Mθ ∩Mθ ′
for some θ 6= θ ′, then x∗(·,θ)=

x(·,m′) = x∗(·,θ ′), contradicting the assumption. Thus, Mθ ∩Mθ ′
= /0 for any θ 6= θ ′, which

means the disclosure policy is aggregately revealing. On the other hand, we have proved

that each agent’s posterior belief about the state has to be coincide with F0 in the optimal

private disclosure mechanism,4 then the set of belief hierarchies, denoted by δ (Ω̃), is equal

to δ (Ω). Notice that 〈Ω,(Πi,Pi)i∈I,g〉 is non-redundant, then by Theorem 1 of Liu (2015),

〈Ω̃,(Π̃i, P̃i)i∈I, g̃〉 can be uniquely decomposed into a conjunction of a non-redundant model,

that is, 〈Ω,(Πi,Pi)i∈I,g〉, and a correlating device. We conclude that the information disclo-

sure policy is the unique aggregately-revealing correlating device.

B.2.3 General payoff environment

We are going to show that the optimality of IUAR disclosure policy does not hinge on the

mutual independence of (F0,F1, . . . ,FN). We provide the proof for Theorem 1 where the least

4For simplicity, we assume that any individually informative disclosure policy is strictly outperformed by

pooling the realizations of private signals for each agent.



B.2. ADDITIONAL RESULTS 101

restrictions are imposed on the environment. Since principal’s information disclosure policy

Ξ is chosen before she observes agents’ reports about their private types v, the signal profile

m and v are mutually independent conditional on the state θ . Let FV be the joint distribution

of v. Then the principal’s problem (P) is given by

sup
Ξ, x

∫

θ

∫

m

∫

v
u0

(
x(v,m),v,θ

)
dFV (v | θ)dΞθ (m)dF0(θ)

s.t. ∀i,(mi,vi) 6= (m′
i,v

′
i) : Ui(mi,vi;mi,vi)≥ max{Ui(mi,vi;m′

i,v
′
i),0},

where

Ui(mi,vi; m̂i, v̂i) =
∫

θ ,m−i,v−i

ui

(
x(v̂i,v−i, m̂i,m−i),v,θ

)
dΨmi,vi

(θ ,m−i,v−i)

=
∫

θ ,m−i

∫

v−i

ui

(
x(v̂i,v−i, m̂i,m−i),v,θ

)
dΨθ ,vi,m(v−i)︸ ︷︷ ︸
=dF−i(v−i|θ ,vi)

dΨmi,vi
(θ ,m−i).

And the relaxed problem (P∗) is given by

sup
x

∫

θ

∫

v
u0

(
x(v,θ),v,θ

)
dFV (v | θ)dF0(θ)

s.t. ∀i,vi 6= v′i : Ui(vi,vi)≥ max{Ui(vi,v
′
i),0},

where Ui(vi, v̂i) =
∫

θ

∫
v−i

ui

(
x(v̂i,v−i,θ),v,θ

)
dF−i(v−i | θ ,vi)dF0(θ | vi).

Let x∗(v,θ) be the solution to (P∗). Construct private disclosure mechanism (ΞW ,xW ) in

the same way as in Theorem 1, and we will show that it satisfies all the constraints in (P) and

achieves the value of (P∗). Notice that

ΨW
mi,vi

(θ) =
Pr(mi | θ ,vi)Fi(vi | θ)F0(θ)

∑θ Pr(mi | θ ,vi)Fi(vi | θ)F0(θ)

(1)
=

Pr(mi | θ)Fi(vi | θ)F0(θ)

∑θ Pr(mi | θ)Fi(vi | θ)F0(θ)

(2)
=

Fi(vi | θ)F0(θ)

∑θ Fi(vi | θ)F0(θ)
=

Pr(vi,θ)

∑θ Pr(vi,θ)
= F0(θ | vi),

where (1) comes from the independence between m and v conditional on θ , and (2) is due

to the uniform distribution of mi conditional on θ .5 This property says when θ is correlated

with v, each agent i learns something about the state from his own type vi; while the signal mi

5Fixed any θt ∈ Θ, for all mi ∈ Mi, we have

Pr(mi | θt) =
Pr(mi,θt)

F0(θt)

(1)
=

ΦW (θt ,mi,m
+
−i(θt ,mi))

F0(θt)
=

αt/K

αt

=
1

K
,

where (1) is due to property (ii) of Lemma 2. Thus, mi is uniformly distributed conditional on θ .
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provides no additional information about the state for him. Then we have Ui(mi,vi; m̂i, v̂i) =

∫

θ ,m−i

∫

v−i

ui

(
xW (v̂i,v−i, m̂i,m−i),v,θ

)
dF−i(v−i | θ ,vi)dΨW

mi,vi
(θ ,m−i)

=
∫

θ

∫

m−i

∫

v−i

ui

(
xW (v̂i,v−i, m̂i,m−i),v,θ

)
dF−i(v−i | θ ,vi)dΨW

mi,vi,θ
(m−i)Ψ

W
mi,vi

(θ)

=
∫

θ

∫

m−i

∫

v−i

ui

(
xW (v̂i,v−i, m̂i,m−i),v,θ

)
dF−i(v−i | θ ,vi)dΨW

mi,θ
(m−i)dF0(θ | vi)

=
∫

θ

∫

v−i

ui

(∫

m−i

xW (v̂i,v−i, m̂i,m−i)dΨW
mi,θ

(m−i),v,θ
)

dF−i(v−i | θ ,vi)dF0(θ | vi)

=
∫

θ

∫

v−i

ui

(
x∗(v̂i,v−i,θ),v,θ

)
dF−i(v−i | θ ,vi)dF0(θ | vi),

where the last equality is due to Lemma 11 which guarantees that the principal can infer the

true state even when there is unilateral deviation from truthfully reporting one’s signal mi.

Thus, (ΞW ,xW ) satisfies all the constraints of (P) because x∗(v,θ) is incentive compatible and

individual rational. Notice that

∫

θ

∫

m

∫

v
u0

(
xW (v,m),v,θ

)
dFV (v | θ)dΞW

θ (m)dF0(θ)

=
∫

θ

∫

v
u0

(∫

m
xW (v,m)dΞW

θ (m),v,θ
)

dFV (v | θ)dF0(θ)

=
∫

θ

∫

v
u0

(
x∗(v,θ),v,θ

)
dFV (v | θ)dF0(θ),

and then we conclude that (ΞW ,xW ) constitutes a solution to (P).

B.2.4 Identify the truth teller

Assume T = 2 and N = 3, choose a prime number K ≥ 3, and construct information disclosure

policy ΦW as in Theorem 1. Then we have for t = 1,2, ΞW
θt
(m)> 0 if and only if m j ≡mi+( j−

i)t (mod K), ∀i, j ∈ {1,2,3}. Suppose that there exists an off-path signal profile induced by

unilateral deviation, but the principal cannot identify the truth teller. More precisely, ∃m ∈ M

such that ΞW
θt
(m) > 0 for some t, and ∃m′

i 6= mi for some i, satisfying: (i) ∃m′
j 6= m j for some

j 6= i such that ΞW
θt1
(m′

i,m
′
j,mk)> 0 for some t1, and (ii) ∃m′

k 6= mk for some k 6= i, j such that

ΞW
θt2
(m′

i,m j,m
′
k) > 0 for some t2, where t, t1, t2 ∈ {1,2}. Without loss of generality, let i = 1,

j = 2 and k = 3, then we have:





m2 ≡ m1 + t (mod K), m3 ≡ m1 +2t (mod K)

m′
2 ≡ m′

1 + t1 (mod K), m3 ≡ m′
1 +2t1 (mod K)

m2 ≡ m′
1 + t2 (mod K), m′

3 ≡ m′
1 +2t2 (mod K).
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It follows that m1 −m′
1 ≡ t2 − t (mod K) and m1 −m′

1 ≡ 2t1 −2t (mod K), which means t1 −
t ≡ t2 − t1 (mod K). Because two of {t, t1, t2} must be equal to each other, then we have

t = t1 = t2, contradicting m′
i 6= mi. Thus, either condition (i) does not hold which means agent

j is the truth teller, or condition (ii) does not hold which means agent k is the truth teller.

B.2.5 An alternative proof of Theorem 3

We provide an alternative way to prove Theorem 3. Instead of introducing additional signals to

get the full-rank belief matrix, we can approximate any singular belief matrix by a sequence of

invertible belief matrices. Specifically, consider the circulant matrix ΨS generated by the row

vector ~α = (α1,α2, . . . ,αT ). Without loss of generality we can assume that α1 > 0; otherwise

we consider the circulant matrix ΨS′ generated by row vector (α j,α j+1, . . . ,α j−1) with α j > 0,

which is a cyclic permutation of ~α . One can easily check that ΨS has full rank if and only

if ΨS′ has full rank. If ΨS is singular, then define R := {m ∈ {1, . . . ,T} | f (ρm) = 0} and

RC := {1, . . . ,T} \R. Let ε̄ = minm∈RC | f (ρm)|, and set ε̄ = +∞ if RC = /0. We consider a

sequence of belief matrices {Ψn}∞
n=n0

, where the positive integer n0 satisfies T
n0

< min{ε̄,α1},

and each Ψn is a circulant matrix generated by row vector~αn =(α1− T−1
n

,α2+
1
n
, . . . ,αT +

1
n
).

Then for any m = 1, . . . ,T , we have

f n(ρm) =
(
α1 −

T −1

n

)
+
(
α2 +

1

n

)
ρm + · · ·+

(
αT +

1

n

)
ρT−1

m

= f (ρm)+
1

n

(
1+ρm + · · ·+ρT−1

m

)
− T

n

= f (ρm)+
1−ρT

m

1−ρ
− T

n

= f (ρm)−
T

n
, (because ρT

m = e
2πm

T i·T = 1)

where f n(x) is the associated polynomial of circulant matrix Ψn. If m ∈ R, then f n(ρm) =

0− T
n
6= 0. If m ∈ RC, then we have either f n(ρm) > ε̄ − T

n
> 0 or f n(ρm) < −ε̄ − T

n
< 0.

Thus, we prove that limn→∞ Ψn = ΨS and Ψn is nonsingular for each n. 6

We start with (ΦS,xS), the optimal private disclosure policy with strong control over the

disclosure process, and then for each common prior over Θ, denoted by ~αn, we construct the

private disclosure policy (Φn,xS) with the corresponding full-rank belief matrix Ψn about the

6Basically, any singular matrix is the limit of a sequence of nonsingular matrices, which means in the topo-

logical space of circulant matrices generated by all ~α ∈ R
T , every non-empty open subset contains at least one

nonsingular circulant matrix. Thus, the subset of nonsingular circulant matrices is a dense set. On the other hand,

any singular circulant matrix must satisfy f (ρm) = 0 for some m = 0, . . . ,T − 1, which will reduce the degrees

of freedom, and thus it is a generic property for any ~α ∈ R
T to generate a nonsingular circulant matrix.
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opponents’ signals. Let β
mi→m′

i|n
i be the maximum gain from misreporting m′

i 6=mi when agent

i observes mi, which is given by

β
mi→m′

i|n
i = max

(vi,v
′
i)∈V 2

i

{
−
∫

v−i

∫

θ ,m−i

ũi

(
xS(vi,v−i,mi,m−i),v,θ

)
dΨn

mi
(θ ,m−i)dF−i(v−i)

+
∫

v−i

∫

θ ,m−i

ũi

(
xS(v′i,v−i,m

′
i,m−i),v,θ

)
dΨn

mi
(θ ,m−i)dF−i(v−i),0

}
,

Set β
mi→mi|n
i equal to 0. Define a T × T matrix Bn

i =
(
β

r→s|n
i

)
(r,s)∈{1,...,T}2 . Let ~tn

i (mi) =(
tn
i (mi,m−i)

)
m−i∈M−i

be the column vector representing agent i’s transfer by reporting mi.

Since Ψn is invertible, we can find tn
i :=

(
~tn

i (mi)
)

mi∈Mi
solving Ψntn

i = Bn
i . Then (Φn,xS, tn)

constitutes a candidate private disclosure policy with transfer. Let (Φn
opt , x̃

n
opt , t

n
opt) be the

optimal private disclosure policy with transfer when the prior over Θ is ~αn, which achieves

the ex ante expected utility Ũ
opt
0 (~αn). Denote ŨS

0 as the principal’s ex ante expected utility if

she has strong control. Hence we have

Ũ
opt
0 (~α)−ŨS

0 (Φ
S,xS | ~α) = lim

n→∞

(
Ũ0(Φ

n
opt , x̃

n
opt , t

n
opt | ~αn)−ŨS

0 (Φ
S,xS | ~α)

)

≥ lim
n→∞

(
Ũ0(Φ

n,xS, tn | ~αn)−ŨS
0 (Φ

S,xS | ~α)
)

= lim
n→∞

(
Ũ0(Φ

n,xS, tn | ~αn)−ŨS
0 (Φ

n,xS | ~αn)︸ ︷︷ ︸
=0, by definition of tn

+ŨS
0 (Φ

n,xS | ~αn)−ŨS
0 (Φ

S,xS | ~α)
)

= lim
n→∞

∫

v
∑

θ∈Θ

(
(αn

θ −αθ︸ ︷︷ ︸
→0

) · ũ0

(
x̃∗(v,θ),v,θ

)
︸ ︷︷ ︸

bounded

)
dFV (v) = 0.

Notice that Ũ
opt
0 (~α) is bounded from above by the maximum expected utility in (P1), which is

ŨS
0 (Φ

S,xS | ~α), then we conclude that Ũ
opt
0 (~α) = ŨS

0 (Φ
S,xS | ~α).

B.2.6 Alternative implementation of the IUAR disclosure policy

In Section 1.5 we build the IUAR disclosure policy through the sample-product approach.

Next, we provide an alternative way of implementation, that is, restrictions on agents’ access

to certain information. We illustrate this idea in a real-world example introduced by Dow and

Gorton (1993).

Cray Research is a leading manufacturer of supercomputers. Its chief scientist engaged in

an important research project is considering either staying in the company, or leaving, together

with the project, to found an independent competitor. The value of Cray Research, which is

either high (in a good state θG) or low (in a bad state θB), is determined as follows. If the

scientist stays and the project has a high chance of success, the company would gain a strong
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competitive advantage, and thus have a high value. If the scientist leaves and the project is

likely to fail, that is also good news for the company’s value because it’s likely to maintain a

dominant position. However, it would be bad news if either the leaving scientist is likely to

succeed in the project, resulting in a tough competitor; or the unpromising project continues

to waste money.

Imagine that the Board of Cray Research decides whether to keep (a1) the company or to

sell (a2) it. Table B.1 defines the Board’s payoff u0(a,θ) for each action-state pair. Basically

we are assuming that the Board wants to match the state, that is, the optimal decision a∗ is

given by a∗(θG) = a1 and a∗(θB) = a2. Assume that the common prior over {θG,θB} is given

by F0(θG) = F0(θB) =
1
2 . The Board cannot observe the state; instead, she relies on Managers

to collect information about the state, so as to implement the optimal outcome. This is possibly

because Managers are better informed of their own departments’ conditions than the Board, as

is usually assumed in the organizational communication literature (e.g., Alonso, Dessein, and

Matouschek, 2008); or because the Board’s cost to acquire concrete information is too high.

On the other hand, the Board can control what information and how precise each manager can

learn, by authorizing access to particular database for each manager (e.g., through the Identity

and Access Management Systems). Assume that there are two managers, each with payoff

function ui(a,θ) given by Table B.2.

Table B.1: Board’s payoff

u0(a,θ) θG θB

a1 1 0

a2 0 1

Table B.2: Manager i’s payoff

ui(a,θ) θG θB

a1 2 0

a2 0 −1

We can see that both managers prefer a1 to a2 regardless of the state. Intuitively, changing

ownership of the company usually changes the management style and undermines the interests

of current managers. Moreover, when the Board sells the company in a bad state, the current

managers would most likely be fired by the new owner, which would damage their reputation

and end up with a negative payoff (−1). We assume that managers can resign voluntarily and

get their reservation utility 0 before the Board takes actions. The resignation of any manager

would cause turmoil within the current management, and give 0 payoff to the Board regardless

of her action.

Assume that the Board can implement any lottery over {a1,a2}, and let x ∈ [0,1] be the

probability of playing a1. The timing is: (i) the Board designs (and commits to) an information

disclosure policy and associated allocation rule; (ii) each agent i observes a private signal mi
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(generated by the disclosure policy), and then decides whether to report a message to Principal,

or to resign at this stage; (iii) the Board keeps the company with probability x, and sells

it with probability (1 − x) according to the allocation rule and agents’ reports. Thus, the

Board’s problem is to maximize her expected payoff, such that each manager finds it optimal

to truthfully report what he observes, and gets nonnegative interim expected utility.

Immediately, the first-best outcome for the Board is x∗(θG) = 1 and x∗(θB) = 0. By Propo-

sition 1, it is optimal to employ the IUAR disclosure policy: Mi = {0,1}, and the joint distribu-

tion over {θG,θB}×M1×M2, denoted by Φ, is given by Table B.3. Meanwhile, the allocation

rule is given by x(m) = x∗
(
θ+(m)

)
, where θ+(m) is the state inferred from the signal profile

m. We can check that the allocation rule is Bayesian incentive compatible and guarantees

nonnegative expected payoff for both managers.

Table B.3: Information disclosure policy

Φ(θG,m) m2 = 0 m2 = 1

m1 = 0 1
4 0

m1 = 1 0 1
4

Φ(θB,m) m2 = 0 m2 = 1

m1 = 0 0 1
4

m1 = 1 1
4 0

Recall that the two main factors (called the sub-states, denoted by s1 and s2) that determine

the company’s value are (i) whether the chief scientist stays (s1 = 0) or leaves (s1 = 1), and

(ii) whether the project has a high chance of success (s2 = 0) or not (s2 = 1). Let α(s1,s2) ∈
∆({0,1}2) be the (full-support) common prior of sub-states, and h : {0,1}2 → {θG,θB} be

the mapping from sub-states profiles to states. From the previous illustration, we have that

h(0,0) = h(1,1) = θG and h(0,1) = h(1,0) = θB.7 We can see that s1 and s2 are comple-

ments in Börgers, Hernando-Veciana, and Krähmer (2013), since neither of the sub-state can

determine the state on itself.

The IUAR disclosure policy in Table B.3 can be constructed as follows. Manager 1 (or 2)

is the manager of Human Resource department (or R&D department), who is authorized to

collect information only about s1 (or s2). Let ε be a random variable which is independent of

(s1,s2) and is drawn from {0,1} equally likely, then we define manager i’s signal by mi = si+ε

mod 2, for i = 1,2. We can prove that (m1,m2) follows exactly the same distribution as in

7Obviously, α(s1,s2) satisfies α(0,0)+α(1,1) = F0(θG) =
1
2

and α(0,1)+α(1,0) = F0(θB) =
1
2
.
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Table B.3. To see this, for example,

Pr(θG | m1 = 0) =
Pr
(
s1 + ε ≡ 0 (mod 2);(s1,s2) = (0,0) or (1,1)

)

Pr
(
s1 + ε ≡ 0 (mod 2)

)

=
Pr
(
(ε,s1,s2) = (0,0,0) or (1,1,1)

)

Pr
(
(ε,s1) = (0,0) or (1,1)

) =
1
2α(0,0)+ 1

2α(1,1)
1
2(α(0,0)+α(0,1))+ 1

2(α(1,0)+α(1,1))

= α(0,0)+α(1,1) = Pr(θG) =
1

2
,

which implies the individually uninformative property. On the other hand, the mapping h can

also be written as

h(s1,s2) =

{
θG, if s1 − s2 ≡ 0 (mod 2)

θB, if s1 − s2 ≡ 1 (mod 2).

From m1 −m2 ≡ s1 − s2 (mod 2), we get the aggregately revealing property.

In this example, we exploit the complementary nature of the two sub-states and the ran-

domizing device to construct the IUAR disclosure policy. The above result suggests that in

order to maximize the Board’s interests, each department manager should only be authorized

access to information concerning his own department, and certain noises should be deliber-

ately added to what managers can observe. This result provides a novel rationale for sending

noisy signals and preventing side-information among departments in organizational commu-

nications.

B.2.7 Extensions to the case with continuously distributed states

In Section 1.6.2 we have extended Proposition 1 to the case with continuously distributed

states, and have derived the optimal private disclosure mechanism (ΦS,xS) when the principal

has strong control over the disclosure process. Next, we prove the continuous version of

Theorem 1, 2, 3. If the principal only has weak control, due to the same correlated structure

of ΦS as in the discrete case, the principal can apply the techniques in Section 1.4.2 to elicit

truthful reports about the signal profiles from agents for free when there are three or more

agents.

In the case where there are only two agents, the principal can still achieve the value of

(P∗) through the approximation argument. Roughly speaking, in the vector space ∆(Θ) en-

dowed with the total variation norm, we choose a sequence of discrete distribution functions

{Fn
0 }∞

n=1 satisfying that (1) the sequence converges to the continuous distribution F0, and (2)
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each discrete distribution induces a full-rank circulant belief matrix Ψn.8 For each Fn
0 , let

Θn = {θ1,θ2, . . . ,θKn
} be the states that occurs with strictly positive probabilities. Define

(ΦS
n,x

S
n, t

n) as the private disclosure policy with transfer which implements the restriction of

x∗(v,θ) to Θn. Then (ΦS
n,x

S
n, t

n) constitutes a candidate solution to the principal’s problem with

weak control when the common prior over the state of the world is Fn
0 , and let (Φn

opt ,x
n
opt , t

n
opt)

be the corresponding optimal private disclosure policy. Then the principal’s maximum ex-

pected payoff by private disclosure with weak control under the prior F0, denoted as U
opt
0 (F0),

satisfies:

U
opt
0 (F0)−US

0 (Φ
S,xS | F0) = lim

n→∞

(
U0(Φ

n
opt ,x

n
opt , t

n
opt | Fn

0 )−US
0 (Φ

S,xS | F0)
)

≥ lim
n→∞

(
U0(Φ

S
n,x

S
n, t

n | Fn
0 )−US

0 (Φ
S,xS | F0)

)

= lim
n→∞

(
U0(Φ

S
n,x

S
n, t

n | Fn
0 )−US

0 (Φ
S
n,x

S
n | Fn

0 )︸ ︷︷ ︸
=0, by definition of tn

+US
0 (Φ

S
n,x

S
n | Fn

0 )−US
0 (Φ

S,xS | F0)
)

= lim
n→∞

∫

v

∫

θ∈Θ
u0

(
x∗(v,θ),v,θ

)
︸ ︷︷ ︸

bounded

d
(
Fn

0 (θ)−F0(θ)
)
dFV (v).

Notice that |u0

(
x∗(v,θ),v,θ

)
|< H, then we have

∣∣∣∣
∫

v

∫

θ∈Θ
u0

(
x∗(v,θ),v,θ

)
d
(
Fn

0 (θ)−F0(θ)
)
dFV (v)

∣∣∣∣< H ·
∫

θ∈Θ

∣∣d
(
Fn

0 (θ)−F0(θ)
)∣∣ ,

where the right hand side goes to 0 as n → ∞, since {Fn
0 }∞

n=1 converges to F0 under the total

variation norm. Thus, we have U
opt
0 (F0) ≥US

0 (Φ
S,xS | F0). Notice that US

0 (Φ
S,xS | F0) is the

upper bound of U
opt
0 (F0), then we conclude that U

opt
0 (F0) =US

0 (Φ
S,xS | F0).

B.2.8 Robustness to faulty agents

Recall that in the optimal private disclosure mechanism given by Theorem 1, any two truthful

reports of signals uniquely pin down the state. Then there could be enough redundancy in

cross checking the existence of unilateral deviations, so that the principal is still able to infer

the true state even if there are some “faulty” agents who do not act according to incentives.

Eliaz (2002) defines the k-fault tolerant Nash Equilibrium for an n-player game, where each

non-faulty player has no incentive to deviate from the equilibrium action, regardless of the

identity and actions of the faulty players, as long as there are (n− k − 1) other non-faulty

8We can always find such sequences because the subset of nonsingular circulant matrices generated by dis-

crete distribution functions is a dense set. See Footnote 6 in this Supplemental Material (Appendix B).
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players who stick to the equilibrium action. In the same spirit, we check whether the IUAR

disclosure mechanism is k-fault tolerant.

We keep the setup in Section 1.3. For simplicity, we only consider the case with four or

more agents, whose private information only consists of the signals generated by the disclosure

policy. We construct the IUAR disclosure policy in the same way as in Section 1.6.3, denoted

by ΞD, except that the state is determined by D ∈ {2, . . . ,N − 2} signals rather than (N − 2)

signals. Define Mi = {1, . . . ,K} for all i ∈ I, where K ≥ max{T,N} is a prime number. Let

ε1, . . . ,εD−1 ∈ {1, . . . ,K} be mutually independent random variables, satisfying Pr(ετ = k) =
1
K

for τ = 1, . . . ,D− 1 and k = 1, . . . ,K. Moreover, (ε1, . . . ,εD−1) is independent of θ . The

signal profile m = (m1, . . . ,mN) is defined as follows:




m1

...

mD−1

mD

...

mN




=




0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

10 20 · · · D0

...
...

. . .
...

1N−D 2N−D · · · DN−D




·




θ

ε1

...

εD−1




mod K,

where each signal mi is equal to the residue of the dot product of i-th row vector (denoted as

ζζζ i) and column vector (θ ,ε1, . . . ,εD−1) (denoted as εεε), modulo K.9 Let mĨ := (mi)i∈Ĩ stand for

the restriction of report profile m to agents included in the subset Ĩ. Using a similar argument

with Lemma 6, we have that ΞD satisfies:

(i) For any Ĩ ⊆ I such that |Ĩ| ≤ D−1, the posterior belief about θ conditional on observing

truthful reports of mĨ , denoted by ΨIS
mĨ
(θ), coincides with F0.

(ii) Any D signals uniquely pin down the realization of θ = θ+(mĨ) such that |Ĩ| = D, as

well as (ε1, . . . ,εD−1) and the remaining (N −D) signals.

(iii) Any report of (D+2) or more signals reveals whether there is unilateral deviation from

truth-telling, and, if so, the identity of the agent who misreports.

We say a disclosure policy is k-fault tolerant if unilateral deviation from truthfully report-

ing one’s signal by any non-faulty agent does not affect the principal’s ability to infer the true

state, regardless of the identity and reports of the faulty agents, as long as there are (N−k−1)

9The residue is calculated in the way of standard modular arithmetic, except that when the dot product can be

exactly divided by K, we write mi = K instead of mi = 0.
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other non-faulty agents who stick to truth telling. More formally, for any m ∈ M and θ ∈ Θ,

define the largest subset of agents whose reports are consistent with the state θ as

I+(m,θ) :=
⋃

I′∈I

{
I′ | θ+(mI′) = θ , and |I′|= D

}
.

Then the k-fault tolerant property requires that: fixed any θ ∈ Θ and m ∈ M such that Ξθ (m)>

0, for any i, m̂i ∈ Mi, (m̂ j) j∈Ĩ ∈ ∏ j∈Ĩ M j and any Ĩ ∈ I such that |Ĩ| ≤ k, there exists no θ ′ 6= θ

satisfying

∣∣∣I+
((

m̂i,(m̂ j) j∈Ĩ,(ms)i 6=s∈I\Ĩ

)
,θ
)∣∣∣≤

∣∣∣I+
((

m̂i,(m̂ j) j∈Ĩ,(ms)i 6=s∈I\Ĩ

)
,θ ′
)∣∣∣.

We derive the condition under which ΞD is k-fault tolerant. In the worst scenario, a non-

faulty agent and k faulty agents jointly choose their reports to maximize the number of reports

which are consistent with a false state; moreover, this subset of reports can include up to

(D−1) non-faulty agents’ truthful reports, due to the property (i) of ΞD. Thus, for any θ ′ 6= θ ,

we have

max
m̂i,(m̂ j) j∈Ĩ

∣∣∣I+
((

m̂i,(m̂ j) j∈Ĩ,(ms)i6=s∈I\Ĩ

)
,θ ′
)∣∣∣= 1+ k+(D−1) = k+D.

Meanwhile, the number of reports that are consistent with the true state reaches its minimum

value, which equals (N − k − 1). If the principal can infer the true state even in this worst

scenario, ΞD is k-fault tolerant. Then, we get the condition:

N − k−1 > k+D ⇐⇒ 2k ≤ N −D−2.

Thus, we conclude that as long as there are at most k faulty agents such that 2k ≤ N −D−2,

the principal can always infer the true state through ΞD, regardless of who are the faulty agents

and which non-faulty agent unilaterally deviates.

Next, we define the allocation rule xD:

xD(m) = x∗(θ), where θ = argmax
θ ′

∣∣I+(m,θ ′)
∣∣.

Since unilateral deviation from telling the truth does not affect the inferred state (and thus does

not change the outcome), truth telling strategy profile constitutes a k-fault tolerant Bayesian

Nash Equilibrium. In case D = 1 where ΞD fully reveals the state to all agents, we go back to

the complete information setup, and the condition for k-fault tolerance becomes k < N
2 −1, as

in Proposition 1 of Eliaz (2002).
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Remark. Clearly, the more signals we need to determine the state, the less redundancy there is

in cross checking, thus the less robust (ΞD,xD) is to faulty agents. Let NF denote the number

of faulty agents that are allowed in implementing (ΞD,xD). On the other hand, from Sec-

tion 6.3, if the state is uniquely pinned down by D signals, then the optimal private disclosure

mechanism is immune to information sharing among at most (D− 1) agents. Let NIS denote

the number of agents that are allowed to communicate about their private signals. Then we

have

2NF ≤ N −D−2

NIS ≤ D−1

}
=⇒ 2NF +NIS ≤ N −3.

Thus, given a fixed number of agents, the principal faces a tradeoff between these two concepts

of robustness.

B.3 Numerical Examples

B.3.1 A counterexample example - 3 agents

Assume Θ = {θ1,θ2} with F0(θ1) = F0(θ2) =
1
2 . Assume A = {a1,a2}, and a feasible al-

location is given by xa1 + (1− x)a2, where x ∈ [0,1] is the probability according to which

a1 is implemented. Agents don’t have private types. Table B.4 defines the principal’s payoff

function u0(a,θ) and agent i’s payoff function ui(a,θ), for i = 1,2,3. We can easily check

that Assumption 1 is not satisfied, since for any agent, a1 is the worst social alternative at θ1;

while a2 is the worst one at θ2.

Table B.4: Payoff environment

u0(a,θ) θ1 θ2

a1 1 0

a2 0 1

ui(a,θ) θ1 θ2

a1
1
2 1

a2 1 −1
2

We first write the relaxed problem (P∗):

max
x

1

2

(
x(θ1) ·1+(1− x(θ1)) ·0

)
+

1

2

(
x(θ2) ·0+(1− x(θ2)) ·1

)

s.t.
1

2

(
x(θ1) ·

1

2
+(1− x(θ1)) ·1

)
+

1

2

(
x(θ2) ·1+(1− x(θ2)) · (−

1

2
)
)
≥ 0.

Immediately, the solution to (P∗) is given by x∗(θ1) = 1 and x∗(θ2) = 0.
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The optimal private disclosure mechanism solves

(P) max
Ξ,x

1

2
·
∫

m
x(m)dΞθ1

(m) ·1+ 1

2
·
∫

m

(
1− x(m)

)
dΞθ2

(m) ·1

s.t. ∀i, ∀mi 6= m′
i : Ui(mi,mi)≥ max{Ui(mi,m

′
i),0}

where

Ui(mi, m̂i) =Ψmi
(θ1)

∫

m−i

(
x(m̂i,m−i)) ·

1

2
+
(
1− x(m̂i,m−i)

)
·1
)

dΨmi,θ1
(m−i)

+Ψmi
(θ2)

∫

m−i

(
x(m̂i,m−i)) ·1+

(
1− x(m̂i,m−i)

)
(−1

2
)
)

dΨmi,θ2
(m−i).

Suppose the solution to (P), denoted by (Ξ,x), implements x∗(θ), then for any θ and any

m ∈ M such that Ξθ (m) > 0, we have x(m) = x∗(θ). Suppose there exists m ∈ M such that

Ξθ1
(m) > 0 and Ξθ2

(m) > 0, then x(m) = x∗(θ1) = 1 6= 0 = x∗(θ2) = x(m). Thus, for all

m ∈ M, Ξθ (m)> 0 for at most one θ ; or in other words, Ξ is aggregately revealing. Then we

have Ui(mi, m̂i = mi) = Ψmi
(θ1) · 1

2 +Ψmi
(θ2) · (−1

2)≥ 0, which means Ψmi
(θ1)≥ 1

2 . One the

other hand, we have
∫

mi
Ψmi

(θ1)dΛi(mi) = F0(θ1) =
1
2 , since F0 is the common prior shared

by all. Thus, we must have Ψmi
(θ1) =

1
2 , ∀mi ∈ M−i. Notice that Ui(mi, m̂i) is minimized at

m̂i = mi regardless of how we define the allocation rule off the equilibrium path, then fixed any

θ , and any m such that Ξθ (m)> 0, we must have x(m̂i,m−i) = x(mi,m−i), for any m̂i 6= mi.

Now pick any m1 ∈ M1, since Ψm1
(θ1) =

1
2 , then there exist m−1 and m′

−1 such that

Ξθ1
(m1,m−1) > 0 and Ξθ2

(m1,m
′
−1) > 0. Then we have x(m1,m

′
2,m3) = x(m1,m2,m3) =

x∗(θ1) = 1, and x(m1,m
′
2,m3) = x(m1,m

′
2,m

′
3) = x∗(θ2) = 0, which is infeasible. Thus, the

solution to (P) cannot achieve the value of its relaxed problem (P∗).

B.3.2 A counterexample example - 2 agents

Assume Θ = {θ1,θ2} with F0(θ1) = F0(θ2) =
1
2 . Assume A = {a1,a2,a}, and a feasible

allocation is given by x = (x1,x2,x3) ∈ ∆(A ). Agents don’t have private types. Table B.5

gives the principal’s payoff function u0(a,θ) and agent i’s payoff function ui(a,θ), for i= 1,2.

Clearly, a is the uniformly worst social alternative.

We can show that the solution to relaxed problem (P∗) is given by x∗(θ1) = (1,0,0) and

x∗(θ2) = (0,1,0). Suppose the optimal private disclosure mechanism, denoted by (Ξ,x), im-

plements x∗(θ), then through similar arguments as in Appendix B.3.1, we have Ψmi
(θ1) =

1
2 ,
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Table B.5: Payoff environment

u0(a,θ) θ1 θ2

a1 1 0

a2 0 1

a 0 0

ui(a,θ) θ1 θ2

a1
1
2 1

a2 1 −1
2

a 1
2 −1

2

∀mi ∈ M−i. Notice that Ui(mi, m̂i) =

Ψmi
(θ1)

∫

m−i

(
x1(m̂i,m−i)) ·

1

2
+ x2(m̂i,m−i) ·1+ x3(m̂i,m−i) ·

1

2

)
dΨmi,θ1

(m−i)

+Ψmi
(θ2)

∫

m−i

(
x1(m̂i,m−i)) ·1+ x2(m̂i,m−i)(−

1

2
)+ x3(m̂i,m−i)(−

1

2
)
)

dΨmi,θ2
(m−i)

is minimized at m̂i = mi regardless of how we define the allocation rule off the equilibrium

path, then incentive compatibility constraints require that: for any m such that Ξθ1
(m) > 0,

we must have x2(m̂i,m−i) = 0, ∀m̂i 6= mi; for any m such that Ξθ2
(m) > 0, we must have

x1(m̂i,m−i) = 0, ∀m̂i 6= mi.

Fixed any m1 ∈M1, since Ψm1
(θ1)=

1
2 , then there exist m2,m

′
2 ∈M2 such that Ξθ1

(m1,m2)>

0 and Ξθ2
(m1,m

′
2)> 0. Then we have x(m1,m2)= x∗(θ1)= (1,0,0), and x(m1,m

′
2)= x∗(θ2)=

(0,1,0), contradicting x2(m1,m
′
2) = 0 if m′

2 is viewed as agent 2’s misreport and the true signal

profile is (m1,m2). Thus, (Ξ,x) cannot achieve the value of relaxed problem (P∗).

B.3.3 A numerical example where private disclosure is strictly better

than public disclosure

We illustrate how private disclosure outperforms public disclosure by revealing no information

about the state of the world in the following example. We consider the previous single-object

auction environment with two bidders, that is I = {1,2}. Let Θ= {1,2}, where θ ∼ (1, 1
2 ;2, 1

2).

Let V1 = {1,2,3}, V2 = {1,2}, where v1 ∼ (1, 2
3 ;2, 1

9 ;3, 2
9) and v2 ∼ (1, 4

7 ;2, 3
7). The valua-

tion functions and the corresponding virtual value functions for both agents are given in Ta-

ble B.6, B.7.

From the previous results, we only need to consider the case where the principal has strong

control over the disclosure process. Since the optimal public disclosure mechanism fully

reveals θ to both agents, we find the allocation rules for each realization of θ to maximize

the total expected virtual value subject to the monotonicity constraints in (P′
pub). When θ = 1,

define q1(v) as the solution to the relaxed public disclosure problem, where all monotonicity
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Table B.6: Agent 1’s (virtual) value

y1(v1,θ),γ1(v1,θ) 1 2

1 1, 1
2 1, 0

2 2, 0 3, 1

3 3, 3 4, 4

Table B.7: Agent 2’s (virtual) value

y2(v2,θ),γ2(v2,θ) 1 2

1 1, 1
4 1, 1

4

2 2, 2 2, 2

constraints are ignored (Table B.8); and define q2(v) as the allocation rule in the optimal public

disclosure mechanism (Table B.9).

Table B.8: Solution to relaxed (P′
pub), θ = 1

q1
1(v1,v2),q

1
2(v1,v2) 1 2

1 (1,0) (0,1)

2 (0,1) (0,1)

3 (1,0) (1,0)

Table B.9: Solution to (P′
pub), θ = 1

q2
1(v1,v2),q

2
2(v1,v2) 1 2

1 (1,0) (0,1)

2 (1,0) (0,1)

3 (1,0) (1,0)

We can see that q1(v) violates only one monotonicity constraint, that is,

Ev2
[q1

1(1,v2)] =
4

7
> 0 = Ev2

[q1
1(2,v2)].

When θ = 2, the solution to the relaxed public disclosure problem, denoted by q3(v), is indeed

the allocation rule in the optimal public disclosure mechanism (Table B.10).

Table B.10: Solution to (P′
pub), θ = 2

q3
1(v1,v2),q

3
2(v1,v2) 1 2

1 (0,1) (0,1)

2 (1,0) (0,1)

3 (1,0) (1,0)

The allocation rule of the optimal private disclosure mechanism is given by (P∗). Particu-

larly, in the linear auction environment it is equivalent to the following problem:

(P′
2) sup

q(v,θ)∈Q

∫

θ

∫

v

N

∑
i=1

qi(v,θ)γi(vi,θ)dFV (v)dF0(θ)

s.t. ∀i,vi < v′i :
∫

θ

(
Ev−i

[
qi(v

′
i,v−i,θ)

]
−Ev−i

[
qi(vi,v−i,θ)

])(
yi(v

′
i,θ)− yi(vi,θ)

)
dF0(θ)≥ 0.
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Immediately, the solution to the relaxed problem of (P′
2), where monotonicity constraints

(Monvi<v′i
) are ignored, is given by q1(v) for θ = 1 and q3(v) for θ = 2. To check whether such

solution is also feasible for (P′
2), the only monotonicity constraint in (P′

2) we need to check is

the one involving bidder 1’s types {1,2}, which is satisfied because

∫

θ

(
Ev2

[
q1(2,v2,θ)

]
−Ev2

[
q1(1,v2,θ)

])(
y1(2,θ)− y1(1,θ)

)
dF0(θ)

=
1

2

(
Ev2

[q1
1(2,v2)]−Ev2

[q1
1(1,v2)]

)(
y1(2,1)− y1(1,1)

)

+
1

2

(
Ev2

[q3
1(2,v2)]−Ev2

[q3
1(1,v2)]

)(
y1(2,2)− y1(1,2)

)

=
1

2

(
0− 4

7

)
(2−1)+

1

2

(4

7
−0
)
(3−1) =

2

7
> 0.

Thus, the optimal private disclosure policy ΦS, with signal sets M1 = {a1,a2} and M2 =

{b1,b2}, is given by Table B.11.

Table B.11: Optimal private disclosure policy ΦS

Φ(1,m1,m2) b1 b2

a1 0 1
4

a2
1
4 0

Φ(2,m1,m2) b1 b2

a1
1
4 0

a2 0 1
4

Moreover, for any v ∈V , the associated allocation rule is defined as

qS(v,m) =

{
q1(v), if m ∈ {(a1,b2),(a2,b1)}
q3(v), if m ∈ {(a1,b1),(a2,b2)}

The difference in the principal’s expected payoff between private disclosure (with strong con-

trol) and public disclosure is given by

Πpri −Πpub = Pr(θ = 1) ·Pr(v1 = 2,v2 = 1) ·
(

γ2(1,1)− γ1(2,1)
)

=
1

2
· 1

9
· 4

7
· (1

4
−0) =

1

126
> 0.
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Appendix C

Appendix for Chapter 2

C.1 Proof of Theorem 6

Because ≻θ−i

i =≻θ ′
−i

i for all i, θ−i, and θ ′
−i, we denote this ordering by ≻i with no superscript.

Also, let Θi = {θ 1
i , . . . ,θ

N
i } (where N = |Θi|) so that θ n

i ≺i θ n+1
i for all n = 1, . . . ,N −1.

Consider the simple type space T̂ f = (Ti, θ̂i, π̂i)
I
i=1 with Ti = Θi and the agents’ be-

liefs defined by π̂i(θ
n
i )[θ−i] =

(
∑θ ′

−i∈Θ−i
Gi(θ

n
i ,θ

′
−i)
)−1

Gi(θ
n
i ,θ−i) for all θ−i ∈ Θ−i, where

Gi(θ
n
i ,θ−i) = ∑

N
k=n f (θ k

i ,θ−i). By convention, Gi(θ
N+1
i ,θ−i) = 0.

The optimal Bayesian mechanism given this simple type space achieves:

V ( f ) = max
(q,p):Θ→Q×RI

∑
θ∈Θ

f (θ)∑
i∈I

pi(θ)

s.t. ∀i ∈ I, ∀n, l ∈ {1, . . . ,N}, ∀θ ∈ Θ :

∑
θ−i∈Θ−i

π̂i(θ
n
i )[θ−i]

(
vi(qi(θ

n
i ,θ−i),θ

n
i ,θ−i)− pi(θ

n
i ,θ−i)

)
≥ 0, (BIRn

i )

∑
θ−i∈Θ−i

π̂i(θ
n
i )[θ−i]

(
vi(qi(θ

n
i ,θ−i),θ

n
i ,θ−i)− pi(θ

n
i ,θ−i)

)

≥ ∑
θ−i∈Θ−i

π̂i(θ
n
i )[θ−i]

(
vi(qi(θ

l
i ,θ−i),θ

n
i ,θ−i)− pi(θ

l
i ,θ−i)

)
. (BICn→l

i )

Because the identity function θ̂i is one-to-one, by Lemma 7, T̂ f can be embedded in the

universal type space T ∗ through a bijection h such that tn
i = hi(θ

n
i ). Thus, V ( f ) provides

an upper bound for the best expected revenue given the universal type space T ∗ (and the

principal’s belief µ∗ ∈ M such that µ∗(h(θ̂−1(θ))) = f (θ)). Therefore, in order to show the

Bayesian foundation for EPIC mechanisms given f , it suffices to show that V ( f )≤ REP
f .

We first prove the claim by imposing the non-singularity condition on f , which assumes

that Ωi = ( f (θ 1
i , ·), . . . , f (θ N

i , ·))⊺ has rank N for each i, where f (θ n
i , ·) = ( f (θ 1

i ,θ−i))θ−i∈Θ−i

117
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is a (I −1)N-dimensional vector.

Lemma 15. In the solution of V ( f ), (BICn→n−1
i ) holds with equality for all i and n 6= 1, and

(BIRn
i ) holds with equality for all i and n.

The lemma implies that, for all i and n:

∑
θ−i∈Θ−i

π̂i(θ
n
i )[θ−i]

(
vi(qi(θ

n
i ,θ−i),θ

n
i ,θ−i)− pi(θ

n
i ,θ−i)

)

= ∑
θ−i∈Θ−i

π̂i(θ
n
i )[θ−i]

(
vi(qi(θ

n−1
i ,θ−i),θ

n
i ,θ−i)− pi(θ

n−1
i ,θ−i)

)
= 0,

or equivalently:

∑
θ−i∈Θ−i

(
∑

θ ′
−i∈Θ−i

Gi(θ
n
i ,θ

′
−i)
)−1

Gi(θ
n
i ,θ−i)

(
vi(qi(θ

n
i ,θ−i),θ

n
i ,θ−i)− pi(θ

n
i ,θ−i)

)
= 0,

∑
θ−i∈Θ−i

(
∑

θ ′
−i∈Θ−i

Gi(θ
n
i ,θ

′
−i)
)−1

Gi(θ
n
i ,θ−i)

(
vi(qi(θ

n−1
i ,θ−i),θ

n
i ,θ−i)− pi(θ

n−1
i ,θ−i)

)
= 0.

This implies:

∑
θ−i∈Θ−i

Gi(θ
n
i ,θ−i)vi(qi(θ

n
i ,θ−i),θ

n
i ,θ−i) = ∑

θ−i∈Θ−i

Gi(θ
n
i ,θ−i)pi(θ

n
i ,θ−i),

∑
θ−i∈Θ−i

Gi(θ
n
i ,θ−i)vi(qi(θ

n−1
i ,θ−i),θ

n
i ,θ−i) = ∑

θ−i∈Θ−i

Gi(θ
n
i ,θ−i)pi(θ

n−1
i ,θ−i)

)
,

and therefore, the objective becomes:

∑
i∈I

Ni

∑
n=1

∑
θ−i∈Θ−i

f (θ n
i ,θ−i)pi(θ

n
i ,θ−i)

=∑
i∈I

Ni

∑
n=1

∑
θ−i∈Θ−i

(
Gi(θ

n
i ,θ−i)−Gi(θ

n+1
i ,θ−i)

)
pi(θ

n
i ,θ−i)

=∑
i∈I

Ni

∑
n=1

(
∑

θ−i∈Θ−i

Gi(θ
n
i ,θ−i)pi(θ

n
i ,θ−i)− ∑

θ−i∈Θ−i

Gi(θ
n+1
i ,θ−i)pi(θ

n
i ,θ−i)

)

=∑
i∈I

Ni

∑
n=1

∑
θ−i∈Θ−i

(
Gi(θ

n
i ,θ−i)vi(qi(θ

n
i ,θ−i),θ

n
i ,θ−i)−Gi(θ

n+1
i ,θ−i)vi(qi(θ

n
i ,θ−i),θ

n+1
i ,θ−i)

)

=∑
i∈I

∑
θ∈Θ

f (θ)γi(qi,θ).

Therefore, under Assumption 3, we have V ( f ) = REP
f .

Proof of Lemma 15. We first show that each upward incentive constraint, (BICn→l
i ) with n< l,

can be ignored without loss. Let Πi =
(
π̂i(θ

1
i ), . . . , π̂i(θ

N
i )
)⊺

denote the matrix of agent i’s
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beliefs, where each π̂i(θ
n
i ) is a (I −1)N-dimensional vector. Then:

Πi =




κ1
i · · · 0
...

. . .
...

0 · · · κN
i




N×N




1 · · · 1
...

. . .
...

0 · · · 1




N×N

Ω,

where κn
i =

(
∑θ−i∈Θ−i

Gi(θ
n
i ,θ−i)

)−1
, and hence Πi has a rank N. Thus, there exists λ ∈

R
(I−1)N such that:

Πiλ = (1, . . . ,1, 0︸︷︷︸
l-th element

, . . . ,0)⊺.

If we add λ to pi(θ
l
i , ·), each BICn→l

i with n < l is relaxed, while no other (BIC) and (BIR)

constraints are affected. Moreover, from π̂i(θ
l
i ) ·λ = 0 and π̂i(θ

l+1
i ) ·λ = 0, we obtain:

∑
θ−i∈Θ−i

Gi(θ
l
i ,θ−i)λ (θ−i) = 0, ∑

θ−i∈Θ−i

Gi(θ
l+1
i ,θ−i)λ (θ−i) = 0,

which implies that ∑θ−i∈Θ−i
f (θ l

i ,θ−i)λ (θ−i) = 0, that is, the principal’s expected revenue is

also unaffected.

Next, we show that for any mechanism (q, p) satisfying the remaining constraints, there

exists a mechanism (q′, p′) which satisfies not only the remaining constraints, but also (BIRn
i )

for n = 1, . . . ,N and (BICn→n−1
i ) for n = 2, . . . ,N with equality, and raises at least as high

expected revenue as (q, p).

Given any such mechanism (q, p), if (BICn→n−1
i ) is satisfied with strict inequality for some

i and n, then let β n→n−1
i be the amount of the slackness of this constraint (BICn→n−1

i ). Let Π′
i

be the matrix generated by substituting the n-th row of Πi with the vector f (θ n−1, ·). That is:

Π′
i =




κ1
i · · · 0 0 0 · · · 0
...

. . .
...

...
...

...
...

0 · · · κn−1
i 0 0 · · · 0

0 · · · 0 1 0 · · · 0

0 · · · 0 0 κn+1
i · · · 0

...
...

...
...

...
. . .

...

0 · · · 0 0 0 · · · κN
i







1 · · · 1 1 1 · · · 1
...

. . .
...

...
...

...
...

0 · · · 1 1 1 · · · 1

0 · · · 1 0 0 · · · 0

0 · · · 0 0 1 · · · 1
...

...
...

...
...

. . .
...

0 · · · 0 0 0 · · · 1




Ω,

and hence, Π′
i has a rank N. Thus, there exists λ ∈ R

(I−1)N such that:

Π′
iλ = (0, . . . ,0, 1︸︷︷︸

n-th element

,0, . . . ,0)⊺.
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Because π̂i(θ
n−1
i ) ·λ = 0 and f (θ n−1, ·) ·λ = 1, we have:

π̂i(θ
n
i ) ·λ =

κn
i

κn−1
i

π̂i(θ
n−1
i ) ·λ −κn

i f (θ n−1, ·) ·λ < 0,

and thus, ε =−β n→n−1
i /(π̂i(θ

n
i ) ·λ )> 0. If we add ελ to pi(θ

n−1
i , ·), then all the constraints

for types θ l
i with l 6= n are unaffected because π̂i(θ

l
i ) ·λ = 0 for all l 6= n, and for type θ n

i only

constraint (BICn→n−1
i ) is changed, which holds with equality under the new payment rule.

Because f (θ n−1, ·) · (ελ ) = ε > 0, the expected revenue increases under the new payment

rule.

Similarly, if (BIRn
i ) is satisfied with strict inequality for some i and n, then let β n

i be the

amount of the slackness of this constraint (BIRn
i ). Because Πi has a rank N, there exists

λ ∈ R
(I−1)N such that:

Πiλ = (β 1
i , . . . ,β

N
i )⊺ ≥ 0.

Adding λ to each pi(θ
n
i , ·) does not affect any (BIC) constraint, while all the participation

constraints are satisfied with equality in the new mechanism. The change in the total expected

revenue is:

N

∑
n=1

∑
θ−i∈Θ−i

f (θ n
i ,θ−i)λ (θ−i) = ∑

θ−i∈Θ−i

λ (θ−i)
N

∑
n=1

f (θ n
i ,θ−i)

= ∑
θ−i∈Θ−i

λ (θ−i)Gi(θ
1
i ,θ−i)

=
1

κ1
i

∑
θ−i∈Θ−i

λ (θ−i)π̂i(θ
1
i )[θ−i]

=β 1
i ,

which is non-negative.

Next, we consider the case where f is singular, that is, for some i, Ωi has a rank strictly

less than N. Consider a sequence of distributions over Θ, { f r}∞
r=1, such that each f r is full-

support and fr → f (in the standard Euclidean distance).1 By Assumption 3, without loss of

generality, we assume that the monotonicity constraints (M) are not binding in the problem of

REP
fr

.

We prove the following continuity lemma.

Lemma 16. For each ε > 0, there exists rε ∈ N such that, for any r ≥ rε , REP
fr

≤ REP
f + ε and

V ( fr)≥V ( f )− ε .

1 We can always find such a sequence because the set of all non-singular distributions is a dense subset of the

set of all distributions over Θ.
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Proof of Lemma 16. For the first inequality, recall that REP
f =∑i ∑θ max{γi(θ),0} f (θ), which

is obviously continuous in f .

For the second inequality, let (q, p) be a solution to the problem of V ( f ).

In the following, for each r, we construct another mechanism (q, pr) (note that we keep

the same q), so that it satisfies all the constraints of the problem of V ( fr), namely:

∑
θ−i∈Θ−i

π̂r
i (θ

n
i )[θ−i]

(
vi(qi(θ

n
i ,θ−i),θ

n
i ,θ−i)− pr

i (θ
n
i ,θ−i)

)
≥ 0, (BIRn

i (r))

∑
θ−i∈Θ−i

π̂r
i (θ

n
i )[θ−i]

(
vi(qi(θ

n
i ,θ−i),θ

n
i ,θ−i)− pr

i (θ
n
i ,θ−i)

)

≥ ∑
θ−i∈Θ−i

π̂r
i (θ

n
i )[θ−i]

(
vi(qi(θ

l
i ,θ−i),θ

n
i ,θ−i)− pr

i (θ
l
i ,θ−i)

)
. (BICn→l

i (r))

Let:

Sn
i (r) = max

{
0, ∑

θ−i∈Θ−i

π̂r
i (θ

n
i )[θ−i]

(
pi(θ

n
i ,θ−i)− vi(qi(θ

n
i ,θ−i),θ

n
i ,θ−i)

)
}
,

denote the size of violation of (BIRn
i (r)) by p. If we consider a modified payment rule p′

so that p′i(θ
n
i , ·) = pi(θ

n
i , ·)− Sn

i (r)1, then this new payment rule satisfies the participation

constraints, but may not satisfy the incentive compatibility constraints. Thus, let:

Ln→l
i (r) = max

{
0, ∑

θ−i∈Θ−i

π̂r
i (θ

n
i )[θ−i]

(
vi(qi(θ

l
i ,θ−i),θ

n
i ,θ−i)− p′i(θ

l
i ,θ−i)

)

− ∑
θ−i∈Θ−i

π̂r
i (θ

n
i )[θ−i]

(
vi(qi(θ

n
i ,θ−i),θ

n
i ,θ−i)− p′i(θ

n
i ,θ−i)

)}
,

denote the size of violation of (BICn→l
i (r)) by p′. As in the first part of the proof, the matrix

of agent i’s belief in the simple type space T̂ fr , Πr
i =

(
π̂r

i (θ
1
i ), . . . , π̂

r
i (θ

N
i )
)⊺

, has a rank N,

and hence, there exists λ 1
i (r), . . . ,λ

N
i (r) ∈ R

(I−1)N such that:

Πr
i

(
λ 1

i (r), . . . ,λ
N
i (r)

)
=
(

Ln→l
i (r)

)
N×N

,

which we denote by Lr. Or equivalently:

Lr =




κ1
i (r) · · · 0
...

. . .
...

0 · · · κN
i (r)




N×N︸ ︷︷ ︸
,Kr




1 · · · 1
...

. . .
...

0 · · · 1




N×N︸ ︷︷ ︸
,A

Ωr

(
λ 1

i (r), . . . ,λ
N
i (r)

)
.
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Define pr
i (θ

n
i , ·) = pi(θ

n
i , ·)− Sn

i (r)1+ λ n
i (r). Then, together with q, it satisfies all the

constraints of the problem of V ( fr).

We complete the proof by showing that ∑θ ∑i(pr
i (θ)− pi(θ)) fr(θ)→ 0 as r →∞. Because

it is obvious that Sn
i (r)→ 0, it suffices to show that:

N

∑
n=1

fr(θ
n
i , ·) ·λ n

i (r)→ 0.

Indeed:
N

∑
n=1

fr(θ
n
i , ·) ·λ n

i (r) = tr
(
A−1K−1

r Lr

)
→ 0,

as r → ∞, because Lr → 0.

Finally, contrarily to the original claim, suppose that V ( f )>REP
f , and let ε ∈ (0,

V ( f )−REP
f

2 ).

Then, there exists rε such that:

V ( fr)−REP
fr

≥V ( f )−REP
f −2ε > 0,

which contradicts the first part of this proof.

C.2 Proof of Theorem 7

The previous theorem already states that EPIC mechanisms have the foundation if we do not

have ordinal interdependence. Therefore, we only prove its converse in this proof.

We first observe an implication of ordinal interdependence under Assumptions 5.

Lemma 17. Under Assumptions 5, ordinal interdependence implies at least one of the follow-

ing: (i) there exists i, qi,q
′
i, θ−i and θ ′

−i such that θ ∗
i (qi,θ−i) /∈ Θ∗

i (q
′
i,θ

′
−i) and θ ∗

i (q
′
i,θ

′
−i) /∈

Θ∗
i (qi,θ−i); or (ii) there exists i, θi, qi,q

′
i, θ−i and θ ′

−i such that θi ∈ Θ∗
i (qi,θ−i)\Θ∗

i (q
′
i,θ

′
−i)

and θ ∗
i (qi,θ−i) ∈ Θ∗

i (q
′
i,θ

′
−i).

Proof. By definition of ordinal interdependence, there exists i, θ̃−i and θ̃ ′
−i such that ≺θ̃−i

i 6=≺θ̃ ′
−i

i .

Single-crossing condition implies that, for any qi > 0, any θ−i, and any distinct pair θi 6= θ ′
i ,

we have vi(qi,θ
′
i ,θ−i) < vi(qi,θi,θ−i) if and only if θ ′

i ≺
θ−i

i θi. Thus, there exists θi and θ ′
i

such that vi(qi,θ
′
i , θ̃−i) < vi(qi,θi, θ̃−i) and vi(qi,θ

′
i , θ̃

′
−i) > vi(qi,θi, θ̃

′
−i) hold for any qi > 0.

Fixed any qi > 0, by Assumption 5, there exists θ−i and θ ′
−i such that

{
θi ∈ Θ∗

i (qi,θ−i), θ ′
i /∈ Θ∗

i (qi,θ−i);

θi /∈ Θ∗
i (qi,θ

′
−i), θ ′

i ∈ Θ∗
i (qi,θ

′
−i).
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Next, we show that if (i) is violated, then we must have (ii). Without loss of generality, we

can assume that θ ∗
i (qi,θ−i)∈ Θ∗

i (qi,θ
′
−i). Since θi ∈ Θ∗

i (qi,θ−i) and θi /∈ Θ∗
i (qi,θ

′
−i), we have

θi ∈ Θ∗
i (qi,θ−i) \Θ∗

i (qi,θ
′
−i), which means (ii) holds. Therefore, we must have either (i) or

(ii) is satisfied.

We show that, for each of these cases, there exists a mechanism that yields a strictly higher

expected revenue than the optimal EPIC mechanism.

Case (i): θ ∗
1 (q1,θ−1) /∈ Θ∗

1(q
′
1,θ

′
−1) and θ ∗

1 (q
′
1,θ

′
−1) /∈ Θ∗

1(q1,θ−1).

Consider a new mechanism (M,q∗, p∗) such that M1 = Θ1× [0,1], M j = Θ j for j 6= 1, and

for each ((θ̃1,x), θ̃−1) ∈ M,

q∗((θ̃1,x), θ̃−1) = qEP(θ̃),

p∗j((θ̃1,x), θ̃−1) = pEP
j (θ̃), ∀ j 6= 1,

and for p∗1, we set p∗1((θ̃1,x), θ̃−1) = pEP
1 (θ̃) unless θ̃1 ∈ Θ∗

1(q1,θ−1)∩Θ∗
1(q

′
1,θ

′
−1) and θ̃−1 ∈

{θ−1,θ
′
−1}; and for each θ̃1 ∈ Θ∗

1(q1,θ−1)∩Θ∗
1(q

′
1,θ

′
−1), we set

p∗1((θ̃1,x),θ−1) = pEP
1 (θ̃1,θ−1)+η(1− x),

p∗1((θ̃1,x),θ
′
−1) = pEP

1 (θ̃1,θ
′
−1)+ηψ(x),

where ψ(x) = 1−
√

1− x2.

Intuitively, x∈ [0,1] is related to agent 1’s first-order belief over θ−i and θ ′
−i (more precise-

ly, their likelihood ratio). Indeed, if agent 1 reports his payoff type θ1 truthfully, his optimal

choice of x is given by x∗(β ,β ′) =
√

(β/β ′)2

1+(β/β ′)2 , where β is 1’s first-order belief for θ−1 and β ′

is 1’s first-order belief for θ ′
−1. Note that, given any µ ∈ M̊ , agent 1 chooses x ∈ (0,1) with

probability one.

It is then obvious that, if the agents report their payoff types truthfully (and agent 1 choos-

es x optimally), then this new mechanism yields a strictly higher expected revenue than the

optimal EPIC mechanism.

For any agent j 6= 1, the new mechanism is outcome-equivalent to the optimal EPIC mech-

anism, and hence satisfies EPIC and EPIR.

We show the incentive compatibility of agent 1 with θ̃1 ∈ Θ∗
1(q1,θ−1)∩Θ∗

1(q
′
1,θ

′
−1) (for

the other payoff types, the new mechanism is outcome-equivalent to the optimal EPIC mecha-

nism, and hence satisfies EPIC and EPIR). First, obviously, any deviation to θ̂1 ∈Θ∗
1(q1,θ−1)∩
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Θ∗
1(q

′
1,θ

′
−1) is not profitable. Second, any deviation to θ̂1 ∈ Θ∗

1(q1,θ−1) \Θ∗
1(q

′
1,θ

′
−1) is not

profitable either, because, letting β and β ′ be his first-order beliefs for θ−1 and θ ′
−1 respec-

tively, the expected gain by deviation is at most

β [η(1− x∗(β ,β ′))]+β ′[−η +ηψ(x∗(β ,β ′))]≤ 0.

Similarly, we can show that any deviation to θ̂1 ∈Θ∗
1(q

′
1,θ

′
−1)\Θ∗

1(q1,θ−1) and θ̂1 /∈Θ∗
1(q

′
1,θ

′
−1)∪

Θ∗
1(q1,θ−1) is not profitable either.

Case (ii): Θ∗
1(q1,θ−1)\Θ∗

1(q
′
1,θ

′
−1) 6= /0 and θ ∗

1 (q1,θ−1) ∈ Θ∗
1(q

′
1,θ

′
−1).

Consider a new mechanism (M,q∗, p∗) such that M1 = Θ1× [0,1], M j = Θ j for j 6= 1, and

for each ((θ̃1,x), θ̃−1) ∈ M,

q∗((θ̃1,x), θ̃−1) = qEP(θ̃),

p∗j((θ̃1,x), θ̃−1) = pEP
j (θ̃), ∀ j 6= 1,

and for p∗1, we set p∗1((θ̃1,x), θ̃−1) = pEP
1 (θ̃) unless θ̃1 ∈ Θ∗

1(q1,θ−1)\Θ∗
1(q

′
1,θ

′
−1) and θ̃−1 ∈

{θ−i,θ
′
−i}; and for each θ̃1 ∈ Θ∗

1(q1,θ−1)\Θ∗
1(q

′
1,θ

′
−1), we set

p∗1((θ̃1,x),θ−1) = pEP
1 (θ̃1,θ−1)+η(1− x),

p∗1((θ̃1,x),θ
′
−1) = pEP

1 (θ̃1,θ
′
−1)+ηψ(x),

where ψ(x) = 1−
√

1− x2.

Again, x ∈ [0,1] is related to agent 1’s first-order belief over θ−i and θ ′
−i. Indeed, if

agent 1 reports his payoff type θ1 truthfully, his optimal choice of x is given by x∗(β ,β ′) =√
(β/β ′)2

1+(β/β ′)2 , where β is 1’s first-order belief for θ−1 and β ′ is 1’s first-order belief for θ ′
−1.

Note that, given any µ ∈ M̊ , agent 1 chooses x ∈ (0,1) with probability one.

It is obvious that, if the agents report their payoff types truthfully (and agent 1 chooses x

optimally), then this new mechanism yields a strictly higher expected revenue than the optimal

EPIC mechanism.

For any agent j 6= 1, the new mechanism is outcome-equivalent to the optimal EPIC mech-

anism, and hence satisfies EPIC and EPIR.

We show the incentive compatibility of agent 1 with θ̃1 ∈ Θ∗
1(q1,θ−1) \Θ∗

1(q
′
1,θ

′
−1) (for

the other payoff types, the new mechanism is outcome-equivalent to the optimal EPIC mecha-

nism, and hence satisfies EPIC and EPIR). First, obviously, any deviation to θ̂1 ∈Θ∗
1(q1,θ−1)\

Θ∗
1(q

′
1,θ

′
−1) is not profitable. Second, any deviation to θ̂1 ∈ Θ∗

1(q1,θ−1)∩Θ∗
1(q

′
1,θ

′
−1) is not
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profitable either, because, letting β and β ′ be his first-order beliefs for θ−1 and θ ′
−1 respec-

tively, the expected gain by deviation is at most

β [η(1− x∗(β ,β ′))]+β ′[−η +ηψ(x∗(β ,β ′))]≤ 0.

Similarly, we can show that any deviation to θ̂1 ∈Θ∗
1(q

′
1,θ

′
−1)\Θ∗

1(q1,θ−1) and θ̂1 /∈Θ∗
1(q

′
1,θ

′
−1)∪

Θ∗
1(q1,θ−1) is not profitable either.

In conclusion, EPIC mechanisms do not have the strong foundation.

C.3 Proof of Proposition 5

Assume that (i,θi,θ j,q j, θ̃−i j) satisfies the definition of strong improvability. We use the same

mechanism as above, except that the allocation for agent i changes in case he reports θi and

x = 1. Recall that, given his truthfully reporting θi, agent 1’s optimal choice of x is
√

(β/β ′)2

1+(β/β ′)2

where β , β ′ are his first-order beliefs for θ−i, θ ′
−i, respectively, with θ−i = (θ j, θ̃−i j) and

θ ′
−i = (θ ∗

j (q j,θi, θ̃−i j), θ̃−i j); x = 1 means that he predicts that j does not have a threshold

type for q j given θ̃−i j. The allocations from agents i and j are then modified as follows (and

all the other parts of the mechanism are the same as before):

q∗∗j ((θi,1),θ
∗
j (q j,θi, θ̃−i j), θ̃−i j) = q∗j((θi,1), θ̂ j, θ̃−i j),

p∗∗j ((θi,1),θ
∗
j (q j,θi, θ̃−i j), θ̃−i j) = p∗j((θi,1), θ̂ j, θ̃−i j),

p∗∗j ((θi,1),θ j, θ̃−i j) = p∗j(θi,θ j, θ̃−i j)+η , ∀θ j ≻θi,θ̃−i j

j θ ∗
j (q j,θi, θ̃−i j)

p∗∗i ((θi,1),θ
∗
j (q j,θi, θ̃−i j), θ̃−i j) = M,

where θ̂ j is j’s payoff type that is just below θ ∗
j (q j,θi, θ̃−i j) with respect to ≺θi,θ̃−i j

j , and M > 0

is sufficiently large.

Observe that the modified mechanism satisfies all the constraints. First, except for agents

i and j, the allocations are the same as in the previous mechanism. For agent i, large fine M is

irrelevant unless he assigns zero probability for θ−i (because x = 1 is not optimal for him); on

the other hand, if he assigns zero probability for θ−i, then this large fine is payoff-irrelevant

for him. Finally, for agent j, we only need to check his incentive if i reports (θi,1) and −i j

report θ̃i j: in such a case, j with payoff type θ̃ j -
θi,θ̃−i j

i θ ∗
j (q j,θi, θ̃−i j) has no incentive of

misreporting, because their on-path payoffs would be the same as in the original mechanism,

while the other types’ payments are higher than in the original mechanism. For θ̃ j ≻θi,θ̃−i j

i
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θ ∗
j (q j,θi, θ̃−i j), his payoff by deviation is at most

v j(q
∗
j((θi,1), θ̂ j, θ̃−i j),θi, θ̃ j, θ̃−i j)− p∗j((θi,1), θ̂ j, θ̃−i j)

≤ v j(q
∗
j((θi,1), θ̃ j, θ̃−i j),θi, θ̃ j, θ̃−i j)− p∗j((θi,1), θ̃ j, θ̃−i j)−η ,

but the right-hand side is precisely his on-path payoff. The individual rationality constraints

can be checked similarly.

Finally, we show that this modified mechanism achieves a strictly higher expected revenue

than the original mechanism. First, observe that it does not yield a lower payoff given any

payoff-type profile. It is obvious except when a payoff type (θi,θ
∗
j (q j,θi, θ̃−i j), θ̃−i j) and

agent i chooses x = 1; if this is the realized payoff-type profile, and agent i reports x = 1,

agent i pays a large fine M. Therefore, the principal would be better off by setting M large

enough.

Moreover, consider a payoff-type profile (θi, θ̃ j, θ̃−i j) such that θ̃ j ≻θi,θ̃−i j

i θ ∗
j (q j,θi, θ̃−i j).

If agent i chooses x < 1 (at least with a positive probability), then i pays η(1− x)(> 0) more

than in the original mechanism, and hence, strict improvement is achieved. If agent i chooses

x = 1 (with probability one), then the principal increases j’s payment by η as explained above,

and thus, again strict improvement is achieved.

C.4 Proof of Theorem 8

It suffices to show that ordinal interdependence implies strong improvability.

By ordinal interdependence, there exist i,θ−i,θ
′
−i such that ≺θ−i

i 6=≺θ ′
−i

i . We first observe

the following lemma.

Lemma 18. Ordinal interdependence implies that there exist j 6= i, θ j,θ
′
j, and θ̃−i j such that

≺θ j,θ̃−i j

i 6=≺θ ′
j,θ̃−i j

i .

Proof. Let i= 1 without loss of generality, and for each n= 1, . . . , I, let θ n
−1 =((θ ′

j)
n
j=2,(θ j)

I
j=n+1).

Note that θ 1
−1 = θ−1 and θ I

−1 = θ ′
−1.

If ≺θ n−1
−1

1 =≺θ n
−1

1 for all n= 2, . . . , I, then we have θ 1
−1 = θ I

−1, contradicting that ≺θ−1

1 6=≺θ ′
−1

1 .

Therefore, there exists n ∈ {2, . . . , I} such that ≺θ n−1
−1

1 6=≺θ n
−1

1 . We complete the proof of the

lemma by setting j = n and θ̃−1 j = ((θ ′
k)

n−1
k=2,(θk)

I
k=n+1).

By the lemma, there exists θi,θ
′
i such that θi ≻(θ j,θ̃−i j)

i θ ′
i and θ ′

i ≻
(θ ′

j,θ̃−i j)

i θi. Letting qi =

qEP
i (θ ′

i ,θ j, θ̃−i j) and q′i = qEP
i (θ ′

i ,θ
′
j, θ̃−i j), by Assumption 6, we have θ ′

i = θ ∗
i (q

′
i,θ

′
j, θ̃−i j) =
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θ ∗
i (qi,θ j, θ̃−i j). It follows that θi ∈ Θ∗

i (qi,θi, θ̃−i j) \ Θ∗
i (q

′
i,θ

′
j, θ̃−i j) and θ ∗

i (qi,θ j, θ̃−i j) ∈
Θ∗

i (q
′
i,θ

′
j, θ̃−i j). Then, revenue from agent i is improvable with respect to

(
θi,(θ j, θ̃−i j),(θ

′
j, θ̃−i j)

)
.

Without loss of generality, we assume that θ ′
j ≺

θi,θ̃−i j

j θ j. Letting q j = qEP
j (θ ′

j,θi, θ̃−i j),

by Assumption 6, we have θ ′
j = θ ∗

j (q j,θi, θ̃−i j) and θ j ∈ Θ∗
j(q j,θi, θ̃−i j) \ {θ ∗

j (q j,θi, θ̃−i j)}.

Thus, revenue from i is improvable with respect to
(
θi,(θ j, θ̃−i j),(θ

∗
j (q j,θi, θ̃−i j), θ̃−i j)

)
,

where θ j ∈ Θ∗
j(q j,θi, θ̃−i j), which establishes the strong improvability.
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Appendix D

Appendix for Chapter 3

D.1 Omitted Proofs

D.1.1 Proof of Theorem 9

Proof. Let ẘ = y−x
t2−t1

, then we have x− (t1− t0+1)ẘ = y− (t2− t0+1)ẘ for any t0. It follows

that Ui|t0(C
x
t1
,w) ≥ Ui|t0(C

y
t2
,w) for all w ≥ ẘ, and Ui|t0(C

x
t1
,w) ≤ Ui|t0(C

y
t2
,w) for all w ≤ ẘ.

Moreover, ẘ and w̄(Cx
t1
, t0) =

x
t1−t0+1 , w̄(Cy

t2
, t0) =

y
t2−t0+1 satisfy

w̄(Cy
t2
, t0)

{
≤
≥

}
w̄(Cx

t1
, t0) =⇒ ẘ

{
≤
≥

}
w̄(Cy

t2
, t0)

{
≤
≥

}
w̄(Cx

t1
, t0). (D.1)

(Part 1) If Ceff =Cx
t1

, then we have UP|0(C
x
t1
)≥UP|0(C

y
t2
), which means

∫ x
t1+1

0

(
x− (t1 +1)w

)
dF(w)−

∫ y
t2+1

0

(
y− (t2 +1)w

)
dF(w)≥ 0.

We must have w̄(Cy
t2
,0) < w̄(Cx

t1
,0); otherwise from (D.1) we would have ẘ ≥ w̄(Cy

t2
,0) ≥

w̄(Cx
t1
,0), which means agents who remain active all prefer C

y
t2

regardless of the principal’s

time-0 choice, and thus the efficient outcome should also be C
y
t2

.

If x ≥ y, Cequ =Cx
t1

holds trivially, because all agents prefer an earlier higher consumption

to a later lower one. If t1+1
t2+1y < x < y, we show that Cx

t1
is the unique SPE-NCF outcome. In

any SPE, agents either quit immediately at time 0 or stay until the public good is consumed.

Let I(w) := {i ∈ I | w(i) ≤ w} denote the subset of agents whose outside options are at most

w. Thus, SPE outcome is restricted to two cases: I∗td = I
(
w̄(C,0)

)
, where C ∈ {Cx

t1
,Cy

t2
}. Next,

we check whether C is the principal’s optimal time-td choice when the subset of active agents

129
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is I
(
w̄(C,0)

)
. Consider

UP|td
(
Cx

t1
| x

t1 +1

)
−UP|td

(
C

y
t2
| x

t1 +1

)

=
∫ x

t1+1

0

(
x− (t1 − td +1)w

)
dF(w)−

∫ x
t1+1

0
max

{
0,y− (t2 − td +1)w

}
dF(w)

=
∫ x

t1+1

0

(
x− (t1 − td +1)w

)
dF(w)−

∫ y
t2+1

0
max

{
0,y− (t2 − td +1)w︸ ︷︷ ︸

≥0

}
dF(w)

−
∫ x

t1+1

y
t2+1

max
{

0,y− (t2 − td +1)w
}

dF(w)

=
(

UP|0(C
x
t1
)−UP|0(C

y
t2
)
)
+
∫ x

t1+1

y
t2+1

(
tdw−max

{
0,y− (t2 − td +1)w

})
dF(w).

Notice that for all w ∈ [ y
t2+1 ,

x
t1+1 ] we have

tdw−max
{

0,y− (t2 − td +1)w
}
= min{tdw,(t2 +1)w− y} ≥ 0,

then we have UP|td
(
Cx

t1
| x

t1+1

)
−UP|td

(
C

y
t2
| x

t1+1

)
≥ 0, which means C =Cx

t1
is a SPE outcome.

If C = C
y
t2

fails to be a SPE outcome, then the unique SPE is indeed the unique SPE-NCF. If

C = C
y
t2

is a SPE outcome, it is still not a SPE-NCF outcome, because agents in the subset

I
(
w̄(Cx

t1
,0)
)
\ I
(
w̄(Cy

t2
,0)
)

may form a coalition and jointly deviate from quitting at time 0 to

quitting at time t1+1, which alters the principal’s time-td choice from C
y
t2

to Cx
t1

, and (weakly)

benefits all agents in the coalition. Thus, Cx
t1

is the unique SPE-NCF outcome, i.e. Cequ =Cx
t1

.

(Part 2) If α = β , all agents (except a measure-zero subset) have the same outside option.

Then the principal is essentially faced with a single agent. By Lemma 9, there does not exist

such x and y satisfying Ceff =C
y
t2

and Cequ =Cx
t1

.

If α < β , choose ε such that 0 < ε < min
{

β −α,(t2 − t1)
β−α

2 F
(β+α

2

)}
. Let y := (t2 +

1)β − ε . Define ϕ(x) as the difference between UP|0(C
x
t1
) and UP|0(C

y
t2
):

ϕ(x) =
∫ x

t1+1

0

(
x− (t1 +1)w

)
dF(w)−

∫ y
t2+1

0

(
y− (t2 +1)w

)
dF(w).

First, we have

ϕ
(
β (t1 +1)

)
=
∫ β

0
(β −w)(t1 +1)dF(w)−

∫ β− ε
t2+1

0

(
(β −w)(t2 +1)− ε

)
dF(w)

=−
∫ β− ε

t2+1

0
(β −w)(t2 − t1)dF(w)+

∫ β

β− ε
t2+1

(β −w)(t1 +1)dF(w)+ εF
(
β − ε

t2 +1

)

≤−
∫ β− β−α

2

0
(β −w)(t2 − t1)dF(w)+

t1 +1

t2 +1
ε
[
1−F

(
β − ε

t2 +1

)]
+ εF

(
β − ε

t2 +1

)

≤−(t2 − t1)
β −α

2
F
(β +α

2

)
+ ε < 0.
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By choosing x = y−α(t2 − t1), we have ẘ = α . Notice that Ui|0(C
x
t1
,w) ≥Ui|0(C

y
t2
,w) for all

w ≥ ẘ, and strict inequality holds for x
t1+1 > w > ẘ, then we have

ϕ
(
y−α(t2 − t1)

)
=
∫ β

α
Ui|0(C

x
t1
,w)dF(w)−

∫ β

α
Ui|0(C

y
t2
,w)dF(w)> 0.

Since d
dx

ϕ(x) = F
(

x
t1+1

)
≥ 0, then there exists unique x̃ ∈

(
β (t1+1),y−α(t2− t1)

)
such that

ϕ(x̃) = 0. Immediately, we have

α <
y

t2 +1
< β <

x̃

t1 +1
<

x̃

t1 − td +1
, ẘ =

y− x̃

t2 − t1
> α,

y

t2 − td +1
=

(t2 +1)β − ε

t2 − td +1
>

(t2 +1)β − (β −α)

t2 − td +1
=

t2β +α

t2 − td +1
> β .

Thus, in SPE where Cx̃
t1

is implemented, all agent quit at time t1+1; while in SPE where C
y
t2

is

implemented, agents with w ≤ y
t2+1 quit at time t2+1 and the rest quit at time 0. Given I∗td = I,

we have UP|td
(
Cx̃

t1
| I
)
−UP|td

(
C

y
t2
| I
)
=

∫ β

α

(
x̃− (t1 − td +1)w

)
dF(w)−

∫ β

α

(
y− (t2 − td +1)w

)
dF(w)

=
∫ β

α
(x̃− (t1 +1)w)dF(w)−

∫ y
t2+1

α
(y− (t2 +1)w)dF(w)−

∫ β

y
t2+1

(y− (t2 +1)w)dF(w)

=ϕ(x̃)−
∫ β

y
t2+1

(y− (t2 +1)w)dF(w) =
∫ β

y
t2+1

(
(t2 +1)w− y

)
dF(w),

which is bounded from below by some real number ε ′ > 0, and is independent of x̃. Since
dϕ(x)

dx
|x=x̃= F

(
x̃

t1+1

)
= 1, choose x′ such that max{β (t1 + 1), x̃− ε ′} < x′ < x̃, and we have

ϕ(x′)< 0 and UP|td
(
Cx′

t1
| I
)
>UP|td

(
C

y
t2
| I
)
. Thus, Cx′

t1
is indeed a SPE outcome. Through the

same argument as in Part 1, Cx′
t1

is the unique SPE-NCF outcome. We conclude that x′ and y

satisfy Ceff =C
y
t2

and Cequ =Cx′
t1

.
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D.1.2 Proof of Lemma 10

Proof. At time 1, the present value of common consumption stream (c1,c2) for agent with

outside option w is given by1

If c1 ≥ c2 : Ui|1(c1,c2,w) =





c1 + c2 −2w if w ≤ c2 quit at t = 3

c1 −w if c2 < w ≤ c1 quit at t = 2

0 if w > c1 quit at t = 1;

If c1 < c2 : Ui|1(c1,c2,w) =

{
c1 + c2 −2w if w ≤ c1+c2

2 quit at t = 3

0 if w > c1+c2
2 quit at t = 1.

Thus, at time 1 the principal’s problem is to maximize UP|1
(
γδy,(1− γ)y | I∗1

)
=





∫ (1−γ)y
0

(
γδy+(1− γ)y−2w

)
ρ(w, I∗1 )dF(w)

+
∫ γδy

(1−γ)y

(
γδy−w

)
ρ(w, I∗1 )dF(w) if γδ ≥ 1− γ

∫ γδy+(1−γ)y
2

0

(
γδy+(1− γ)y−2w

)
ρ(w, I∗1 )dF(w) if γδ < 1− γ,

where

ρ(w, I∗1 ) =

∫
w(i)=w 1{i∈I∗1}di
∫

w(i)=w di
.

Since we have d
dγ UP|1

(
γδy,(1− γ)y | I∗1

)
=





δy
∫ γδy

0 ρ(w, I∗1 )dF(w)− y
∫ (1−γ)y

0 ρ(w, I∗1 )dF(w) if γδ ≥ 1− γ

(δ −1)y
∫ γδy+(1−γ)y

2
0 ρ(w, I∗1 )dF(w) if γδ < 1− γ,

and d2

dγ2UP|1
(
γδy,(1− γ)y | I∗1

)
=

{
(δy)2ρ(γδy, I∗1 ) f (γδy)+ y2ρ((1− γ)y, I∗1 ) f ((1− γ)y) if γ ≥ 1

1+δ
1
2(δ −1)2y2ρ( γδy+(1−γ)y

2 , I∗1 ) f ( γδy+(1−γ)y
2 ) if γ < 1

1+δ
,

immediately we have d2

dγ2UP|1 ≥ 0 for any γ ∈ (0,1), which means UP|1 is convex over [0,1]

with respect to γ . Thus, principal’s program has corner solutions, that is,

max
γ∈[0,1]

UP|1(γ) = max{UP|1(0),UP|1(1)}.

1Quitting at time 3 means quitting at the end of time 2. Alternatively, we can assume that agents are infinitely

lived in discrete periods {0,1,2, . . .}. Since there is no positive consumption after time 2, all agents will quit at

the beginning of time 3.
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D.1.3 Proof of Proposition 6

Proof. Take derivatives of the implicit function which gives the definition of x̃(y), and we get
dx̃(y)

dy
=

F( y
3 )

F(
x̃(y)

2 )
. It follows that

dδ̃ (y)

dy
=

1

y

(dx̃(y)

dy
− x̃(y)

y

)
=

1

y2F( x̃(y)
2 )

(
yF(

y

3
)−F(

x̃(y)

2
)x̃(y)

︸ ︷︷ ︸
:=τ(y)

)
.

Since x̃(0) = 0, we have τ(0) = 0. Moreover, we have

dτ(y)

dy
= F(

y

3
)
[ f ( y

3)

F( y
3)

y

3
− f ( x̃(y)

2 )
x̃(y)

2

x̃(y)

2

]
= F(

y

3
)
[
eF(

y

3
)− eF(

x̃(y)

2
)
]
.

If eF(·) is monotonically increasing, since y
3 < x̃(y)

2 for any y, we have
dτ(y)

dy
≤ 0, which means

τ(y)≤ 0 for any y. It follows that
dδ̃ (y)

dy
≤ 0. Then δ̃ (y) is monotonically decreasing. Through

a symmetric argument we can show that if eF(·) is monotonically decreasing, then δ̃ (y) is

monotonically increasing.

To prove the remaining statement of the proposition, we define êF(w) := F(w)w∫ w
0 F(w′)dw′ . We

will show that if eF(w) is monotonically increasing (or decreasing), then êF(w) is also mono-

tonically increasing (or decreasing). Obviously, eF(w) is continuous and êF(w) is differen-

tiable. First, we have

dêF(w)

dw
=

w f (w)
∫ w

0 F(w′)dw′+F(w)
∫ w

0 F(w′)dw′−w
(
F(w)

)2

(∫ w
0 F(w′)dw′)2

=
F(w)

(∫ w
0 F(w′)dw′)2

[(
1+

w f (w)

F(w)

)∫ w

0
F(w′)dw′−wF(w)

]

=
F(w)

(∫ w
0 F(w′)dw′)2

[(
1+ eF(w)

)∫ w

0
F(w′)dw′−wF(w)

︸ ︷︷ ︸
:=τ(w)

]
.

Pick any small ε > 0, and omit higher-order infinitesimal terms, then we have

τ(w+ ε)− τ(w) =
(
eF(w+ ε)− eF(w)

)∫ w

0
F(w′)dw′+

∫ w+ε

w
F(w′)dw′

+ eF(w+ ε)
∫ w+ε

w
F(w′)dw′−w

(
F(w+ ε)−F(w)

)
− εF(w+ ε)

≃
(
eF(w+ ε)− eF(w)

)∫ w

0
F(w′)dw′+ eF(w+ ε)F(w)ε −w f (w)ε

=
(
eF(w+ ε)− eF(w)

)∫ w

0
F(w′)dw′+

(
eF(w+ ε)− w f (w)

F(w)

)
F(w)ε

=
(
eF(w+ ε)− eF(w)

)(∫ w

0
F(w′)dw′+F(w)ε

)
.
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If eF(·) is monotonically increasing, then τ(w) is also increasing. Notice that τ(0) = 0, then

τ(w)≥ 0 for all w, which means êF(w) is also increasing. Similarly, If eF(·) is monotonically

decreasing, then êF(w) is also monotonically decreasing.

Take derivatives of the implicit function which defines x̂(y), and we get

dx̂(y)

dy
=

F( x̂(y)
2 )

1
2

(
3
2 x̂(y)− y

)
f ( x̂(y)

2 )+F( x̂(y)
2 )

=

(
F( x̂(y)

2 )
)2

1
2 f ( x̂(y)

2 )
∫ x̂(y)

2
0 F(w)dw+

(
F( x̂(y)

2 )
)2
.

Then we have

dδ̂ (y)

dy
=

1

y

[dx̂(y)

dy
− x̃(y)

y

]
=

1

y

[ (
F( x̂(y)

2 )
)2

1
2 f ( x̂(y)

2 )
∫ x̂(y)

2
0 F(w)dw+

(
F( x̂(y)

2 )
)2

− x̃(y)

y

]

=
y
(
F( x̂(y)

2 )
)2 − x̃(y)

[
1
2 f ( x̂(y)

2 )
∫ x̂(y)

2
0 F(w)dw+

(
F( x̂(y)

2 )
)2]

y2
[

1
2 f ( x̂(y)

2 )
∫ x̂(y)

2
0 F(w)dw+

(
F( x̂(y)

2 )
)2]

=
x̃(y)

2

(
F( x̂(y)

2 )
)2 −F( x̂(y)

2 )
∫ x̂(y)

2
0 F(w)dw− x̃(y)

2 f ( x̂(y)
2 )
∫ x̂(y)

2
0 F(w)dw

y2
[

1
2 f ( x̂(y)

2 )
∫ x̂(y)

2
0 F(w)dw+

(
F( x̂(y)

2 )
)2]

=
x
(
F(x)

)2 −F(x)
∫ x

0 F(w)dw− x f (x)
∫ x

0 F(w)dw

y2
[

1
2 f (x)

∫ x
0 F(w)dw+

(
F(x)

)2]
∣∣∣∣∣
x=

x̂(y)
2

=
−
(∫ x

0 F(w)dw
)2

y2
[

1
2 f (x)

∫ x
0 F(w)dw+

(
F(x)

)2]
d

dx

( xF(x)∫ x
0 F(w)dw

)∣∣∣∣∣
x=

x̂(y)
2

,

which means the sign of
dδ̂ (y)

dy
is always the opposite of the sign of

dêF (x)
dx

∣∣∣
x=

x̂(y)
2

. Thus we con-

clude that δ̂ (y) is monotonically decreasing (or increasing) as long as êF(w) is monotonically

increasing (or decreasing).

D.1.4 Proof of Proposition 7

Proof. By assumption, F(w) has full-support continuous density, which means eF(w) is con-

tinuous. First we show that F(w)= e−
∫ 1

w
eF (x)

x dx for all w∈ (0,1] and meanwhile limw→0 e−
∫ 1

w
eF (x)

x dx =

0 = F(0). By definition, F(w) can be viewed as the solution of the following ordinary differ-

ential equation:





v̇ =
1

w
eF(w)v := φ(w,v)

v(1) = 1.
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Since f (w) is continuous over [0,1], we have f (w) is bounded over [0,1], and eF(w) is

continuous and bounded over [ε,1] for any ε > 0. Notice that

lim
w→0

eF(w) = lim
w→0

w f (w)

F(w)
= lim

w→0

wF(k+1)(w)+ kF(k)(w)

F(k)(w)
= k,

where F(n)(w) stands for the nth-order derivative of F(w) and k := minn∈N{F(n)(0) > 0},

which is a finite integer. Thus, eF(w) is bounded by some positive number M over (0,1].

Let D = (0,1+ ε)× [0,1]. For any (w0,v0) ∈ D , choose 0 < r < min{ε,w0}, and define

I × U = (w0 − r,w0 + r)× (0,1), L = M
w0−r

. Then I × U ⊆ D and contains (w0,v0) in its

interior. Since for any v1,v2 ∈ U and any w ∈ I we have

|φ(w,v1)−φ(w,v2)|=
1

w
|eF(w)| · |v1 − v2| ≤

M

w0 − r
|v1 − v2|= L |v1 − v2| ,

then φ(w,v) is locally Lipschitz continuous with respect to v. Thus the Picard-Lindelöf Theo-

rem indicates that the above ODE has a solution existing on some interval of the form (w−,w+)

and that the solution is unique on that interval; moreover, since (w,v) = (w,F(w)) ∈ [0,1]2

which is bounded, then either w+ = 1 or v(w)→ 1 as w ↑ w+, and either w− = 0 or v(w)→ 0

as w ↓ w−. In other words, we establish a bijection between a distribution function and its

elasticity. We solve the above ODE as follows. From

(
lnv(w)

)′
=

eF(w)

w
,

we get the general solution:

lnv(w) =
∫ w

0

eF(x)

x
dx+C.

Because v(1) = 1, we get C = −∫ 1
0

eF (x)
x

dx. Therefore, v(w) = e−
∫ 1

w
eF (x)

x dx. It is straightfor-

ward to check that as w ↓ 0, we have v(w)→ e−∞ = 0.

Consider a function e(w,a) satisfying e(w,a) = eF1
(w) when w ≤ a, and e(w,a) = eF2

(w)

when w > a. Define a virtual distribution function F(w,a) := e−
∫ 1

w
e(x,a)

x dx and compute the

corresponding δ̃ (y,a) given by

∫ y
3

0
3e−

∫ 1
w

e(x,a)
x dxdw =

∫ δ̃ (y,a)y
2

0
2e−

∫ 1
w

e(x,a)
x dxdw.

Clearly, F(w,a) and δ̃ (y,a) are both continuous. Fixed any y,
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Case 1. If a < y
3 , then

∫ a

0
3e−

∫ a
w

eF1
(x)

x dx−∫ 1
a

eF2
(x)

x dxdw+
∫ y

3

a
3e−

∫ 1
w

eF2
(x)

x dxdw

=
∫ a

0
2e−

∫ a
w

eF1
(x)

x dx−∫ 1
a

eF2
(x)

x dxdw+
∫ δ̃ (y,a)y

2

a
2e−

∫ 1
w

eF2
(x)

x dxdw.

Take derivatives with respect to a on both side, and we get

∫ a

0
e−

∫ a
w

eF1
(x)

x dx−∫ 1
a

eF2
(x)

x dxdw
(
−eF1

(a)

a
+

eF2
(a)

a︸ ︷︷ ︸
≥0

)
= ye

−∫ 1
δ̃ (y,a)y

2

eF2
(x)

x dx dδ̃ (y,a)

da
,

which means
dδ̃ (y,a)

da
≥ 0;

Case 2. If y
3 ≤ a < δ̃ (y,a)y

2 , then

∫ y
3

0
3e−

∫ a
w

eF1
(x)

x dx−∫ 1
a

eF2
(x)

x dxdw

=
∫ a

0
2e−

∫ a
w

eF1
(x)

x dx−∫ 1
a

eF2
(x)

x dxdw+
∫ δ̃ (y,a)y

2

a
2e−

∫ 1
w

eF2
(x)

x dxdw.

Take derivatives with respect to a on both side, and we get

(∫ y
3

0
3e−

∫ 1
w

e(x,a)
x dxdw−

∫ a

0
2e−

∫ 1
w

e(x,a)
x dxdw

︸ ︷︷ ︸
≥0, ∵a≤ δ̃ (y,a)y

2

)(
−eF1

(a)

a
+

eF2
(a)

a︸ ︷︷ ︸
≥0

)

=ye
−∫ 1

δ̃ (y,a)y
2

eF2
(x)

x dx dδ̃ (y,a)

da
, =⇒ dδ̃ (y,a)

da
≥ 0;

Case 3. If a ≥ δ̃ (y,a)y
2 , then

∫ y
3

0
3e−

∫ a
w

eF1
(x)

x dx−∫ 1
a

eF2
(x)

x dxdw =
∫ δ̃ (y,a)y

2

0
2e−

∫ a
w

eF1
(x)

x dx−∫ 1
a

eF2
(x)

x dxdw.

Take derivatives with respect to a on both side, and we get

(∫ y
3

0
3e−

∫ 1
w

e(x,a)
x dxdw−

∫ δ̃ (y,a)y
2

0
2e−

∫ 1
w

e(x,a)
x dxdw

︸ ︷︷ ︸
=0

)(
−eF1

(a)

a
+

eF2
(a)

a︸ ︷︷ ︸
≥0

)

=ye
−∫ 1

δ̃ (y,a)y
2

e(x,a)
x dx dδ̃ (y,a)

da
, =⇒ dδ̃ (y,a)

da
= 0.
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Thus we have
dδ̃ (y,a)

da
≥ 0 for all a ∈ (0,1). Together with the continuity of δ̃ (y,a), we have

δ̃ (y,1)≥ δ̃ (y,0), which means δ̃F1
(y)≥ δ̃F2

(y).

Similarly, the corresponding δ̂ (y,a) is given by

y
(3

2
δ̂ (y,a)−1

)
e
−∫ 1

δ̂ (y,a)y
2

e(x,a)
x dx

=
∫ δ̂ (y,a)y

2

0
e−

∫ 1
w

e(x,a)
x dxdw.

Fixed any y,

Case 1. If a < δ̂ (y,a)y
2 , then

y
(3

2
δ̂ (y,a)−1

)
e
−∫ 1

δ̂ (y,a)y
2

eF2
(x)

x dx

=
∫ a

0
e−

∫ a
w

eF1
(x)

x dx−∫ 1
a

eF2
(x)

x dxdw+
∫ δ̂ (y,a)y

2

a
2e−

∫ 1
w

eF2
(x)

x dxdw.

Take derivatives with respect to a on both side, and we get

y
[
1+
( 3δ̂ (y,a)

2
−1

︸ ︷︷ ︸
≥0

)eF2
( δ̂ (y,a)y

2 )

δ̂ (y,a)

]
e
−∫ 1

δ̂ (y,a)y
2

eF2
(x)

x dx dδ̂ (y,a)

da

=
∫ a

0
e−

∫ a
w

eF1
(x)

x dx−∫ 1
a

eF2
(x)

x dxdw
(
−eF1

(a)

a
+

eF2
(a)

a︸ ︷︷ ︸
≥0

)
,

which means
dδ̂ (y,a)

da
≥ 0;

Case 2. If a ≥ δ̂ (y,a)y
2 , then

y
(3

2
δ̂ (y,a)−1

)
e
−∫ a

δ̂ (y,a)y
2

eF1
(x)

x dx−∫ 1
a

eF2
(x)

x dx

=
∫ δ̂ (y,a)y

2

0
e−

∫ a
w

eF1
(x)

x dx−∫ 1
a

eF2
(x)

x dxdw.

Take derivatives with respect to a on both side, and we get
dδ̂ (y,a)

da
= 0.

Thus we have
dδ̂ (y,a)

da
≥ 0 on each part of the domain. Notice that δ̂ (y,a) is continuous,

then we have δ̂ (y,a) is increasing over [0,1]. It follows that δ̂ (y,1) ≥ δ̂ (y,0), which means

δ̂F1
(y)≥ δ̂F2

(y).

D.1.5 Proof of Proposition 8

Proof. We first show that wµ0
(δ ) is quasiconcave over [δ ,1]. Pick any small ε > 0, we have

wµ0
(δ + ε)−wµ0

(δ ) =

y
(µ0(δ + ε)−µ0(δ ))(2−

∫
δ ′∈(δ ,1] δ

′dµ0(δ
′))− (2+µ0(δ ))

∫
δ ′∈(δ ,δ+ε] δ

′dµ0(δ
′)

(2+µ0(δ ))(2+µ0(δ + ε))
.
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Since µ0 is right-continuous, we have µ0(δ
+) := limδ ′↓δ µ0(δ

′) = µ0(δ ), that is, for infinites-

imal ε , wµ0
(δ + ε)−wµ0

(δ ) is an infinitesimal of same order. Apply Lebesgue version of

integration by parts, and we have

∫

δ ′∈(δ ,δ+ε]
δ ′dµ0(δ

′) = (δ + ε)µ0(δ + ε)−δ µ0(δ )−
∫

δ ′∈(δ ,δ+ε]
µ0(δ

′−)dδ ′,
∫

δ ′∈(δ ,1]
δ ′dµ0(δ

′) = 1−δ µ0(δ )−
∫

δ ′∈(δ ,1]
µ0(δ

′−)dδ ′,

where µ0(δ
−) := limδ ′↑δ µ0(δ ). Notice that we have δ ′− ∈ (δ ,δ + ε) for any δ ′ ∈ (δ ,δ + ε],

then wµ0
(δ ′−) is only infinitesimal different from wµ0

(δ ). Omit all higher-order infinitesimal

terms, and we have

∫

δ ′∈(δ ,δ+ε]
δ ′dµ0(δ

′)≃ (δ + ε)µ0(δ + ε)−δ µ0(δ )−µ0(δ )ε

≃ (δ + ε)µ0(δ + ε)−δ µ0(δ )−µ0(δ + ε)ε = δ (µ0(δ + ε)−µ0(δ )),

(µ0(δ + ε)−µ0(δ ))
∫

δ ′∈(δ ,1]
µ0(δ

′−)dδ ′ ≃ (µ0(δ + ε)−µ0(δ ))
∫

δ ′∈(δ ,1]
µ0(δ

′)dδ ′.

Thus, we have

wµ0
(δ + ε)−wµ0

(δ )≃ y(µ0(δ + ε)−µ0(δ ))

(2+µ0(δ ))(2+µ0(δ + ε))

[
1−2δ +

∫

δ ′∈(δ ,1]
µ0(δ

′)dδ ′

︸ ︷︷ ︸
:=τ(δ )

]
.

Since τ(δ ) is decreasing with respect to δ , τ(1
2) ≥ 0 and τ(1) < 0, then there exists [a,b] ⊆

[1
2 ,1), where a ≤ b, such that [a,b] = argmaxδ ′ wµ0

(δ ′), wµ0
(δ ) is increasing over [1

2 ,a) and

is decreasing over (b,1]. It follows that wµ0
(δ ) is quasiconcave.

Second, we prove that If wµ0
(δ ) and w̄(δ ) intersect, then the intersection is always on the

non-increasing side of wµ0
(δ ).Pick any small ε > 0, we have

∫

δ ′∈[0,δ ]

(
y−3wµ0

(δ )
)
dµ0(δ

′)+
∫

δ ′∈(δ ,1]

(
δ ′y−2wµ0

(δ )
)
dµ0(δ

′) = 0

∫

δ ′∈[0,δ+ε]

(
y−3wµ0

(δ + ε)
)
dµ0(δ

′)+
∫

δ ′∈(δ+ε,1]

(
δ ′y−2wµ0

(δ + ε)
)
dµ0(δ

′) = 0.

It follows that

3wµ0
(δ ) = y+

∫

δ ′∈(δ ,1]

(
δ ′y+wµ0

(δ )− y
)
dµ0(δ

′)

3wµ0
(δ + ε) = y+

∫

δ ′∈(δ+ε,1]

(
δ ′y+wµ0

(δ + ε)− y
)
dµ0(δ

′).
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Then we have 3wµ0
(δ + ε)−3wµ0

(δ ) =

∫

δ ′∈(δ+ε,1]

(
δ ′y+wµ0

(δ + ε)− y
)
dµ0(δ

′)−
∫

δ ′∈(δ ,1]

(
δ ′y+wµ0

(δ )− y
)
dµ0(δ

′)

=
∫

δ ′∈(δ+ε,1]

(
wµ0

(δ + ε)−wµ0
(δ )
)
dµ0(δ

′)−
∫

δ ′∈(δ ,δ+ε]

(
δ ′y+wµ0

(δ )− y
)
dµ0(δ

′)

≃
(
wµ0

(δ + ε)−wµ0
(δ )
)(

1−µ0(δ + ε)
)
−
(
δy+wµ0

(δ )− y
)(

µ0(δ + ε)−µ0(δ )
)
,

which means

wµ0
(δ + ε)−wµ0

(δ ) =−µ0(δ + ε)−µ0(δ )

2+µ0(δ + ε)

(
δy+wµ0

(δ )− y
)
.

When wµ0
(δ ) and w̄(δ ) intersect at some δ ′′, we have wµ0

(δ ′′) = w̄(δ ′′), then δ ′′y +

wµ0
(δ ′′)− y = δ ′′y + w̄(δ ′′)− y ≥ 0, then wµ0

(δ ′′ + ε)− wµ0
(δ ′′) ≤ 0. We conclude that

wµ0
(δ ) intersects with w̄(δ ) on the non-increasing side of wµ0

(δ ).

Third, we establish the existence of δ ∗ ∈ [δ , δ̄ ] such that wµ0
(δ ∗) = w̄(δ ∗), where δ̄ sat-

isfies w̄(δ̄ ) = y
3 , and δ satisfies wµ0

(δ ) = y
2 . Consider a correspondence Γ(δ ) : [a,1] 7→ 2[a,1],

which is defined by Γ(δ ) = {δ ′ ∈ [a,1] | wµ0
(δ ) ≤ w̄(δ ′) ≤ wµ0

(δ−)}, where wµ0
(δ−) =

limδ ′↑δ wµ0
(δ ′); in case wµ0

(a) > wµ0
(a−), Γ(a) := {δ ′ ∈ [a,1] | wµ0

(a) = w̄(δ ′)}. Obvi-

ously, [a,1] is a non-empty, convex and compact subset of Euclidean space R. We have

showed that w̄(δ ) is continuous and decreasing over [a,1], wµ0
(δ ) is right-continuous with

left limits and non-increasing over [a,1], wµ0
(a) ≤ w̄(a) and wµ0

(δ̄ ) ≥ y
3 = w̄(δ̄ ), where

[a,b] = argmaxδ ′ wµ0
(δ ′). Thus we can easily check that for any δ ∈ [a,1], Γ(δ ) is non-empty

and convex. Moreover, Γ has a closed graph Gr(Γ) := {(s, t) ∈ [a,1]× 2[a,1] | t ∈ Γ(s)}.2

Thus, by Kakutani’s fixed-point theorem, Γ has a fixed point, that is, there exists δ such that

δ ∈ Γ(δ ). Immediately, any fixed point satisfies δ ≤ δ̄ , since y
3 ≤ wµ0

(δ )≤ w̄(δ ).

2To prove this, consider the complementary set of Gr(Γ) in [a,1]×2[a,1], which is given by Grc(Γ) := {(s, t)∈
[a,1]× 2[a,1] | wµ0

(s) > w̄(t), or w̄(t) > wµ0
(s−)}. Pick any (s, t) ∈ Grc(Γ), if wµ0

(s) > w̄(t), choose 0 < ε <

wµ0
(s)− w̄(t), then ∃r1 > 0 such that for any t ′ ∈ (t − r1, t + r1) we have w̄(t ′) ∈ (w̄(t)− ε

3
, w̄(t) + ε

3
), and

∃r2 > 0 such that for any s′ ∈ (s− r2,s+ r2) we have wµ0
(s′) > wµ0

(s)− ε
3
. Since wµ0

(s′)− w̄(t ′) > wµ0
(s)−

ε
3
− w̄(t)− ε

3
> ε

3
> 0, then for all (s′, t ′) such that |s′− s| < r2 and |t ′− t| < r1, we have (s′, t ′) ∈ Grc(Γ). If

w̄(t) > wµ0
(s−), choose 0 < ε < w̄(t)−wµ0

(s−), then ∃r1 > 0 such that for all t ′ ∈ (t − r1, t + r1) we have

w̄(t ′) ∈ (w̄(t)− ε
3
, w̄(t)+ ε

3
). The fact that left limit wµ0

(s−) exists and wµ0
(·) is non-increasing implies that

∃r2 > 0 such that for all s′ ∈ (s− r2,s) we have 0 ≤ wµ0
(s′)−wµ0

(s−) < ε
3
. It follows that for all s′′ ∈ (s′,s)

we have wµ0
(s′′−)≤ wµ0

(s′)< wµ0
(s−)+ ε

3
. For all s′′ ∈ (s,s+ r2), we have wµ0

(s′′−)≤ wµ0
(s)≤ wµ0

(s−)+ ε
3
.

Then w̄(t ′)−wµ0
(s′′−)> w̄(t)− ε

3
−wµ0

(s−)− ε
3
> ε

3
> 0 for all (s′′, t ′) such that s′′ ∈ (s′,s+r2) and |t ′− t|< r1,

which means (s′′, t ′) ∈ Grc(Γ). Thus, (s, t) is in the interior of Grc(Γ), which means Grc(Γ) is an open set. As a

result, Gr(Γ) is closed.
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Let F := {δ ∈ [δ , δ̄ ] | δ ∈ Γ(δ )} collect all the fixed points. We have F is a compact

subset.3 If there exists δ ∈ F such that wµ0
(δ ) = w̄(δ ), then we find such δ ∗. Suppose for all

δ ∈ F we have wµ0
(δ )< w̄(δ ). Pick any δ1 ∈ F , since wµ0

(δ1)< w̄(δ1), then we can apply

the fixed-point theorem on domain [δ1, δ̄ ] and find δ1 < δ2 ∈ F satisfying wµ0
(δ2) < w̄(δ2).

Repeat this process and we can find a strictly increasing sequence {δn}∞
n=1 ∈ F such that

δn ∈ [δ , δ̄ ] and wµ0
(δn)< w̄(δn) for all n. Define φ(δn) := w̄(δn)−wµ0

(δn)> 0. Since φ(δn)

is bounded, it converges. If {φ(δn)} has a unique limit which is 0, then limn→∞ φ(δn) = 0 and

limn→∞ δn = δ̌ . Since F is compact, we have δ̌ ∈ F and wµ0
(δ̌ ) = w̄(δ̌ ), contradiction. If

there exists a subsequence {φ(δkn
)} such that limn→∞ φ(δkn

) = ε > 0, then ∃N0 such that for

all n ≥ N0 we have φ(δkn
)> ε

2 , which means wµ0
(δ−

kn
)−wµ0

(δkn
)≥ w̄(δkn

)−wµ0
(δkn

)> ε
2 . It

follows that

y

6
=

y

2
− y

3
≥ max

δ
wµ0

(δ )−min
δ

wµ0
(δ )>

∞

∑
n=1

(
wµ0

(δ−
n )−wµ0

(δn)
)

>
∞

∑
n=N0

(
wµ0

(δ−
n )−wµ0

(δn)
)
>

∞

∑
n=N0

ε

2
=+∞ · ε

2
>

y

6
,

contradiction. Thus we conclude there exists δ ∗ ∈ [δ , δ̄ ] such that wµ0
(δ ∗) = w̄(δ ∗).

With a slight abuse of notation, let δ ∗ =min{δ |wµ0
(δ ) = w̄(δ )}.4 The last step is to show

that, given any message inducing the posterior belief µ0, there exists a unique pure-strategy

SPE-NCF, where all agents with w ≤ w∗(µ0) := wµ0
(δ ∗) participate at time 0, and principal

chooses C
δy
1 if δ > δ ∗ and C

y
2 if δ ≤ δ ∗.

Let {δ | wµ0
(δ ) = w̄(δ )} = {δ1,δ2, . . . ,δn, . . .}, with δ1 < δ2 < .. . < δn < .. .. Pick any

δ ∈ (δt ,δt+1), if wµ0
(δ ) < w̄(δ ), then given I∗1 = {i ∈ I | w(i) ≤ wµ0

(δ )}, the group leader

will choose C
y
2 if δ is realized, then the agent with outside option wµ0

(δ ) will get negative

expected utility, thus he prefers to quit at time 0. This process will not stop until I∗1 = {i ∈ I |
w(i) ≤ wµ0

(δt+1)}. If wµ0
(δ ) > w̄(δ ), given I∗1 = {i ∈ I | w(i) ≤ wµ0

(δ )}, the group leader

will choose C
δy
1 at δ − ε1, which will make participation at time 0 profitable for agents with

outside option wµ0
(δ )+ ε2. This process will keep going until I∗1 = {i ∈ I | w(i) ≤ wµ0

(δt)}.

Thus only {δ1,δ2, . . . ,δn, . . .} are SPE. Take any δt < δt+1, since there is no coordination

failure among agents, then agents whose outside options belong to [wµ0
(δt+1),wµ0

(δt)] will

3 Define I := {(s, t)∈ [a,1]×2[a,1] | s= t}, which is closed. Then F is also closed because F =Gr(Γ)∩I .

Notice that F is bounded, then it is compact.
4We must have that wµ0

(δ ) is continuous at δ ∗; otherwise wµ0
(δ ∗−)> wµ0

(δ ∗) = w̄(δ ∗), which means there

exists δ ′ ∈ [a,δ ∗) such that wµ0
(δ ′) = w̄(δ ′), contradicting the definition of δ ∗.
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jointly participate at time 0 because they can get utility gains in SPE-δt compared with no

participation in SPE-δt+1. Thus, the only subgame perfect equilibrium that survives from

elimination of all possible coordination failure is SPE-δ ∗, where the participating subset of

outside options is the largest among all subgame perfect equilibriums.

D.1.6 Proof of Theorem 11

Proof. We first show two properties of wµ0
(δ ,δ T ).

(i) Fixed ∀δ T > 2
3 , wµ0

(δ ,δ T ) is quasi-concave with respect to δ over [δ ,1]. To prove this,

Pick any small ε > 0, we have wµ0
(δ + ε,δ T )−wµ0

(δ ,δ T ) =

y

(2µ0(δ T )+µ0(δ ))(2µ0(δ T )+µ0(δ + ε))

[(
µ0(δ + ε)−µ0(δ )

)(
2µ0(δ

T )

−
∫

δ ′∈(δ ,δ T ]
δ ′dµ0(δ

′)
)
−
(
2µ0(δ

T )+µ0(δ )
)∫

δ ′∈(δ ,δ+ε]
δ ′dµ0(δ

′)
]
.

Through exactly the same argument as in the previous observation where δ T = 1, we omit all

higher-order infinitesimal terms, and get wµ0
(δ + ε,δ T )−wµ0

(δ ,δ T )≃

y(µ0(δ + ε)−µ0(δ ))
[

:=τ(δ )︷ ︸︸ ︷
(2−δ T )µ0(δ

T )−2µ0(δ
T )δ +

∫

δ ′∈(δ ,δ T ]
µ0(δ

′)dδ ′ ]

(2µ0(δ T )+µ0(δ ))(2µ0(δ T )+µ0(δ + ε))
.

Since τ(δ ) is decreasing with respect to δ , τ(δ T

2 )≥ 0 and τ(δ T ) = (2−3δ T )µ0(δ
T )< 0, then

there exists [a,b]⊆ [1
2 ,1), where a ≤ b, such that [a,b] = argmaxδ ′ wµ0

(δ ′,δ T ), wµ0
(δ ,δ T ) is

increasing over [1
2 ,a) and decreasing over (b,1]. It follows that wµ0

(δ ,δ T ) is quasiconcave.

(ii) Fixed ∀δ , wµ0
(δ ,δ T ) is non-decreasing in δ T over (2

3 ,1]. To prove this, Pick any small

ε > 0, we have wµ0
(δ ,δ T + ε)−wµ0

(δ ,δ T ) =

y

(2µ0(δ T )+µ0(δ ))(2µ0(δ T + ε)+µ0(δ ))

[(
2µ0(δ

T )+µ0(δ )
)∫

δ ′∈(δ T ,δ T+ε]
δ ′dµ0(δ

′)

−
(
µ0(δ

T + ε)−µ0(δ
T )
)(

2µ0(δ )+2

∫

δ ′∈(δ ,δ T ]
δ ′dµ0(δ

′)
)]

.

Through a similar argument we can omit all higher-order infinitesimal terms, and get

wµ0
(δ ,δ T + ε)−wµ0

(δ ,δ T )≃ y
(
µ0(δ

T + ε)−µ0(δ
T )
)

(2µ0(δ T )+µ0(δ ))(2µ0(δ T + ε)+µ0(δ ))

×
[(

δ T −2+2δ
)
µ0(δ )+2

∫

δ ′∈(δ ,δ T ]
µ0(δ

′)dδ ′

︸ ︷︷ ︸
:=τ(δ T )

]
.
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Since τ(δ T ) ≥ (δ T − 2+ 2δ )µ0(δ )+ 2(δ T − δ )µ0(δ ) = (3δ T − 2)µ0(δ ) ≥ 0, we conclude

that wµ0
(δ ,δ T ) is non-decreasing in δ T when δ T > 2

3 .

With these properties we can prove the following claim.

Claim. In the upper revealing truncation of µ0 at δ T with µ ′
0(δ ) =

µ0(δ )
µ0(δ T )

,

(i) If δ T = δ̂ , then w∗(µ ′
0) =

y
3 ;

(ii) If δ ∗ > δ̂ , then w∗(µ ′
0) =

y
3 for δ T ≤ δ ∗.

Proof of the Claim. (i) Notice that when δ T = δ̂ we have wµ ′
0
(δ )< δ̂y

2 = w̄(δ̂ )< w̄(δ ) for all

δ < δ̂ , and wµ ′
0
(δ ) ≡ y

3 for all δ ≥ δ̂ , then wµ ′
0
(δ ) < w̄(δ ) for all δ ∈ [δ , δ̄ ). Thus, we have

w∗(µ ′
0) =

y
3 .

(ii) By definition of δ ∗, for all δ < δ ∗ we have wµ0
(δ ) < w̄(δ ). If δ T > 2

3 , we have

showed in the previous observation that wµ0
(δ ,δ T ) is non-decreasing in δ T . Thus, fixed

∀δ T ≤ δ ∗, we have wµ ′
0
(δ ) = wµ0

(δ ,δ T ) ≤ wµ0
(δ ,1) = wµ0

(δ ) < w̄(δ ) for all δ < δ T , and

wµ ′
0
(δ )≡ y

3 for all δ ≥ δ T , which means wµ ′
0
(δ )< w̄(δ ) for all δ ∈ [δ , δ̄ ). If δ T ≤ 2

3 , we have

wµ ′
0
(δ )≤ y

3 < w̄(δ ) for all δ ∈ [δ , δ̄ ). Thus, we have w∗(µ ′
0) =

y
3 .

Next we will study several properties of the optimal information structure.

Property 1. Optimal information structure always completely separates any δ ≥ δ̃ , that is, for

all δ ≥ δ̃ , any m0|δ ∈ M that includes δ as a possible outcome should induce a posterior belief

µ0[m0|δ ] ∈ ∆([0,1]) such that Pr(δ | m0|δ ) = 1.

Proof of the property. Pick ∀µ0 ∈ ∆([0,1]) induced by some m0, and in equilibrium I∗1 = {i ∈
I | w(i)≤ w∗(µ0)}.

Case 1. If w∗(µ0)≥ δ̂y
2 , we have δ ∗ ∈ (δ , δ̂ ). The group’s total expected utility conditional

on m0 is given by Eµ0
[Up|0] =

∫ δ ∗

0

(∫ w∗(µ0)

0
(y−3w)dF(w)

)
dµ0(δ )+

∫ 1

δ ∗

(∫ w∗(µ0)

0
(δy−2w)dF(w)

)
dµ0(δ ).

Consider the upper revealing truncation of µ0 at δ̂ , that is, δ T = δ̂ . We have proved that

w∗(µ ′
0) =

y
3 and group leader chooses default option at time 1. Thus, the group’s total expected

utility under the new message set conditional on µ0 is given by

E
′
µ0
[Up|0] =

∫ δ ∗

0

(∫ y
3

0
(y−3w)dF(w)

)
dµ0(δ )+

∫ δ̂

δ ∗

(∫ y
3

0
(y−3w)dF(w)

)
dµ0(δ )

+
∫ 1

δ̂

(∫ δy
2

0
(δy−2w)dF(w)

)
dµ0(δ )≥ Eµ0

[Up|0].
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Case 2. If w̄(δ̃ ) < w∗(µ0) <
δ̂y
2 , we have δ ∗ ∈ (δ̂ , δ̃ ). The group’s total expected utility

conditional on m0 is given as before. Consider the upper revealing truncation of µ0 at δ ∗,

that is, δ T = δ ∗. We have proved that w∗(µ ′
0) =

y
3 and group leader chooses default option at

time 1. Thus, the group’s total expected utility under the new message set conditional on µ0 is

given by E
′
µ0
[Up|0] =

∫ δ ∗

0

(∫ y
3

0
(y−3w)dF(w)

)
dµ0(δ )+

∫ 1

δ ∗

(∫ δy
2

0
(δy−2w)dF(w)

)
dµ0(δ )≥ Eµ0

[Up|0].

Case 3. If w∗(µ0)≤ w̄(δ̃ ), we have δ ∗ ≥ δ̃ . The group’s total expected utility conditional

on m0 is given by

Eµ0
[Up|0] =

∫ δ̃

0

(∫ w∗(µ0)

0
(y−3w)dF(w)

)
dµ0(δ )

+
∫ δ ∗

δ̃

(∫ w∗(µ0)

0
(y−3w)dF(w)

)
dµ0(δ )+

∫ 1

δ ∗

(∫ w∗(µ0)

0
(δy−2w)dF(w)

)
dµ0(δ ).

Consider the upper revealing truncation of µ0 at δ̃ , that is, δ T = δ̃ ≤ δ ∗. We have proved

that w∗(µ ′
0) =

y
3 and group leader chooses default option at time 1. Thus, the group’s total

expected utility under the new message set conditional on µ0 is given by

E
′
µ0
[Up|0] =

∫ δ̃

0

(∫ y
3

0
(y−3w)dF(w)

)
dµ0(δ )+

∫ δ ∗

δ̃

(∫ δy
2

0
(δy−2w)dF(w)

)
dµ0(δ )

+
∫ 1

δ ∗

(∫ δy
2

0
(δy−2w)dF(w)

)
dµ0(δ )≥ Eµ0

[Up|0],

since for all δ ∈ (δ̃ ,δ ∗), we have

∫ δy
2

0
(δy−2w)dF(w)>

∫ y
3

0
(y−3w)dF(w)>

∫ w∗(µ0)

0
(y−3w)dF(w).

We can see that in none of the three cases should we pool any δ > δ̃ with the other

realizations. Thus in the optimal information structure, the group leader always completely

separates any δ > δ̃ . The resulting information structure will improve the total expected utility

and possess the following three properties: (i) ∀δ > δ̃ is completely revealed; (ii) On receiving

∀m0 that pools some realizations of δ , w∗(µ0) =
y
3 and the first-best outcome is achieved; (iii)

If δ ≤ δ̃ and is revealed by some m0, then the first-best outcome under that realization is the

default option.

Property 2. For any µ0,µ
′
0 induced by m0,m

′
0 ∈ M0, let µ ′′

0 be the posterior belief induced by

m′′
0 which pools m0 and m′

0, then we have w∗(µ ′′
0 )≤ max{w∗(µ0),w

∗(µ ′
0)}.
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Proof of the property. Without loss of generality, we assume w∗(µ0) ≥ w∗(µ ′
0), which means

the threshold under µ0, denoted by δ ∗, is no larger than the threshold under µ ′
0, denoted by

δ ′∗. By definition, we have µ ′′
0 = π(m0)

π(m0)+π(m′
0)

µ0 +
π(m′

0)

π(m0)+π(m′
0)

µ ′
0. Since

∫

δ ′∈[0,δ ]

(
y−3wµ ′′

0
(δ )
)
dµ ′′

0 (δ
′)+

∫

δ ′∈(δ ,1]

(
δ ′y−2wµ ′′

0
(δ )
)
dµ ′′

0 (δ
′) = 0

⇔ π(m0)

π(m0)+π(m′
0)

[∫

δ ′∈[0,δ ]

(
y−3wµ ′′

0
(δ )
)
dµ0(δ

′)+
∫

δ ′∈(δ ,1]

(
δ ′y−2wµ ′′

0
(δ )
)
dµ0(δ

′)
]

+
π(m′

0)

π(m0)+π(m′
0)

[∫

δ ′∈[0,δ ]

(
y−3wµ ′′

0
(δ )
)
dµ ′

0(δ
′)+

∫

δ ′∈(δ ,1]

(
δ ′y−2wµ ′′

0
(δ )
)
dµ ′

0(δ
′)
]
= 0,

we have

wµ ′′
0
(δ ) =

π(m0)[µ0(δ )+2] ·wµ0
(δ )

π(m0)[µ0(δ )+2]+π(m′
0)[µ

′
0(δ )+2]

+
π(m′

0)[µ
′
0(δ )+2] ·wµ ′

0
(δ )

π(m0)[µ0(δ )+2]+π(m′
0)[µ

′
0(δ )+2]

.

Notice that for any δ < δ ∗ ≤ δ ′∗, we have wµ0
(δ )< w̄(δ ) and wµ ′

0
(δ )< w̄(δ ), then wµ ′′

0
(δ )≤

max{wµ0
(δ ),wµ ′

0
(δ )} < w̄(δ ) for all δ < δ ∗, which means the threshold of µ ′′

0 , denoted by

δ ′′∗, satisfies δ ′′∗ ≥ δ ∗. It follows that

w∗(µ ′′
0 )≤ w∗(µ0) = max{w∗(µ0),w

∗(µ ′
0)}.

We have proved that after upper revealing truncation, if a message m0 ∈ M0 pools some

realizations of δ , then the possible outcomes are restricted in [0, δ̃ ], that is, the induced pos-

terior belief µ0 satisfying µ0(δ̃ ) = 1. Pick any pair of such pooling messages m0,m
′
0, we can

prove that mixing m0 and m′
0 will not affect the total expected utility. Let µ0,µ

′
0 be the induced

posterior belief, which satisfy w∗(µ0) = w∗(µ ′
0) =

y
3 . Replace m0 and m′

0 by a new message

m′′
0 :=

(
m0,

π(m0)
π(m0)+π(m′

0)
;m′

0,
π(m′

0)

π(m0)+π(m′
0)

)
, which induces the posterior belief µ ′′

0 . From Prop-

erty 2 we have
y

3
≤ w∗(µ ′′

0 )≤ max{w∗(µ0),w
∗(µ ′

0)}=
y

3
,

then w∗(µ ′′
0 ) =

y
3 , implying that the default option is still implemented in equilibrium. We can

repeat this process until we pool all such messages while the total expected utility remains

unaffected. On the other hand, for any revealing message m0|δ such that δ ≤ δ̂ , the induced

posterior belief µ0|δ satisfies Pr(δ | m0|δ ) = 1, and thus we have w∗(µ0|δ ) =
y
3 . As a result

we can pool all these revealing messages with the pooling message, and still implement the

default option.

Now the optimal information structure is a collection of messages consisting of a unique

pooling message m
p
0 and a subset of revealing messages {m0|δ}. The optimal revealing rule

denoted by σ(δ ) : [0,1] 7→ ∆(M0), satisfies σ(δ )[mp
0 ] = 1 for all δ ≤ δ̂ and σ(δ )[m0|δ ] = 1
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for all δ > δ̃ . The remaining problem is to determine the revealing rule for δ ∈ (δ̂ , δ̃ ].

Property 3. Fixed ∀δ ∈ (δ̂ , δ̃ ], if σ(δ )[mp
0 ]> 0, then σ(δ ′)[mp

0 ] = 1 for all δ ′ ∈ (δ̂ ,δ ).

Proof of the property. Suppose, to the contrary, that there exist δ̂ < δ ′ < δ ≤ δ̃ such that

σ(δ )[mp
0 ]> 0 and σ(δ ′)[m0|δ ′ ]> 0. Since δ follows a continuous distribution, the probability

measure of any countable subset is equal to 0. If we only have countable number of such δ ′,

we can set σ(δ ′)[m0|δ ′ ] = 1, that is, mix m0|δ ′ with m
p
0 , and still have w∗(µ p

0 ) =
y
3 , where

µ
p
0 is the posterior belief induced by m

p
0 . Thus, we only need to consider the case where

∃r1,r2 > 0 such that σ(δ1)[m
p
0 ]> 0 for all δ1 ∈Br1

(δ ), σ(δ2)[m0|δ2
]> 0 for all δ2 ∈Br2

(δ ′),

and Br1
(δ )∩Br2

(δ ′) = /0. Let π ∈ ∆(M0) be the probability measure over M0 induced by the

revealing rule σ . Since we have

ε := min
{

π(mp
0)
∫

δ1∈Br1
(δ )

dµ
p
0 (δ1),

∫

δ2∈Br2
(δ ′)

dπ(m0|δ2
)
}
> 0,

there exist Cδ ⊆ Br1
(δ ) and Cδ ′ ⊆ Br2

(δ ′) such that

π(mp
0)
∫

δ1∈Cδ

dµ
p
0 (δ1) =

∫

δ2∈Cδ ′
dπ(m0|δ2

) = ε.

Modify the original information structure by setting σ(δ1)[m0|δ1
] = 1 for all δ1 ∈ Cδ , and

σ(δ2)[m
p
0 ] = 1 for all δ2 ∈Cδ ′ . Next, we prove that under the new µ̃

p
0 we still have w∗(µ̃ p

0 ) =
y
3

while the total expected utility increases. Because w∗(µ p
0 ) =

y
3 , for any δ̌ ≤ δ̃ we have

χµ
p
0
(δ̌ ) :=

∫

δ ′∈[0,δ̌ ]

(
y−3w̄(δ̌ )

)
dµ

p
0 (δ

′)+
∫

δ ′∈(δ̌ ,δ̃ ]

(
δ ′y−2w̄(δ̌ )

)
dµ

p
0 (δ

′)< 0.

Notice that

(i) if δ̌ < δ2 < δ1, then δ2y−2w̄(δ̌ )︸ ︷︷ ︸
δ2

< δ1y−2w̄(δ̌ )︸ ︷︷ ︸
δ1

;

(ii) if δ2 ≤ δ̌ < δ1, then
(
δ1y−2w̄(δ̌ )

)
−
(
y−3w̄(δ̌ )

)
= δ1y+ w̄(δ̌ )−y > δ̌y+ w̄(δ̌ )−y >

0, which means y−3w̄(δ̌ )︸ ︷︷ ︸
δ2

< δ1y−2w̄(δ̌ )︸ ︷︷ ︸
δ1

;

(iii)if δ2 < δ1 ≤ δ̌ , then y−3w̄(δ̌ )︸ ︷︷ ︸
δ2

< y−3w̄(δ̌ )︸ ︷︷ ︸
δ1

.

Thus, for any δ̌ ≤ δ̃ we have χµ̃
p
0
(δ̌ ) < χµ

p
0
(δ̌ ) < 0. It follows that w∗(µ̃ p

0 ) =
y
3 . The

difference in total expected utility between the new information structure and the original one
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is given by Ẽ[Up|0]−E[Up|0] =

{
π(mp

0)
∫

δ1∈Cδ

∫ δ1y

2

0
(δ1y−2w)dF(w)dµ

p
0 (δ1)+

∫

δ2∈Cδ ′

∫ y
3

0
(y−3w)dF(w)dπ(m0|δ2

)
}

−
{

π(mp
0)
∫

δ1∈Cδ

∫ y
3

0
(y−3w)dF(w)dµ

p
0 (δ1)+

∫

δ2∈Cδ ′

∫ δ2y

2

0
(δ2y−2w)dF(w)dπ(m0|δ2

)
}

≃
{

π(mp
0)
∫

δ1∈Cδ

dµ
p
0 (δ1)

∫ δy
2

0
(δy−2w)dF(w)+

∫

δ2∈Cδ ′
dπ(m0|δ2

)
∫ y

3

0
(y−3w)dF(w)

}

−
{

π(mp
0)
∫

δ1∈Cδ

dµ
p
0 (δ1)

∫ y
3

0
(y−3w)dF(w)+

∫

δ2∈Cδ ′
dπ(m0|δ2

)
∫ δ ′y

2

0
(δ ′y−2w)dF(w)

}

=ε ·
{∫ δy

2

0
(δy−2w)dF(w)−

∫ δ ′y
2

0
(δ ′y−2w)dF(w)

}
> 0.

We can repeat this process for all such pairs of {δ ,δ ′} until there exist no δ̂ < δ ′ < δ ≤ δ̃

such that σ(δ )[mp
0 ]> 0 and σ(δ ′)[m0|δ ′ ]> 0.

Since δ ∼ G[0,1] follows a continuous distribution, Property 3 implies that in the optimal

information structure, there exists a threshold δ SB such that σ(δ )[mp
0 ] = 1 for all δ ∈ [0,δ SB],

and σ(δ )[m0|δ ] = 1 for all δ ∈ [δ SB,1]. The induced posterior belief of m
p
0 is given by µ

p
0 (δ ) =

G(δ )
G(δ SB)

for δ ≤ δ SB. The last step is to characterize the threshold.

By definition, µ
p
0 (δ ) =

G(δ )
G(δ SB)

, then χµ
p
0
(δ̌ )≤ 0 if and only if χG(δ̌ ,δ

T )≤ 0. Take ∀δ T <

δ SB, since δ T ∈ [δ̂ , δ̃ ], then the difference in total expected utility between δ T and δ SB is given

by EG[Up|0(δ
SB)]−EG[Up|0(δ

T )] =

∫

δ ′∈(δ T ,δ SB]

∫ y
3

0
(y−3w)dF(w)dG(δ ′)−

∫

δ ′∈(δ T ,δ SB]

∫ δ ′y
2

0
(δ ′y−2w)dF(w)dG(δ ′)

=
∫

δ ′∈(δ T ,δ SB]

(∫ y
3

0
(y−3w)dF(w)−

∫ δ ′y
2

0
(δ ′y−2w)dF(w)

︸ ︷︷ ︸
>0, ∵δ ′≤δ̃

)
dG(δ ′)> 0.

Suppose the optimal information structure takes a different threshold δ T > δ SB. Since

we have proved that δ T ≤ δ̃ , then we have δ SB < δ T ≤ δ̃ , which means there exists δ̌ ∈
[δ ,δ T ] such that χG(δ̌ ,δ

T ) > 0. It is equivalent to χµ
p
0
(δ̌ ) > 0, and thus we have wµ

p
0
(δ̌ ) >

w̄(δ̌ ), which means in equilibrium δ ∗ ∈ [δ , δ̌ ) and w∗(µ p
0 ) > w̄(δ̃ ). From Property 1, there

exists an upper revealing truncation of m
p
0 which strictly increases the total expected utility,

contradicting that δ T is assumed to be optimal.
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D.1.7 Proof of Proposition 9

Proof. Given any SPE where t∗0 is implemented, only agents with w ≤ w̄(t∗0) participate at

time 0. Principal’s objective function from the time-t perspective by choosing stopping time

t0 is given by

UP|t(t0 | w̄(t∗0)) =
∫ w̄(t∗0 )

0

(∫ t̄(w,t0)

t ′=t0

δ (t0, t
′)dt ′− (t̄(w, t0)− t) ·w

)
dF(w)

=
∫ w̄(t∗0 )

0

(∫ t̄(w,t0)

t ′=t0

δ (t0, t
′)dt ′− t̄(w, t0) ·w

︸ ︷︷ ︸
=UA|0(w,t0)

)
dF(w)+

∫ w̄(t∗0 )

0
t ·wdF(w).

Since UA|t∗0 (w, t
∗
0) > 0 for all w < w̄(t∗0), by continuity for any t, t0 ∈ (t∗0 − ε, t∗0 + ε), we

have UA|t(w, t0) > 0, which means agents who participate at time 0 will never quit in the

neighborhood of equilibrium. By definition of SPE, t∗0 has to be a local maximum point for

maxt0 UP|t∗0 (t0 | w̄(t∗0)), then we have the first order condition

dUP|t∗0 (t0 | w̄(t∗0))

dt0

∣∣∣∣∣
t0=t∗0

=
∫ w̄(t∗0 )

0

dUA|0(w, t0)

dt0
dF(w)

∣∣∣∣
t0=t∗0

= 0.

On the other hand, the first order derivative of principal’s objective when computing the first-

best solution is given by

dUP|0(t0)

dt0
=

dw̄(t0)

dt0
UA|0(w̄(t0), t0)︸ ︷︷ ︸

=0

f (w̄(t0))+
∫ w̄(t0)

0

dUA|0(w, t0)

dt0
dF(w).

Thus, we conclude that t∗0 must be a local maximum point of maxt0∈[0,T ]UP|0(t0). Let O collect

all these local maximum points. Every subgame perfect equilibrium SPE-t∗0 is contained in O,

and satisfies

t∗0 ∈ arg max
t0∈[0,T ]

∫ w̄(t∗0 )

0

(∫ t̄(w,t0)

t=t0

δ (t0, t)dt − t̄(w, t0) ·w
)

dF(w).

Let O1 collect all subgame perfect equilibriums. Clearly, O1 6= /0, since tFB
0 ∈ O1.5 Then

we have tSB
0 = argmaxt0∈O1

w̄(t0), because in any other SPE with t∗0 6= tSB
0 , agents with w ∈

5Pick ∀t0 6= tFB
0 , by definition of tFB

0 we have

∫ w̄(tFB
0 )

0

(∫ t̄(w,tFB
0 )

t=tFB
0

δ (tFB
0 , t)dt − t̄(w, tFB

0 ) ·w
)

dF(w)≥
∫ w̄(t0)

0

(∫ t̄(w,t0)

t=t0

δ (t0, t)dt − t̄(w, t0) ·w
)

dF(w)

≥
∫ w̄(tFB

0 )

0

(∫ t̄(w,t0)

t=t0

δ (t0, t)dt − t̄(w, t0) ·w
)

dF(w).
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(w̄(t∗0), w̄(t
SB
0 )] quit at time 0; however, the joint participation of them will make the principal

change the stopping time from t∗0 to tSB
0 , and strictly benefit those agents. Thus, there always

exists coordination failure among agents except for tSB
0 .

D.1.8 Proof of Proposition 10

Proof. We first compute δ̃ t , which determines the efficient outcome. Principal’s time-0 objec-

tive functions under C
y
2 and C

δy
1 are given by

UP|0(C
y
2) =

∫ y(w̄(C
y
2
))

3

0

(
y
(
w̄(Cy

2)
)
−3w

)
dF(w), where w̄(Cy

2) =
1

3
y
(
w̄(Cy

2)
)

UP|0(C
δy
1 ) =

∫ δy(w̄(C
δy
1

))

2

0

(
δy
(
w̄(Cδy

1 )
)
−2w

)
dF(w), where w̄(Cδy

1 ) =
δ

2
y
(
w̄(Cδy

1 )
)
.

If δ < 2
3 , we can easily show that w̄(Cδy

1 ) < w̄(Cy
2), which means C

y
2 is both the efficient and

equilibrium outcome (by Theorem 9). Then there is no dynamic inconsistency for δ < 2
3 .

Thus, we only need to consider the case δ ≥ 2
3 , which means w̄(Cδy

1 ) ≥ w̄(Cy
2), and κ =

y
(
w̄(Cδy

1 )
)
/y
(
w̄(Cy

2)
)
≥ 1. As before, δ̃ t is given by

∫ y(w̄(C
y
2
))

3

0

(
y(w̄(Cy

2))−3w
)
dF(w) =

∫ δ̃ t y(w̄(C
δy
1

))

2

0

(
δ̃ ty(w̄(Cδy

1 ))−2w
)
dF(w)

⇔
∫ y(w̄(C

y
2
))

3

0

(
y(w̄(Cy

2))−3w
)
dF(w) =

∫ δ̃ tκ· y(w̄(C
y
2
))

2

0

(
δ̃ tκ · y(w̄(Cy

2))−2w
)

dF(w),

which means δ̃ tκ = δ̃ . Thus δ̃ t = δ̃/κ ≤ δ̃ . As for δ̂ t , which is given by

∫ δ̂ t y(w̄(C
y
2
))

2

0

(
y(w̄(Cy

2))−2w
)
dF(w) =

∫ δ̂ t y(w̄(C
y
2
))

2

0

(
δ̂ ty(w̄(Cy

2))−w
)
dF(w),

we have that δ̂ t ≡ δ̂ .

If δ̃ > κδ̂ , then δ̃ t > δ̂ t , which means that the collective decision is present-biased and

dynamic preference reversals occurs for δ ∈ (δ̂ t , δ̃ t). If δ̃ = κδ̂ , the range of δ which induces

preference reversals completely disappears. If δ̃ < κδ̂ , then δ̃ t < δ̂ t , which means that the

collective decision is future-biased. That is, for δ ∈ (δ̃ t , δ̂ t), the principal initially prefers

earlier consumption (C
δy
1 ) but changes to later consumption (C

y
2) when the decision time is

postponed.
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D.2 Other Omitted Results

D.2.1 Supplementary lemmas

Lemma 19. When δ is common knowledge, the pure-strategy SPE-NCF is the unique sub-

game perfect Nash equilibrium if stage (i) is extended to be a perfect-information sequential

game with arbitrary decision order of agents.

Proof. Pick arbitrary decision order of agents, and relabel them in an ascending manner. Par-

ticipation order is deterministic and common knowledge. As before, w(i) : [0,1] 7→ [0,W ]

specifies the outside option for agent i. Each agent’s action at time 0 is given by ai ∈ {0,1},

where 0 stands for quitting the group while 1 stands for participating. A history h(i) : [0,1] 7→
H =

⋃
τ∈[0,1]

{
a : [0,τ) 7→ {0,1}

}
, is the action profile of all the previous agents when agent

i is making a decision. We only need to consider the case where δ > δ̂ . Given any SPE and

any i, in the subgame Γ(hi) we have:

(1) If w(i) ≤ y
3 , then the agent gets 0 surplus by choosing ai = 0, but always gets positive

gain6 by choosing ai = 1 no matter what subgame perfect equilibrium would be induced

in Γ(hi,ai = 1), i.e. C
y
2 or C

δy
1 .

(2) If w(i) > δy
2 , the agent quits at time 0 because he always gets negative surplus in sub-

game perfect equilibrium by choosing ai = 1.

(3) If y
3 < w(i)≤ δy

2 , one can easily check that C
y
2 is implemented in subgame perfect equi-

librium only when both Γ(hi,ai = 0) and Γ(hi,ai = 1) induce SPE where C
y
2 is imple-

mented.7

Thus we have that, (i) only w ∈ ( y
3 ,

δy
2 ] are strategic, and (ii) C

y
2 is implemented in a sub-

game only when the terminal nodes are all C
y
2. Since δ > δ̂ , the joint participation of w∈ [0, δy

2 ]

can induce C
δy
1 , then C

δy
1 is one of the terminal nodes of the original game. Thus, in any SPE

the outcome must be C
δy
1 .

Next, we show that the unique SPE is where all w ∈ [0, δy
2 ] participate at time 0. Suppose

there exists some i such that w(i) ∈ ( y
3 ,

δy
2 ] and ai = 0, then we must have: C

δy
1 is induced in

6We assume that when agents are indifferent between participating and quitting the group, they prefer staying

in the group to consume the public goods.
7We distinguish four possibilities to show the result: (1) if Γ(hi,ai = 0)→SPE C

y
2 and Γ(hi,ai = 1)→SPE C

y
2,

then ai(hi) = 0 and C
y
2 is implemented; (2) if Γ(hi,ai = 0)→SPE C

y
2 and Γ(hi,ai = 1)→SPE C

δy
1 , then ai(hi) = 1

and C
δy
1 is implemented; (3) if Γ(hi,ai = 0) →SPE C

δy
1 and Γ(hi,ai = 1) →SPE C

y
2, then ai(hi) = 0 and C

δy
1 is

implemented; (4)if Γ(hi,ai = 0)→SPE C
δy
1 and Γ(hi,ai = 1)→SPE C

δy
1 , then ai(hi) = 1 and C

δy
1 is implemented.
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the SPE of Γ(hi,ai = 0), while C
y
2 is induced in the SPE of Γ(hi,ai = 1). Denote agents’ action

profile in SPE as (hi,ai = 0,(aĩ)ĩ>i), which induces the principal to choose C
δy
1 . Since agent i

also prefers C
δy
1 , the action profile (hi,ai = 1,(aĩ)ĩ>i) also induces the principal to choose C

δy
1 .

Thus, C
δy
1 is also one of the terminal nodes of subgame Γ(hi,ai = 1), contradicting that C

y
2 is

the associated SPE.

Lemma 20. In the Bayesian persuasion model with a continuum of agents, the pure-strategy

SPE-NCF can be uniquely approximated by a sequence of subgame perfect equilibriums of

stage-(i) sequential games with finitely many agents.

Proof. We apply the framework established in Fudenberg and Levine (1986). The set of play-

ers of the original game, i.e., I = [0,1], is endowed with Lebesgue measure. Consider a

sequence of finite sequential games converging to the original game, where the n-th game

has a set of players denoted by In = {0, 1
n
, 2

n
, . . . , n−1

n
,1}. A pure strategy profile for the n-

th game is a map sn : Hn 7→ A = {0,1} from histories to actions, where Hn =
⋃

i∈In
H i

n and

H i
n = {0,1}#(i′≺i), with #(i′ ≺ i) representing the number of agents who make decisions before

agent i. In the original game a pure strategy profile is a measurable map s : H 7→ A = {0,1}.

Let Sn (or S) be the space of all maps from Hn (or H) to A. The payoff function of agent i in

the n-th game is π i
n : A×Hn 7→ R; while the payoff function of agent i in the original game

is π i : A×H 7→ R. There are natural restriction mappings rn : S 7→ Sn. For the n-th game, a

subgame perfect equilibrium is ŝn = rn(ŝ)∈ Sn such that for any i ∈ In, hi
n ∈ H i

n and ai ∈ {0,1},

we have π i
n(ŝ

i, ŝ−i | hi
n)≥ π i

n(ai, ŝ
−i | hi

n). For the original game, a subgame perfect equilibrium

is ŝ ∈ S such that for any i ∈ I, hi ∈ H i and ai ∈ {0,1}, we have π i(ŝi, ŝ−i | hi)≥ π i(ai, ŝ
−i | hi).

Suppose the limit of {ŝn}∞
n=1, denoted by ŝ, is not a SPE of the original game, then there

exist some i, hi and ai 6= ŝi(hi) such that π i(ŝi, ŝ−i | hi) < π i(ai, ŝ
−i | hi)− ε for some ε > 0.

By definition of agents’ utility functions, π i is uniformly continuous. Then there exists some

sufficiently large integer N such that for all n > N we have

sup
i,ai,ŝ−i,hi

|π i(ai, ŝ
−i | hi)−π i

n(ai,rn(ŝ
−i) | rn(h

i))|< ε

3
.

It follows that

π i
n(ŝ

i
n, ŝ

−i
n | hi

n)−π i
n(ai, ŝ

−i
n | hi

n)<
(
π i(ŝi, ŝ−i | hi)+

ε

3

)
−
(
π i(ai, ŝ

−i | hi)− ε

3

)

=π i(ŝi, ŝ−i | hi)−π i(ai, ŝ
−i | hi)+

2ε

3
<−ε +

2ε

3
< 0,

contradicting that ŝn is SPE of the n-th finite game.
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On the other hand, let ŝ be the SPE-NCF, if {ŝn}∞
n=1 converges to some SPE ŝ′ 6= ŝ with

coordination failure, then the distance between ŝn and rn(ŝ) is bounded below from some

positive number when n is sufficiently large. At the same time, due to the uniform continuity

of π i, the difference in payoff structure between the original game and the n-th finite game gets

arbitrarily small, which means rn(ŝ) constitutes another SPE of the n-th game, contradicting

the uniqueness of SPE in finite extensive-form game. Thus, {ŝn}∞
n=1 must converge to ŝ.

D.2.2 An example on mechanism designs

Assume that the liquidation option (debt plan) is provided by the social planner (grand princi-

pal), whose cost of public funds is C(·)> 0. Group leader’s time-2 resource y and agents’ out-

side options are common knowledge within the group; while the grand principal only knows

that w follows a distribution function F(w) with full-support continuous density f (w), and y

follows a distribution function G(y) with full-support density g(y). The grand principal’s aim

is to maximize the expected net surplus by offering the group leader a menu of debt plans.

The mechanism (M,δ ) is made public at time 0 and the grand principal can commit to it

for the whole time horizon. At time 1 the group leader sends a message m ∈ M to the grand

principal and then is entitled to a borrowing rate δ (m). We assume that no transfer is allowed,

and that the grand principal cannot contract on the amount of resource to be liquidated. As

before, we look for subgame perfect equilibrium without coordination failure among agents.

Given the mechanism (M,δ ), in equilibrium agents’ participation at time 0 is I∗1 (y). At time 1,

the group leader’s equilibrium message is m∗(y, I∗1 (y)
)

and the associated borrowing rate is

δ
(
m∗(y, I∗1 (y))

)
. By revelation principle, we can consider direct mechanism where the group

leader only needs to report time 2’s resource.

The benchmark case is that the group leader has the commitment power to convince the

agents that her time 1’s message will align with her time 0’s promise. Group leader’s objective

function is given by

Uc
p|0(y,δ ) =





∫ y
3

0 (y−3w)dF(w) if δ ≤ δ̃ (y)
∫ δy

2
0 (δy−2w)dF(w) if δ > δ̃ (y),

where δ̃ (y), as well as δ̂ (y), is defined as before. Obviously, Uc
p|0(y,δ ) is increasing on δ ,

which means group leader will always choose the message inducing the highest δ . Thus it is

sufficient to offer a unique δ together with the default option. The objective function of the
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grand principal when offering δ is given by Oc(δ ) =

∫

δ̃ (y)≥δ

(∫ y
3

0
(y−3w)dF(w)

)
dG(y)+

∫

δ̃ (y)<δ

(∫ δy
2

0
(δy−2w)dF(w)−C(δy)

)
dG(y).

The optimal borrowing rate in the benchmark case is given by δ c = arg max
δ∈[0,1]

Oc(δ ).

Time inconsistency issue kicks in when group leader doesn’t have such commitment pow-

er. At time 1, the group leader’s objective function is

Unc
p|1(y,δ ) =





∫ y
3

0 (y−2w)dF(w) if δ ≤ δ̂ (y)
∫ δy

2
0 (δy−w)dF(w) if δ > δ̂ (y).

Suppose grand principal offers δ > δ ′ in the menu, then for any y, if δ > δ ′ > δ̂ (y) or δ >

δ̂ (y)≥ δ ′, then I∗1 = {i ∈ I | w(i)≤ δy
2 } and group leader chooses δ at time 1; if δ̂ (y)≥ δ > δ ′,

then I∗1 = {i ∈ I | w(i) ≤ y
3} and group leader chooses the default option. Thus it is sufficient

to offer a unique δ together with the default option. The grand principal’s objective function

is given by Onc(δ ) =

∫

δ̂ (y)≥δ

(∫ y
3

0
(y−3w)dF(w)

)
dG(y)+

∫

δ̂ (y)<δ

(∫ δy
2

0
(δy−2w)dF(w)−C(δy)

)
dG(y).

The optimal borrowing rate is given by δ nc = arg max
δ∈[0,1]

Onc(δ ).

Notice that for any y we have δ̂ (y)< δ̃ (y), then fixed ∀δ , we get

Oc(δ )−Onc(δ ) =
∫

δ̂ (y)<δ≤δ̃ (y)

(∫ y
3

0
(y−3w)dF(w)

)
dG(y)

−
∫

δ̂ (y)<δ≤δ̃ (y)

(∫ δy
2

0
(δy−2w)dF(w)−C(δy)

)
dG(y)

=
∫

δ̂ (y)<δ≤δ̃ (y)

(∫ y
3

0
(y−3w)dF(w)−

∫ δy
2

0
(δy−2w)dF(w)

︸ ︷︷ ︸
≥0, ∵δ≤δ̃ (y)

+C(δy)
)

dG(y)≥ 0.

Thus, time inconsistency issue is harmless if there exists δ c ∈ argmaxδ∈[0,1]O
c(δ ) such that

∫
δ̂ (y)<δ c≤δ̃ (y)

dG(y) = 0. To prove this, we first have Oc(δ c) = Onc(δ c). Together with the fact

that Oc(δ )≥ Onc(δ ) for all δ , we have Onc(δ c) = Oc(δ c)≥ Oc(δ )≥ Onc(δ ) for all δ , which

means Onc(δ c) ≥ Onc(δ nc). It follows that Onc(δ c) = Onc(δ nc). Thus δ c = δ nc and there is

no welfare loss caused by time inconsistency issue.

Notice that 2
3 < δ̃ (y) ≤ 1 for all y, then immediately time inconsistency has no effect

on efficiency if δ c = 1 or δ c ≤ 2
3 . More general, let Oc := Oc(δ c) and Onc := Onc(δ nc), the
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following proposition characterizes when efficiency is undermined by the presence of present-

biased collective decision.

Proposition 11. Social welfare is harmed by dynamic inconsistency, i.e. Oc > Onc, if and

only if for all δ c ∈ argmax
δ

Oc(δ ) we have inf
δ

δ̃ (y)< δ c < sup
δ

δ̃ (y).

Proof. (Sufficiency) By assumption on F(w), we have that δ̃ (y) and δ̂ (y) are both continuous

with respect to y. Pick ∀δ c ∈ argmax
δ

Oc(δ ), by continuity of δ̃ (y), there exist some yc such

that: (1) δ̃ (yc) = δ c, and (2) for all y′ ∈ (yc,yc + ε1) we have δ̃ (y′) ∈ (δ c,δ c + τ1). Let τ

be some strictly positive number such that τ < δ̃ (yc)− δ̂ (yc). By continuity of δ̂ (y), there

exists ε2 > 0 such that for all y′ ∈ (yc,yc+ε2) we have δ̂ (y′)< δ̂ (yc)+τ < δ̃ (yc). Define ε =

min{ε1,ε2}, then for all y′ ∈ (yc,yc+ε) we have δ̂ (y′)< δ̃ (yc) = δ c < δ̃ (y′). Since G(y) is as-

sumed to have full-support density, we have Oc(δ c)−Onc(δ c)≥ ∫
δ̂ (y)<δ c≤δ̃ (y)

C(δ cy)dG(y)>
∫ yc+ε

yc C(δ cy)dG(y) > 0. On the other hand, for any δ ′ 6∈ argmax
δ

Oc(δ ), we have Oc >

Oc(δ ′)≥ Onc(δ ′). Thus we have Oc > Onc(δ ) for all δ ∈ [0,1]. It follows that Oc > Onc.

(Necessity) By definition, Oc(δ c) ≥ Oc(δ c + ε) and Oc(δ c) ≥ Oc(δ c − ε) for all ε > 0.

Plug the expression of Oc(·) into these two inequalities, and omit all higher-order infinitesimal

terms, then we get

Oc(δ c)−Oc(δ c + ε)≃
∫

δ c<δ̃ (y)≤δ c+ε
C(δ cy)dG(y)

− ε ·
∫

δ̃ (y)≤δ c

(
F(

δ cy

2
)y−C′(δ cy)y

)
dG(y)≥ 0,

Oc(δ c)−Oc(δ c − ε)≃−
∫

δ c−ε<δ̃ (y)≤δ c
C(δ cy)dG(y)

+ ε ·
∫

δ̃ (y)≤δ c

(
F(

δ cy

2
)y−C′(δ cy)y

)
dG(y)≥ 0.

Suppose ∃δ c ∈ argmax
δ

Oc(δ ) such that δ c = sup
δ

δ̃ (y), then δ̃ (y)≤ δ c for all y, which means
∫

δ c<δ̃ (y)≤δ c+ε C(δ cy)dG(y) = 0 and
∫

δ c−ε<δ̃ (y)≤δ c C(δ cy)dG(y)> 0. Then

Oc(δ c + ε)−Oc(δ c)≃ε ·
∫

δ̃ (y)≤δ c

(
F(

δ cy

2
)y−C′(δ cy)y

)
dG(y)

≥
∫

δ c−ε<δ̃ (y)≤δ c
C(δ cy)dG(y)> 0,

which means the grand principal can strictly improve the total welfare by increasing δ . Thus

supδ δ̃ (y) cannot be the maximizer of Oc(δ ).
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If ∃δ c ∈ argmax
δ

Oc(δ ) such that δ c > sup
δ

δ̃ (y), then
∫

δ̂ (y)<δ c≤δ̃ (y)
dG(y) = 0. It follows

that δ c ∈ argmax
δ

Onc(δ ) and Oc = Onc.

If ∃δ c ∈ argmax
δ

Oc(δ ) such that δ c ≤ inf
δ

δ̃ (y), then in the benchmark case, for all y the

group leader is offered the default option. Thus it is equivalent to set δ c = 0, which means

0 ∈ argmax
δ

Oc(δ ). It follows that 0 ∈ argmax
δ

Onc(δ ) and Oc = Onc.
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ROCHET, J.-C., AND P. CHONÉ (1998): “Ironing, sweeping, and multidimensional screen-

ing,” Econometrica, pp. 783–826.

SEGAL, I. (2003): “Optimal pricing mechanisms with unknown demand,” The American eco-

nomic review, 93(3), 509–529.

SIMS, C. A. (2003): “Implications of rational inattention,” Journal of Monetary Economics,

50(3), 665–690.

SKRETA, V. (2011): “On the informed seller problem: optimal information disclosure,” Re-

view of Economic Design, 15(1), 1–36.

THOMAS, J., AND T. WORRALL (1988): “Self-enforcing wage contracts,” The Review of

Economic Studies, 55(4), 541–554.

WILSON, R. (1985): “Incentive efficiency of double auctions,” Econometrica: Journal of the

Econometric Society, pp. 1101–1115.

YAMASHITA, T. (2015): “Implementation in Weakly Undominated Strategies: Optimality of

Second-Price Auction and Posted-Price Mechanism,” Review of Economic Studies, 82(3),

1223–1246.

(2016): “Optimal public information disclosure by mechanism designer,” Working

paper.

(2017): “Optimal public information disclosure by mechanism designer,” Unpub-

lished Manuscript, Toulouse School of Economics.


	Summary
	Résumé
	Acknowledgments
	Private Disclosure with Multiple Agents
	Introduction
	Related Literature
	The Model
	Payoff environment
	Information disclosure policy
	Mechanism
	Principal's problem

	Optimal Private Disclosure Mechanism
	Relaxed problem: Strong control
	Original problem: Weak control
	Two or three agents

	Implementation: Sample-product approach
	Discussion
	Private disclosure vs. Public disclosure
	Finiteness assumption
	Information sharing among agents
	Ex post optimality

	Conclusion
	Collection and transmission of confidential information
	Differential privacy


	Foundations of Ex Post Mechanisms
	Introduction
	Model
	Type space
	Mechanism
	Foundations

	Without ordinal interdependence
	With ordinal interdependence
	Discussion: Continuous payoff-type space
	Conclusion

	Dynamic Inconsistency In Collective Decision
	Introduction
	The Model
	Agents' actions and payoffs
	Principal's problem
	Strategies and solution concept

	Dynamic Inconsistency: Present Bias
	Dynamic Preference Reversal
	Resource size effect
	Group composition effect

	Welfare Improvement
	Optimal Bayesian persuasion mechanism
	Welfare consequences

	Discussions and Applications
	Solution concept
	Provision of public facilities
	Team work

	Conclusions

	Appendix Appendix for Chapter 1
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

	Appendix Supplemental Material to Chapter 1
	Omitted Proofs
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Proposition 4
	Proof of Lemma 13

	Additional Results
	Alternative timing
	Relationship with liu2015correlation 
	General payoff environment
	Identify the truth teller 
	An alternative proof of Theorem 3
	Alternative implementation of the IUAR disclosure policy
	Extensions to the case with continuously distributed states
	Robustness to faulty agents

	Numerical Examples
	A counterexample example - 3 agents
	A counterexample example - 2 agents
	A numerical example where private disclosure is strictly better than public disclosure


	Appendix Appendix for Chapter 2
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Proposition 5
	Proof of Theorem 8

	Appendix Appendix for Chapter 3
	Omitted Proofs
	Proof of Theorem 9
	Proof of Lemma 10
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 8
	Proof of Theorem 11
	Proof of Proposition 9
	Proof of Proposition 10

	Other Omitted Results
	Supplementary lemmas
	An example on mechanism designs



