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1 Introduction

According to Olson (1965) larger groups are less e¤ective than smaller groups because
they face a greater free-rider or collective action problem.1 Yet, even though individuals
contribute less in larger groups, it does not necessarily imply that they produce lower
levels of collective action since �by de�nition �a larger number of fellow members can
contribute to group action. Esteban and Ray (2001) consider a group contest for a prize
that can have mixed public-private characteristics and show that the group size paradox
crucially depends on the degree of convexity of e¤ort cost relative to the degree of rivalry
of the prize. If group members face constant marginal costs and if the prize exhibits some
degree of rivalry �implying that the per-capita value of the prize decreases with group size
�then larger groups are less e¤ective, as stated by Olson (1965). However, the group size
paradox is fully reversed when the cost function has the elasticity of a quadratic function
(or more) even though the prize is purely private and fully divided among a larger number
of group members. The reason is that the higher level of individual e¤ort contributed in
smaller groups is not su¢ cient �due to the cost convexity �to counterbalance the lower
number of contributors.

In this paper, we also consider a contest between two groups of di¤erent sizes for a prize
exhibiting some degree of rivalry between a pure public good and a pure private good, and
where group members incur constant, or increasing, marginal cost of contributing to col-
lective action. However, in contrast to Esteban and Ray (2001) who assume, among many
others, a �summation technology�with perfect substitutability between individual e¤orts,
we consider that the e¤ective level of group action is given by a CES technology. This
generalization allows us to take into account the possibility of complementarity between
group members�e¤orts in collective action. Indeed, as �rst pointed out by Alchian and
Demsetz (1972), we can argue that team or group production exists to the extent that it
can exploit the complementarity of inputs, and this must be especially true when group
activity aims at countering activities of competing groups.

The main result of our analysis is that the larger group has a higher probability of
success than the smaller group if the degree of complementarity between group members�
e¤ort is su¢ ciently large relative to the degree of rivalry of the prize. For example, in
the polar case of linear costs and of a purely private prize �which corresponds to the
worst case scenario for the larger group in the standard model �we �nd that an elasticity
of substitution across individual e¤orts smaller than 2 is su¢ cient for making the larger
group more successful. This work thus complements that of Esteban and Ray (2001)
by showing that larger groups can also be more e¤ective in overcoming their free-rider
problem through higher degrees of complementarity of individual e¤orts.

Few recent papers analyze contests between groups where group members�e¤orts are
not perfect substitutes. Lee (2012) considers weakest-link contests for group-speci�c public
prizes, while Chowdhury and al. (2013) take the other extreme by considering best-shot
group contests. More closely related to the present analysis, Kolmar and Rommeswinkel
(2013) assume that group e¤ort is given by a CES function of group members�e¤orts and
consider that group members are heterogeneous in their valuation of the pure public prize.
As a result of this heterogeneity, groups with higher complementarity perform worse than
similar groups with lower complementarity. Yet, they assume that individuals face linear
costs and that groups compete for a pure public good. In the present paper, all agents
have the same valuation of the prize and, thus, we focus primarily on the collective action
problem as a function of group size when the prize is an impure public good.

1For a survey of the literature on the group-size paradox, see Pecorino (2015).
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2 The model

Assume that two groups A and B with nA and nB identical members respectively, compete
for an impure public prize Y: We denote by ej � (e1j ; e2j ; ::::enjj) the vector of individual
e¤orts in group j for j = A;B. Group e¤ort depends on group members�e¤orts according
to a CES function, that is

F (ej) =

0@ njX
j=1

e�ij

1A 1
�

for j = A;B; (1)

where � 2 f(�1; 0) [ (0; 1]g measures the degree of complementarity between individual
e¤orts. The elasticity of substitution is 1=(1��). For � = 1, we have perfect substitutabil-
ity between individual e¤orts and Eq. (1) becomes the standard �summation technology�,
i.e. F (ej) =

P
j eij . For � �! �1, we have perfect complementarity and in the limit we

have F (ej) =Minfeijg (referred as to the �weakest-link�function).
This CES structure for the vector of individual contributions has been used by, among

others, Cornes and Hartley (2007) and Ray et al. (2007) in a public good provision game;
and by Münster (2009) and Kolmar and Rommeswinkel (2013) in the contest environment.
However, when � changes from a positive value to a negative value, it fundamentally
changes the nature of the model although it is never mentioned in the literature with the
notable exception (to our knowledge) of Cubel and Sanchez-Pages (2014). Indeed, for
� < 0 and a given level of individual e¤ort, total production is lower when the group is
composed of two (or more) members than when it has only one member.2 Although it
can �nd some support in situations where, for example, the managers of a company with
similar abilities step on each other for consolidating their own power (see, e.g., Miles and
Watkins, 2007), it makes less sense for addressing the collective problem within groups
in a context of competition between those groups. In the following, we thus restrict the
analysis to � 2 (0; 1].

The winning probability of group j, for j = A;B and j 6= k, is given by the following
contest-success function, i.e.

pj (ej ; ek) =

8>>><>>>:
F (ej)

F (ej) + F (ek)
if F (ej) + F (ek) 6= 0;

1

2
otherwise.

(2)

All individuals in the two groups have the same valuation of the prize. The individual
welfare of member i in group j is thus

�ij (eij ; ej ; ek) = pj (ej ; ek)
Y

n�j
� c(eij): (3)

� 2 [0; 1] measures the degree of rivalry of the prize Y . For � = 0, the prize is a
pure public good while for � = 1, it is fully private and divisible among group members.
The greater �, the larger is the rivalry of the prize. We will also assume that the cost of
individual e¤ort is isoleastic, i.e.,

c(eij) =
1


eij for i = 1; 2; :::; nj , j = A;B and  � 1: (4)

2Let consider a certain level of individual e¤ort e > 0, then the production function with n group
members becomes F (e) = n1=�e, which reaches a maximum at n = 1 for � < 0.
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We have the following Proposition.3

Proposition 1: The group contest game admits a Nash equilibrium in pure strategies. In
equilibrium, the level of e¤ort of member i in group j, for j = A;B and j 6= k, is given
by the following �rst-order condition

@F (ej)

@eij

F (ek)

[F (ej) + F (ek)]
2

Y

n�j
� e�1ij � 0; (5)

where @F (ej) =@eij =
hP

j e
�
ij

i 1
�
�1
e��1ij .

We now focus on the symmetric interior equilibrium such that all members in a group
exert the same level of e¤ort that is eij = ej for any i = 1; 2; :::; nj and j = A;B. In this

case, we have F (ej) = n
1=�
j ej and @F (ej) =@eij

��
eij=ej = n

(1��)=�
j . First-order conditions

(5) can then be rewritten as

n
(1��)=�
j n

1=�
k ek

[F (ej) + F (ek)]
2

Y

n�j
= e�1j : (6)

Thus, from these two equilibrium conditions, we can obtain

ej =

�
nk
nj

�(1+�)=
ek: (7)

In a symmetric equilibrium, the winning probability of group j � for j = A;B and
j 6= k �is thus given by

pj(e
�
j ; e

�
k) =

n�j

n�j + n
�
k

where � =
1

�
� 1 + �


: (8)

We then have the following Proposition.

Proposition 2: The larger group has a higher probability of success than the smaller
group if and only if � 2 (0;min f=(1 + �); 1g].

Using (6) and (7), the equilibrium level of individual e¤ort in the symmetric equilibrium
is given, for j = A;B and j 6= k, by

e�j =

264 n��1j n�kh
n�j + n

�
k

i2 Y
n�j

375
1


: (9)

We have that e�j > e
�
k if n

1+�
k > n1+�j . This is the illustration of the free-rider or collec-

tive action problem: the members of the larger group produce lower levels of e¤orts than

3The proof of Proposition 1 is given in the Appendix.
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the members of the smaller group. Finally, substituting (8) and (9) into (3), individual
welfare in the symmetric equilibrium is given, for j = A;B and j 6= k; by

��j
�
e�j ; e

�
k

�
=
n���j

h

�
n�j + n

�
k

�
� n�1j n�k

i

h
n�j + n

�
k

i2 Y: (10)

3 The Group Size Paradox

In this Section, we determine when the group size paradox holds and when it does not
depending on the various parameters. Let �rst consider that group members�e¤orts are
perfectly substitutable, i.e. � = 1, so that each group impact function is given by the
arithmetic sum of individual contributions. This is the standard assumption in much of
the literature on group contests. We then have the following corollary.

Corollary 1: Let � = 1. The larger group has a higher probability of success than the
smaller group for  � 1 + �, while the reverse holds for  < 1 + �.

Let further assume that the costs of contributing to collective action are linear, i.e.  = 1
and that the prize is a pure public good, i.e. � = 0. This can correspond, for example, to
the situation where �green�and producer lobbies oppose each other on the strengthening
of an environmental regulation. Group members always exert lower levels of e¤orts in the
larger group because of the free-rider problem. But this is exactly compensated by the
larger number of individuals contributing to group action. As a result, the two groups
produce the same level of collective e¤ort and have the same probability of success �that
is 1=2 since � = 0 with � =  = 1 and � = 0 �independently of the asymmetry in group
size, as �rst shown by Katz and al. (1990). A key feature of this result is that the prize
is a pure public good implying that per capita payo¤ is invariant with group size.

If, however, the prize exhibits some degree of rivalry, i.e. � 6= 0, then the per-capita
bene�t to each group member depends negatively on group size. This adds to the free-rider
problem for reducing even more individual e¤ort in the larger group. And if the marginal
cost of e¤ort remains constant, i.e.  = 1, then a greater number participants to collective
action cannot overcome both the greater free-rider problem and the lower individual stake
in the larger group compared to the smaller group. As a result, the larger group has a lower
probability of success, which corresponds to the Olson paradox. The extreme case where
the prize is purely private �i.e. � = 1 �can correspond, for example, to a contest between
two di¤erent departments of a company competing for a bonus to be equally distributed
among the members of the wining department. In this case, the winning probability of a
group is inversely related to its size � i.e. pj(e�j ; e

�
k) = nk= (nj + nk) �since � = �1 for

� =  = � = 1.
Finally, as in Esteban and Ray (2001), let consider that group members face increasing

marginal costs of contributing to collective action, i.e.  � 1. They justify it by the
fact that the input of the lobbying process can be time expended by group members.
If this case, the larger group can be more successful provided the individual e¤ort cost
is su¢ ciently convex relative to the degree of rivalry of the prize. In particular, if the
cost function is quadratic (or more) � i.e.  � 2 �then the larger group has a greater
probability of success than the smaller group even though the prize is fully private �i.e.
� = 1 �since � = 1 � (2=) � 0 for � = � = 1. Due to the cost convexity, the higher
level of individual e¤ort in the smaller group is not su¢ cient to compensate its inherent
disadvantage of having a smaller number of contributors.
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If time is the input of collective action, we should consider the existence of comple-
mentarities in e¤orts as much as a convex cost structure. Thus, in order to focus on the
complementarity e¤ect �i.e. � 6= 1 �let  = 1 and that the prize is either purely public
or purely private. Recalling that the lower �, the greater is the complementarity between
group members�e¤orts, we can establish the following Corollary.

Corollary 2: Let  = 1. (i) If the prize is a pure public good, i.e. � = 0, then the larger
group has a higher probability of success than the smaller group for any � 2 (0; 1]; (ii) If
the prize is fully private and divisible among group members, i.e. � = 1, then the larger
group has a higher probability of success than the smaller group for � 2 (0; 1=2], while the
reverse holds for � 2 (1=2; 1].

The CES structure with complementarity in e¤orts �i.e. � 6= 1 �implies that for a certain
total amount of e¤ort, a given group is more e¤ective with a larger number of participants
to collective action than with a smaller number of members exerting more individual ef-
fort. This can illustrate the Aristote�s maxim that �the whole is greater than the sum of
its parts� or that the size is an asset in group action. Think, for example, of demonstra-
tions such as the �candlelight revolution�in South Korea in 2016 against President Park
Geun-hyein, or the massive demonstrations in 2017 for and against the independence of
Catalonia (from Spain). Clearly, the strength of these social movements was measured by
their capacity to gather as many participants as possible at a speci�c time and place.

Point (ii) of Corollary 2 shows that in the special case of linear costs and of a purely
private prize �which corresponds to the worst case scenario for the larger group in the
standard model with � = 1 �we �nd that an elasticity of substitution across individual
e¤orts � given by 1=(1 � �) � smaller than 2 is su¢ cient for making the larger group
more successful in the contest. Now, if the prize is a pure public good, then the larger
group always has a higher probability of success than the smaller group if there is any
complementarity at all between group members�e¤orts, even though the marginal cost is
constant, as shown by point (i) of Corollary 2. The explanation is that the disadvantage
of larger groups in terms of per-capita value of the prize � determining in turn group
members� incentives and contributions � vanishes when the prize is purely public and
nonexcludable. Thus our analysis complements that of Esteban and Ray (2001) by showing
that complementarity in e¤orts works to the advantage of the larger group in the same
way as does the convexity of the cost function.4

Finally, relax the assumption that  = 1 and return to Proposition 2. If  > 1+ � the
larger group always has a higher probability of success for � = 1 �as stated in Corollary 1
�and a fortiori for � < 1: If  � 1+�, this is also the case provided that � 2 (0; =(1 + �)].
Thus, the higher the cost convexity and the lower the degree of rivalry of the prize, the
larger is the size of the interval of admissible values of � for which the larger group has a
higher probability of success.

4 Conclusion

As noted earlier, the very �essence�of a group is the complementarity between the e¤orts
of a certain number of agents pursuing the same objective. And it is this complementarity

4 In fact, it can be easily shown that increasing the degree of complementarity raises the probability
of success of the larger group, that is @pj=@� < 0 when nj > nk, for any � 2 f(�1; 0) [ (0; 1]g (and
independently of �). Indeed, we have that @pj=@� = �n�j [ln (nj)� ln(nk)] =

�
�(n�j + n

�
k)
�2
< 0, and thus

increasing the degree of complementarity �i.e. decreasing � �raises pj .
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that can make size an asset in group contests. We indeed show that larger groups can be
more successful than smaller groups if the degree of complementarity is su¢ ciently large
even though the prize is purely private and must be divided among a larger number of
group members. A question remains as to whether the members of larger groups also
obtain higher levels of per-capita utility. If the prize is purely public, then a greater
probability of success necessarily implies a greater per capita payo¤ simply because this
last is independent of group size. If, however, the prize is purely private then it requires
a higher degree of complementarity than that for which the larger group has a higher
probability of success.5
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Appendix

From the �rst-order condition, the �rst derivative of �ij (eij ; ej ; e�j) with respect to eij
can be written as follows

pj(:)(1� pj(:))
F (ej)

@F (ej)

@eij

Y

n�j
� e�1ij ; (A1)

where pj(:) stands for pj (ej ; e�j).
Now let 	j(:) � pj(:)(1� pj(:))=F (ej). This derivative can thus be re-written as

	j(:)
@F (ej)

@eij

Y

n�j
� e�1ij : (A2)

We now characterize the second derivative of �ij (eij ; ej ; ek) with respect to eij . We have"
@	j(:)

@eij

@F (ej)

@eij
+	j(:)

@2F (ej)

@e2ij

#
Y

n�j
� ( � 1) e�2ij : (A3)

We have

@	j(:)

@eij
=

1

[F (ej)]
2

�
@pj(:)

@eij
(1� 2pj(:))F (ej)� pj(:)(1� pj(:))

@F (ej)

@eij

�
: (A4)

We also have
@pj(:)

@eij
=
pj(:)(1� pj(:))

F (ej)

@F (ej)

@eij
: (A5)

5The details of the analysis of individual welfare are given in the working paper version available upon
request. Speci�cally, when the prize is purely private, the elasticity of substitution among group members�
e¤orts must be lower than 1:5 �i.e. � � 1=3 �for the members of the larger group to obtain higher levels of
per-capita utility, while an elasticity smaller than 2 is su¢ cient for the larger group to be more successful
in terms of probability of success. This result actually contrasts with that of Esteban and Ray (2001), who
found that the members of the larger group always get lower per-capita payo¤s when the prize is purely
private.
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Substituting into (A4), we thus have

@	j(:)

@eij
= �2pj(:)

pj(:)(1� pj(:))
[F (ej)]

2

@F (ej)

@eij
; (A6)

which can be rewritten as

@	j(:)

@eij
= �2pj(:)

	j(:)

F (ej)

@F (ej)

@eij
: (A7)

Substituting into (A3), we have"
�2pj(:)

	j(:)

F (ej)

�
@F (ej)

@eij

�2
+	j(:)

@2F (ej)

@e2ij

#
Y

n�j
� ( � 1) e�2ij : (A8)

We also have @F (ej) =@eij =
hP

j e
�
ij

i 1
�
�1
e��1ij and hence

@2F (ej)

@e2ij
=

�
1

�
� 1
��X

j
e�ij

� 1
�
�2
�e��1ij e��1ij + (�� 1)

�X
j
e�ij

� 1
�
�1
e��2ij : (A9)

Simplifying we have that

@2F (ej)

@e2ij
=
�X

j
e�ij

� 1
�
�2
e��2ij

h
(1� �) e�ij + (�� 1)

X
j
e�ij

i
: (A10)

Simplifying again, it can be rewritten as

@2F (ej)

@e2ij
= (�� 1)

�X
j
e�ij

� 1
�
�2 �X

k 6=i
e�kj

�
e��2ij : (A11)

which is always negative since � � 1. It follows that the second derivative of �ij (eij ; ej ; ek)
with respect to eij given by (A3) is always negative. Therefore, the game admits a Nash
equilibrium in pure strategies�
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Abstract: We explore a second notion of group e¤ectiveness that is that which relates
group size to per-capita payo¤s.

Per-Capita Payo¤s

We now determine whether individuals are better-o¤ in the larger (say group j) or in the
smaller group (say group k). For the sake of simplicity, we assume  = 1 and that the
prize is either a pure public good, i.e. � = 0, or a fully divisible prize, i.e. � = 1. From
(10) we can write the di¤erence between the welfare of a member of the larger group j
and that of a member of the smaller group k as:

�j ��k =
n���j

h
n�j + n

�
k � n

�1
j n

�
k

i
� n���k

h
n�k + n

�
j � n�1k n�j

i
h
n�j + n

�
k

i2 Y:

Recall that � = (1=�) � (1 + �) and let consider that 	j = n�j + n�k � n�1j n
�
k and

	k = n�k + n
�
j � n�1k n�j . We can see that 	j > 	k for � 2 (0; 1], independently of �.

Indeed 	j > 	k can be reduced to n
�+1
j > n�+1k , where � + 1 = 1

� � � > 0 for any

� 2 (0; 1]. For � = 0, we also have n���j > n���k and thus �j��k > 0. Now, for � = 1, we
still have 	j > 	k but n

���
j can be larger or smaller that n���k depending on the value of

�. We have �� 1 = 1
� � 3 so that n

��1
j > n��1k for � 2 (0; 1=3], implying that �j ��k > 0.

But for � 2 (1=3; 1] we have that n��1j < n��1k and 	j > 	k. Therefore, we rewrite the
above equation for � = 1 as:

�j ��k =
n2��1j � n2��1k + (njnk)

�
h�
n�1j � n�1k

�
�
�
n�2j � n�2k

�i
h
n�j + n

�
k

i2 Y: (11)

The expression
�
n�1j � n�1k

�
�
�
n�2j � n�2k

�
is always negative for nj > nk and the ex-

pression n2��1j �n2��1k is also negative for � 2 (0:4; 1] since 2��1 = (2=�)�5 when � = 1.
Therefore, we can state:

Proposition 3: (i) When the prize is a pure public good, i.e. � = 0, then a member of
the larger group gets higher welfare than a member of the smaller group for � 2 (0; 1]. (ii)
When the prize is a fully divisible good, i.e. � = 1, a member of the larger group gets a
higher welfare than a member of the smaller group for � 2 (0; 1=3], while the reverse holds
for � 2 (0:4=1]. However, the result is ambiguous for � 2 (1=3; 0:4].

When the prize is a pure public good �i.e. � = 0 �so that the per capita value of the
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prize is independent of group size, the larger group always has a larger probability of
success and in addition group members produce lower levels of e¤orts because of a greater
free-rider problem. Thus, in this case, a higher probability of success necessarily implies
higher individual welfare and thus members are always better o¤ in a larger group.

When the prize is purely private �i.e. when � = 1 �the per-capita payo¤ is not directly
related to the probability of success since an increase in group size reduces the availability
of the prize to individual members (because of the rivalry). The cost of individual e¤ort
is still lower in a larger group but the e¤ect is ambiguous on the probability of success
and it depends on the elasticity of substitution between group members�e¤orts. Again,
if this one is lower than two �that is if � lower than one half �then the larger group has
a higher probability of success but it requires a smaller � �that is lower than 1/3 �for
individual members to be better o¤ in a larger group than in a smaller group. This is
nevertheless a strong di¤erence with the analysis of Esteban and Ray (2001). They show
that individuals are always worse o¤ in a larger group independently of whether it has a
lower or greater probability of success.

The crucial di¤erence is that the positive group size bias in our analysis comes from
the existence of complementarities rather than from the convexity of the individual cost
function. And this complementarity can compensate, for a larger group, the greater free-
rider problem, the lower individual stake and thus the lower incentive to contribute, but
also the direct negative impact on the per-capita value of the prize.

Finally, the result is ambiguous for � 2 (1=3; 0:4]. We thus present in the following
some numerical examples. We set the value of the fully divisible prize at Y = 100.

Table 1: Numerical examples for � 2 (1=3; 0:4]

� nj nk �j ��k
0:37 4 3 �0:026
0:37 5 2 0:635
0:37 4 2 0:876
0:37 100 50 �0:135
0:34 4 3 0:951
0:34 5 2 3:604
0:34 4 2 3:538
0:34 100 50 �0:003

Table 1 shows that the sign of �j � �k depends on both � and on the asymmetry in
group size, but also on the total number of players involved in the contest. For example,
whether � = 0:34 or � = 0:37 and for the same ratio of group size nj=nk = 2, the
sign of �j � �k changes as the total numbers of players increases from (4 + 2) = 6 to
(100 + 50) = 150:
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