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Abstract

We study how bundling affects competition between two asymmetric multi-product

firms. One firm dominates the other in that it produces better products more efficiently.

For low (high) levels of dominance, bundling intensifies (relaxes) price competition

and lowers (raises) both firms’ profits. For intermediate dominance levels, bundling

increases the dominant firm’s market share substantially, thereby raising its profit while

reducing its rival’s profit. Hence, the threat to bundle is then a credible foreclosure

strategy. We also identify circumstances in which a firm that dominates only in some

markets can profitably leverage its dominance to other markets by tying all its products.
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Does bundling or tying intensify competition? This is a classic question addressed in the

literature on competitive bundling. While Matutes and Régibeau (1988) find that bundling

intensifies competition in a symmetric duopoly, Kim and Choi (2015) and Zhou (2017) find

that bundling can soften competition in a symmetric oligopoly when the number of firms is

above a threshold which can be small. This paper contributes to a better understanding of

how bundling affects price competition by considering an asymmetric duopoly in which one

firm has symmetric dominance in all of its product markets.1 We say that firm A is dominant

in a product market if A’s product gives a higher social surplus than its rival’s product.2

We obtain the following novel results: (i) for low levels of dominance, bundling reduces each

firm’s profit; (ii) for intermediate levels of dominance, bundling increases the dominant firm’s

profit but reduces the rival’s profit; (iii) for high levels of dominance, bundling increases each

firm’s profit.

Our theoretical findings are relevant to antitrust policy. There are two widely publicized

cases in which bundling dominant products was an issue. One is the GE/Honeywell merger

case in which GE and Honeywell were dominant in the airplane engine and avionics market,

respectively (Nalebuff, 2002). The European Commission (E.C.) opposed the merger because

of the concern that the merged entity would drive out rivals by practicing bundling. The

other is the Google-Android case: in 2016 the E.C. accused Google of abuse of dominance by

forcing smartphone manufacturers using its Android operating system to pre-install Google

Play and Google Search. The E.C. claimed that Google had more than 90% market share

in each of the three respective markets (i.e., licensable smart mobile operating systems, app

stores for the Android mobile operating system and general Internet search services) and

expressed concerns about “the practices to close off ways for rival search engines to access

the market” (European Commission, 2016).

We compare price competition under independent pricing with price competition under

pure bundling in a multidimensional Hotelling setting. In each product market, the firms

are located at the opposite ends of the unit interval; consumers’ locations are distributed

symmetrically around the center. The intuition for our results can be grasped by studying

how bundling changes the relevant distribution of consumers and how dominance affects the

1Our model extends Matutes and Régibeau (1988) not only by allowing for dominance, but also by

considering more general distributions of consumers’ locations, and any number of products.
2The higher surplus can represent higher quality or lower production cost.
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location of the marginal consumers. Together, these factors affect the number of marginal

consumers and the allocation of firms’ market shares, causing both demand elasticity and

demand size effects.

What matters under bundling is the distribution of consumers’ average locations. This

distribution is (under general conditions) more-peaked: it is thicker at the center and thinner

at the tails than the original distribution of locations.3 The dominance level affects the

location of the marginal consumers. As dominance increases, the location of the marginal

consumers is closer to that of the dominated firm. In our baseline model, the dominant firm

has the same dominance level in all product markets, so that the average dominance level,

which matters under bundling, coincides with the dominance level for each product.

Without dominance, firms are symmetric and the marginal consumers are located at

the center of the interval both under independent pricing and bundling. There are thus

more marginal consumers under bundling because of the more-peakedness. This makes

demand more elastic, intensifying price competition and lowering the profits of both firms.

By contrast, when there is very strong dominance, the dominant firm has a market share

close to one in either competition regime. Then the location of the marginal consumers is

close to that of the dominated rival. Under bundling, the tail of the distribution is thinner

and thus there are fewer marginal consumers, implying that demand is less elastic. Price

competition is softened and the profits of both firms increase. For intermediate levels of

dominance, there exists an asymmetric demand size effect which increases (reduces) the

demand of the dominant firm (the dominated firm).4 Suppose that the location of the

marginal consumers under independent pricing is strictly between the center and the location

of the dominated firm. To fix ideas, consider now bundling without changing price levels

such that the average location of the marginal consumers under bundling is the same as the

location of the marginal consumers under independent pricing. Then, because of the more-

peakedness, bundling increases the demand of the dominant firm while it reduces that of the

dominated firm. Even if both firms have incentives to change the prices, this asymmetric

demand size effect determines the signs of profit changes for a range of intermediate levels

of dominance such that bundling increases (reduces) the profit of the dominant firm (the

3This is similar to the well-known fact that the average of a random throw of two dice is more (less) likely

to be between 3 and 4 (between 5 and 6) than the random throw of a single dice.
4This effect also exists for very small and very large dominance levels, but in these cases it is negligible.
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dominated firm).

These results have an implication on the credibility of bundling when entry of firm B,

the dominated firm, is endogenous. For intermediate levels of dominance, pure bundling of

firm A is credible and builds an entry barrier. In contrast, for very high levels of dominance,

bundling does not build a barrier to entry against B (but is still profitable for A). In this case,

if A could dictate the terms of competition, the most effective way to deter entry would be

to enforce competition in independent pricing, which is opposite to the insight of Whinston

(1990).

We find that the welfare effect of bundling is non-monotonic in the dominance level. On

the one hand, bundling reduces welfare by increasing mismatch between consumer preferences

and products. On the other hand, bundling increases welfare if it increases the market share

of firm A, because firm A is not aggressive enough from a welfare point of view, both under

independent pricing and bundling. Bundling reduces welfare for low and high levels of

dominance because in these cases the increase in market share of firm A is either positive

but small or negative. However, for intermediate levels of dominance the demand size effect

is strong and A’s increase in market share may dominate the negative mismatch effect, in

which case bundling improves welfare.

In Section 4, we depart from the baseline model by considering asymmetric dominance

in the sense that firm A is dominant in some market(s) (called, tying good market(s)) but

not dominant in other market(s) (called, tied good market(s)). We identify two conditions

under which tying is profitable for firm A but hurts the rival: (i) price competition in the

tied good market is sufficiently more fierce than in the tying good market; (ii) the tying

firm leverages dominance from multiple markets. These results are relevant to the antitrust

policy of tying. For instance, in the wholesale cable TV market, channel conglomerates may

use bundling to foreclose competing channels. In fact, U.S. senator McCain introduced a

bill in 2013 to encourage the wholesale and retail unbundling of programming.5 Cablevision

filed a lawsuit against Viacom as it considers that Viacom’s obligation to acquire the bundle

of core and suite networks forecloses Cablevision from distributing competing networks.

Finally, in Section 5 we consider competition between a generalist firm A (producing n

different products) and n specialist firms (each producing exactly one of the products). When

firm B is replaced by n specialists, bundling creates a Cournot complement problem: for any

5See Crawford and Yurukoglu (2012) for an empirical analysis of retail bundling in cable TV.
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given price of A’s bundle, the specialists choose prices higher than the price that would be

chosen if they were integrated. This implies that A’s profit under bundling is strictly higher

when the rival firms are separate than when they are integrated. This suggests that bundling

would have been credible for GE and Honeywell if the merger had been approved, as they

faced specialist rivals.

1 Related literature

The bundling (or tying) literature can be divided into three categories. The papers in the

first category study bundling as a price discrimination device for a monopolist (Schmalensee,

1984; McAfee, McMillan and Whinston, 1989; Salinger, 1995; Armstrong, 1996; Bakos and

Brynjolfsson, 1999; Fang and Norman, 2006; Chen and Riordan, 2013; Menicucci, Hurkens

and Jeon, 2015; Daskalakis, Deckelbaum and Tzamos, 2017). While the monopoly setting

contrasts starkly with our duopoly model, it is worthwhile to mention that both Salinger

(1995) (with uniform density) and Fang and Norman (2006) (with log-concave density) find

the demand size effect that plays an important role in our results.

The second category is about competitive bundling where entry and exit is not an issue

(Matutes and Régibeau, 1988; Economides, 1989; Carbajo, de Meza and Seidmann, 1990;

Chen, 1997; Denicolo, 2000; Nalebuff, 2000; Gans and King, 2006; Armstrong and Vickers,

2010; Carlton, Gans and Waldman, 2010; Thanassoulis, 2011; Hahn and Kim, 2012; Kim

and Choi, 2015; Zhou, 2017). Matutes and Régibeau (1988) show that bundling intensifies

competition in the case of symmetric duopoly. Recently, Kim and Choi (2015) and Zhou

(2017) consider symmetric oligopolies and show that the result of Matutes and Régibeau

(1988) can be overturned when the number of firms is above some threshold n̂ ≥ 3. For both

papers, the results are a consequence of a demand elasticity effect which makes the demand

under bundling less elastic, as it occurs in our model for large dominance. We contribute to

the theory of competitive bundling by building a general framework that includes as a special

case the model of Matutes and Régibeau (1988) and showing that the level of dominance

of a firm is a crucial parameter such that their finding is completely reversed for strong

dominance. Hahn and Kim (2012) also extend Matutes and Régibeau (1988) by introducing

cost asymmetry, which generates results similar to our Proposition 3. However, we consider

the general class of symmetric and log-concave densities, whereas they consider only the
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uniform distribution, and we provide a unified intuition based on the demand size and

elasticity effects. Moreover, we identify novel conditions under which leverage of dominance

into a dominated market is profitable.

The last category is about the leverage theory of bundling in which the main motive

of bundling is to deter entry in the competitive segment of the market (Whinston, 1990;

Choi and Stefanadis, 2001; Carlton and Waldman, 2002; Nalebuff, 2004; Peitz, 2008; Jeon

and Menicucci, 2006, 2012). The existing theory of leverage considers leverage of monopoly

power. For instance, Whinston (1990) finds that pre-commitment to tying builds an entry

barrier by inducing the incumbent to be aggressive. However, tying is not credible as it

also reduces the profit of the incumbent if entry occurs. Therefore, his logic works only for

technical tying but not for contractual tying, which can be undone cheaply. We contribute to

the leverage theory by studying leverage of dominance (and not of monopoly power) and its

implications on entry barriers. We identify circumstances under which dominance in tying

good market(s) can be credibly leveraged into a tied good market dominated by a rival,

which provides a justification for the use of contractual bundling to deter entry.

2 Model

We consider competition between two firms A and B, each producing n > 1 different prod-

ucts. Let ij denote product j produced by firm i, for i =A, B and j = 1, . . . , n. Each

consumer has a unit demand for each product j.

We consider a model of both vertical and horizontal differentiation. Regarding the latter,

let sj ∈ [0, 1] denote a generic consumer’s location in terms of product j. For each product,

firm A is located at yA = 0 and firm B is located at yB = 1 on a Hotelling segment.

The gross utility that a consumer with location sj obtains from consuming product ij is

given by vij − tj|sj − yi|, where vij > 0 is the same for all consumers, tj > 0 is the usual

(product specific) transportation cost parameter and |sj − yi| denotes the distance between

the consumer’s and firm i’s location. Utility is assumed to be additive over different products.

We assume that vij is sufficiently high so that every consumer consumes one of the two

competing products in market j, for any j = 1, . . . , n. Hence, the products can be interpreted

not only as products that can be independently consumed, but also as perfect complements.6

6In contrast with independent products, with perfect complements a consumer gets zero gross utility unless

5



For each firm i and product j, we assume that the marginal cost is large enough that

each consumer buys at most one unit of product j. Without loss of generality, we simplify

notation by normalizing all marginal costs to zero and interpret equilibrium prices as profit

margins. A crucial role is played by the difference in surplus αj = vAj − vBj. We say that

firm A is dominant in market j when αj > 0; αj represents the level of A’s dominance in

market j.7

We assume that s1, ..., sn are i.i.d., each with support [0, 1], c.d.f. F and p.d.f. f such

that f(s) > 0 for all s ∈ (0, 1). Moreover, we assume that f is differentiable, symmetric

around 1/2, that is f(s) = f(1 − s) for each s ∈ [0, 1], and log-concave, that is log(f) is a

concave function. This implies that f is weakly increasing on [0, 1/2] and weakly decreasing

on [1/2, 1]. It also implies that log(F ) and log(1− F ) are both concave, so that both −F/f
and (1− F )/f are decreasing: see for example Bagnoli and Bergstrom (2005). For technical

and expositional reasons we assume further that f is analytic on [0,1].8

Let pij be the price charged by firm i for product j under independent pricing. Under

bundling, Pi denotes the price charged by firm i for the bundle of its products. We study

the two following games of simultaneous pricing played by firms A and B:

• Game of independent pricing [IP]: firm A chooses pAj and firm B chooses pBj for all

j = 1, . . . , n.

• Game of pure bundling [PB]: firm A chooses PA for its bundle of n products and firm

B chooses PB for its bundle of n products.

In section B.2 of the online appendix, we consider a third game in which n = 2, α1 = α2

and firms can use mixed bundling. We show that when firm A has a sufficiently large

advantage, the equilibrium outcome of mixed bundling is the same as that of pure bundling.9

In Section 3, we study our baseline model of α1 = ... = αn > 0 and compare the two

games. In addition, by making use of the comparison, we solve for the following three-stage

he buys a unit of all products. Our assumption on vij implies that, even with independent products and

additive utilities, each consumer buys all products. Hence, there is here no difference between independent

products and perfect complements.
7αj would capture difference in marginal costs if they were different.
8f is analytic if it is infinitely differentiable and its Taylor series converges to f locally uniformly.
9Relatedly, in a monopoly context Menicucci, Hurkens and Jeon (2015) and Daskalakis, Deckelbaum and

Tzamos (2017) provide conditions under which pure bundling is the best selling mechanism.
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game of entry:10

• Stage one: firm B chooses between entering by incurring a fixed cost of entry K > 0

and not entering.

• Stage two: if B has entered, each firm chooses between IP and PB.

• Stage three: firms compete in the game determined by their choices at stage two.

According to the timing of the game, firm A cannot commit to bundling or independent

pricing before entry can take place. This means in particular that a deterrence device which

relies on commitment is not available under this timing. Notice that if in stage two at

least one firm has chosen PB, then competition in stage three occurs between the two pure

bundles.11 Therefore competition in independent prices occurs if and only if both firms have

chosen IP . Also, there always exists an equilibrium in which both firms choose PB at stage

two, but it may involve playing a weakly dominated strategy. We impose that firms do

not play weakly dominated strategies, therefore (IP, IP ) is the outcome only if this is the

preferred outcome for both firms.

3 Competition between generalists: symmetric mar-

kets

In this section, we consider the baseline model of competition between firm A and firm B

where all n markets are symmetric: firm A has a symmetric dominance (i.e., α = α1 =

... = αn > 0) and the transportation cost is symmetric (i.e., t = t1 = ... = tn > 0). After

studying the game of independent pricing and that of pure bundling, we compare the two.

We consider asymmetric dominance levels and transportation costs in Section 4.

3.1 Independent Pricing

When firms compete in independent prices, we can consider each market in isolation. More-

over, since markets are symmetric, we suppress the index to product j and restrict attention

10Peitz (2008) studies the same game in the context of leveraging monopoly power.
11Indeed, suppose that firm A, for instance, has chosen PB and firm B has chosen IP . Then each consumer

either buys the pure bundle of A or the n products of firm B, which are therefore viewed as a bundle.
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to price competition on the Hotelling segment in one market. Given prices pA and pB, the

indifferent consumer is located at

x(α, pA, pB) =
1

2
+ σα− σ(pA − pB), (1)

where

σ = 1/(2t).

For simplicity, we will often suppress the arguments and simply write x for the location

of the indifferent consumer.

We suppose for now that the distribution and the parameters are such that independent

pricing leads to an interior equilibrium, i.e., both firms obtain a positive market share.12

Then the first-order conditions must be satisfied at the equilibrium prices. Since marginal

costs are assumed to be zero, the profit functions are

πA = pAF (x), πB = pB(1− F (x)),

and the first-order conditions are13

0 = F (x)− σpAf(x), 0 = 1− F (x)− σpBf(x).

If p∗A and p∗B are the equilibrium prices and x∗ denotes the equilibrium location of the

indifferent consumer, then we have

x∗= x(α, p∗A, p
∗
B) =

1

2
+ σα− σ(p∗A − p∗B) =

1

2
+ σα +

1− 2F (x∗)

f(x∗)
.

Hence, the equilibrium location of the indifferent consumer is a fixed point of the mapping:

Xα : x 7→ 1

2
+ σα +

1− 2F (x)

f(x)
. (2)

Notice that 1−2F (x)
f(x)

= −F (x)
f(x)

+ 1−F (x)
f(x)

. As we mentioned in Section 2, log-concavity of f

implies that both −F (x)
f(x)

and 1−F (x)
f(x)

are decreasing. Hence, Xα is weakly decreasing. This,

jointly with Xα(1/2) > 1/2, implies that a unique fixed point x∗ < 1 exists provided that

12Proposition 1 characterizes when an interior equilibrium exists.
13Notice that dπA

dpA
= 0 suffices to maximize πA because dπA

dpA
= F (x)[1 − σpA

f(x)
F (x) ], and because log-

concavity of F implies that f(x)
F (x) is decreasing in x, and thus increasing in pA. Hence, if p∗A solves the

first-order condition, then dπA

dpA
< 0 for pA > p∗A and dπA

dpA
> 0 for pA < p∗A. A similar argument reveals that

dπB

dpB
= 0 suffices to maximize πB with respect to pB .
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limx↑1X
α(x) < 1. The equilibrium prices are then also unique. Clearly, at α = 0 we have

x∗ = 1/2 and Proposition 1(i) establishes that x∗ is increasing in α, hence x∗ > 1/2 for

α > 0. If α is sufficiently large and f(1) > 0, then x∗ = 1.

Proposition 1 (Independent Pricing). (i) Suppose that (σα − 1/2)f(1) < 1. Then the

independent pricing game has a unique and interior equilibrium, characterized by the unique

fixed point x∗(α) of Xα, and x∗(α) ∈ [1
2
, 1). The function x∗(α) is increasing and concave

for α ≥ 0. The equilibrium prices (in each market) are

p∗A(α) =
F (x∗(α))

σf(x∗(α))
, p∗B(α) =

1− F (x∗(α))

σf(x∗(α))
.

The equilibrium profits (in each market) are

π∗A(α) =
F (x∗(α))2

σf(x∗(α))
, π∗B(α) =

(1− F (x∗(α)))2

σf(x∗(α))
.

p∗A and π∗A are increasing in α, while p∗B and π∗B are decreasing in α.

(ii) Suppose that (σα − 1/2)f(1) ≥ 1. Then the independent pricing game has a unique

equilibrium, and it is such that firm A’s market share is 1. The equilibrium prices and profits

(in each market) are

p∗A(α) = π∗A(α) = α− 1/(2σ), p∗B(α) = π∗B(α) = 0.

Note that for any prices pA and pB, the demand for firm A is given by DA(pA, pB) =

F (x(α, pA, pB)). So, the elasticity of DA with respect to pA equals

εA(pA, pB) =
σf(x)pA
F (x)

. (3)

Similarly, the demand for firm B is 1− F (x(α, pA, pB)) and its elasticity with respect to pB

equals

εB(pA, pB) =
σf(x)pB
1− F (x)

. (4)

In particular, at the equilibrium prices p∗A and p∗B the elasticity of demand with respect

to one firm’s own price is equal to one for each firm: εA(p∗A, p
∗
B) = 1 = εB(p∗A, p

∗
B). This

resembles the well-known inverse elasticity rule for a monopolist with zero marginal cost.

This is so because, for a given price of the rival, each firm acts as a monopolist with respect to

its own demand. Hence, each firm’s reaction function is determined by this inverse elasticity

rule.
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3.2 Pure Bundling

The analysis performed for independent pricing straightforwardly extends to bundling since

competition under bundling can be considered as a competition between two firms, each

offering one product – in fact, a bundle. The only difference is that we should use the

density fn of the average location (s1 + . . .+ sn)/n, and not the density f of the individual

location. Note that the density function of a sum of n i.i.d. random variables with p.d.f. f

is obtained by the n-fold convolution of f . The density function of the average, fn, is then

obtained by rescaling. It follows that fn has two properties that are relevant for our analysis

of pure bundling. First, fn is log-concave and symmetric because f is (see An, 1998, Cor.

1). Second, fn(1) = 0.

Given PA and PB chosen by the firms, let pA = PA/n and pB = PB/n denote the prices

per product. Let xn denote the average location of the indifferent consumer, which is again

given by:

xn = x(α, pA, pB) =
1

2
+ σα− σ (pA − pB) .

The equilibrium bundle prices are found in a way very similar to the analysis of indepen-

dent pricing. Let us thus define

Xα
n : x 7→ 1

2
+ σα +

1− 2Fn(x)

fn(x)
. (5)

Since fn is log-concave, we obtain (as above) that Xα
n is decreasing in x. Since fn(1) = 0,

Xα
n always admits a unique fixed point x∗n(α) < 1, and equilibrium prices and profits can

be expressed in terms of this fixed point. Hence, under pure bundling we always obtain a

unique and interior equilibrium in which both firms have a positive market share.

Proposition 2 (Pure Bundling). The pure bundling pricing game has a unique equilibrium,

characterized by the unique fixed point x∗n(α) of Xα
n , and x∗n(α) ∈ [1

2
, 1). The function x∗n(α)

is increasing and concave for α ≥ 0. The equilibrium bundle prices are

P ∗n,A(α) =
nFn(x∗n(α))

σfn(x∗n(α))
, P ∗n,B(α) =

n(1− Fn(x∗n(α)))

σfn(x∗n(α))
.

The total equilibrium profits are

Π∗n,A(α) =
nFn(x∗n(α))2

σfn(x∗n(α))
, Π∗n,B(α) =

n(1− Fn(x∗n(α)))2

σfn(x∗n(α))
.

P ∗n,A and Π∗n,A are increasing in α while P ∗n,B and Π∗n,B are decreasing in α.
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Note that the elasticity of demand for A’s bundle (w.r.t. own price per product) is given

by

ε̃A(pA, pB) =
σfn(x)pA
Fn(x)

. (6)

As under independent pricing, at the equilibrium bundle prices the elasticity of demand with

respect to a firm’s own price is equal to one.

3.3 Independent pricing vs. pure bundling

In this section we study how bundling affects each firm’s profit in comparison with indepen-

dent pricing. We first do this for the special case where each firm produces just two products

and where consumers’ locations for each product are uniformly distributed. This case allows

explicit expressions and is therefore straightforward. It shows that both firms lose (gain)

from bundling for low (high) levels of dominance, and that only the dominant firm benefits

from bundling for intermediate levels. We then show that this result extends to any number

of products and any symmetric log-concave density function. Since the proof for the general

case is quite technical, we leave that to the Appendix and here provide only the intuition,

based on the demand size and demand elasticity effects of bundling. We will explain these

effects using a few important properties of the distribution of the average location.

3.3.1 Uniform distribution and two products

In the special case of the uniform distribution, we have f(x) = 1, F (x) = x and, for

x ≥ 1/2, f2(x) = 4(1− x), F2(x) = 1− 2(1− x)2. These functions are depicted in Figure 1.

Fixing t = 1 (or σ = 1/2), we can get explicit expressions for equilibrium prices and profits

under independent pricing and bundling when n = 2 by substituting x∗ = (3 + α)/6 and

x∗2 =
(
7 + α−

√
9− 2α + α2

)
/8 into the expressions of Propositions 1 and 2.14

It is easily verified (numerically) that firm A benefits from bundling if and only if α >

1.415 and that firm B benefits from bundling if and only if α > 2.376. Defining dominance

regions

DL−− = [0, 1.415), DL+− = (1.415, 2.376), DL++ = (2.376,∞),

14The condition (σα − 1/2)f(1) ≥ 1 in Proposition 1(ii) is equivalent to α ≥ 3, hence x∗ = (3 + α)/6 if

α < 3, x∗ = 1 if α ≥ 3.

11



density function cumulative distribution function

x x
0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 1: Density and distribution functions for the uniform case. The thicker (blue) graphs

correspond to average valuations (bundling).

we see that both firms lose from bundling when α ∈ DL−−, firm A gains while firm B loses

from bundling when α ∈ DL+−, and both firms gain from bundling when α ∈ DL++.

3.3.2 The general case

We now consider the general case with n products and any symmetric log-concave f . We

will establish the existence of three dominance level regions DL−−, DL+− and DL++ with

the respective effects on the profits of firms A and B under bundling. Unfortunately, direct

comparison of the profits is hard because not only are the relevant distribution functions

(f and fn) different under independent pricing and bundling, but so are the equilibrium

locations of the indifferent consumers (x∗(α) and x∗n(α)). One exception is the symmetric

case without dominance (i.e., when α = 0) because then clearly x∗ = 1/2 = x∗n and F (1/2) =

1/2 = Fn(1/2). Direct comparison of the expressions for profits in Propositions 1 and 2 shows

that both firms lose from bundling if and only if fn(1/2) > f(1/2). We show this to be true

in Lemma 1 below. Hence, this already generalizes the findings of Matutes and Régibeau

(1988) that bundling lowers profits in a symmetric duopoly.

In order to establish our results in the case of dominance, we need some further important

properties of the density fn of the average location. First, fn is strictly more-peaked around

1/2 (the mean) than the density f of the individual location (Proschan, 1965).15 16 That is,

15In fact, for all t1, . . . , tn > 0, the weighted average (
∑n
j=1 tjsj)/

∑n
j=1 tj is distributed with a log-concave

density function that is more-peaked around the mean than that of the original variable.
16Observe that for density functions that are not log-concave, the average is not necessarily more-peaked

than the original distribution (see for instance the Cauchy distribution). This explains our restriction to
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for any z ∈ (0, 1/2), ∫ 1−z

z

f(s)ds <

∫ 1−z

z

fn(s)ds.

The more-peakedness of fn can be equivalently expressed as Fn(x) > F (x) for all x ∈ (1/2, 1).

In fact, we have Fk(x) > Fk−1(x) for all x ∈ (1/2, 1), for k = 2, ..., n. Second, Lemma 1

states two useful properties of the ratio between the density function of the average and that

of the individual locations.17

Lemma 1. Let f be a log-concave density function which is symmetric around 1/2 with

support [0, 1]. Let fn be the density function of the average of n > 1 random variables that

are i.i.d. according to the density function f . Then we have:

(i) fn(1/2) > f(1/2);

(ii) lims↑1
fn(s)
f(s)

= 0.

In sum, the distribution of the average is less dispersed than the distribution of the

original random variable. There is relatively strictly more weight at the mean and much

less weight at the extremes. Figure 1 illustrates the more-peakedness and the properties of

Lemma 1 for the case of the uniform distribution with n = 2.

Using these general properties, we now proceed to explain how bundling causes demand

size and demand elasticity effects. Jointly, they determine how firms’ profits are affected

by bundling. Rather than comparing the equilibrium profits under independent pricing and

bundling directly, we use a two-step procedure by considering an intermediate step where

firms sell the products in a bundle but charge prices corresponding to the equilibrium under

independent pricing.

Demand size effect. Suppose that initially firms A and B sell their products independently

and set the equilibrium prices p∗A and p∗B for each product. At these prices, firm A has demand

F (x∗). Suppose now that each firm bundles its n products, without changing the price per

product: PA = np∗A and PB = np∗B. Then the indifferent consumers are those whose average

location is equal to x∗. The demand for A’s bundle is thus equal to Fn(x∗) and the demand

for B’s bundle is 1 − Fn(x∗). Since Fn is more-peaked around the mean, Fn(x∗) > F (x∗)

log-concave densities.
17We develop Lemma 1 because the result does not follow generally from Proschan (1965). We use here

the fact that the support of the distributions is assumed compact. For example, property (i) of Lemma 1

does not hold for the Laplace distribution defined on the real line.

13



whenever 1/2 < x∗ < 1. Hence, bundling — without changing prices per product — leads to

a higher demand for the dominant firm. We call the difference Fn(x∗)− F (x∗) the demand

size effect of bundling. Note that this difference is tiny when x∗ ≈ 1/2 or x∗ ≈ 1, and that

it is maximal at x∗ = x̂, where x̂ ∈ (1
2
, 1) is defined by f(x̂) = fn(x̂).18

Demand elasticity effect. After bundling, the firms will have incentives to change their

prices. From Sections 3.1 and 3.2, we know that each firm chooses its price optimally

by making the elasticity of own demand equal to one. In particular, this is why p∗A =

F (x∗)/(σf(x∗)). After bundling, but before changing prices, the elasticity of demand for A’s

bundle is given by (6) and therefore equal to

ε̃A = σ
fn(x∗)

Fn(x∗)
p∗A =

fn(x∗)

f(x∗)

F (x∗)

Fn(x∗)

and this will in general not equal one. This change in the elasticity of demand after bundling

is what we call the demand elasticity effect. Clearly, for x∗ > x̂ we have fn(x∗) < f(x∗)

and then from Fn(x∗) ≥ F (x∗) we obtain ε̃A < 1. In this case, bundling makes demand less

elastic and the dominant firm wants to raise its price. In particular, for large dominance, x∗

is close to 1 and the demand elasticity effect is very large because of Lemma 1(ii). On the

contrary, for low dominance, x∗ ≈ 1/2, F (x∗) ≈ Fn(x∗) but then f2(x
∗) > f(x∗) by Lemma

1(i). Therefore, we have ε̃A > 1. In this case, bundling makes demand more elastic and the

dominant firm wants to lower its price.

For very low levels of dominance such that x∗ ≈ 1/2, both firms are similar and hence

bundling makes demand more elastic for both firms. Therefore, both firms want to lower

their price after bundling and thus lose from bundling. This result also follows directly from

the fact that profits are continuous in the dominance level and that both firms lose from

bundling when there is no dominance, as we established before.

For a range of intermediate levels of dominance, bundling affects the profits of the two

firms in different ways because of the demand size effect. Even if both firms have incentives

to change their price after bundling, this effect is dominated by the demand size effect when

the latter is relatively large, which implies that bundling then increases the profit of the

dominant firm and reduces the profit of the dominated firm.

18The existence of such x̂ is guaranteed by Lemma 1. For the sake of exposition, we assume here it is

unique.
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Finally, for very high levels of dominance, the dominant firm’s demand becomes very

inelastic after bundling, giving incentives to raise its price substantially. This shifts the

location of the indifferent consumer away from the dominated firm, raising the demand of

firm B. Since for high dominance levels the demand size effect is negligible, the overall effect

is that firm B benefits from bundling. We can make this statement easily precise if we

suppose that f(1) > 0.19 Then Proposition 1(ii) reveals that under independent pricing,

B has zero market share, zero profit, and sets p∗B = 0. Bundling cannot reduce the profit

of firm A because by charging PA = np∗A, it still sells all products to all consumers (since

necessarily PB ≥ 0) and earns the same profit as under independent pricing. But in fact,

firm A can do even better by raising its price a bit as its demand is very inelastic. Recall that

the profit of firm A is PAFn(x), and a marginal increase of its price, ∆PA, raises profits by

∆PA(Fn(x)− σ PA

n
fn(x)), which is strictly positive at x = 1 because fn(1) = 0.20 Moreover,

PA > np∗A benefits firm B as it allows B to charge a strictly positive price PB and nevertheless

have a positive market share, yielding a strictly positive profit. Hence, bundling makes both

firms better off when α is large. Lemma 2 below shows more generally that both firms prefer

bundling when bundling increases firm B’s market share, and that there exist dominance

levels for which only firm A benefits from bundling.

Lemma 2. We have the following implications for each dominance level α:

(i) If α is such that bundling strictly raises firm B’s market share, then bundling raises firm

B’s profit.

(ii) If α is such that bundling raises firm B’s profit, then bundling raises firm A’s profit.

(iii) Neither the reverse of (i) nor the reverse of (ii) holds.

An immediate consequence of Lemma 2 is that there are three regions of dominance

levels, DL−−, DL+− and DL++, with distinct effects of bundling on the firms’ profits. For

one set of dominance levels, DL−− (including α = 0), both firms are hurt by bundling; for

another set, DL+−, bundling hurts only firm B; for a final set, DL++ (including high values

of α), both firms benefit from bundling. It never happens that bundling hurts the dominant

firm while benefiting the rival. We conjecture that these dominance sets are convex sets

19Our formal proof does allow for f(1) = 0. It does not change our conclusions but complicates the

argument.
20We find at work here the same principle which makes it optimal not to sell to all consumers for a

multi-product monopolist: see Armstrong (1996).
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(i.e., intervals), but have been unable to prove it for general log-concave symmetric density

functions and number of products.21 We therefore summarize our central result as follows.

Proposition 3 (Independent pricing vs. bundling).

(i) There exist threshold levels 0 < α ≤ απA < απB ≤ ᾱ such that bundling strictly benefits

firm A and hurts firm B when α ∈ (απA, απB), strictly hurts both firms when α ∈ [0, α) and

strictly benefits both firms when α > ᾱ.

(ii) If the dominance level sets DL−−, DL+− and DL++ are convex, then α = απA and

απB = ᾱ so that (a) profits of firm A are strictly higher under bundling if and only if α > απA

and (b) profits of firm B are strictly higher under bundling if and only if α > απB.

For the case of uniform distributions, we can numerically determine the different domi-

nance level sets for different numbers of products. Let αn (respectively, ᾱn) denote the cutoff

value for which firm A (respectively B) is indifferent between independent pricing and pure

bundling when there are n products. Then α2 = 1.41, α3 = 1.42, α4 = 1.39, α8 = 1.29,

α16 = 1.19 and ᾱ2 = 2.38, ᾱ3 = 2.54, ᾱ4 = 2.64, ᾱ8 = 2.77, ᾱ16 = 2.85. Bundling more and

more products makes wider the dominance region DL+−, where only firm A benefits from

bundling, which plays a role for the result described in Proposition 6.22

Our results can be extended to the case of positive correlation in tastes. Suppose that

a fraction ρ ∈ (0, 1] of consumers have perfectly correlated locations, while the rest have

locations which are i.i.d. as above. Given (ρ, ρ′) satisfying 1 ≥ ρ > ρ′ > 0, the distribution

of the average location for ρ is less peaked than that of the average location for ρ′. Therefore,

a greater positive correlation weakens both the demand size effect and the demand elasticity

effect.23

3.4 Entry deterrence

We are now in a position to solve the three-stage game outlined in Section 2 by backward

induction. In the last stage firms choose the equilibrium prices corresponding to the bundling

game whenever at least one firm has chosen PB. This is so because if, for example, firm

21We can numerically show this to be true for the uniform distribution and 2 ≤ n ≤ 32 and for symmetric

beta-distributions f(s) = (s(1− s))β for integers 1 ≤ β ≤ 10 and n = 2.
22However, note that αn is not monotonic at n = 3 as we have α3 > α2 > α4.
23In the case of the uniform distribution with n = 2, we find that the two threshold values of α2 decrease

with ρ ∈ (0, 1). However, α2 decreases more slowly than ᾱ2.
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A chooses PB and firm B chooses IP, then effectively competition will be in bundles, and

equilibrium prices will be P ∗n,A for A’s bundle, and P ∗n,B/n for each of B’s individual products.

Substituting equilibrium payoffs from Stage 3 yields the following game to be played in Stage

2, where K denotes the fixed cost of entry of firm B.

PB IP

PB Π∗n,A,Π
∗
n,B −K Π∗n,A,Π

∗
n,B −K

IP Π∗n,A,Π
∗
n,B −K nπ∗A, nπ

∗
B −K

Of course, in this reduced form game, both firms have a weakly dominant strategy. It

is a weakly dominant strategy for firm A to choose PB when α ∈ DL+− ∪DL++ and to

choose IP otherwise. Similarly, it is a weakly dominant strategy for firm B to choose PB

when α ∈ DL++ and to choose IP otherwise.

The bundling outcome will prevail whenever firm A benefits from bundling and it will

then be enforced by firm A. For very low levels of dominance, firm A may be tempted to

threaten to use bundling in order to deter entry, as this would lower firm B’s profit. However,

such a threat is not credible because firm A would choose independent pricing once B has

entered. For (very high) levels of dominance for which bundling is profitable for firm B, firm

A cannot use bundling to deter entry. In fact, in order to deter entry, firm A would need to

threaten to use IP . Not only is this not credible, but firm B can in fact force bundling by

choosing PB unilaterally. Only for intermediate levels of dominance, bundling is profitable

for A (and thus credible) and hurts firm B. Hence, bundling can then be used as a foreclosure

strategy if it reduces B’s profit below B’s entry cost.24

3.5 Social welfare

In this subsection we study and compare static social welfare (defined as the sum of produc-

ers’ and consumers’ surplus) under independent pricing and bundling. We focus on the case

24In online Appendix B.2, we consider n = 2 and show that when firm A has a sufficiently large advantage,

the equilibrium outcome of mixed bundling is the same as that of pure bundling. Hence, if we replace Stages

2 and 3 with a single stage in which both firms can choose any tariff in mixed bundling, the outcome of the

sequential game remains unchanged as long as A’s dominance is large enough. In the case of the uniform

distribution, mixed bundling leads to the pure bundling outcome for α ≥ 9t/8.
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of f(1) > 0. We find that the effects of bundling are non-monotonic in the dominance level.

Recall from Propositions 1 and 2 that the market share is always interior under bundling

while, under independent pricing, firm A’s share becomes one when (σα−1/2)f(1) ≥ 1. We

have:

Proposition 4 (Welfare). (i) Both under independent pricing and under bundling, the mar-

ket share of firm A is too low from the point of view of social welfare for any α > 0 as long

as it is interior.

(ii) Suppose that f(1) > 0. Then bundling reduces social welfare both for α(≥ 0) small

enough and for α (≥ 0) large enough (in particular, when (σα − 1/2)f(1) ≥ 1). For inter-

mediate values of α, bundling may increase or reduce social welfare. When F is the uniform

distribution and n = 2, bundling increases social welfare if α is between 1.071t and 2.306t

and reduces social welfare otherwise.

The dominance of firm A over firm B implies that the socially optimal location of the

indifferent consumer is greater than 1
2
, but it turns out that in equilibrium firm A is often

not aggressive enough, and the location of the indifferent consumer is closer to 1
2

than the

socially optimal location. There is an exception for the case of competition under IP when

(σα − 1/2)f(1) ≥ 1, because then it is socially optimal that each consumer buys from firm

A, and x∗(α) = 1 holds because of Proposition 1(ii). This implies that IP generates a

higher social welfare than PB when α is large, since IP induces then the socially optimal

outcome that all consumers buy from firm A. Conversely, when α is close to zero the firms

are almost symmetric, thus they have about the same market share and the difference in

social welfare between IP and PB is mainly determined by transportation costs. The latter

are smaller under IP than under PB because PB prevents consumers from freely selecting

their preferred combinations of products (that is, they cannot mix and match). Hence PB

generates a lower social welfare.

However, when α takes on intermediate values PB may significantly increase the market

share of firm A with respect to IP. This brings the economy closer to the socially optimal

allocation, and this effect may outweigh the effect of transportation costs, such that PB

increases social welfare. For the uniform distribution, part (ii) of the proposition identifies

the set of values of α for which this occurs.

Our welfare comparison above has been static in the sense that we have considered a given

duopolistic market structure. However, we know from Subsection 3.4 that bundling may help
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firm A to erect an entry barrier against firm B. For instance, for the uniform distribution

and n = 2, bundling is credible and reduces B’s profit for α ∈ (1.415t, 2.376t), which largely

overlaps with the interval for which bundling increases static welfare. Therefore, one should

be very cautious in generating policy implications on bundling from static welfare analysis.

4 Credible leverage of dominance

In the previous section, we considered only one type of asymmetry, captured by the domi-

nance level α of firm A, and assumed that all markets were the same. In order to relate our

results to the leverage theory, we now consider asymmetric markets. In particular, we as-

sume that A is dominant in some market (called, tying product market) but faces an equally

strong competitor in some other market(s) (called, tied product market).25 We investigate

whether bundling can be profitable, that is, whether leverage is feasible.

With symmetric markets, the effect on profits of bundling could be decomposed into

a demand size and a demand elasticity effect. However, the demand size effect does not

straightforwardly extend to asymmetric markets because bundling at equal total price re-

duces demand for the tying product and increases demand for the tied product. When total

demand (in terms of total units sold) stays the same, bundling reduces profits when the

profit margin in the tying product is higher than in the tied product, which is typically the

case. In particular, for the profit of firm A to increase it is necessary (but not sufficient)

that firm A enjoys a positive “total” demand size effect.

It is not obvious that a firm that is dominant in one market can profitably leverage

this dominance to a second market by bundling the two products. In fact, in the case of

uniform distributions of consumers’ locations and equal transportation cost, we can show

that bundling is not credible as it reduces A’s profit for any α1 ∈ [0, 3t] and α2 = 0.

Nevertheless, we identify two circumstances in which A can leverage dominance and

increase overall profits. First, we show that (for some parameters) leverage of dominance

is possible and profitable when the firm is sufficiently dominant in a market where price

competition is relatively weak compared to that of the tied product market. Second, we

show that if the firms compete in n ≥ 3 markets and one firm is dominant in sufficiently

25By continuity, our results can be extended to situations where A is slightly dominated in the tied product

market.
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many of those, then bundling is again profitable. These results are relevant to the antitrust

policy of tying as antitrust authorities are often concerned about situations in which the tied

product is inferior to or as good as the competing product.

4.1 Asymmetric intensity of competition

In this subsection, we assume that firm A is dominant in market 1 but not in market 2

(i.e., α1 > 0 = α2), but price competition is more intense in market 2 than in market 1.

We capture this difference in competition intensity in two complementary ways. First, we

assume that, while in market 1 the location of consumers is uniformly distributed, in market

2 it is distributed according to a symmetric (and log-concave) beta distribution such that

fβ(x) = xβ−1(1 − x)β−1/B(β, β), where B(β, β) =
∫ 1

0
sβ−1(1 − s)β−1ds and β ≥ 1. Notice

that f 1 coincides with the uniform density, but for β > 1 we have fβ(1
2
) > f 1(1

2
), therefore

consumers’ locations under fβ are more concentrated around 1
2

than under f 1; this makes

market 2 more competitive than market 1, given the symmetry between the firms in this

market. Additionally, we assume that the transportation cost parameter in market 2 is

smaller than in market 1, 0 < t2 ≤ t1 = 1.

We need to extend the analysis of price competition for the bundle in this asymmetric

case. Note that a consumer with location (x1, x2) is indifferent between both bundles when

α1 − PA − t1x1 − t2x2 = −PB − t1(1− x1)− t2(1− x2).

Let x = (t1x1 + t2x2)/(t1 + t2) denote the weighted average location of a consumer. In

equilibrium, the weighted average location of the indifferent consumer is implicitly given by

x =
1

2
+

α1

2(t1 + t2)
+

1− 2F̃ (x)

f̃(x)

where F̃ is now the distribution function of the weighted average of x1 and x2. In particular,

F̃ depends on t1 and t2.

Our next proposition describes our numerical results about leverage in this setting.

Proposition 5. Consider competition between two firms each producing two products. Sup-

pose that s1 is uniformly distributed over [0, 1], while s2 is distributed according to the β-

distribution fβ with β ≥ 1. Let t1 = 1 ≥ t2 and α1 > 0 = α2. Firm A can profitably leverage

its dominance from market 1 by bundling the products when the dominance is strong enough
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and market 2 is sufficiently more competitive. Table 1 reports for different values of β and

t2 cutoff values for α1 above which bundling is profitable for firm A. Bundling always reduces

the profit of firm B.

β ↓\t2 → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 2.883 2.833 2.849 2.937 dne dne dne dne dne dne

2 2.875 2.810 2.786 2.797 2.843 2.924 dne dne dne dne

3 2.880 2.814 2.780 2.772 2.787 2.824 2.884 2.967 dne dne

4 2.886 2.821 2.783 2.766 2.768 2.786 2.821 2.872 2.940 dne

5 2.892 2.828 2.788 2.767 2.761 2.769 2.790 2.824 2.872 2.932

6 2.895 2.834 2.794 2.770 2.759 2.761 2.773 2.797 2.831 2.876

7 2.901 2.840 2.799 2.773 2.760 2.757 2.764 2.780 2.806 2.840

8 2.904 2.845 2.805 2.777 2.761 2.755 2.758 2.769 2.788 2.816

9 2.908 2.850 2.809 2.782 2.764 2.755 2.755 2.762 2.777 2.798

Table 1: Asymmetric competition intensity: Cutoff values α̂1 above which bundling is prof-

itable for firm A. The label dne indicates that such cutoff does not exist.

Note from Table 1 that whether bundling is profitable for a given level of dominance α1

is non-monotonic in β and in t2.

To illustrate the proposition, let us discuss the case of β = 5 and t2 = 1. Figure 2

shows the density functions of consumers’ locations in each market and for the average

(bundle). Competition in market 2 is more intense because f 5 is more peaked than the

uniform distribution: Without dominance, symmetric equilibrium prices are equal to 1 in

market 1 and 0.406 in market 2. Note that the density function corresponding to the bundle

is more peaked than the uniform distribution, but not so with respect to f 5. When firm A

has dominance level α1 = 3, under independent pricing, p∗A1 = 2 and p∗B1 = 0 hold and firm

A has 100% market share in market 1. Firm 1 has 50% market share in market 2 as we

assume α2 = 0. So firm A produces 75% of all units. Firm A’s profit equals 2.203 and firm

B’s profit equals 0.203.

When firms A and B bundle without changing total prices, A’s market share goes up

to 94%, indicating that the demand size effect is large. Firm A’s profit then also goes up,

to about 2.26, because he loses only a small fraction of sales in market 1 (where the profit

margin is high), whereas he gains a lot of market share in market 2. In the equilibrium under
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Figure 2: Density functions for market 1 (blue), market 2 (red) and (half) the bundle (green).

bundling, firm B reduces the total price (from 0.406 till 0.325) while firm A increases it (from

2.406 till 2.501), only partially undoing the demand size effect (from 94% till 88.5%).

4.2 Leverage of multiple products

We now assume that A and B compete in n ≥ 3 different markets, and that A is dominant

in k markets, with 1 ≤ k ≤ n − 1: α1 = ... = αk ≡ α > αk+1 = ... = αn = 0. We

consider symmetric transportation cost t1 = ... = tn = 1 and uniformly distributed consumer

locations in all markets. Then bundling is profitable for firm A when it is dominant enough

in sufficiently many markets.

Proposition 6. Consider competition between two firms each producing n ≥ 3 products.

Suppose that sj is independently and uniformly distributed over [0, 1] for j = 1, ..., n. Assume

t1 = ... = tn = 1 and α1 = ... = αk ≡ α ∈ (0, 3] and αk+1 = ...αn = 0. Then bundling always

reduces firm B’s profit but in some cases it increases firm A’s profit if α is sufficiently close

to 3. Table 2 reports for some pairs (n, k) the cutoff value α̂ ∈ (0, 3] such that bundling

increases the profit of firm A if α ∈ (α̂, 3].
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n↓\k → 1 2 3 4 5 6 7 8 9

3 dne 2.496 - - - - - - -

4 dne dne 2.023 - - - - - -

5 dne dne 2.705 1.794 - - - - -

6 dne dne dne 2.235 1.662 - - - -

7 dne dne dne 2.736 1.986 1.573 - - -

8 dne dne dne dne 2.337 1.828 1.508 - -

9 dne dne dne dne 2.723 2.099 1.718 1.458 -

10 dne dne dne dne dne 2.389 1.937 1.636 1.418

Table 2: Multiple products: Cutoff values α̂1 above which bundling is profitable for firm A

when dominant in k out of n markets. The label dne indicates that such cutoff does not

exist.

5 Competing against specialists

Up to now, we have considered competition between two generalists. In this section, we

consider competition between a generalist firm A and specialists B1, ..., Bn where Bj (j =

1, 2, ..., n) denotes the firm specialized in product j. For instance, in the case of GE-Honeywell

merger, the merged firm would compete against engine specialists and avionics specialists.

In the absence of bundling, competition in market j between A and Bj occurs as we have

described in Section 3.1.26

Under pure bundling of A’s products, it is as if the specialists offer a bundle of their

products at the price
∑n

j=1 pBj and consumers choose between A’s bundle and the bundle

of the specialists. As each specialist chooses its price non-cooperatively, bundling creates

a Cournot complement problem: for any given price of A’s bundle, the specialists choose

prices too high relative to the price that would be chosen by a generalist firm B, because

each specialist does not internalize the negative externality on the demand for the other

specialists when it raises its price. This implies that A’s profit under bundling is strictly

higher when the rival firms are separate than when they are integrated. However, it is not

clear whether the rivals’ profits under bundling will be lower than when they are integrated.

26Denicolo (2000) considers competition between a generalist and two specialists when two firms in each

product market are symmetric and characterizes how bundling affects profits when the two products are

asymmetrically differentiated.
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On the one hand, they set too high prices due to the Cournot complement problem, but on

the other hand, this in turn induces A to charge a higher price because prices are strategic

complements.

Firm A produces all products and sells them in a bundle at total price npA. Firms

B1,...,Bn produce one good each, sold at prices pB1, ..., pBn. The indifferent consumer has

average location yn where

yn =
1

2
+ σ

(
α− pA +

1

n

n∑
j=1

pBj

)
, (7)

with σ = 1/(2t). We denote with y∗∗n the equilibrium average location of the indifferent

consumer, and we can argue as in subsection 3.1 to conclude that y∗∗n is the unique fixed

point of the mapping

Y α
n : y 7→ 1

2
+ σα +

n− (n+ 1)Fn(y)

fn(y)
(8)

and y∗∗n determines the equilibrium prices and profits as described by next proposition.

Proposition 7 (Specialists). The pure bundling pricing game against specialists has a unique

equilibrium, characterized by the unique fixed point y∗∗n (α) of Y α
n , and y∗∗n (α) ∈ (1

2
, 1). The

function y∗∗n (α) is increasing and concave for α ≥ 0. The equilibrium prices per product are

p∗∗n,A(α) =
Fn(y∗∗n (α))

σfn(y∗∗n (α))
, p∗∗n,Bj(α) =

n(1− Fn(y∗∗(α)))

σfn(x∗∗(α))
for j = 1, ..., n.

The equilibrium profits are

Π∗∗n,A(α) =
nFn(y∗∗n (α))2

σfn(y∗∗n (α))
, Π∗∗n,Bj(α) =

n(1− Fn(y∗∗n (α)))2

σfn(y∗∗n (α))
for j = 1, ..., n.

p∗∗n,A and Π∗∗n,A are increasing in α while p∗∗n,B and Π∗∗n,Bi are decreasing in α.

Note that Y α
n (y) − Xα

n (y) = (n − 1)(1 − Fn(y))/fn(y) > 0 for all y ∈ (0, 1). Hence,

y∗∗n > x∗n, that is the indifferent consumer is further away from firm A when A competes

against specialists than when A faces a generalist opponent. This immediately implies the

following results.

Corollary 1 (Cournot complement). In comparison with the competition in bundles against

a generalist, bundling by a generalist who competes against specialists,

(i) leads to higher prices by both the generalist and the specialists and

(ii) yields the generalist higher sales and profit.
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Consider the case where consumers are uniformly distributed. Recall that for n = 2,

with generalists, bundling is profitable for firm A when α > 1.415t and is profitable for

firm B when α > 2.376t. In the case of specialists, bundling is profitable for firm A when

α > 0.307t and is profitable for each firm Bj when α > 2.092t. However, for n = 3, with

generalists, bundling is profitable for firm A when α > 1.425t and is profitable for firm B

when α > 2.541t. In the case of specialists, bundling is profitable for firm A when α > 0.093t

and is profitable for each firm Bj when α > 2.595t. Therefore, when B is separated into

specialists, it greatly expands the range of dominance under which bundling is credible and

reduces the rivals’ profits. Moreover, under bundling, the joint profits of the specialists may

be higher than when they are integrated. For instance, when n = 2, for 2.092t < α < 2.376t,

the joint profit of the specialists under bundling is higher than their profit under independent

pricing, which in turn is higher than the generalist B’s profit under bundling.

Gans and King (2006) consider a model with 4 symmetric specialist firms, where a pair of

firms can offer a bundled discount. This creates a similar Cournot complement effect, both

within the pair offering the discount and the rival pair, increasing the profit of the former

and reducing the profit of the latter.

5.1 Leverage when competing against specialists

Suppose now that firm A competes against two specialists as in Section 5. Assume t = t1 =

t2 = 1 and α1 > α2 = 0. We have:

Proposition 8. Consider competition between a generalist firm A and two specialists B1

and B2. Suppose that (s1, s2) is uniformly distributed over [0, 1]2 and assume t1 = t2 = 1

and α1 ∈ (0, 3) and α2 = 0. Then, pure bundling always decreases B2’s profit and the joint

profit of B1 and B2. In addition, for α1 > 0.701, pure bundling increases A’s profit; for

α1 > 1.159, pure bundling increases B1’s profit.

The proposition should be contrasted with the fact that if B1 and B2 are integrated,

tying is never profitable for A for α1 ∈ (0, 3) and α2 = 0. Therefore, the proposition

essentially captures the Cournot complement effect which arises when the competing firms

are separated. Then, for α1 > 0.701, tying is profitable and reduces both B2’s profit and the

joint profit of B1 and B2.
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6 Conclusion

We contribute to the leverage theory of tying by studying the leverage of a dominant firm

instead of a pure monopolist in the tying product market. We find that the dominant firm

benefits from a positive demand size effect of bundling, which makes its bundling credible

as long as the demand elasticity effect is not too negative. By contrast, in the case of a pure

monopolist, we find that both the demand size effect and the demand elasticity effect are

negative, which makes its bundling not credible.27 We identify four different factors that

allow a firm to profitably leverage its dominance in tying product markets to tied product

markets where it is not dominant: asymmetric distribution of consumers, asymmetric

transportation costs, multiple dominant products, competition against specialists. In reality,

some of these forces can coexist. For instance, when a channel conglomerate bundles several

strong channels with some weak ones against multiple small rivals, the last two forces are

combined to make bundling credible and powerful. Our findings provide a justification for

the use of contractual bundling for foreclosure purposes.

A Appendix

A.1 Proof of Proposition 1

(i) The condition of the proposition implies that limx→1X
α(x) < 1, so that the fixed point

x∗(α) is smaller than 1.

Now we show that x∗(α) is increasing and concave for α ≥ 0. By taking the derivative

w.r.t. α on both sides of the equation Xα(x∗(α)) = x∗(α), one obtains immediately

dx∗(α)

dα
=

σ

3 + 1−2F (x∗(α))
f(x∗(α))

f ′(x∗(α))
f(x∗(α))

.

Moreover, it follows that dx∗(α)
dα

is a strictly positive and weakly decreasing function of α:

First note that both (1 − 2F (x))/f(x) and f ′(x)/f(x) are non-positive for x ≥ 1/2. Next

observe that both functions are decreasing because of log-concavity of f . The product of

these two functions is thus positive and increasing. Since x∗(α) is increasing in α, it follows

that dx∗(α)
dα

is decreasing.

27See our working paper Hurkens, Jeon and Menicucci (2016) for the analysis.
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Next, the equilibrium price of firm A is increasing in α because (i) x∗(α) is increasing in α

and (ii) F (x)/f(x) is increasing in x by log-concavity. The equilibrium profit of firm A is then

also increasing because both equilibrium price (as seen above) and market share (F (x∗(α)))

are increasing. Similarly, the equilibrium price and profit for firm B are decreasing.

(ii) In this case, no interior equilibrium exists. Necessarily, p∗B = 0 and firm A corners the

market. The highest price to corner the market, given p∗B = 0, is p∗A = α − 1/(2σ). Clearly

firm A has no incentive to set a lower price (as demand cannot be increased). Firm A has

also no incentive to increase its price because the marginal profit, evaluated at p∗A, equals

dπA
dpA

= F (1)− σp∗Af(1) ≤ 0,

where the inequality follows directly from (σα − 1/2)f(1) ≥ 1. By virtue of the remark in

footnote 13, it follows that dπA

dpA
< 0 for any pA > p∗A. �

A.2 Proof of Proposition 2

The proof is similar to that of Proposition 1 and therefore omitted. �

A.3 Proof of Lemma 1

Proof of (i) We first show the result for n = 2. Note that

f2(1/2) = 2

∫ 1

0

f(s)2ds = 4

∫ 1/2

0

f(s)2ds > 4

∫ 1/2

1/4

f(s)2ds. (9)

Next, observe that for a log-concave function f we have log[f(a)f(b)] = log[f(a)]+log[f(b)] ≤
2 log[f(a+b

2
)] = log[f(a+b

2
)2] for any a and b in (0, 1), hence

f(a)f(b) ≤ f(
a+ b

2
)2. (10)

In particular, taking b = 1/2 and a = 2s− 1/2 in (10) yields f(s)2 ≥ f(2s− 1/2)f(1/2) for

s > 1/4. And thus∫ 1/2

1/4

f(s)2ds ≥ f(1/2)

∫ 1/2

1/4

f(2s− 1/2)ds = f(1/2)

∫ 1/2

0

1

2
f(y)dy = f(1/2)/4.

Combining this with (9) we obtain f2(1/2) > f(1/2).
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In order to prove the result for n > 2, recall that Fj is more peaked than Fj−1 for each

j ≥ 2, hence Fj(x) > Fj−1(x) for each x ∈ (1
2
, 1). Since Fj(1/2) = Fj−1(1/2), it follows that

fj(
1
2
) ≥ fj−1(

1
2
). Hence, we conclude that fj(1/2) ≥ f2(1/2) > f(1/2) for each j ≥ 2.

Proof of (ii) We denote the i-th derivative of a function g by g(i), such that g(0) = g. For

j ≥ 2, let kj ≥ 1 be such that f
(i)
j (1) = 0 for i = 0, 1, . . . , kj − 1 and f

(kj)
j (1) 6= 0. Regarding

j = 1, we define k1 as kj above if f(1) = 0; we define k1 = 0 if f(1) > 0. We will prove that

kj+1 = kj + k1 + 1 for all j ≥ 1. By L’Hôpital’s rule this implies limx↑1 fj+1(x)/fj(x) = 0 for

each j ≥ 1, hence limx↑1
fn(x)
f(x)

= 0.

We have that

fj+1(x) =

∫ 1

(j+1)x−j

j + 1

j
f(s)fj

(
(j + 1)x− s

j

)
ds

hence

f
(i)
j+1(x) =

∫ 1

(j+1)x−j

(
j + 1

j

)i+1

f(s)f
(i)
j

(
(j + 1)x− s

j

)
ds

and f
(i)
j+1(1) = 0 for i = 1, ..., kj. However, for m ≥ 1 we find

f
(kj+m)
j+1 (x) = −

m∑
h=1

(j + 1)m−h+1

(
j + 1

j

)kj+h
f (m−h)((j + 1)x− j)f (kj+h−1)

j (1) +

∫ 1

(j+1)x−j

(
j + 1

j

)kj+m+1

f(s)f
(kj+m)
j

(
(j + 1)x− s

j

)
ds

Hence,

f
(kj+m)
j+1 (1) = −

m∑
h=1

(j + 1)m−h+1

(
j + 1

j

)kj+h
f (m−h)(1)f

(kj+h−1)
j (1)

and f
(kj+m)
j+1 (1) = 0 if m ≤ k1, but f

(kj+k1+1)
j+1 (1) = −(j+1)k1+1

(
j+1
j

)kj+1

f (k1)(1)f
(kj)
j (1) 6= 0.

Therefore kj+1 = kj + k1 + 1. �

A.4 Proof of Lemma 2

We start by defining several dominance level sets.

Definition 1. (i) A+
MS = {α ≥ 0 : Fn(x∗n(α)) ≥ F (x∗(α))}

(ii) A+
πA = {α ≥ 0 : Π∗n,A(α) ≥ nπ∗A(α)}

(iii) A+
πB = {α ≥ 0 : Π∗n,B(α) ≥ nπ∗B(α)}
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(iv) A+
DENS = {α ≥ 0 : fn(x∗n(α)) ≥ f(x∗(α))}

(v) A+
PA = {α ≥ 0 : P ∗n,A(α) ≥ np∗A(α)}

(vi) A+
PB = {α ≥ 0 : P ∗n,B(α) ≥ np∗B(α)}

Let furthermore A−K = [0,∞) \ A+
K for K ∈ {MS, πA, πB,DENS}

Lemma 2 is equivalent to the following strict superset relations between various domi-

nance level sets:

A+
πA ⊃ A

+
πB ⊃ A

−
MS. (11)

We below prove (11). The proof consists of several steps. In step 1 we prove that both

firms gain from bundling for dominance levels for which firm A obtains lower market share

under bundling. In step 2 we prove the weak set relations of (11) for dominance levels for

which firm A obtains higher market share under bundling. In step 3 we prove the strictness

of the set relations. This is easy in case f(1) > 0, but requires additional steps 3.1 and 3.2

in case f(1) = 0.

Step 1. We first establish that if the dominance level belongs to A−MS, then both firms

will set higher total prices and obtain higher profits under bundling. Let ᾱ ∈ A−MS be such a

dominance level, that is Fn(x∗n(ᾱ)) < F (x∗(ᾱ)). As the distribution of the average location

is more peaked, this implies that x∗(ᾱ) > x∗n(ᾱ). From (2) and (5) we know that for any α

such that (σα− 1/2)f(1) < 1 we have28

x∗n(α)− x∗(α) =
1− 2Fn(x∗n(α))

fn(x∗n(α))
− 1− 2F (x∗(α))

f(x∗(α))
. (12)

In particular, for ᾱ the left-hand side of (12) is negative. Eq. (12) can then only hold

if fn(x∗n(ᾱ)) < f(x∗(ᾱ)). That is, ᾱ ∈ A−DENS. Using the expressions for equilibrium prices

of firm B from Propositions 1 and 2 we conclude that P ∗n,B(ᾱ) > np∗B(ᾱ). As firm B also

obtains higher market share under bundling, firm B’s profit is higher under bundling as well.

Now firm A could set bundle price Pn,A = np∗A and obtain higher market share, and thus

higher profits than what he obtains in the independent pricing equilibrium. The optimal

bundle price for firm A yields at least as much profit. As we know that in equilibrium firm

A obtains less market share than under independent pricing, the optimal bundle price must

be such that P ∗n,A(ᾱ) > np∗A(ᾱ).

28If (σᾱ − 1/2)f(1) ≥ 1, then Proposition 1(ii) applies and thus Π∗n,B(ᾱ) > nπ∗B(ᾱ) = 0, P ∗n,B(ᾱ) >

np∗B(ᾱ) = 0. Minor changes to the arguments below establish that Π∗n,A(ᾱ) > nπ∗A(ᾱ), P ∗n,A(ᾱ) > np∗A(ᾱ).
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Step 2. Next we focus on dominance levels for which firm A obtains higher market share

under bundling, that is α ∈ A+
MS. We will show that

(A+
πA ∩ A

+
MS) ⊇ (A+

PA ∩ A
+
MS) ⊇ (A−DENS ∩ A

+
MS) ⊇ (A+

PB ∩ A
+
MS) ⊇ (A+

πB ∩ A
+
MS).

It is straightforward that A+
πA ∩ A

+
MS ⊇ A

+
PA ∩ A

+
MS. Namely, for dominance levels for

which firm A sets higher total price and obtains higher market share under bundling, profits

are automatically higher under bundling.

Note that for α ∈ A−DENS∩A
+
MS, P ∗n,A = nFn(x∗n(α))/(σfn(x∗n(α))) > nF (x∗(α))/(σf(x∗(α))) =

np∗A, because the numerator is larger (and positive) and the denominator is strictly smaller

(but positive) on the left-hand side. This shows that A+
PA ∩ A

+
MS ⊇ A

−
DENS ∩ A

+
MS.

Note that for α ∈ A+
DENS ∩ A

+
MS, P ∗n,B = n(1 − Fn(x∗n(α)))/(σfn(x∗n(α))) ≤ n(1 −

F (x∗(α)))/(σf(x∗(α))) = np∗B, because the numerator is smaller (and positive) and the

denominator is larger (and positive) on the left-hand side. Moreover, the inequality must be

strict. Namely, the inequality could only be binding when both f(x∗(α)) = fn(x∗n(α)) and

F (x∗(α)) = F (x∗n(α)). But this would imply that x∗(α) = x∗n(α) because of (12). However,

this is incompatible with F (x∗(α)) = Fn(x∗n(α)) because Fn(x) > F (x) for any x ∈ (1/2, 1).

This proves that A−DENS ∩ A
+
MS ⊇ A

+
PB ∩ A

+
MS.

It is straightforward that A+
PB ∩ A

+
MS ⊇ A

+
πB ∩ A

+
MS. Namely, for dominance levels for

which firm B obtains higher total profit under bundling, despite having smaller market share

under bundling, it must be that the total price is higher under bundling.

Step 3. We show that the set relations are strict. We know that fn(x∗n(0)) > f(x∗(0)),

but if f(1) > 0 and α ≥ 1/(σf(1)) + 1/(2σ) then necessarily fn(x∗n(α)) < f(1) = f(x∗(α)).29

There must then exist a level αDENS > 0 for which fn(x∗n(αDENS)) = f(x∗(αDENS)). In

the hypothetical case that there exist multiple such levels, we choose the maximal one. We

claim that αDENS ∈ A+
MS ∩ A

+
πA ∩ A

−
πB.

It is clear that αDENS ∈ A+
MS. Namely, suppose it is not true. Then firm B has strictly

higher market share under bundling, and thus both firms would obtain higher profits under

bundling (from Step 1). However, f(x∗(αDENS)) = fn(x∗n(αDENS)) and F (x∗(αDENS)) >

Fn(x∗n(αDENS)) contradict Π∗n,A(αDENS) > nπ∗A(αDENS) (from Propositions 1 and 2.).

Using again Propositions 1 and 2, it easily follows that αDENS ∈ A+
πA. It must also be

true that firm B has strictly lower profits under bundling. Namely, profits for firm B could

29We show below in Step 3.2 that if f(1) = 0, then fn(x∗n(α)) < f(x∗(α)) still holds for a large α.
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at best be equal under bundling, but this would require that firm B’s market share is exactly

the same under both pricing regimes. We have already seen before that this is impossible

as it would imply that x∗n(αDENS) = x∗(αDENS) by Eq. (12), and thus Fn(x) = F (x) for

x = x∗n(αDENS). This thus proves the strictness of the first superset relation.

In order to prove the second, let αMS > 0 be such that market shares of the two firms are

equal under both regimes, that is, F (x∗(αMS)) = Fn(x∗(αMS)). Such a level exists if f(1) > 0

as firm B has a strictly lower market share under bundling for small positive dominance

levels, while for α ≥ 1/(σf(1)) + 1/(2σ) his market share is zero under independent pricing

(Prop. 1) but positive under bundling (Prop. 2).30 In the hypothetical case that there exist

multiple levels of dominance with this property, we choose the maximal one. We claim that

αMS > αDENS, and therefore fn(x∗n(αMS)) < f(x∗(αMS)), which implies αMS ∈ A+
πB even

though α /∈ A−MS

This follows easily from, on the one hand, observing that αMS = αDENS leads to a

contradiction, as again by Eq. (12) we would deduce that x∗n(αMS) = x∗(αMS), which is

impossible. On the other hand, αMS < αDENS is impossible because of the assumption that

αMS has been chosen as the maximal level of dominance for which market shares are equal

under the two regimes. It implies that for higher levels, in particular for αDENS, market

share is strictly lower for firm A under bundling. But we have already established before

that αDENS ∈ A+
MS. �

Step 3.1 Suppose that f(1) = 0. We prove that for j = 1, ..., n−1, we have Fj(x
∗
j(α)) >

Fj+1(x
∗
j+1(α)) for large α. It then follows that for large α, F (x∗(α)) > Fn(x∗n(α)).

Define the strictly increasing function Wj(x) = x+
2Fj(x)−1
fj(x)

. Given α > 0, we know that x∗j(α)

is such that Wj(x
∗
j(α)) = 1

2
+σα. For a large α, both x∗j(α) and x∗j+1(α) are close to 1. Thus,

given x close to 1, we select y(x) as the unique y such that Fj+1(y) = Fj(x). We prove that

Wj+1(y(x)) > Wj(x) for x close to 1, hence Wj+1(y(x∗j(α))) > Wj(x
∗
j(α)) = 1

2
+σα for a large

α, which implies x∗j+1(α) < y(x∗j(α)) and thus Fj+1(x
∗
j+1(α)) < Fj+1(y(x∗j(α))) = Fj(x

∗
j(α))

for large α.

In order to prove Wj+1(y(x)) > Wj(x), we notice that Fj+1(y(x)) = Fj(x) makes the

inequality equivalent to (y(x)−x)fj+1(y(x)) + (2Fj(x)−1)[1− fj+1(y(x))

fj(x)
] > 0. We prove that

limx↑1
fj+1(y(x))

fj(x)
= 0, hence limx↑1

(
(y(x)− x)fj+1(y(x)) + (2Fj(x)− 1)[1− fj+1(y(x))

fj(x)
]
)

= 1.

As in the proof of Lemma 1, for ` = 1, ..., n we let k` ≥ 1 be such that f
(i)
` (1) = 0 for

30We show below in Step 3.1 that if f(1) = 0, then F (x∗(α)) > Fn(x∗n(α)) still holds for a large α.
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i = 0, 1, . . . , k` − 1 and f
(k`)
` (1) 6= 0. Furthermore, we set a` = (−1)k`f

(k`)
` (1)/(k`!) > 0 and

b` = a`/(k` + 1) > 0, such that b` < a`. Then use Taylor’s formula to obtain

f`(x) = a`(1− x)k` + ηf`(x) (13)

1− F`(x) = b`(1− x)k`+1 + ηF`
(x) (14)

with

lim
x↑1

ηf`(x)

(1− x)k`
= lim

x↑1

ηF`
(x)

(1− x)k`+1
= 0 (15)

Let ε > 0 be close enough to zero to satisfy ε < b` < a` for ` = 1, ..., n, and let δ > 0 be

such that for all x ∈ (1− δ, 1) we have

|ηf`(x)| < ε(1− x)k` (16)

|ηF`
(x)| < ε(1− x)k`+1 (17)

Of course, if x is close to 1 then both x and y(x) belong to (1− δ, 1). From (14) and (17)

with ` = j + 1 we obtain

(bj+1 − ε)(1− y)kj+1+1 < 1− Fj+1(y) < (bj+1 + ε)(1− y)kj+1+1

Therefore y(x), the solution to Fj+1(y) = Fj(x), satisfies

1− Fj(x)

bj+1 + ε
< (1− y(x))kj+1+1 <

1− Fj(x)

bj+1 − ε
(18)

Similarly, from (14) and (17) (with ` = j) we obtain

(bj − ε)(1− x)kj+1 < 1− Fj(x) < (bj + ε)(1− x)kj+1 (19)

Combining (18) and (19) we thus conclude that

bj − ε
bj+1 + ε

(1− x)kj+1 < (1− y(x))kj+1+1 <
bj + ε

bj+1 − ε
(1− x)kj+1 (20)

Similarly, using (13) and (16) we obtain

fj+1(y(x))

fj(x)
<

(aj+1 + ε)(1− y(x))kj+1

(aj − ε)(1− x)kj
(21)

We conclude that

fj+1(y(x))

fj(x)
<

(
aj+1 + ε

aj − ε

)(
bj + ε

bj+1 − ε

) kj+1
kj+1+1

(1− x)
kj+1−kj
kj+1+1
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which proves that

lim
x↑1

fj+1(y(x))

fj(x)
= 0

because kj+1 > kj. �

Step 3.2 Suppose that f(1) = 0. We prove that for j = 1, ..., n−1, we have fj+1(x
∗
j+1(α)) <

fj(x
∗
j(α)) if f(1) = 0 and α is large. It then follows that for large α, fn(x∗n(α)) < f(x∗(α)).

Given x close to 1, we select z(x) as the unique z ∈ (1
2
, x) such that fj+1(z) = fj(x). We

prove that Wj+1(z(x)) < Wj(x) for x close to 1, hence Wj+1(z(x∗j(α))) < Wj(x
∗
j(α)) = 1

2
+σα

for a large α, which implies x∗j+1(α) > z(x∗j(α)) and thus fj+1(x
∗
j+1(α)) < fj+1(z(x∗j(α))) =

fj(x
∗
j(α)). The inequality Wj+1(z(x)) < Wj(x) reduces to fj(x)(z(x) − x) < 2[Fj(x) −

Fj+1(z(x))], and since z(x) < x it suffices to prove that Fj(x) > Fj+1(z(x)). We know from

the proof of Step 3.1 that if the equality Fj+1(z(x)) = Fj(x) holds for x close to 1, then

fj+1(z(x)) < fj(x). In order to obtain fj+1(z(x)) = fj(x) it is necessary to decrease z(x),

which implies Fj+1(z(x)) < Fj(x). �

A.5 Proof of Proposition 3

(i) Define α = minA+
πA, απA = supA−πA, απB = minA+

πB and ᾱ = supA−πB.

(ii) This follows straightforwardly from (i). �

A.6 Proof of Proposition 4

(i) In the market for a single product j, for a given location x of the indifferent consumer,

social welfare under IP is given by W (x) = αF (x) − T (x) (omitting vBj), where T (x) =

t
∫ x
0
zf(z)dz + t

∫ 1

x
(1 − z)f(z)dz is the total transportation cost incurred by all consumers

in that market, and is increasing for x > 1
2
. Likewise, under PB, given the location x of

the indifferent consumer, social welfare per product is given by Wn(x) = αFn(x) − Tn(x),

where Tn(x) = t
∫ x
0
zfn(z)dz + t

∫ 1

x
(1 − z)fn(z)dz. Both W and Wn are maximized by

the same location xw = min{1
2

+ σα, 1}, but the location of the equilibrium indifferent

consumer is smaller than xw. Precisely, the functions Xα and Xα
n introduced in (2) and in

(5), respectively, are such that Xα(1
2

+σα) < 1
2

+σα and Xα
n (1

2
+σα) < 1

2
+σα. This implies

that x∗(α) < xw and x∗n(α) < xw for each α > 0, except for the case of competition under

IP and (σα− 1
2
)f(1) ≥ 1, because then xw = 1 and x∗(α) = 1.
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(ii) Here we prove that W (x∗(α)) > Wn(x∗n(α)) when α ≥ 0 is close to zero. First notice

that x∗(α) and x∗n(α) are both close to 1
2
,31 and it is simple to see that Tn(1

2
) > T (1

2
) since

consumers cannot mix and match; hence Tn(x∗n(α)) > T (x∗(α)). Combining this with the

fact that αFn(x∗n(α)) and αF (x∗(α)) are both about 0 reveals that W (x∗(α)) > Wn(x∗n(α))

when α ≥ 0 is close to zero. When α is large, we have noticed in the proof to part (i) that

x∗(α) = xw = 1, hence W (x∗(α)) > Wn(x∗n(α)) holds again.

For the case of the uniform distribution with n = 2 (with t = 1), we know from Subsection

3.3 that x∗(α) = 3+α
6

and x∗2(α) =
(
7 + α−

√
9− 2α + α2

)
/8, hence

W (x∗(α)) = α · x∗(α)−
∫ x∗(α)

0

zdz −
∫ 1

x∗(α)

(1− z)dz = −1

4
+

1

2
α +

5

36
α2

W2(x
∗
2(α)) = α

(
1− 2(1− x∗2(α))2

)
−
∫ 1/2

0

z · 4zdz −
∫ x∗2(α)

1/2

z · 4(1− z)dz

−
∫ 1

x∗2(α)

(1− z) · 4(1− z)dz

= −1

3
+

3

4
α +

1

8
α2 − 1

24
α3 − 1

24
α (2− α)

√
α2 − 2α + 9

Numerical analysis reveals that W2(x
∗
2(α)) > W (x∗(α)) if and only α ∈ (1.071, 2.306).

A.7 Proof of Proposition 7

Given yn defined in (7), the profit functions are

πA = pAnFn(yn), πBj = pBj(1− Fn(yn)) for j = 1, ..., n

and the first-order conditions are

0 = Fn(yn)− σpAfn(yn), 0 = 1− Fn(yn)− σ

n
pBjfn(yn) for j = 1, ..., n

Given the equilibrium average location y∗∗n , if p∗∗n,A, p
∗∗
n,B are the (symmetric) equilibrium

prices then p∗∗n,A = Fn(y∗∗n )/(σfn(y∗∗n )) and p∗∗n,B = n(1− Fn(y∗∗n ))/(σfn(y∗∗n )). Hence

y∗∗n =
1

2
+ σα− σ(p∗∗n,A − p∗∗n,B) =

1

2
+ σα +

n− (n+ 1)Fn(y∗∗n )

fn(y∗∗n )
.

that is y∗∗n is the fixed point of (8).Notice that n−(n+1)Fn(y)
fn(y)

= −Fn(y)
fn(y)

+ n1−Fn(y)
fn(y)

, hence Y α
n is

weakly decreasing. Moreover, Y α
n (1/2) > 1/2, limy↑1 Y

α
n (y) = −∞, therefore a unique fixed

point exists for Y α
n in the interval (1

2
, 1).

31From Subsection 3.3 we also know that dx∗

dα and
dx∗

n

dα are both equal to σ
3 when α = 0.
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B On-line appendix [NOT FOR PUBLICATION]

B.1 Proof of Proposition 8

From the example immediately after Proposition 3, we see that under independent pricing

the profit is π∗A1(α1) + π∗A2(0) = 2(3+α1

6
)2 + 1

2
for firm A, and π∗B1(α1) = 2(3−α1

6
)2 for firm

B1, π∗B2(0) = 1
2

for firm B2.

In order to find the profit under bundling, we can rely on Proposition 7 and find that

Π∗∗2,A(α1/2) =
4F2(y∗∗2 (α1/2))2

f2(y∗∗2 (α1/2))
, Π∗∗2,B1(α1/2) = Π∗∗2,B2(α1/2) =

4(1−F2(y∗∗2 (α1/2)))2

f2(y∗∗2 (α1/2))
, and y∗∗2 (α1/2) is

the fixed point of the function Y
α1/2
2 (y) = 1

2
+ 1

2
α1

2
+

2−3(1−2(1−y)2)
4(1−y) in the interval (1

2
, 1), that

is y∗∗2 (α1/2) = 1
20
α1 + 9

10
− 1

20

√
α2
1 − 4α1 + 44. Numerical computations show the result. �

B.2 Mixed Bundling in the baseline model

Here, we consider the baseline model with n = 2 and study the case in which each firm is

allowed to practice mixed bundling. This means that firm i (= A,B) chooses a price Pi for

the bundle of its own products and a price pi = pij for each single product j = 1, 2. Thus

each consumer buys the bundle of a firm i and pays Pi, or buys one object from each firm

and pays pA + pB. The main result is that when α is sufficiently large, we find the same

equilibrium outcome described by Proposition 2 under pure bundling because for firm A a

pure bundling strategy is superior to any alternative strategy when it has a large advantage

over firm B. Moreover, we show that the same result holds when A competes with specialists

B1 and B2.

Without loss of generality, we assume that Pi ≤ 2pi holds for i = A,B and that each

consumer willing to buy both products of i buys i’s bundle. As a consequence, each consumer

chooses one alternative among AA, AB, BA, BB, where for instance AB means buying

products A1 and B2. In order to describe the preferred alternative of each type of consumer,

we introduce

s′ ≡ 1

2
+
α + PB − pA − pB

2t
and s′′ ≡ 1

2
+
α + pA + pB − PA

2t

where s′ ≤ s′′ holds from PA ≤ 2pA and PB ≤ 2pB.32

We find:
32Precisely, s′ is such that a consumer located at (s1, s2) = (s′, 1) (at (s1, s2) = (1, s′)) is indifferent

between the alternatives BB and AB (between the alternatives BB and BA). Likewise, s′′ is such that a

35



• Type (s1, s2) buys AA if and only if s1 ≤ s′′, s2 ≤ s′′, s1 + s2 ≤ s′ + s′′.

• Type (s1, s2) buys AB if and only if s1 ≤ s′, s2 > s′′.

• Type (s1, s2) buys BA if and only if s1 > s′′, s2 ≤ s′.

• Type (s1, s2) buys BB if and only if s1 > s′, s2 > s′, s1 + s2 > s′ + s′′.

Let Sii′ and µii′ denote, respectively, the set of types who choose ii′ and the measure of

Sii′ for ii′ = AA, AB, BA, BB. Note that µAB = µBA, and moreover µAB > 0 if 0 < s′ and

s′′ < 1;33 µAB = 0 (as in Section 3.2) if s′ ≤ 0 and/or s′′ ≥ 1.34 In either case, the firms’

profits are given by

πA = PAµAA + 2pAµAB; πB = PBµBB + 2pBµAB.

Given a equilibrium (p∗A, P
∗
A, p

∗
B, P

∗
B) with the corresponding measures, µ∗AA, µ

∗
AB, µ

∗
BB

for SAA, SAB, SBB, we say that it is a mixed bundling equilibrium if µ∗AB > 0 and that

it is a pure bundling equilibrium if µ∗AB = 0. It is almost immediate to see that a pure

bundling equilibrium exists for any values of parameters as, for each firm, pure bundling is a

best response to pure bundling.35 The next proposition establishes that no mixed bundling

equilibrium exists when the dominance of firm A is sufficiently strong. In fact, this result

also holds if firm A faces two specialist opponents B1 and B2, that is in each equilibrium firm

A plays a pure bundling strategy, such that each consumer either buys firm A’s bundle or

products B1 and B2, at least as long as we consider symmetric equilibria such that pA1 = pA2

and pB1 = pB2. The reason is that when A faces two specialists such that pB1 = pB2, A’s

pricing problem coincides with A’s problem when A faces a generalist and PB = 2pB. Hence

he has the same incentive to avoid mixed bundling strategies, as we describe immediately

after the proposition.

consumer located at (s1, s2) = (s′′, 0) (at (s1, s2) = (0, s′′)) is indifferent between the alternatives AA and

BA (between the alternatives AA and AB).
33The expressions for µAA, µAB , µBB are found in the proof of Proposition 9.
34Precisely, if s′ < 0 then each type of consumer prefers BB to AB (and to BA). If s′′ > 1, then each

type of consumer prefers AA to AB (and to BA).
35Let P ∗2,A, P

∗
2,B be the equilibrium prices from Proposition 2. Under mixed bundling, (p∗A, P

∗
2,A, p

∗
B , P

∗
2,B)

is an equilibrium if p∗A and p∗B are large enough, as for firm A (B) it is impossible to induce any type

of consumer to choose AB or BA since PB = P ∗2,B and a large pB imply s′ < 0 for any pA ≥ 0, thus

SAB = SBA = ∅ (PA = P ∗2,A and a large pA imply s′′ > 1 for any pB ≥ 0, thus SAB = SBA = ∅).
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Proposition 9. Consider the mixed bundling game with n = 2. Then both if firm A faces a

generalist opponent or two specialists opponents, we have that

(i) there exists no mixed bundling equilibrium if f(1) > 0 and α ≥ t+ t
f(1)

;

(ii) when f is the uniform density, there exists no mixed bundling equilibrium if α ≥ 9
8
t.

Proposition 9(i) relies on proving that if α is sufficiently large and (pA, PA, pB, PB) are

such that µAB > 0, then s′′ < 1 and it is profitable for A to reduce PA. A small reduction in

PA reduces A’s revenue from inframarginal consumers but attracts some marginal consumers.

When α is large, the inequality s′′ < 1 implies that PA is large. Hence, it follows that

the revenue increase (which is proportional to the initial PA) from the marginal consumers

dominates the revenue decrease from inframarginal consumers (which is proportional to the

reduction in PA). This explains why it is profitable to reduce PA until s′′ reaches the value

of 1 to make µAB = 0.36

In the case of the uniform distribution, the lower bound on α from Proposition 9(i)

is t + t
f(1)

= 2t, but Proposition 9(ii) relies on some particular features of the uniform

distribution to establish that no mixed bundling equilibrium exists if α ≥ 9
8
t.37 In order

to see how this stronger result is obtained, fix pB, PB arbitrarily and let MA denote the set

of (pA, PA) such that µAB > 0. Whereas Proposition 9(i) is proved by showing that ∂πA

∂PA
is

negative at each (pA, PA) ∈ MA if α ≥ t + t
f(1)

= 2t, for the uniform distribution we can

show that if α ∈ [9
8
t, 2t), there exists no (pA, PA) ∈ MA such that ∂πA

∂PA
= 0 and ∂πA

∂pA
= 0 are

both satisfied; therefore no mixed bundling strategy is optimal for firm A when α ∈ [9
8
t, 2t).

It is interesting to notice that a well-established result in the literature is that mixed

bundling reduces profits with respect to independent pricing, at least for symmetric firms: see

Armstrong and Vickers (2010) and references therein.38 Propositions 3(i) and 9(i), conversely,

prove that if one firm’s dominance over the other is strong enough, that is if α ≥ t+ t
f(1)

and

36Proposition 9(i) is linked to a result in Menicucci, Hurkens and Jeon (2015) (MHJ henceforth) about

the optimality of pure bundling for a two-product monopolist. See Daskalakis, Deckelbaum and Tzamos

(2017) for a similar resut in a monopoly context. In our duopoly setting, given (pB , PB) chosen by firm B,

the problem of maximizing A’s profit with respect to (pA, PA) is equivalent to the problem of maximizing

the profit of a two-product monopolist facing a consumer with suitably distributed valuations and such that

the consumer enjoys a synergy of 2pB − PB ≥ 0 if she consumes both objects. Since MHJ do not allow for

synergies, strictly speaking Proposition 9(i) is not a corollary of the results in MHJ.
37Numeric analysis suggests that (i) no mixed bundling NE exists as long as α ≥ 0.72t; (ii) when a mixed

bundling NE exists, the firms’ equilibrium profits are lower than under independent pricing.
38Armstrong and Vickers (2010) explain this result by referring to firms’ incentives to compete fiercely for
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α > ᾱ, then mixed bundling boils down to pure bundling, and each firm’s profit is larger

under mixed bundling than under independent pricing.

Proof of Proposition 9 (i)

In the case that 0 < s′ and s′′ < 1, each of the sets SAA, SAB, SBB has a positive measure

as follows:

µAA = F (s′)F (s′′) +

∫ s′′

s′
F (s′ + s′′ − s1)f(s1)ds1; µAB = F (s′)[1− F (s′′)]; (22a)

µBB = [1− F (s′)][1− F (s′′)] +

∫ s′′

s′
[1− F (s′ + s′′ − s1)]f(s1)ds1. (22b)

Therefore, given πA = PAµAA + 2pAµAB, we find

∂π

∂PA
= µAA + PA[2F (s′)f(s′′) +

∫ s′′

s′
F (s′ + s′′ − s1)f(s1)ds1](−

1

2t
)− 2pAF (s′)f(s′′)(− 1

2t
)

= F (s′)f(s′′)

[
F (s′′)

f(s′′)
− PA

t
+
pA
t

]
+

∫ s′′

s′
f(s1)f(s′ + s′′ − s1)

[
F (s′ + s′′ − s1)
f(s′ + s′′ − s1)

− PA
2t

]
ds1

and we prove that ∂π
∂PA

< 0, given s′′ < 1

• First, we prove that F (s′′)
f(s′′)

− PA

t
+ pA

t
< 0. Since f is log-concave, it follows that F

f

is increasing and F (s′′)
f(s′′)

− PA

t
+ pA

t
is decreasing in PA. Since the inequality s′′ < 1 is

equivalent to pA + pB − t + α < PA, it follows that F (s′′)
f(s′′)

− PA

t
+ pA

t
< 1

f(1)
+ t−pB−α

t
,

and the latter expression is negative given α ≥ t+ t
f(1)

.

• Now we prove that F (s′+s′′−s1)
f(s′+s′′−s1) −

PA

2t
< 0 for each s1 ∈ [s′, s′′]. Since f is log-concave, it

follows that F (s′+s′′−s1)
f(s′+s′′−s1) is decreasing in s1, and at s1 = s′ we obtain the value F (s′′)

f(s′′)
− PA

2t
,

which is negative since it is smaller than F (s′′)
f(s′′)

− PA

t
+ pA

t
< 0, given 2pA ≥ PA.

Proof of Proposition 9(ii)

Given b1 ≡ PB − pB + α, b2 ≡ pB + α ≥ b1, we say that firm A plays a pure bundling

strategy if and only if pA ≥ b1 + t and/or PA ≤ b2− t+ pA becauseµAB = 0 in either of these

cases.39 Given b1, b2, we define MA as the set of (pA, PA) such that µAB > 0, that is

MA = {(pA, PA) : pA < b1 + t, b2 − t+ pA < PA ≤ 2pA}.

We say that A plays a mixed bundling strategy if (pA, PA) ∈ MA. Notice that MA is non-

empty if and only if b1 > −t and b2 < 2t+ b1: see Figure 3.

the consumers which choose to buy both products from the same firm. This is closely related to the strong

demand elasticity effect we find when α = 0, that is when the firms are symmetric.
39Precisely, x′ ≤ 0 if and only if pA ≥ b1 + t; x′′ ≥ 1 if and only if PA ≤ b2 − t+ pA.
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t+ b1

b2 − t

b1 + b2

2t+ 2b1

PA = 2pA

PA = b2 − t+ pA

MA

2b2 − 2t

b2 − t

PA

pA

Figure 3: Mixed bundling strategies for firm A.

Using (22), for each (pA, PA) ∈MA we have

πA =
1

8t2

 P 3
A + 4p3A − 2 (b1 + b2 + 2t)P 2

A − 6p2APA − 4 (b1 − b2 + 2t) p2A + 8 (b1 + t)PApA

+(2t2 + 4tb2 + b22 + 2b1b2 − b21)PA − 4(b2 − t)(t+ b1)pA


and

∂πA
∂pA

=
1

8t2
(
12p2A − 4 (3PA + 4t− 2b2 + 2b1) pA + 8 (b1 + t)PA − 4(b2 − t)(t+ b1)

)
∂πA
∂PA

=
1

8t2
(
3P 2

A − 4 (2t+ b1 + b2)PA − 6p2A + 8 (b1 + t) pA + 2t2 + 4tb2 + b22 + 2b2b1 − b21
)
.

Since α ≥ 9
8
t implies b1 >

9
8
t, we consider the following set B of possible values for (b1, b2):

B = {(b1, b2) : 9
8
t < b1 ≤ b2 < 2t+ b1}. We prove that for each (b1, b2) ∈ B it is never a best

reply for firm A to play (pA, PA) in MA, that is the best reply of firm A is a pure bundling

strategy. The proof is organized in three steps. In Step 1 we prove that for firm A playing

independent pricing (that is, PA = 2pA) in MA is suboptimal. A mixed bundling strategy

for firm A can thus be optimal only if it lies in the interior of MA, which implies that the

first (and second) order conditions must be satisfied. However, in Step 2 we show that if
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(pA, PA) ∈ MA is such that ∂πA

∂pA
= 0, then PA must be larger than a suitable P̄A, while in

Step 3 we show that ∂πA

∂PA
= 0 implies that PA must be smaller than P̄A. Hence, it must be

optimal for firm A to play a pure bundling strategy whenever b2 ≥ 9
8
t.

Step 1 Suppose that (b1, b2) ∈ B. Playing (pA, PA) ∈ MA such that PA = 2pA is not a

best reply for firm A because either ∂πA

∂pA
> 0 and/or ∂πA

∂PA
< 0.

We start by evaluating ∂πA

∂pA
and ∂πA

∂PA
at PA = 2pA and we find

∂πA
∂pA

=
1

t2

(
−3

2
p2A + (b2 + b1)pA −

1

2
(b2 − t) (t+ b1)

)
≡ z(pA),

∂πA
∂PA

=
1

t2

(
3

4
p2A − (t+ b2)pA +

1

8

(
2b2b1 + b22 + 4tb2 + 2t2 − b21

))
≡ Z(pA).

Notice that if (pA, PA) ∈MA, then pA ∈ (b2 − t, b1 + t). Let p∗A denote the larger solution to

z(pA) = 0, that is p∗A = 1
3
(b1+b2+

√
(b2 − t)2 + (b1 + t) (2t+ b1 − b2)), and b2−t < p∗A < b1+t

since z(b2 − t) = 1
2t2

(b2 − t) (b1 − b2 + 2t) > 0 and z(b1 + t) = − 1
2t2

(b1 + t) (b1 − b2 + 2t) < 0

in B. In fact, from z(b2 − t) > 0 = z(p∗A) we infer that z(pA) > 0 for pA ∈ (b2 − t, p∗A). This

implies that (pA, PA) such that PA = 2pA and pA ∈ (b2− t, p∗A) is not a best reply for A since

it is profitable to increase pA.

For pA ∈ [p∗A, b1+t) we prove that Z(pA) < 0. This implies that (pA, PA) such that PA = 2pA

and pA ∈ [p∗A, b1 + t) is not a best reply for A since it is profitable to reduce PA. We find

Z(b1 + t) = − 1
8t2

(b2 − b1) (2t+ b1 − b2 + 2t+ 4b1) ≤ 0 in B and

Z(p∗A) = −
(2t+ b2 − b1)

(
b2 + b1 + 4

√
(b2 − t)2 + (b1 + t) (2t+ b1 − b2)

)
− 12t2

24t2

which now we prove to be negative in B. Precisely, we define ξ1(b1, b2) ≡ (2t+ b2 − b1) (b2 +

b1 + 4
√

(b2 − t)2 + (b1 + t) (2t+ b1 − b2)) and show that

ξ1(b1, b2) > 12t2 for any (b1, b2) ∈ B. (23)

To this purpose we prove below that ∂ξ1
∂b2

> 0 in B, and ξ1(b1, b1) = 4t(b1+2
√
b21 + 3t2) > 12t2

for any b1 > t implies (23). Precisely, ∂ξ1
∂b2

= 2b2 + 2t+
6b21+8b22−10b2b1+14b1t−10tb2√

(b2−t)2+(b1+t)(2t+b1−b2)
and ∂ξ1

∂b2
> 0 in

B since ξ2(b1, b2) ≡ 6b21 + 8b22 − 10b2b1 + 14b1t− 10tb2 > 0 in B.40 �

Step 2 Suppose that (b1, b2) ∈ B. If (pA, PA) ∈MA is such that ∂πA

∂pA
= 0, then PA ≥ P̄A,

for a suitable P̄A.

40Minimizing ξ2 over the closure of B yields the minimum point b1 = t, b2 = 5
4 t, with ξ2(t, 54 t) = 15

2 t
2 > 0.
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For the equation ∂πA

∂pA
= 0 in the unknown pA, there exists at least a real solution if and only

if PA ≤ 2
3
(b1 + b2 −

√
(b1 + t)(b2 − t)) or PA ≥ 2

3
(b1 + b2 +

√
(b1 + t)(b2 − t)) ≡ P̄A. We now

prove that if (pA, PA) is such that ∂πA

∂pA
= 0 and PA ≤ 2

3
(b1 + b2 −

√
(b1 + t)(b2 − t)), then

(pA, PA) /∈MA; therefore ∂πA

∂pA
= 0 implies PA ≥ P̄A.

First notice that 2
3
(b1+b2−

√
(b1 + t) (b2 − t)) is smaller than b1+b2 and in fact it is sometimes

smaller than 2b2 − 2t for some (b1, b2) ∈ B. If 2
3
(b1 + b2 −

√
(b1 + t) (b2 − t)) > 2b2 − 2t,

then the line PA = 2
3
(b1 + b2 −

√
(b1 + t) (b2 − t)) has a non-empty intersection with MA,

and we find that (i) at pA = PA − b2 + t (i.e., along the south-east boundary of MA)

∂πA

∂pA
= 1

2
(b2 − t) (b1 + b2 − PA), which is positive given PA ≤ 2

3
(b1 + b2 −

√
(b1 + t) (b2 − t));

(ii) ∂πA

∂pA
is decreasing with respect to pA for pA ≤ 1

2
PA + 1

3
(b1 − b2) + 2

3
t, and PA − b2 + t <

1
2
PA + 1

3
(b1 − b2) + 2

3
t given PA ≤ 2

3
(b1 + b2 −

√
(b1 + t)(b2 − t)). Therefore ∂πA

∂pA
> 0 for

each (pA, PA) ∈ MA such that PA ≤ 2
3
(b1 + b2 −

√
(b1 + t)(b2 − t)), and in fact for each

(pA, PA) ∈MA such that PA < P̄A. �

Step 3 Suppose that (b1, b2) ∈ B and that b2 ≥ 9
8
t. If (pA, PA) ∈ MA is a best reply for

firm A, then PA < P̄A.

The equation ∂πA

∂PA
= 0 is quadratic and convex in PA. In order to satisfy the second order

condition, the best reply for firm A must be such that PA is equal to the smaller solution of

∂πA

∂PA
= 0. We now show that ∂πA

∂PA
< 0 at PA = P̄A, which implies that the smaller solution to

∂πA

∂PA
= 0 is smaller than P̄A. We find

∂πA
∂PA

= − 3

4t2
p2A+

b1 + t

t2
pA+

2b2b1 − 7b21 − b22 − 20tb1 + 2t2 − 16t
√

(b2 − t) (b1 + t)

24t2
≡ W (pA)

and notice that P̄A < b1 + b2; therefore W is defined for pA ∈ (1
2
P̄A, P̄A − b2 + t). We prove

that W (pA) < 0 for each pA ∈ (1
2
P̄A, P̄A − b2 + t), and to this purpose we notice that W is

maximized with respect to pA at pA =

 2
3
t+ 2

3
b1 if b2 ≤ 3−

√
5

2
b1 + 5−

√
5

2
t

1
2
P̄A if b2 >

3−
√
5

2
b1 + 5−

√
5

2
t

.

• If b2 ≤ 3−
√
5

2
b1 + 5−

√
5

2
t, then b1 ≤

√
5t in order to satisfy b1 ≤ b2, and W (2

3
t + 2

3
b1) =

1
12t2

(5t2−2b1t− 1
2
b22 + b2b1 + 1

2
b21−8t

√
(b1 + t) (b2 − t)) ≡ ξ3(b1, b2), which is decreasing

in b2 and ξ3(b1, b1) = 1
12t2

(5t2 − 2tb1 + b21 − 8t
√
b21 − t2) is negative for b1 ∈ [9

8
t,
√

5t].

• If b2 >
3−
√
5

2
b1 + 5−

√
5

2
t, then we evaluate W (1

2
P̄A) = 1

24t2
(4t2− 10tb1 + 6tb2− b21− 3b22 +

4b1b2 − 4 (2t− b1 + b2)
√

(b1 + t)(b2 − t)), and we prove it is negative. Precisely, we
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show that

ξ4(b1, b2) ≡ 4 (2t− b1 + b2)
√

(b2 − t) (b1 + t)− 4t2 + 10tb1 − 6tb2 + b21 + 3b22 − 4b1b2

is positive, and from b1 + t > b2 − t we obtain ξ4(b1, b2) > 4 (2t− b1 + b2) (b2 − t) −
4t2 + 10tb1− 6tb2 + b21 + 3b22− 4b1b2 = b21 + 7b22− 8b1b2− 12t2 + 14tb1− 2tb2 ≡ ξ5(b1, b2).

It is immediate that ξ5 is increasing with respect to b2, and ξ5(b1,
3−
√
5

2
b1 + 5−

√
5

2
t) =

−1
2
(13
√

5−27)b21 + (61−23
√

5)tb1− 1
2
(33
√

5−71)t2 > 0 for b1 ∈ (9
8
t,
√

5t); ξ5(b1, b1) =

12t (b1 − t) > 0. �
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