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1 Introduction

Several cartels involving newspaper publishers have been uncovered all around the world.

In 1969, a U.S. District Court convicted of monopolization the two daily newspapers of

general circulation in Tucson, Arizona, for jointly setting subscription and advertising

rates.1 In 1996, several Venezuelan newspapers were convicted of forming a cartel to

fix advertising rates for movie theaters.2 In 2005, the Brazilian antitrust authority fined

the four largest newspapers in Rio de Janeiro for forming a cartel, after a simultaneous

increase in cover prices by 20%.3 In 2010, the Croatian antitrust authority established

that nine publishers of daily newspapers engaged in concerted practices that translated

into a uniform increase in newspapers’ cover prices.4 In 2014, the Hungarian antitrust

authority convicted the four major newspaper publishers in the country of price-fixing

conspiracy.5 Also in 2014, the Montenegrin antitrust authority convicted the three major

daily newspaper publishers in the country for price-fixing conspiracy.6

Newspapers are two-sided platforms that enable the interaction between two distinct

types of agents: advertisers and readers. As pointed out by Evans and Schmalensee (2013,

p. 2), “a number of results for single-sided firms, which are the focus of much of the applied

antitrust economics literature, do not apply directly to multi-sided platforms.” However,

the theoretical literature on collusion in two-sided markets is remarkably scarce, which is

striking given the empirical evidence on collusion in these markets.7 In particular, our

understanding of imperfect collusion among two-sided platforms, i.e., collusion that does

not yield the monopoly outcome, is very limited.

In this paper, we study the price and welfare effects of collusion between two horizontally

1Citizen Publishing Co. v. United States 394 U.S. 131 (1969).
2See page 9 of the 2005 report by the Venezuelan antitrust authority available at: http://www.oecd.

org/daf/competition/prosecutionandlawenforcement/38835563.pdf.
3CADE - Processo Administrativo no. 08012.002097/99-81.
4CCA vs. daily newspaper publishers: UP/I 030-02/2008-01/072.
5Gazdasági Versenyhivatal (GVH) - Case Number: Vj/23/2011.
6Agency for Protection of Competition - Case Number: 02-UPI-68/1-14. In this case, there was even

a written agreement signed by three of the convicted publishers, where they combined to simultaneously
increase the retail price of newspapers.

7There are several examples of collusion between two-sided platforms outside the newspaper market.
The most famous example dates back to 2002, when the two largest worldwide fine art auction houses,
Christie’s and Sotheby’s, were fined for coordinating vendor commission rates (COMP/E-2/37.784). More
recently, in 2019, the four issuers of restaurant vouchers in France were fined for sharing information on
the number of issued tickets (individual market shares) from 2010 to 2015, which allowed them to detect
deviations in the issuing fees charged to the companies (AdC Décision 19-D-25). This was not the first
time collusive behavior was detected in this market: in 2002, three of these firms had already been fined
for market sharing agreements and for setting a uniform commission rate to restaurateurs (AdC Décision
01-D-41).
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differentiated platforms, allowing for any degree of collusion. Our baseline model is an

infinitely repeated version of the canonical Armstrong (2006)’s model, with single-homing

on both sides and either positive or negative cross-group externalities. We first consider the

scenario in which platforms engage in two-sided collusion, that is, collusion on the prices

set on both sides of the market. We show that the most profitable collusive agreement

involves a price structure that minimizes the platforms’ incentives to deviate from the

agreement. Using this result, we show that (optimal) collusion distorts the price structure

(relative to the static Nash equilibrium) by leading to more rent extraction from the side

in which the degree of differentiation is higher. We also establish that two-sided collusion

may either lead to higher prices on both sides of the market or to lower prices on one side

of the market (the one with the lower degree of differentiation) and higher prices on the

other side of the market. The latter scenario occurs when the degree of differentiation on

one of the sides is sufficiently low (relative to cross-group externalities) and the discount

factor is not too large.

We then consider the scenario in which platforms engage in one-sided collusion, i.e.,

they set their prices cooperatively on one side of the market and non-cooperatively on the

other side. Such a collusive behavior can be explained by the existence of coordination or

antitrust costs that make it optimal for platforms to collude on a single side of the market,

and has been documented empirically in the case of newspapers. For instance, using data

from the Italian daily newspaper market from 1976 to 2003, Argentesi and Filistrucchi

(2007) found empirical evidence that the four biggest newspapers colluded on cover prices,

but found no evidence for collusion on advertising rates.8

One-sided collusive agreements affect the prices on the non-cooperative side of the

market because of the existence of cross-group externalities. If increasing the price on the

collusive side softens competition on the non-cooperative side, the most profitable one-

sided collusive agreement leads to supra-competitive prices on both sides of the market.

This happens when the cross-group externalities exerted on the collusive side are negative.

By contrast, if increasing the price on the collusive side strengthens competition on the

non-cooperative side, the price on one of the two sides will be above its static Nash level,

while the price on the other side will be below its static Nash level. This scenario occurs

when the cross-group externalities exerted on the collusive side are positive. Interestingly,

if these externalities are sufficiently high (relative to the degree of differentiation on the

8There are also real-world examples of two-sided platforms active in other markets and convicted for
collusion on a single side of the market. For instance, the German TV groups Prosieben and RTL were
convicted in 2007 for collusion on the advertising side and, as discussed before, the four issuers of restaurant
vouchers in France were fined in 2019 for cooperation on the issuing side.
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collusive side), the price on the collusive side is below its static Nash level, while the price

on the non-cooperative side is above its static Nash level. As a result, one-sided collusion

may benefit the users on the collusive side and harm the users on the non-cooperative side.

Next, we extend our analysis to a setting in which there is single-homing on one side of

the market and multi-homing on the other side. A key difference between this extension

and the baseline model (assuming full market coverage) is that total demand on the multi-

homing side increases (resp. decreases) when prices on the multi-homing side decrease

(resp. increase). Therefore, collusion in that setting can affect total welfare while it does

not in our baseline model. We first show that two-sided collusion has no impact on the

price on the multi-homing side but leads to a price increase on the single-homing side.

Consequently, users on the multi-homing side and total welfare are not affected while users

on the single-homing side are harmed. Turning to one-sided collusion we show that, as

in the baseline model, collusion on a single side leads to a decrease in the price on that

side and an increase in the price on the other side if the network externalities received by

the collusive side are positive and large enough. We further establish that when collusion

occurs on the single-homing (resp. multi-homing) side only, it raises total welfare if and

only if the cross-group externalities received by the collusive side are strong enough (resp.

positive and large enough).

Related literature. Ruhmer (2011) is the closest paper to ours. She also considers

a repeated version of Armstrong’s model but her setting is substantially less general than

ours. First, in the context of two-sided collusion, she focuses on perfect collusion (i.e., collu-

sion at the monopoly prices) while we allow for imperfect collusion as well. This is natural

when platforms are differentiated: in this case, perfect collusion may not be sustainable

while (profitable) collusion at other prices could be. The distinction between perfect and

imperfect two-sided collusion turns out to be crucial: a focus on perfect collusion leads to

the prediction that prices always increase if platforms collude on both sides of the market,

while this is not always true under imperfect collusion. Second, in the context of one-sided

collusion, Ruhmer (2011) focuses on the profitability and sustainability of a very specific

collusive agreement in which platforms set the price on the collusive side at the maximum

level that allows them to fully cover that side of the market (which is above the static

Nash level). In contrast, we do not restrict the type of one-sided collusive agreements that

platforms can achieve and show that they may find it optimal to decrease the price on the

collusive side below its static Nash level. This explains, in particular, why one-sided col-

lusion may be unprofitable in Ruhmer’s setting, while this is never the case in our setting.

Finally, we examine both the scenario in which there is single-homing on both sides and
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a competitive bottleneck scenario with multi-homing on a single side, while Ruhmer only

deals with the former. Our analysis of the case where users on one side are allowed to

multi-home brings additional insights as it allows us to have a demand expansion effect on

the multi-homing side.

Our paper is also related to the work of Dewenter et al. (2011) who build a model to

investigate the welfare effects of collusion between newspaper publishers. They consider a

static setting where newspapers compete in prices in the reader market and in quantities in

the advertising market, and compare the platforms’ profits when there is two-sided perfect

collusion, one-sided perfect collusion (on the advertising side) and two-sided competition.

In contrast, we investigate, in a dynamic setting, the most profitable sustainable agreement,

allowing for intermediate degrees of collusion and analyzing the incentives for platforms to

comply with the collusive agreement. Dewenter et al. (2011) find that, when newspapers

only collude on the advertisers’ side, the price is lower on the non-cooperative side while

it is higher on the collusive side (as compared to the static Nash prices). By contrast, we

show that one-sided collusion may also lead to a price lower than the competitive price on

the collusive side.9

Another paper our work is related to is Boffa and Filistrucchi (2014). These authors

build a model of collusion between two TV channels and use it to show that prices above

the two-sided monopoly price may prevail on one side of the market as a means to enhance

cartel sustainability. However, they assume that the price on the viewer side is zero and

study collusion in quantities, which makes their paper complementary to ours. Moreover,

they focus on the case of two-sided collusion while we also deal with one-sided collusion.

There is also a small literature on collusion with network externalities in one-sided

markets. Pal and Scrimitore (2016) show that the relationship between market concentra-

tion and collusion sustainability depends on the strength of network externalities. In the

same vein, Song and Wang (2017) show that the presence of strong network externalities

can reverse the traditional result that collusion between firms is easier with differentiated

products (Deneckere, 1983). Finally, Rasch (2017) studies the relationship between firms’

incentives to introduce compatibility and collusion and finds that it is non-monotonic.

Finally, our paper is also linked to the work by Choi and Gerlach (2013) on firms’

incentives to collude when they interact in multiple markets and demands in these markets

9In both papers, the users on the collusive side may benefit from a one-sided collusive agreement, but
the mechanisms driving this result in the two papers are different. In Dewenter et al. (2011), this result
may hold despite the price increase on the collusive side because of an indirect feedback effect: the price
decrease on the non-cooperative side leads to more participation on that side, which benefits the users on
the collusive side. In contrast, in our baseline model, the result that one-sided collusion may benefit the
users on the collusive side is driven by the direct impact on the price paid by these users.
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are interrelated. The main goal of Choi and Gerlach (2013) is, however, fundamentally

different from ours. They focus on antitrust enforcement issues and, in particular, on

whether the discovery of a cartel in one market favors the emergence or collapse of a cartel

in another market. Moreover, they restrict their attention to homogeneous goods, which

implies in particular that collusion at the monopoly price is sustainable whenever some

collusion is sustainable. In contrast, we consider a setting with differentiated platforms

and possibly imperfect collusion, and abstract away from antitrust enforcement issues.

The remainder of the paper is organized as follows. In Section 2, we investigate the price

and welfare effects of two-sided and one-sided collusion in a setting with single-homing on

both sides of the market. In Section 3, we extend our analysis to the scenario in which

there is single-homing on one side of the market and (partial) multi-homing on the other

side of the market. We discuss some of our assumptions and derive the policy implications

of our findings in Section 4. Finally, we conclude in Section 5. Most of the proofs are

relegated to the Appendix.

2 Baseline model: Single-homing on both sides

We consider an infinitely repeated version of Armstrong’s (2006) model with single-homing

on both sides of the market. There are two platforms in the market, A and B, that enable

the interaction between two groups of users, 1 and 2. Users on each side are uniformly

distributed along the interval [0, 1] and platforms are located at the extremes: xA = 0 and

xB = 1. Platform i ∈ {A,B} sets a subscription fee pij to the users on each side of the

market j ∈ {1, 2}. There is single-homing on both sides of the market and the utility of

an agent on side j located at x ∈ [0, 1] that joins platform i is:

uij(x, p
i
1, p

i
2, p
−i
1 , p

−i
2 ) = kj + αjn

i
−j(p

i
1, p

i
2, p
−i
1 , p

−i
2 )− tj

∣∣xi − x∣∣− pij, (1)

where: kj is the intrinsic benefit that an agent on side j gets from joining a platform; αj

captures the benefit (which can be positive or negative) that an agent on side j enjoys from

the existence of an agent on the other side of the market that joined the same platform;

and tj > 0 measures the degree of differentiation between platforms on side j.
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The demand addressed to platform i on side j is:10

nij(p
i
1, p

i
2, p
−i
1 , p

−i
2 ) =

1

2
+
αj(p

−i
−j − pi−j) + t−j(p

−i
j − pij)

2(t1t2 − α1α2)
. (2)

Platforms interact for an infinite number of periods and have a common discount factor

δ ∈ (0, 1). In each period, τ ∈ {0, 1, 2...}, they simultaneously set membership fees, pij.

Platforms have constant marginal production costs, which, for simplicity, are normalized

to zero. Thus, the per-period profit function of platform i ∈ {A,B} is:

πi(pi1, p
i
2, p
−i
1 , p

−i
2 ) = pi1n

i
1(pi1, p

i
2, p
−i
1 , p

−i
2 ) + pi2n

i
2(pi1, p

i
2, p
−i
1 , p

−i
2 ). (3)

Assumption 1

i. 4t1t2 > (α1 + α2)2.

ii. k1 >
3t1−α1−2α2

2
and k2 >

3t2−2α1−α2

2
.

Assumption 1 ensures that the static game has a unique (symmetric) Nash equilibrium

with full coverage of both sides of the market (Armstrong, 2006).11

Let us first recall the Nash equilibrium of the stage game.

Lemma 1 (Armstrong, 2006) If platforms set prices non-cooperatively, they choose

equal prices, pNj = tj−α−j for j ∈ {1, 2}, fully cover both market sides, and get equal market

shares on each side of the market. Their individual profit is given by πN = t1+t2−α1−α2

2
.

Proof. See Armstrong (2006) for the determination of the Nash prices and profits. Market

j ∈ {1, 2} is fully covered if and only if uij
(

1
2
, pN1 , p

N
2 , p

N
1 , p

N
2

)
≥ 0 ⇔ kj >

3tj−αj−2α−j

2
,

which holds by Assumption 1. Note also that Assumption 1 guarantees that the expression

of the Nash profit is positive.

10For details, see Armstrong (2006). Under full market coverage, the demands addressed to the two
platforms on side j ∈ {1, 2} are related in the following way: nij = 1− n−ij , for i ∈ {A,B}.

11As pointed out by Armstrong (2006), Assumption 1.i ensures that the second-order conditions for the
individual profit-maximization are satisfied. In addition, it implies that the second-order conditions for
the maximization problem under two-sided collusion are also satisfied (see footnote 40).
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2.1 Two-sided collusion

Suppose that, at the beginning of period τ = 0, platforms may agree to collude using grim

trigger strategies that imply a permanent reversion to the static Nash prices in case of a

deviation from the collusive agreement.

In this section, we consider the scenario in which platforms seek to collude on both sides

of the market. Let us first examine the prices under the most profitable collusive agreement

among those that are sustainable. We restrict our attention to symmetric agreements, i.e.,

such that the two platforms set equal prices on each market side (pAj = pBj , for j ∈ {1, 2}).
Denote by:

π (p1, p2) = πi (p1, p2, p1, p2)

the profit of platform i ∈ {A,B} if the two platforms set equal prices pAj = pBj = pj on

each side j ∈ {1, 2}. The most profitable sustainable symmetric agreement involves prices

that solve the following maximization program:

max
(p1,p2)∈R2

π (p1, p2)

subject to the incentive compatibility constraint (hereafter, ICC):

π (p1, p2)

1− δ ≥ πd (p1, p2) +
δ

1− δπ
N , (4)

where πd(p1, p2) = max(pi1,p
i
2)π

i(pi1, p
i
2, p1, p2) is the optimal deviation profit if the collusive

prices are (p1, p2).

2.1.1 Preliminaries

For any given δ ∈ (0, 1), denote by

I (δ) =

{
(p1, p2) ∈ R2 | π (p1, p2)

1− δ ≥ πd (p1, p2) +
δ

1− δπ
N

}
the set of price pairs such that the ICC is satisfied, and by

Ī (δ) =

{
(p1, p2) ∈ R2 | π (p1, p2)

1− δ = πd (p1, p2) +
δ

1− δπ
N

}
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the set of price pairs such that the ICC is binding. Moreover, define

πc (δ) = max
(p1,p2)∈I(δ)

π (p1, p2)

and

δm =
πd (pm1 , p

m
2 )− πm

πd (pm1 , p
m
2 )− πN (5)

where (pm1 , p
m
2 ) is the unique solution to the unconstrained maximization program

max
(p1,p2)∈R2

π (p1, p2) ,

and πm = π (pm1 , p
m
2 ) is the profit each firm derives from perfect collusion.

The following preliminary results are useful for the subsequent analysis. Lemma 2

shows that the ICC is binding for sufficiently small values of the discount factor and that

the collusive profit is (weakly) increasing in the platform’s discount factor.

Lemma 2 The prices and profits under the most profitable sustainable agreement satisfy

the following properties:

(i) If δ ∈ (0, δm) and (pc1 (δ) , pc2 (δ)) is a pair of prices in I (δ) such that πc (δ) =

π (pc1 (δ) , pc2 (δ)), then (pc1 (δ) , pc2 (δ)) ∈ Ī (δ) .

(ii) πc (δ) < πc (δ′) < πm for any δ, δ′ ∈ (0, δm) such that δ < δ′; and πc (δ) = πm, for

any δ ∈ [δm, 1).

Proof. See Appendix.

The next lemma shows that the price structure under the most profitable sustainable

agreement minimizes the platforms’ incentives to deviate (among all possible price struc-

tures for a given collusive profit).

Lemma 3 Consider δ ∈ (0, δm) and let (pc1 (δ) , pc2 (δ)) be a pair of prices in I (δ) such that

πc (δ) = π (pc1 (δ) , pc2 (δ)). Then, (pc1 (δ) , pc2 (δ)) is necessarily a solution to the following

constrained minimization program:

min
(p1,p2)∈R2

πd (p1, p2)
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subject to

π (p1, p2) = πc (δ) .

Proof. See Appendix.

2.1.2 The most profitable sustainable agreement

We now make use of the previous results to derive the price and welfare effects of (optimal)

two-sided collusion.

Assumption 2

i. k1 ≥ 2t1−α1

2
and k2 ≥ 2t2−α2

2
;

ii. min
{

2t2k1 + (α1 + α2)k2, (α1 + α2)k1 + 2t1k2

}
≥ 4t1t2−(α1+α2)2

2
.

We need this assumption on the stand-alone values to ensure that the following result

holds.12

Lemma 4 Both sides of the market are fully covered under the most profitable sustainable

two-sided collusive agreement.

Proof. See Appendix.

If platforms set equal prices, there is full coverage of side j ∈ {1, 2} if and only if the

utility of the indifferent consumer, located at x = 1
2
, is non-negative. Thus, the maximum

price that platforms can charge on side j for this side to be fully covered is:13

pmj = pNj + uij
(

1
2
, pN1 , p

N
2 , p

N
1 , p

N
2

)
= kj +

αj
2
− tj

2
. (6)

The maximum individual profit under full coverage of both sides of the market is:14

πm =
pm1 + pm2

2
=
k1 + k2

2
− πN

2
. (7)

12This simplifies the analysis by reducing the number of possible demand configurations under collusion.
13For the expression of the Nash prices, pNj , see Lemma 1.
14Assumptions 1 and 2 imply that (πN , πm] 6= ∅.
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In order to compare collusive and competitive prices, we proceed in two steps. First,

we use our characterization of the optimal price structure under collusion (Lemma 3) to

write collusive prices as functions of collusive profits. Second, we rely on the monotonicity

of the collusive profits with respect to platforms’ discount factor (Lemma 2) to derive

the monotonicity of collusive prices with respect to the discount factor, which allows us

to compare these prices to their competitive counterparts. The following lemma shows

that the way prices under the most profitable sustainable agreement relate to the profit

generated by this agreement depends on how the degrees of differentiation t1 and t2 compare

to (α1 + α2) /2. Before stating the result, notice that a scenario in which both t1 and t2

would be below (α1 + α2) /2 is not possible due to Assumption 1,15 which leaves us with

three possible scenarios.

Lemma 5 For any δ ∈ (0, 1), there exists a unique pair of prices (pc1 (δ) , pc2 (δ)) ∈ I (δ)

satisfying πc (δ) = π (pc1 (δ) , pc2 (δ)). Furthermore:

(i) If t1 <
α1+α2

2
< t2, the collusive prices are:

(pc1 (δ) , pc2 (δ)) =


(
α1−α2

2
+ 2t1−α1−α2

t1+t2−α1−α2
πc(δ), α2−α1

2
+ 2t2−α1−α2

t1+t2−α1−α2
πc(δ)

)
if 0 < δ ≤ δ̃2

(2πc(δ)− pm2 , pm2 ) if δ̃2 < δ < δm

(pm1 , p
m
2 ) if δm ≤ δ < 1,

(8)

where pmj =
2kj−tj+αj

2
, δ̃2 is the solution of πc(δ̃2) = 2k2−t2+α1

2t2−α1−α2
πN , and δm is the

solution of πc(δm) = πm, with πm given by (7).

(ii) If t2 <
α1+α2

2
< t1, the collusive prices are:

(pc1 (δ) , pc2 (δ)) =


(
α1−α2

2
+ 2t1−α1−α2

t1+t2−α1−α2
πc(δ), α2−α1

2
+ 2t2−α1−α2

t1+t2−α1−α2
πc(δ)

)
if 0 < δ ≤ δ̃1

(pm1 , 2π
c(δ)− pm1 ) if δ̃1 < δ < δm

(pm1 , p
m
2 ) if δm ≤ δ < 1,

(9)

where δ̃1 is the solution of πc(δ̃1) = 2k1−t1+α2

2t1−α1−α2
πN .

15To see why, note first that (t1 + t2)2 ≥ (α1 + α2)2. This, combined with the assumption 4t1t2 >
(α1 +α2)2, implies that (t1 + t2)2 > (α1 +α2)2 and, therefore, that t1 + t2 > α1 +α2. The latter excludes
the scenario in which both t1 and t2 are less than (or equal to) (α1 + α2)/2.
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(iii) If t1 ≥ α1+α2

2
and t2 ≥ α1+α2

2
, the collusive prices are given by (8) if k2(2t1−α1−α2)−

k1(2t2−α1−α2) < πN(α2−α1), and by (9) if k2(2t1−α1−α2)−k1(2t2−α1−α2) >

πN(α2 − α1).

Proof. See Appendix.

This lemma allows us to understand how collusive prices depend on the discount factor

and, therefore, how they compare to competitive prices. To this end, denote P c(δ) =

pc1(δ) + pc2(δ) and Sc(δ) = pc2(δ) − pc1(δ) the total price and the price structure under the

most profitable sustainable collusive agreement; and PN = P c(0) and SN = Sc(δ) the total

price and the price structure under the competitive (Nash) equilibrium.

From Lemma 5 it follows that

Sc(δ) = α2 − α1 +
2 (t2 − t1)

t1 + t2 − α1 − α2

πc(δ).

for δ sufficiently small, i.e., before any of the collusive prices pc1(δ) and pc2(δ) reaches it

maximum level. Using the expressions for pN1 , pN2 and πN provided in Lemma 1, we can

rewrite the above expression as

Sc(δ) = SN + (t2 − t1)
πc(δ)− πN

πN
(10)

Thus, the sign of Sc(δ)−SN , which captures the impact of collusion on the price structure,

is the same as the sign of t2 − t1 (over the considered range of δ). This implies that

(optimal) collusion distorts the price structure by leading to more rent extraction from the

side with the larger degree of differentiation, relative to the side with the smaller degree

of differentiation.16 This finding is in line with the traditional result in the (one-sided)

Hotelling setting that, ceteris paribus, collusion is easier to sustain in markets with larger

product differentiation (see e.g. Chang, 1991).

Moreover, equation (10) shows that Sc(δ) is increasing (resp. decreasing) in δ if t2 is

greater (resp. lower) than t1. This is useful for understanding the impact of δ on collusive

prices pc1(δ) and pc2(δ). To see why, assume that t1 > (α1 + α2) /2,17 and consider the

16In the special case t1 = t2, the additional rents extracted by two platforms that collude are evenly
distributed between the two sides, i.e. the price structure under collusion is the same as under competition.

17This does not entail any loss of generality because Assumption 1 implies that t1 + t2 > α1 +α2, which
in turn implies that we cannot have both t1 ≤ (α1 + α2) /2 and t2 ≤ (α1 + α2) /2.
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following decomposition:

dpc2
dδ

=
1

2

dP c

dδ︸ ︷︷ ︸
total price effect

+
1

2

dSc

dδ
.︸ ︷︷ ︸

price structure effect

For any δ ∈ [0, δ̃1], the total price effect is always positive because:

1

2

dP c

dδ
=
dπc

dδ
;

while the price structure effect has the same sign as t2 − t1:

1

2

dSc

dδ
=
t2 − t1
2πN

dπc

dδ

Thus, if t2 ≥ t1 then dSc/dδ is weakly positive and, therefore, dpc2/dδ is positive. However,

if t2 < t1 then dSc/dδ is negative and, therefore, the sign of dpc2/dδ is a priori ambiguous.

To sign the total effect of the discount factor in this case we need to distinguish between

two possible cases. Consider first the scenario in which 1 + t2−t1
2πN ≥ 0 or, equivalently,

t2 ≥ (α1 + α2) /2. In this case, the positive total price effect (weakly) outweighs the

negative price structure effect and, therefore, pc2(δ) is (weakly) increasing in δ over [0, δ̃1].

Consider now the scenario in which 1 + t2−t1
2πN < 0 or, equivalently, t2 < (α1 + α2) /2. In

this case, the negative price structure effect outweighs the positive total price effect and,

therefore, pc2(δ) is decreasing in δ over [0, δ̃1], which implies that the collusive price pc2(δ)

is lower than the competitive (Nash) price on that side over the considered range. Thus,

the distortion of the price structure induced by collusion in this scenario is so strong that

it results in a decrease in the price of side 2 (despite the increase in the total price). Note,

however, that pc2(δ) is always increasing over [δ̃1, δ
m] as pc2(δ) = 2πc (δ) − pm1 over that

interval. Therefore, we reach the following conclusion: (i) if t2 > (α1 + α2) /2, then pc2(δ)

is increasing over [0, δm]; (ii) if t2 < (α1 + α2) /2 then pc2(δ) is decreasing over [0, δ̃1] and

increasing over [δ̃1, δ
m].18 The following figure plots the collusive prices as functions of the

discount factor.

Using the above analysis, we can show the following result about the comparison of the

collusive prices generating the most profitable two-sided sustainable agreement and the

competitive prices.

18In the knife-edge case where t2 = (α1 + α2) /2, pc2(δ) is constant over [0, δ̃1] and increasing over
[δ̃1, δ

m].
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Figure 1: Collusive prices under the most profitable sustainable agreement.

Proposition 1 Two-sided collusion can lead to either higher prices on both sides of the

market or higher prices on one side and lower prices on the other side. More specifically:

(i) If t1 >
α1+α2

2
and t2 >

α1+α2

2
then pc1(δ) > pN1 and pc2(δ) > pN2 for any δ ∈ (0, 1].

(ii) If t2 <
α1+α2

2
< t1 then pc1(δ) > pN1 for any δ ∈ (0, 1] and there exists a threshold

δ̂2 ∈ (δ̃1, δ
m) such that pc2(δ) < pN2 for any δ ∈ (0, δ̂2), and pc2(δ) > pN2 for any

δ ∈ (δ̂2, 1].

(iii) If t1 <
α1+α2

2
< t2 then pc2(δ) > pN2 for any δ ∈ (0, 1] and there exists a threshold

δ̂1 ∈ (δ̃2, δ
m) such that pc1(δ) < pN1 for any δ ∈ (0, δ̂1), and pc1(δ) > pN1 for any

δ ∈ (δ̂1, 1].

Proof. See Appendix.

The fact that the market is fully (and symmetrically) covered under both competition

and collusion in the considered parameter constellation, combined with the assumption

that users single-home on both sides of the market, implies that, in our baseline model,

(i) collusion does not affect total welfare (which means that the effect on aggregate users

surplus is necessarily negative), and (ii) the impact of collusion on the users on each side

is fully determined by the comparison of the collusive and competitive prices. Thus, we

get the following result.

Corollary 1 In the model with single-homing on both sides, two-sided collusion does not

affect total welfare. Furthermore, it can be either detrimental to users on both sides of the

market, or detrimental to users on one side and beneficial to users on the other side. More

specifically:

14



(i) If t1 > α1+α2

2
and t2 > α1+α2

2
, users on both sides of the market are harmed by

collusion for any δ ∈ (0, 1].

(ii) If t2 <
α1+α2

2
< t1, side-1 users are harmed by collusion for any δ ∈ (0, 1], while side-2

users benefit from collusion if δ ∈ (0, δ̂2) and are harmed by collusion if δ ∈ (δ̂2, 1].

(iii) If t1 <
α1+α2

2
< t2, side-2 users are harmed by collusion for any δ ∈ (0, 1], while side-1

users benefit from collusion if δ ∈ (0, δ̂1) and are harmed by collusion if δ ∈ (δ̂1, 1].

2.2 One-sided collusion

Let us now investigate the most profitable sustainable agreement when platforms collude

on a single side of the market. Without loss of generality, suppose that platforms collude

over the price on side 1 and set non-cooperatively the price on side 2. We restrict the

analysis to symmetric collusive agreements, i.e., such that the platforms set the same price

on the collusive side (i.e., pA1 = pB1 = p1). Thus, given δ ∈ (0, 1), the most profitable

sustainable one-sided symmetric agreement features a price on side 1 that solves:

max
p1

{
πA(p1, p

A
2 , p1, p

B
2 ) + πB(p1, p

A
2 , p1, p

B
2 )
}

(11)

subject to the following constraints:
pA2 = argmaxp̃2 π

A
(
p1, p̃2, p1, p

B
2

)
pB2 = argmaxp̃2 π

B
(
p1, p

A
2 , p1, p̃2

)
p1 ∈

{
p1 ∈ R |

πA(p1,pA2 ,p1,pB2 )
1−δ ≥ max(p̃1,p̃2) π

A(p̃1, p̃2, p1, p
B
2 ) + δ

1−δπ
N

}
≡ Ioc

(
δ, pA2 , p

B
2

)
.

(12)

Combining the first two constraints, we obtain:19

pA2 = pB2 = p2 =
t1t2 − α1α2

t1
− α1

t1
p1 ≡ g (p1) , (13)

and can rewrite the above maximization program as:

max
p1

{
πA(p1, p2, p1, p2) + πB(p1, p2, p1, p2)

}
19The second-order conditions corresponding to the choice of p2 are satisfied, as d2πi

d(pi2)2
= − t1

t1t2−α1α2
< 0.
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subject to:  p2 = g (p1)

p1 ∈ Ioc (δ, p2, p2) .

For a given δ ∈ (0, 1), let poc1 (δ) denote the solution to this constrained maximization

program, and poc2 (δ) the corresponding price on the non-cooperative side 2.20 Moreover,

define:

∆pj ≡ pocj (δ)− pNj
as the effect of one-sided collusion on the price on side j ∈ {1, 2}. Even though platforms

collude only on side 1, the price on side 2 is also affected by collusion due to the existence

of cross-group externalities. Notice that:

∆p2 = poc2 (δ)− pN2 = g (poc1 (δ))− g(pN1 ) =

poc1 (δ)∫
pN1

g′(p1)dp1. (14)

Thus, if g′(p1) > 0, then ∆p1 and ∆p2 have the same sign; if g′(p1) < 0, then ∆p1 and

∆p2 have opposite signs. In other words, if increasing the price on the collusive side

strengthens competition on the non-cooperative side (i.e. g′(p1) < 0), the price on one

side of the market will be supra-competitive, while the other will be infra-competitive.21

In contrast, if increasing the price on the collusive side softens competition on the non-

cooperative side, (i.e. g′(p1) > 0), prices are supra-competitive on both sides of the market.

More precisely, from condition (14), we conclude that, if g′(p1) > 0, prices on both sides are

either supra-competitive or infra-competitive. However, as there is no scope for demand

expansion on either side (because both sides are already fully covered under competition,

by Assumption 1), platforms would never find it optimal to adopt a one-sided collusive

scheme that induces below-Nash prices on both sides of the market.22

Lemma 6 The most profitable one-sided sustainable agreement leads to price variations

across sides that are related as follows:

∆p2 = −α1

t1
∆p1. (15)

20The existence and uniqueness of the solution are established later.
21Please notice that we are not stating that platforms will set a supra-competitive price on the (coop-

erative) side 1. Indeed, as we will see below, this many not be the case.
22In the case where there is multi-homing on one side of the market, studied in Section 3, this is no

longer the case.
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Proof. Deriving function g, given in (13), with respect to p1 and replacing it in (14), we

obtain:

∆p2 =

poc1 (δ)∫
pN1

g′(p1)dp1 = −α1

t1

[
poc1 (δ)− pN1

]
= −α1

t1
∆p1

Let us explore the intuition behind Lemma 6. Suppose, for instance, that platforms set

a supra-competitive price on the collusive side, i.e., poc1 > pN1 . Then, users on side 1 are

more valuable to platforms under collusion than under competition. As a result, platforms

would like to increase their market share on side 1, as compared to the competitive scenario.

As p1 is fixed by the collusive agreement, the only way for a platform to conquer more

side-1 users without triggering a punishment from the rival platform is to increase the

attractiveness of its platform to these users, by changing the number of users on side 2.

If α1 > 0, side-1 users like the presence of side-2 users, and platforms have, therefore,

incentives to decrease p2. In contrast, if α1 < 0, each platform has incentives to increase

p2 to attract less side-2 users, and increase its attractiveness to side-1 users. Naturally,

if poc1 < pN1 , the reasoning is exactly the opposite: as collusion makes side-1 users less

valuable to platforms, they use p2 to decrease the value that side-1 users get from joining

a platform.

To gain further insights we need to distinguish between the scenario in which the ICC:

πA (p1, g (p1) , p1, g (p1))

1− δ ≥ max
(p̃1,p̃2)

πA(p̃1, p̃2, p1, g (p1)) +
δ

1− δπ
N

is binding (imperfect one-sided collusion) and the scenario in which it is not (perfect one-

sided collusion). Given δ ∈ (0, 1), let πoc (δ) be the highest sustainable profit under one-

sided collusion, and πom be the firm’s profit when the ICC is not binding. As in the case

of two-sided collusion, one can show that there exists a unique threshold δom ∈ (0, 1) such

that πoc (δ) < πom if and only if δ < δom, and that πoc (δ) is increasing in δ over [0, δom].23

Let us first consider that perfect one-sided collusion is sustainable, i.e., δ ≥ δom. In

this scenario, firms can pick the price they want without caring about sustainability issues.

Let pom1 denote the firms’ optimal price on side 1 in this case, i.e., pom1 = poc1 (δ) for any

δ ≥ δom. Using (13), we know that, if α1 < 0, a decrease in p1 would lead to a decrease

23This follows from the fact that an increase in δ does not affect the firms’ objective function but
relaxes the constraints (or, equivalently, widen the subspace of prices over which firms maximize their
joint profits), combined with the fact the ICC is binding for δ lower than δom.
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in p2 and, therefore, would be unprofitable. Therefore, if α1 < 0 then pom1 > pN1 and

pom2 > pN2 . In contrast, if α1 > 0, an increase in p1 is followed by a decrease in p2. Thus,

charging an above-Nash price on the collusive side is only profitable if the gain on this

side, pom1 − pN1 , outweighs the loss on side 2, α1

t1

(
pom1 − pN1

)
, which is the case if and only

if α1 < t1. If, instead, α1 > t1, side-1 users are so valuable that platforms decrease p2 so

much (to increase their attractiveness on side 1) that the profit loss on side 2 outweighs

the profit gain on side 1. These results are summarized in the following proposition.

Proposition 2 Assume that δ ≥ δom.

(i) If α1 < 0, the prices under the most profitable one-sided agreement are above their

static Nash levels on both sides of the market.

(ii) If α1 > 0, the prices under the most profitable one-sided agreement are such that the

price on one side is above its static Nash level while the price on the other side is

below its static Nash level.

More precisely, the following holds:

0 t1
↵1

pom
1 > pN

1

pom
2 > pN

2

pom
1 > pN

1

pom
2 < pN

2

pom
1 < pN

1

pom
2 > pN

2

1

When the cross-group externalities exerted on the collusive side are positive (α1 >

0), the relative price variation on the two sides due to collusion depends on the ratio

between the strength of these externalities and the degree of differentiation on the collusive

side, α1

t1
. If α1 > t1, the price variation due to collusion is higher in the non-cooperative

side: |∆p2| > |∆p1|. In contrast, if 0 < α1 < t1, the price variation is higher in the

collusive side: |∆p1| > |∆p2|. This is due to the fact that an additional side-2 agent

attracts α1

t1
additional side-1 users to a platform (Armstrong, 2006). If α1 = t1, any price

change in the collusive side is accompanied by a change of the same magnitude but on the

opposite direction on side 2. Therefore, if α1 = t1, the (one-period) collusive profit coincides

with the static Nash profit, corresponding to the conjecture of Evans and Schmalensee

(2008) that if platforms “agree to fix prices on one side only, the cartel members will
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tend to compete the supracompetitive profits away on the other side.” (p. 689) We prove,

however, that this only happens in that very particular case.24 More importantly, our

analysis points out a fundamental problem with the logic behind Evans and Schmalensee’s

conjecture: their claim hinges on the implicit assumption that platforms colluding on a

single of side of a market will seek to increase their rents (above their competitive level)

on that side. However, our analysis shows that platforms colluding on a single side of the

market may prefer to make infra-competitive profits on that side and increase their rents

on the competitive side of the market.

To show that the price comparison under one-sided collusion and competition provided

in Proposition 2 extends to the case of imperfect one sided-collusion (i.e., for δ < δom), we

make Assumption 3,

Assumption 3 The stand-alone values on both sides, k1 and k2, are sufficiently high for

both market sides to be fully covered under the most profitable sustainable one-sided collusive

agreement.

Lemma 7 Let ũNj ≡ uij(
1
2
, pN1 , p

N
2 , p

N
1 , p

N
2 ) denote the utility of the side-j agent located at

x = 1
2

if platforms set the static Nash prices, and πoc(δ) denote the highest collusive profit

that platforms can sustain for a given δ. The corresponding collusive prices (poc1 (δ) , poc2 (δ))

are as follows:

1. If − ũN2
ũN1
t1 ≤ α1 ≤ t1:

(poc1 (δ) , poc2 (δ)) =


(

2t1
t1−α1

πoc(δ)− t1t2−α1α2

t1−α1
, t1t2−α1α2

t1−α1
− α1

t1−α1
πoc(δ)

)
if 0 < δ ≤ δ̃om(

pm1 ,
t1t2−α1α2

t1
− α1

t1
pm1

)
if δ̃om ≤ δ < 1,

(16)

where pm1 is given by (6), and δ̃om is implicitly defined by πoc(δ̃om) = 2k1(t1−α1)−(t1−α1)2+2(t1t2−α1α2)
4t1

.

2. If α1 < − ũN2
ũN1
t1 or α1 > t1:

(poc1 (δ) , poc2 (δ)) =


(

2t1
t1−α1

πoc(δ)− t1t2−α1α2

t1−α1
, t1t2−α1α2

t1−α1
− α1

t1−α1
πoc(δ)

)
if 0 < δ ≤ δ̂om(

pN1 − t1
α1
ũN2 , p

m
2

)
if δ̂om ≤ δ < 1,

(17)

24Dewenter et al. (2011) also find that the claim by Evans and Schmalensee (2008) is true only in a
very special case in their model.
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where pm2 is given by (6), and δ̂om is implicitly defined by πoc(δ̂om) = 2k2(α1−t1)+3t1t2−α1α2−α1t2−α2t1
4α1

.

Proof. See Appendix.

From the previous proposition and the definition of δom it follows that:

δom =

 δ̃om if − ũN2
ũN1
t1 ≤ α1 ≤ t1

δ̂om if α1 < − ũN2
ũN1
t1 ∨ α1 > t1

As πoc(δ) is increasing in δ for δ < δom and poc1 (0) = pN1 and poc2 (0) = pN2 , it is

straightforward to derive the monotonicity of the prices (poc1 (δ), poc2 (δ)) under one-sided

collusion with respect to δ over the interval [0, δom]. More precisely, there are three possible

scenarios: (i) if α1 < 0, the prices on both sides increase in δ, (ii) if 0 ≤ α1 < t1, the price

on side 1 increases in δ while the price on side 2 decreases in δ, and (iii) if α1 ≥ t1, the

price on side 1 decreases in δ while the price on side 2 increases in δ. This, combined with

the fact that poc1 (0) = pN1 and poc2 (0) = pN2 , leads to the following result.

Proposition 3 The comparison of prices under one-sided collusion (on side 1) and static

Nash prices depends on α1 and t1 as follows:

(i) If α1 < 0, prices under one-sided collusion are above their static Nash levels on both

sides: poc1 (δ) > pN1 and poc2 (δ) > pN2 .

(ii) If 0 ≤ α1 < t1, the price on the collusive side under one-sided collusion is above its

static Nash level while the price on the competitive side under one-sided collusion is

below its static Nash level: poc1 (δ) > pN1 and poc2 (δ) ≤ pN2 .

(iii) If α1 ≥ t1, the price on the collusive side under one-sided collusion is below its static

Nash level while the price on the competitive side under one-sided collusion is above

the static Nash level: poc1 (δ) ≤ pN1 and poc2 (δ) > pN2 .

Argentesi and Filistrucchi (2007) provide empirical support for the existence of one-

sided collusion on the reader side of the newspaper market. Under the assumption that

readers are not affected (neither positively nor negatively) by advertising and that there

is single-homing on both sides of the market, they find that the markups on the reader

side are greater than those in the counterfactual competitive scenario while the markups
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on the advertising side are the same. This empirical finding is in line with the prediction

of Proposition 3 in the special case α1 = 0.25

We can now state the welfare effects of one-sided collusion. Again, the fact that the

market is fully and symmetrically covered under both collusion and competition implies

that collusion is neutral for total welfare and that its impact on the users of a given side

is determined solely by its effect on prices.

Corollary 2 In the model with single-homing on both sides, one-sided collusion on side

1 does not affect total welfare, and can either harm users on both sides of the market or

benefits users on one of the two sides and harm users on the other side. More specifically:

(i) If α1 < 0, users on both market sides are harmed. Users on the collusive side are

more harmed than users on the competitive side if and only if |α1| > t1.

(ii) If 0 ≤ α1 < t1, users on the collusive side are harmed by collusion, while users on

the competitive side benefit from collusion.

(iii) If α1 ≥ t1, users on the collusive side benefit from collusion, while users on the

competitive side are harmed by collusion.

3 Extension: Competitive bottleneck setting

Let us now study the price and welfare effects of collusion when users on one side of

the market can join both platforms (i.e., multi-home), while users on the other side of the

market continue to join just one platform (i.e., single-home). We rely for this on a repeated

version of the competitive bottleneck model considered by Belleflamme and Peitz (2019).

Without loss of generality, let side 1 be the side where users can multi-home. Figure 2

presents the demand on each side of the market, where x̃j1 denotes the consumer on side

1 that is indifferent between joining platform j ∈ {A,B} and not joining this platform;

while x̃2 is the agent on side 2 that is indifferent between joining platforms A and B.

We will focus on the scenario where, on side 1, users that join a single platform co-exist

with users that join both platforms, i.e., 0 < x̃B1 < x̃A1 < 1. We will refer to this situation

as partial multi-homing on side 1.

25Argentesi and Filistrucchi (2007) justify the use of an empirical model with single-homing on both
sides by the observation that, in each day of the week, 84% of advertisers put an ad in only one of the four
newspapers they consider. Note, however, that their empirical finding is also consistent with the prediction
of the competitive bottleneck model in the next section regarding the impact of two-sided collusion on
prices (if we consider, following most of the literature, that there is single-homing on the reader side and
multi-homing on the advertising side).
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Figure 2: Demand configuration with multi-homing on side 1 and single-homing on side 2.

The utility function for single-homers (a subset of the users on side 1 and all users on

side 2) is the same as in the baseline model.26 For the specification of the utility function

of the multi-homers, we follow Belleflamme and Peitz (2019). We assume, as they do

in their baseline model, that multi-homers get the sum of the stand-alone values from

each platform (which is assumed to be the same across platforms, k1).27 Moreover, multi-

homers can interact with all users on side 2 and, therefore, benefit from a total network

externality of α1. Finally, multi-homers pay the membership fee to both platforms and

their transportation cost is the sum of the transportation costs of joining the two platforms

separately, i.e., t1x+ t1(1− x) = t1. Thus, the utility function of a multi-homer on side 1

is:

uib1 (pA1 , p
B
1 ) = 2k1 + α1 − t1 − pA1 − pB1 ,

which, in contrast to the utility function of single-homers, does not depend on the location

of the agent.

To present shorter mathematical expressions, let us introduce the following additional

notation:

Ω ≡ 8t1t2 − α2
1 − 6α1α2 − α2

2. (18)

Assumption 4 (Belleflamme and Peitz, 2019)28

26See Expression (1)
27In contrast, Armstrong and Wright (2007) and Rasch (2007) assume that joining a second platform

does not generate any extra stand-alone benefit. A more general assumption that would encompass their
assumption and the one we make as particular cases, would be to consider that the stand-alone value of
a multi-homer is given by (1 + γ)k1, where γ is between 0 and 1 (see Appendix A.4 of Belleflamme and
Peitz, 2019). However, this would imply additional notations, without providing richer results.

28This assumption guarantees that the second-order conditions for the individual profit maximization
problem are satisfied and that there is no tipping in equilibrium (part i). It also ensures that, under Nash
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i. Ω > 0.

ii. 2t1 − α1 − α2 < 2k1 < 4t1 − α1 − α2.

iii. 2(α1 + α2)k1 + 4t1k2 > 6(t1t2 − α1α2)− (α1 − α2)2.

Under this assumption, the demand functions for platform i ∈ {A,B} on sides 1 and 2 are

given, respectively, by:29

nib1 (pi1, p
i
2, p
−i
1 , p

−i
2 ) =

α1

t1

[
1

2
+
α2(p−i1 − pi1) + t1(p−i2 − pi2)

2(t1t2 − α1α2)

]
+
k1 − pi1
t1

(19)

and

nib2 (pi1, p
i
2, p
−i
1 , p

−i
2 ) =

1

2
+
α2(p−i1 − pi1) + t1(p−i2 − pi2)

2(t1t2 − α1α2)
. (20)

When platforms set symmetric prices, i.e., pA1 = pB1 = p1 and pA2 = pB2 = p2, the individual

demands become: nb1(p1) = 2k1+α1−2p1
2t1

and nb2 = 1
2
. A key difference with our baseline

model is the existence of a demand expansion effect on the multi-homing side, captured by

the fact that nb1 is decreasing in p1.

As in the baseline model, we assume that the marginal cost to serve each side of the

market is constant and normalized to zero. Thus, the individual profit function of platform

i ∈ {A,B} is:

πib = pi1n
ib
1 + pi2n

ib
2 . (21)

We first provide the prices, demands and profits in the static Nash equilibrium of the

game.

Proposition 4 (Belleflamme and Peitz, 2019). The static Nash equilibrium in the

competitive bottleneck model considered above is such that:

- platforms set symmetric prices, pNb1 = 2k1+α1−α2

4
and pNb2 = t2 − α1(2k1+α1+3α2)

4t1
.

- there is partial multi-homing on side 1 and full coverage of side 2.

- the number of users joining each platform is nNb1 = 2k1+α1+α2

4t1
and nNb2 = 1

2
.

- the profit of each platform is πNb = 4k1
2+Ω

16t1
.

competition, there is partial multi-homing on side 1 (part ii) and full market coverage of side 2 (part iii).
29For details, see Belleflamme and Peitz (2019).
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Proof. See Belleflamme and Peitz (2019).

Let us now provide the expressions of the aggregate surplus of users on each side of the

market and total welfare when platforms set symmetric prices, p1 and p2. The aggregate

surplus of users on the multi-homing side (side 1) is:

CSb1 =

1−nb
1∫

0

(k1 +
α1

2
− p1 − t1x)dx+

nb
1∫

1−nb
1

(2k1 + α1 − 2p1 − t1)dx+

1∫
nb
1

(k1 +
α1

2
− p1 − t1(1− x))dx

= nb1

(
2k1 + α1 − 2p1 − nb1t1

)
, (22)

while the aggregate surplus of users on the single-homing side (side 2) is:

CSb2 =

1
2∫

0

(k2 + α2n
b
1 − p2 − t2x)dx+

1∫
1
2

[k2 + α2n
b
1 − p2 − t2(1− x)]dx

= k2 + α2n
b
1 − p2 −

t2
4
. (23)

Thus, total welfare with symmetric prices is:

W b = CSb1 + CSb2 + πAb + πBb = nb1(2k1 + α1 + α2 − nb1t1) + k2 −
t2
4
, (24)

The following lemma is useful for our subsequent welfare analysis as it shows that the

impact of a (symmetric) change in prices on welfare is solely driven by its impact on the

number of multi-homers.

Lemma 8 If platforms set symmetric prices (i.e., pA1 = pB1 and pA2 = pB2 ) that induce

partial multi-homing on side 1 and full market coverage on side 2, total welfare is greater

than under Nash competition if and only if the number of multi-homers is greater than

under Nash competition (nb1 > nNb1 ).

Proof. See Appendix.

As in the baseline model, we assume that platforms interact for an infinite number of

periods and, in each period, they choose the price to charge on each side of the market and

have a common discount factor, δ ∈ (0, 1). Again, for any δ ∈ (0, 1), we will study the most
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profitable sustainable collusive agreement both when platforms collude on the two sides

of the market and when they only collude on one side of the market. In contrast to the

baseline setting, in the competitive bottleneck model, the two sides of the market are not

symmetric and, therefore, a one-sided collusive agreement is expected to be qualitatively

different depending on whether it targets the price on side 1 or side 2. Thus, we will

analyze three possible collusive scenarios: (i) platforms set both prices cooperatively (two-

sided collusion); (ii) platforms set the price on side 2 cooperatively and the price on side

1 non-cooperatively (collusion on the single-homing side only); and, finally, (iii) platforms

set the price on side 1 cooperatively and the price on side 2 non-cooperatively (collusion

on the multi-homing side only). As in the baseline model, we assume that platforms adopt

grim trigger strategies to punish deviations from the collusive path, i.e., they permanently

revert to the Nash equilibrium of the stage game (Proposition 4) if one platform defects.

We will focus on the constellations of model parameters for which there is partial multi-

homing on side 1 and full market coverage of side 2 under all the considered competitive

scenarios (i.e. competition on both sides, two-sided collusion, and one-sided collusion on

side 1 or side 2).

3.1 Two-sided collusion

Assume that platforms cooperatively set symmetric prices on both sides of the market.

Hence, for a given δ, they choose prices pcb1 and pcb2 that solve:

max
(p1,p2)∈R2

{
πAb(p1, p2, p1, p2) + πBb(p1, p2, p1, p2)

}
subject to the incentive compatibility constraint:

πib(p1, p2, p1, p2)

1− δ ≥ πdb (p1, p2) +
δ

1− δπ
Nb,

where πdb(p1, p2) = max(pi1,p
i
2)π

ib(pi1, p
i
2, p1, p2) is the optimal deviation profit if the collusive

prices are p1 and p2.

The following proposition characterizes prices and profits under the most profitable

sustainable collusive agreement.

Proposition 5 In the competitive bottleneck model, for a given 0 < δ < 1, the most

profitable agreement among the sustainable and symmetric two-sided collusive agreements

is such that:
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- platforms charge the Nash price on the multi-homing side, pcb1 (δ) = pNb1 , and a supra-

competitive price on the single-homing side:

pcb2 (δ) =

{
pNb2 + Ω

2t1
δ

1−δ if 0 < δ < δmb

pmb2 if δmb ≤ δ < 1,
(25)

where pmb2 = k2 − t2
2

+ α2(2k1+α1+α2)
4t1

and δmb ≡ 1− 2Ω
Ω+2k1(α1+α2)+4k2t1+2(t1t2−α1α2)

,

- the number of users that join each platform on each side of the market is the same

as in the static Nash equilibrium.

- the individual profit is:

πcb(δ) =

{
πNb + Ω

2t1
δ

1−δ if 0 < δ < δmb

πmb if δmb ≤ δ < 1,

where πmb = 2k2−t2
4

+ (2k1+α1+α2)2

16t1
.

Proof. See Appendix.

When platforms collude on both sides of the market, they set the static Nash price on

the multi-homing side.30 The intuition behind this finding is that, for fixed demands on

the single-homing side, firms do not compete on the multi-homing side. Interestingly, our

subsequent analysis will show that a crucial condition for prices to remain unchanged on

the multi-homing side is that firms collude on both sides of the market.

The result that the price on the multi-homing side is not affected by two-sided collusion,

combined with our assumption that the single-shoming side of the market is fully (and

symmetrically) covered under both competition and two-sided collusion, implies that the

latter has no effect on the demands on any side of the market. As a result, two-sided

collusion causes no harm to users on side 1, as they pay the same price and benefit from

the same network externalities as under competition. In contrast, users on side 2 are

harmed by collusion, as they pay a higher price and receive the same network externalities.

Finally, from Lemma 8, it follows that two-sided collusion does not affect total welfare

since it does not affect the number of multi-homers.

30This is somewhat reminiscent of the result in Gössl and Rasch (2016) that in a (one-sided) Hotelling
model with elastic demand, collusion between two firms charging two-part tariffs does not affect their
linear prices. However, the mechanism at work in Gössl and Rasch (2016) is different from the one behind
our result.
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Corollary 3 In the competitive bottleneck model, two-sided collusion:

- has no impact on users on the multi-homing side.

- harms users on the single-homing side.

- has no impact on total welfare.

3.2 Collusion on the single-homing side only

Let us now characterize the most profitable collusive agreement when platforms collude on

the single-homing side and choose the price on the multi-homing side non-cooperatively.

The formulation of the optimization problem is similar to the one presented in the baseline

model in the scenario of one-sided collusion. The only difference concerns the expression

for the demand function on side 1. Thus, given δ ∈ (0, 1), the most profitable sustainable

symmetric agreement when platforms collude on the single-homing side features pc2b2 that

solves:

max
p2∈R

{
πAb(pA1 , p2, p

B
1 , p2) + πBb(pA1 , p2, p

B
1 , p2)

}
(26)

subject to the constraints:
pA1 = argmaxp̃1 π

Ab
(
p̃1, p2, p

B
1 , p2

)
pB1 = argmaxp̃1 π

Bb
(
pA1 , p2, p̃1, p2

)
p2 ∈

{
p2 ∈ R |

πAb(pA1 ,p2,pB1 ,p2)
1−δ ≥ max(p̃1,p̃2) π

Ab(p̃1, p̃2, p
B
1 , p2) + δ

1−δπ
Nb

}
.

(27)

Solving the FOCs corresponding to the maximization problems underlying the first two

constraints, we get that the price charged by platform i ∈ {A,B} on side 1 relates to the

collusive price charged on side 2 as follows:

pi1 =
(2k1 + α1)(t1t2 − α1α2)

4t1t2 − 3α1α2

− α2t1
4t1t2 − 3α1α2

p2 ≡ f (p2) , i ∈ {A,B}. (28)

Thus, given the collusive price on side 2, pc2b2 , the price on the non-cooperative side 1

is pc2b1 = f(pc2b2 ).
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Lemma 9 In the competitive bottleneck model, the price variations induced by (one-sided)

collusion on the single-homing side relate as follows:

∆p1 = − α2t1
4t1t2 − 3α1α2

∆p2 where ∆pj = pc2bj − pNbj . (29)

Proof. This can be easily shown following the same steps as in the proof of Lemma 6.

Notice the similarity between Lemmata 6 and 9. In particular, note that in both

settings, the way signs of the price variation on the two sides of the market are interrelated

depends only on the sign of the cross-group externalities received by the users on the

cooperative side.31 Also, the intuition presented for Lemma 6 still applies to Lemma 9.

Proposition 6 In the competitive bottleneck model, if platforms collude only on the single-

homing side, prices relate to their static Nash counterparts as follows:32

✲

α2 0 ᾱ2

α2
pc2b1 < pNb

1

pc2b2 < pNb
2

pc2b1 > pNb
1

pc2b2 > pNb
2

pc2b1 < pNb
1

pc2b2 > pNb
2

pc2b1 > pNb
1

pc2b2 < pNb
2

1

Proof. See Appendix.

A first remark to be made is that the qualitative effects of one-sided collusion on prices

in this setting are close to those obtained under one-sided collusion in the baseline model

(Proposition 2). The only exception concerns the case where users on the competitive side

exert a sufficiently strong negative externality on users on the collusive side. More precisely,

in the competitive bottleneck setting, when α2 < α2, platforms charge infra-competitive

prices on both sides of the market under one-side collusion over the single-homing side. Such

a scenario is clearly unprofitable in the baseline setting as decreasing both prices would lead

to a decrease in margins on both sides without leading to an increase in demand (on any of

the two sides). This is no longer true in the competitive bottleneck setting. From Lemma

9, if α2 < 0, setting a supra-competitive (resp. infra-competitive) price on the collusive

side leads to a supra-competitive (resp. infra-competitive) price on the competitive side.

31Notice that Assumption 4.i. implies that 4t1t2 − 3α1α2 > 0
32The analytical expressions for α2 and ᾱ2 are provided in (57), in the Appendix.
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As a result, setting p2 < pNb2 in this case has two negative effects on profits: it decreases

revenues on the single-homing side (as there is no demand expansion on this side) and it

decreases the revenue per user on the multi-homing side (as p2 < pNb2 implies p1 < pNb1 in

this case); but it also has a positive effect: demand expands on the multi-homing side (as

more users join both platforms).33 Platforms will set an infra-competitive price on side

2 if and only if this positive effect outweighs the negative effects on profits, which is the

case if and only if α2 is sufficiently negative. More precisely, when α2 < α2, users on side

2 strongly dislike the presence of users on side 1, which limits the extent to which it is

profitable to expand demand on side 1 (as this will strongly decrease the willingness to pay

of users on side 2).

Deriving the welfare effects of collusion in this setting is less straightfoward than in

the baseline model. Let us start with the way collusion affects users on the collusive side

(side 2). As the agreement has no impact on the demand on this side, we only need to

examine the effects on the price p2 and on the externalities exerted by users on side 1 on

side 2-users. It is immediate to see that, from the perspective of users on side 2, these are

opposite effects. Simple computations allow us to conclude that, regardless of the value for

α2, collusion always harms the indifferent consumer (located at x = 1
2
).34 Since all users

on side 2 are affected in the same way by collusion (they experience the same variation

in prices and in network externalities), we can conclude that collusion harms all users on

side 2. Thus, even when users on side 2 pay an infra-competitive price, they are worse off

under collusion because the negative impact on the cross-group externalities they receive

dominates the positive price effect.

Let us now address the impact of collusion on users on the competitive side (side 1).

To do that, consider a (hypothetical) situation where platforms set symmetric prices p1

and p2, and platform A serves 1− x̃1 users on side 1, while platform B serves x̃1 users (see

Figure 3). Assume that side 2 is fully covered. Suppose now that both platforms decrease

p1 by the same amount, and that side 2 remains covered. An immediate consequence is

that the number of multi-homers increases, say to x ∈ (x̃
′
1, 1 − x̃

′
1) with x̃

′
1 < x̃1. Users

that did not change their decision about joining one platform or both, i.e., all users except

those located at x ∈ [x̃
′
1, x̃1]∪ [1− x̃1, 1− x̃′1], are better off with the decrease in p1, as they

33As demand on side 2 is not affected by collusion, the externality that users on side 2 exert on users
on side 1 is also not affected by collusion. As a result, a decrease in p1 surely increases demand on side 1.

34More precisely, replacing the expressions for the collusive price, given in (63), and Nash prices, given
in Proposition 4, in the utility function (1), we obtain: uj2

(
1
2 , f(pc2b2 (δ)), pc2b2 (δ), f(pc2b2 (δ)), pc2b2 (δ)

)
−

uj2
(

1
2 , p

Nb
1 , pNb2 , pNb1 , pNb2

)
= − Γ2δΩ

2t1[α2
2Ω+Γ2(1−δ)]

, with Γ ≡ 4t1t2 − 3α1α2 − α2
2 and j ∈ {A,B}.

As, by Assumption 4i, Ω > 0, we conclude that uj2
(

1
2 , f(pc2b2 (δ)), pc2b2 (δ), f(pc2b2 (δ)), pc2b2 (δ)

)
<

uj2
(

1
2 , p

Nb
1 , pNb2 , pNb1 , pNb2

)
.
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pay a lower price, incur the same transportation costs, and benefit from the same network

externalities. The only doubt could arise with respect to users that initially are single-

homers but decide to multi-home when p1 decreases, since everything changes for them

(price, transportation cost, stand-alone value and externalities). Notice, however, that if

these users start preferring to multi-home, this is because their utility is greater than if

they continued to single-home. As explained just before, if they continued to single-home,

they will be better off with the decrease in p1. Therefore, by transitivity, they also benefit

from the reduction in p1. Thus, the surplus of users on side 1 is the higher the lower is p1

as long as side 2 remains fully covered.

0 1x̃1 1 � x̃1x̃
0
1 1 � x̃

0
1

2

Figure 3: Impact of an increase in p1 on the demand on side 1 (for n2 fixed).

Finally, from Lemma 8 it follows that one-sided collusion on the single-homing side

raises (resp. reduces) total welfare whenever it leads to an increase (resp. decrease) in

the number of multi-homers on side 1. Given that side 2 is fully covered, this happens if

platforms set an infra-competitive (resp. supra-competitive) price on side 1 (i.e. pc2b1 <

pNb1 ). Proposition 6 provides the conditions under which this occurs.

Corollary 4 In the competitive bottleneck model, collusion on the single-homing side (only):

- always harms users on the single-homing side;

- benefits users on the multi-homing side if and only if these users exert sufficiently

strong (positive or negative) externalities on users on the single-homing side (i.e.,

α2 < α2 or α2 > ᾱ2);

- raises total welfare if and only if users on the multi-homing side exert sufficiently

strong (positive or negative) externalities on users on the single-homing side (i.e.,

α2 < α2 or α2 > ᾱ2).

It follows immediately that, if α2 ∈ (α2, ᾱ2), collusion on the single-homing side reduces

aggregate consumer surplus (i.e. the sum of the aggregate surplus of users on each side of

the market), CSb = CSb1+CSb2, as users on both sides of the market are worse off. However,
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when α2 /∈ (α2, ᾱ2), the impact on aggregate consumer surplus is no longer straightforward,

as users on the multi-homing side are better off but users on the single-homing side are

worse off. The following proposition provides a necessary and sufficient condition under

which collusion has a positive effect on aggregate consumer surplus.

Proposition 7 In the competitive bottleneck model, if platforms collude on the single-

homing side only, aggregate consumer surplus increases if users on the (collusive) single-

homing side strongly dislike the presence of users on the multi-homing side, α2 < α2 < 0.

Proof. See Appendix.

3.3 Collusion on the multi-homing side only

Last, let us study the most profitable sustainable symmetric agreement when platforms

collude on the multi-homing side (side 1) and set the price on the single-homing side (side

2) non-cooperatively. In this case, for a given δ ∈ (0, 1), platforms choose the price pc1b1

that solves:

max
p1

{
πAb(p1, p

A
2 , p1, p

B
2 ) + πBb(p1, p

A
2 , p1, p

B
2 )
}

(30)

subject to:
pA2 = argmaxp̃2 π

Ab
(
p1, p̃2, p1, p

B
2

)
pB2 = argmaxp̃2 π

Bb
(
p1, p

A
2 , p1, p̃2

)
p1 ∈

{
p1 ∈ R |

πAb(p1,pA2 ,p1,pB2 )
1−δ ≥ max(p̃1,p̃2) π

Ab(p̃1, p̃2, p1, p
B
2 ) + δ

1−δπ
Nb

}
.

Solving the FOCs underlying the first two constraints, we get:

pi2 =
t1t2 − α1α2

t1
− α1

t1
p1 ≡ h (p1) , i ∈ {A,B}. (31)

Thus, given the collusive price on side 1, the price on the competitive side is pc2b1 = h(pc1b1 ).

Lemma 10 In the competitive bottleneck model, if platforms only collude on the multi-

homing side, a change in the price on collusive side leads to a change in the price on the

competitive side as follows:

∆p2 = −α1

t1
∆p1 where ∆pj = pc1bj − pNbj . (32)
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Again, the key determinant for the impact of one-sided collusion on prices is the exter-

nality that users on the competitive side exert on users on the collusive side, α1. Once more,

platforms set a supra-competitive price on one side of the market and an infra-competitive

price on the other if and only if users on the collusive side enjoy the presence of users on

the competitive side (i.e., α1 > 0). Otherwise, both prices are above or below the static

Nash level.

To limit the number of possible scenarios, we exclude in the rest of this section the

uninteresting scenario in which both network externalities are non-positive.

Assumption 5 α1 > 0 or α2 > 0.

The following proposition compares prices in the current regime with those under com-

petition.

Proposition 8 In the competitive bottleneck model, if platforms collude on the multi-

homing side only, the following holds:

- If α2 > 0, prices compare to their static Nash counterparts as follows:

-

0 ↵2

↵1

pc1b
1 > pNb

1

pc1b
2 > pNb

2

pc1b
1 > pNb

1

pc1b
2 < pNb

2

pc1b
1 < pNb

1

pc1b
2 > pNb

2

-

0
↵1

pc1b
1 < pNb

1

pc1b
2 > pNb

2

1

- If α2 < 0, platforms set an infra-competitive price on the collusive side and a supra-

competitive price on the non-cooperative side (pc1b1 < pNb1 and pc1b2 > pNb2 ).35

Proof. See Appendix .

Propositions 2 and 8 are very similar and the main intuition behind the former applies

to the latter.

As in the case of collusion on the single-homing side (only), users on side 1 are harmed

by collusion on the multi-homing side (only) whenever they pay a supra-competitive price.

From Proposition 8, this is the case whenever α1 < α2.

35If α2 < 0, we must have α1 > 0 and, therefore, α1 > α2. Thus, only the rightmost region of parameters
in the line presented for the case of α2 > 0 exists.
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Let us now analyze the impact of collusion on the multi-homing side (only) on users on

the single-homing side. When α2 < 0, these users are surely harmed by collusion because

they pay a higher price than under competition
(
pc1b2 > pNb2

)
and also get stronger negative

externalities (as they dislike the presence of users on side 1 whose number is higher under

collusion). When α2 > 0 and α1 < 0, these users are also harmed by collusion, since they

pay a higher price
(
pc1b2 > pNb2

)
and get weaker positive externalities (as they enjoy the

presence of users on side 1, whose number is lower under collusion). Finally, when α2 > 0

and α1 > 0, the impact of collusion on users on side 2 is not straightforward because either

they pay a lower price but benefit from weaker positive network externalities (if α1 < α2),

or they pay a higher price but benefit from stronger positive externalities (if α1 > α2).

However, comparing the utility of the indifferent user (located at x̃2 = 1
2
) under collusion

and competition, we find that it is always lower under collusion.36

To complete the welfare analysis of the impact of collusion on the multi-homing side,

it remains to examine the impact of this type of collusion on total welfare. Recall that

collusion is welfare-improving if and only if it increases the number of multi-homers on side

1, which is the case if platforms charge an infra-competitive price on this side. Thus, from

Proposition 8, we know that collusion on the multi-homing side increases total welfare if

and only if α1 > α2 > 0.

Corollary 5 In the competitive bottleneck model, collusion on the multi-homing side (only):

- harms users on the single-homing side if α1 6= α2 and does not affect them if α1 = α2;

- benefits users on the multi-homing side if and only if α1 > α2;

- raises total welfare if and only if α1 > α2 > 0.

4 Discussion

4.1 Demand expansion

In our competitive bottleneck model, there is a demand expansion effect on the multi-

homing side. However, the assumptions we made do not allow for such an effect on a

36More precisely, replacing the expressions (70) and (70) for prices under one-sided collusion on the
multi-homing side and Nash prices (Proposition 4), in the utility function of users on side 2, given in (1),

we obtain: uj2
(

1
2 , p

c1b
1 (δ), pc1b2 (δ), pc1b1 (δ), pc1b2 (δ)

)
− uj2

(
1
2 , p

Nb
1 , pNb2 , pNb1 , pNb2

)
= − δΩ(α1−α2)2

2t1[(1−δ)(α1−α2)2+Ω] ≤ 0,

as Ω > 0 (Assumption 4i). Thus, all users on side 2 are harmed when platforms collude on the multi-homing
side whenever α1 6= α2, and are not affected by collusion if α1 = α2.
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side in which there is single-homing, neither in our baseline setting nor in the competitive

bottleneck model. While this feature allows us to have a tractable model and derive neat

results, it also imposes limitations. Note, however, that the striking result that, under

one-sided collusion, the price on the collusive side may be lower than the static Nash price

on that side is likely to be strengthened if we allowed for demand expansion on a single-

homing side. To see why, note that, in our setting, firms’ incentives to set a price below

the Nash level are solely driven by the incentive to soften competition on the other side.

In an environment where, following a decrease in the price on side j, there is a demand

expansion on that side and potentially also on side −j (if α−j > 0), our result is even more

likely to hold.

4.2 Endogenous choice of the collusive side(s)

In our setting, platforms can always sustain some degree of collusion in equilibrium both

when they collude on the two market sides, and when they just collude on one side of the

market. Our model also suggests that platforms should always prefer to collude on both

sides (since this is the most profitable scenario). However, as mentioned before, there is

evidence of platforms being convicted of just coordinating the price on one market side.

Coordination costs and the possibility of they being (prohibitively) higher when platforms

coordinate two prices instead of one may underlie actual platforms’ choices.37 Relatedly,

platforms may engage in one-sided collusion to attempt to reduce the risk of being caught

and punished by antitrust authorities.38

In the context of one-sided collusion, a natural question that arises concerns the choice

of the collusive side. While a general treatment of this issue is outside the scope of this

paper, we provide two special cases where we are able to determine the platforms’ choice

in the baseline (single-homing) model. Collusion on side 1 yields the same outcome as

competition if α1 = t1, and the same outcome as two-sided collusion if α1 = −t1 and

δ < δm.39 Therefore, platforms (weakly) prefer to collude on side 2 in the former case

while they (weakly) prefer to collude on side 1 in the latter case. There are other reasons

37One (perhaps simplistic) way of incorporating these ingredients in our model would be to introduce
a fixed coordination cost. It follows straightforwardly that: if this cost is not much higher when platforms
coordinate prices on both sides of the market than when they just coordinate one price, platforms will settle
a two-sided collusive agreement; while, if the coordination cost is larger enough under two-sided collusion,
platforms will settle a one-sided collusive agreement. For intermediate values of this coordination cost,
platforms’ choice may depend on the discount factor.

38See Charistos (2018) for an analysis of collusion between advertising-selling platforms in the presence
of an antitrust authority.

39Both results follow from Lemma 6.
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outside our model that may also affect the choice of the side to collude on. For instance,

it may be harder for platforms to coordinate prices on one side of the market than on the

other one. For example, in the case of newspapers, coordinating cover prices may probably

be easier than coordinating ad prices (as the latter are likely to be more heterogeneous).

Moreover, monitoring might be easier on one side of the market than on the other one.

Considering again the newspapers example, cover prices are typically more transparent

and, therefore, easier to monitor, than ad prices.

4.3 Optimal punishment

The punishment mechanism considered in this paper (i.e., permanent reversion to Nash

competition after a deviation) is not the optimal one (Abreu, 1986). While the determi-

nation of the optimal mechanism is outside the scope of the paper, we believe that most,

if not all, of the main insights about the price effects of collusion would carry over to the

case where firms would use such a mechanism. First, note that the scope for perfect col-

lusion is larger with the optimal punishment mechanism than with grim trigger strategies.

Therefore, all the results in our perfect two-sided collusion and perfect one-sided collusion

scenarios not only hold, but also extend to some of the parameters under which there is

imperfect collusion in our setting. Second, consider the case of imperfect two-sided collu-

sion (under the optimal punishment mechanism) in a single-homing environment. In our

setting with grim trigger strategies, collusive prices may either be higher than the com-

petitive prices on both sides of the market or higher on one side and lower on the other

side. This result hinges on the fact that collusion increases the total price charged by the

platforms but, at the same time, distorts the price structure in a way that minimizes the

incentive to deviate (for a give total price). This mechanism would still hold with any

punishment mechanism: first, with full market coverage (under collusion), the increase in

the total price is only driven by the increase in profits and not by the specific punishment

mechansim that is considered and, second, the proof of Lemma 3 shows that there is a dis-

tortion of the price structure in a way that minimizes the deviation profit regardless of the

punishment mechanism. The only question which remains open is whether the distortion

of the price structure under the optimal mechanism can be large enough for the collusive

price to be lower than the competitive price on one of the sides, as is the case in our setting.

Third, consider the case of one-sided collusion in a single-homing environment and both

two-sided and one-sided collusion in a competitive bottleneck scenario. Note that in all

these cases, our results regarding the qualitative impact of collusion on prices would hold
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under any punishment mechanism leading to the property that prices are monotonic (i.e.

there is no change in monotonicity) when the discount factor moves from 0 to the critical

level under which perfect collusion becomes sustainable.

4.4 Policy implications

Our findings have several implications regarding the detection of collusion in two-sided

markets and private damages actions by users of colluding platforms. First, a key lesson

from our analysis of one-sided collusion is that higher prices on a given side of the market

are neither a necessary nor a sufficient condition for the existence of collusion on that

side. In particular, a decrease in prices on a given side should not be seen as a signal

or evidence that firms do not collude on that side. This is a novel illustration of the

importance of accounting for the two-sided nature of a market when running an antitrust

analysis. Second, and relatedly, the computation of private damages should also account

for the peculiarities of two-sided markets. Specifically, under one-sided collusion, users on

the competitive side shoud be allowed to seek damages from the colluding platforms as they

may be harmed by their collusive behavior on the other side of the market. Third, our

findings show that in a competitive bottleneck environment, the fact that a price does not

change on the multi-homing side of the market should not be interpreted by competition

authorities as indicating that firms collude on the single-homing side only. On the contrary,

such an observation should be considered as strong evidence that firms collude on both sides

of the market as it is not consistent with plaforms’ (predicted) behavior under one-sided

collusion.

5 Conclusion

We investigate collusion between two-sided platforms in a single-homing environment and

a competitive bottleneck setting. Our findings show that collusion on a given side of

the market can lead to either an increase, a decrease or no change in prices on that side

depending on (i) whether collusion occurs on the other side as well, (ii) whether there is

multi-homing on one side of the market, and (iii) whether the network externalities received

by the collusive side are positive or negative, and how large they are. One of the main

takeaways of our paper is that collusion on a single side of the market can lead to lower

prices and higher user surplus on the collusive side and higher prices and lower user surplus

on the competitive side when the network externalities received by the collusive side are
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positive and large enough. Another key takeaway is that it is important to understand the

effect of collusion on the price structure as this can explain counterintuitive behaviors of

colluding platforms.

We believe that our results can help antitrust authorities understand better the changes

in pricing behavior that are consistent with one-sided and two-sided collusion between

platforms. They can also be useful to judges who need to decide who was harmed by a

cartel involving platforms in private damages cases.

Finally, our results also provide interesting insights into the effects of collusion on prices

in a multi-product setting with demand linkages. When the parameters capturing cross-

group externalities in our model are positive, the latter can be reinterpreted as a model

in which two firms selling two complementary products compete against each other. Our

results show in particular that single-product collusion in such an environment can lead to

a decrease in the price of the product for which there is collusion and an increase in the

price of the product for which there is competition.
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Appendix

Proof of Lemma 2.

(i) Note first that, for any δ ∈ (0, 1], ICC (4) can be rewritten as:

1

δ

[
πd (p1, p2)− π (p1, p2)

]
≤ πd (p1, p2)− πN .

Let (0, δm) and consider (pc1 (δ) , pc2 (δ)) ∈ I (δ) such that π (pc1 (δ) , pc2 (δ)) = πc(δ).

Assume by way of contradiction that (pc1 (δ) , pc2 (δ)) /∈ Ī (δ). Then

1

δ

[
πd (pc1 (δ) , pc2 (δ))− π (pc1 (δ) , pc2 (δ))

]
< πd (pc1 (δ) , pc2 (δ))− πN ,

i.e., the constraint is not binding at the optimum. Then, by a (standard) continuity

argument, there exists ε > 0 such that

1

δ

[
πd (p1, p2)− π (p1, p2)

]
< πd (p1, p2)− πN

for any (p1, p2) ∈ [pc1 (δ)− ε, pc1 (δ) + ε] × [pc2 (δ)− ε, pc2 (δ) + ε]. This implies that the pair

of prices (pc1(δ), pc2(δ)) is a local maximum of π (p1, p2). However, straightforward compu-

tations show that π (p1, p2) does not have a local maximum but its global maximum, which

is uniquely reached at (pm1 , p
m
2 ). This implies that (pc1 (δ) , pc2 (δ)) = (pm1 , p

m
2 ), which in turn

implies that
1

δ

[
πd (pm1 , p

m
2 )− π (pm1 , p

m
2 )
]
< πd (pm1 , p

m
2 )− πN

or, equivalently,

δ >
πd (pm1 , p

m
2 )− π (pm1 , p

m
2 )

πd (pm1 , p
m
2 )− πN = δm,

which leads to a contradiction. Thus, it must hold that (pc1 (δ) , pc2 (δ)) ∈ Ī (δ).

(ii) From the ICC

1

δ

[
πd (p1, p2)− π (p1, p2)

]
≤ πd (p1, p2)− πN

and the fact that πd (p1, p2) − π (p1, p2) ≥ 0 it follows that δ < δ′ ⇒ I (δ) ⊆ I (δ′) ⇒
πc (δ) ≤ πc (δ′). Moreover, for δ, δ′ such that 0 < δ < δ′ ≤ δm, it must hold that πc (δ) 6=
πc (δ′). To see why, assume by way of contradiction that πc (δ) = πc (δ′) and consider

(pc1 (δ) , pc2 (δ)) ∈ I (δ) such that π (pc1 (δ) , pc2 (δ)) = πc(δ). Since I (δ) ⊆ I (δ′), we have
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(pc1 (δ) , pc2 (δ)) ∈ I (δ′). This, combined with π (pc1 (δ) , pc2 (δ)) = πc (δ′) and (i), implies that

(pc1 (δ) , pc2 (δ)) ∈ Ī ′ (δ), i.e.

1

δ′
[
πd (pc1 (δ) , pc2 (δ))− π (pc1 (δ) , pc2 (δ))

]
= πd (pc1 (δ) , pc2 (δ))− πN

which can be rewritten as

δ′ =
πd (pc1 (δ) , pc2 (δ))− π (pc1 (δ) , pc2 (δ))

πd (pc1 (δ) , pc2 (δ))− πN

because (pc1 (δ) , pc2 (δ)) 6=
(
pN1 , p

N
2

)
(this follows from the fact that

(
pN1 , p

N
2

)
/∈ Ī (δ) for

δ > 0 and (i)). Since (pc1 (δ) , pc2 (δ)) ∈ Ī (δ) (from (i)), we also have

δ =
πd (pc1 (δ) , pc2 (δ))− π (pc1 (δ) , pc2 (δ))

πd (pc1 (δ) , pc2 (δ))− πN .

Therefore, δ = δ′, which leads to a contradiction, which completes the proof.

Proof of Lemma 3.

Assume, by way of contradiction, that (pc1 (δ) , pc2 (δ)) is not a solution to the constrained

minimization program. Denoting (p̂1 (δ) , p̂2 (δ)) a solution to that program, we then have

πd (p̂1 (δ) , p̂2 (δ)) < πd (pc1 (δ) , pc2 (δ)) .

Therefore

π (p̂1 (δ) , p̂2 (δ))

1− δ =
π (pc1 (δ) , pc2 (δ))

1− δ =

= πd (pc1 (δ) , pc2 (δ)) +
δ

1− δπ
N > πd (p̂1 (δ) , p̂2 (δ)) +

δ

1− δπ
N ,

which implies that

1

δ

[
πd (p̂1 (δ) , p̂2 (δ))− π (p̂1 (δ) , p̂2 (δ))

]
< πd (p̂1 (δ) , p̂2 (δ))− πN .

Again, by a continuity argument, there exists µ > 0 such that

1

δ

[
πd (p1, p2)− π (p1, p2)

]
< πd (p1, p2)− πN
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for any (p1, p2) ∈ [p̂1 (δ)− µ, p̂1 (δ) + µ] × [p̂2 (δ)− µ, p̂2 (δ) + µ]. There are only two pos-

sible scenarios, which both lead to a contradiction:

- If π (p1, p2) reaches a local maximum at (p̂1 (δ) , p̂2 (δ)) then it is necessarily the case

that (p̂1 (δ) , p̂2 (δ)) = (pm1 , p
m
2 ), and, therefore, π (p̂1 (δ) , p̂2 (δ)) = πm > πc (δ) because

δ ∈ (0, δm), a contradiction.

- If π (p1, p2) does not reach a local maximum at (p̂1 (δ) , p̂2 (δ)) then there exists

(p̆1, p̆2) ∈ [p̂1 (δ)− µ, p̂1 (δ) + µ]× [p̂2 (δ)− µ, p̂2 (δ) + µ] such that

π (p̆1, p̆2) > π (p̂1 (δ) , p̂2 (δ)) = πc (δ)

Since (p̆1, p̆2) ∈ I(δ), this contradicts the fact that πc (δ) = max
(p1,p2)∈I(δ)

π (p1, p2). �

Proof of Lemma 4.

We are focusing on symmetric collusive agreements, i.e., such that platforms set the same

price on each side of the market, i.e., pAj = pBj = pj, j ∈ {1, 2}. Let x̃j denote the consumer

on side j that is indifferent between joining platform A and not joining any platform.

1. We start by deriving the conditions that ensure that, if platforms fully serve side 2 (i.e.,

x̃2 = 1
2
), it is also profitable to fully serve side 1.

Given that x̃2 = 1
2

and platforms set symmetric prices, the user on side 1 that is indifferent

between joining platform A and not joining any platform is such that:

uA1 (x̃1, p1, p2, p1, p2) = 0 ⇔ x̃1 =
2k1 − 2p1 + α1

2t1
. (33)

If side 1 is not fully covered, i.e. x̃1 ≤ 1
2
, the individual (collusive) profit is:

πc(p1, p2) = p1x̃1 +
p2

2
= p1

2k1 − 2p1 + α1

2t1
+
p2

2
. (34)

As πc is strictly increasing in p2, platforms will choose the highest price that leaves the

consumer that is indifferent between joining platforms A and B, x̃2 = 1
2
, with zero utility:

uA2 (1
2
, p1, p2, p1, p2) = 0 ⇔ p2 = k2 + α2

2k1 − 2p1 + α1

2t1
− t2

2
. (35)

Solving the FOC corresponding to the maximization of πc with respect to p1, ∂πc

∂p1
= 0, we
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obtain:

p1 =
2k1 + α1

4

Replacing this expression in (35) and (33), we obtain respectively:

p2 =
4k2t1 − 2t1t2 + 2k1α2 + α1α2

4t1

and:

x̃1 =
2k1 + α1

4t1
.

As a result, there is a local maximum of πc with partial coverage of side 1 if:

x̃1 <
1

2
⇔ k1 < t1 −

α1

2
.

Notice that we could replicate this analysis assuming that platforms fully serve side 1 (i.e.,

x̃1 = 1
2
), and derive the condition that ensures that it is also profitable to fully serve side

2. Similarly, we would conclude that there is a local maximum of πc with partial coverage

of side 2 if:

k2 < t2 −
α2

2
.

2. Let us now see under which conditions platforms prefer to partially serve both sides, i.e.

x̃1 <
1
2

and x̃2 <
1
2
, instead of fully serving them.

If platforms set symmetric prices, the user on side j ∈ {1, 2} that is indifferent between

joining platform A and not joining any platform is such that:

uAj (x̃j, p1, p2, p1, p2) = 0 ⇔ kj + αjx̃−j − tjx̃j − pj = 0.

Solving the corresponding system of two equations, we obtain:{
uA1 (x̃1, p1, p2, p1, p2) = 0

uA2 (x̃2, p1, p2, p1, p2) = 0
⇔

{
x̃1 = α1(k2−p2)+t2(k1−p1)

t1t2−α1α2

x̃2 = α2(k1−p1)+t1(k2−p2)
t1t2−α1α2

.

If x̃j ≤ 1
2
, the individual collusive profit is given by:

πc = p1x̃1 + p2x̃2.
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Solving the FOCs corresponding to the maximization of πc, we obtain:

p1 =
k2t1(α1 − α2) + k1 (2t1t2 − α1α2 − α2

2)

4t1t2 − (α1 + α2)2
∧ p2 =

k1t2(α2 − α1) + k2 (2t1t2 − α1α2 − α2
1)

4t1t2 − (α1 + α2)2
.

Given these prices:

x̃j =
2t−jkj + (α1 + α2)k−j

4t1t2 − (α1 + α2)2
.

Thus, there is an interior local maximum with partial coverage of both market sides iff:

x̃j <
1

2
⇔ 2t−jkj + (α1 + α2)k−j <

4t1t2 − (α1 + α2)2

2

Thus, for the two platforms to prefer to fully cover the two market sides, we must have:

min
{

2t2k1 + (α1 + α2)k2, (α1 + α2)k1 + 2t1k2

}
≥ 4t1t2 − (α1 + α2)2

2
.

�

Proof of Lemma 5.

Assume, w.l.o.g., that platform A deviates from the collusive agreement, i.e., sets prices

that maximize its individual profit, given that platform B charges the collusive prices

(pc1, p
c
2). Its profit function is then:

πA =
−t2(p1)2 − t1(p2)2 − p1p2(α1 + α2) + p1(t2p

c
1 + α1p

c
2 + t1t2 − α1α2) + p2(α2p

c
1 + t1p

c
2 + t1t2 − α1α2)

2(t1t2 − α1α2)
.

(36)

The FOCs corresponding to the maximization of πA are:

∂πA

∂pj
= 0⇔ 1

2
− 2t−jpj + (α1 + α2)p−j − t−jpcj − αjpc−j

2(t1t2 − α1α2)
= 0, j ∈ {1, 2}.
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Combining the two FOCs, we obtain:40

pdj (p
c
1, p

c
2) =

[2t1t2 − α−j(α1 + α2)]pcj + pc−jtj(αj − α−j) + (2tj − α1 − α2)(t1t2 − α1α2)

4t1t2 − (α1 + α2)2
.

(37)

Replacing these prices in (36), we obtain the deviation profit (for given pc1 and pc2):

πd(pc1, p
c
2) =

1

2 [4t1t2 − (α1 + α2)2]

{
t2(pc1)2 + t1(pc2)2 + (α1 + α2)pc1p

c
2 + [t2(2t1 − α1 + α2)− α2(α1 + α2)] pc1+

+ [t1(2t2 + α1 − α2)− α1(α1 + α2)] pc2 + (t1 + t2 − α1 − α2)(t1t2 − α1α2)
}
.

(38)

From Lemma 4, both sides of the market are fully covered under the most profitable

collusive agreement. Thus, if platforms charge prices (p1, p2), their individual per-period

collusive profit is:

πc(p1, p2) =
p1 + p2

2
. (39)

From Lemma 3, collusive prices (pc1, p
c
2) solve the following constrained minimization pro-

gram:

min
(p1,p2)∈R2

πd (p1, p2) s.t. πc =
p1 + p2

2
.

For a given collusive profit πc, replacing pc2 = 2πc − pc1 in (38) and solving the FOC

corresponding to the minimization of πd (p1, 2π
c − p1) with respect to p1, we obtain:41

pc1 =
α1 − α2

2
+

2t1 − α1 − α2

t1 + t2 − α1 − α2

πc.

Thus, if δ is sufficiently low, collusive prices are:

(pc1 (δ) , pc2 (δ)) =

(
α1 − α2

2
+

2t1 − α1 − α2

t1 + t2 − α1 − α2
πc(δ),

α2 − α1

2
+

2t2 − α1 − α2

t1 + t2 − α1 − α2
πc(δ)

)
.

(40)

40Assumption 1 implies that the second-order conditions are satisfied: ∂2πd

∂(pdj )2
= − t2

t1t2−α1α2
< 0 and

∂2πd

∂(pd1)2
∂2πd

∂(pd2)2
−
(

∂2πd

∂pd1∂p
d
2

)2

= 4t1t2−(α1+α2)2

4(t1t2−α1α2)2 > 0.

41The second-order is satisfied, d
2πd

dpc1
2 (pc1, 2π

c − pc1) = t1+t2−α1−α2

4t1t2−(α1+α2)2 > 0, meaning that our candidate is,

indeed, a minimum.
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These prices are valid as long as they induce full coverage of side j ∈ {1, 2}, i.e., :

uij
(

1
2
, pc1, p

c
2, p

c
1, p

c
2

)
≥ 0 ⇔ (2tj − α1 − α2)πc(δ) ≤ (2kj − tj + α−j)π

N . (41)

1. If t1 >
α1+α2

2
and t2 >

α1+α2

2
, collusive prices are increasing in δ on both sides of the

market. In this case, we can rewrite condition (41) for full coverage of side j as follows:

πc(δ) <
(2kj − tj + α−j)π

N

2tj − α1 − α2

≡ π̃j.

Combining Lemma 2 with πc (0) = πN and the continuity of πc (δ), we conclude that, as

long as π̃j ∈
(
πN , πm

)
, ∃δ̃j ∈ (0, 1) such that πc(δ) ≤ π̃j,∀δ ≤ δ̃j. For πc(δ) > π̃j, the

price on side j is no longer given by (40). We need, therefore, to know in which side of the

market the collusive price reaches its maximum for a lower value of δ. Note that:

π̃1 < π̃2 ⇔ k2(2t1 − α1 − α2)− k1(2t2 − α1 − α2) > πN(α2 − α1).

1.1. If k2(2t1 − α1 − α2) − k1(2t2 − α1 − α2) < πN(α2 − α1), the collusive price on side

1 reaches its maximum level (i.e., that ensures full coverage of this side) for lower values

of δ. Thus, expressions (40) are valid for δ < δ̃1. For δ > δ̃1, we have that pc1 = pm1 and,

therefore, pc2 = πc − pm1 . Again, the price on side 2 can not exceed the level that ensures

full coverage of this side, pm2 . Thus, ∃δm ∈ (δ̃1, 1) such that pc2 = pm2 , for δ ≥ δm.

1.2. If k2(2t1−α1−α2)− k1(2t2−α1−α2) > πN(α2−α1), the price on side 2 reaches its

maximum level, pm2 , for lower values of δ. Thus, expressions (40) are only valid for δ < δ̃2.

For δ > δ̃2, we have that pc2 = pm2 and pc1 = πc − pm2 . The price on side 1 must be lower

than pm1 , to ensure full coverage of this side. Thus, ∃δm ∈ (δ̃2, 1) such that pc1 = pm1 , for

δ ≥ δm.

2. If t1 <
α1+α2

2
< t2, using (40), we conclude that, for sufficiently low values of δ, pc1 is

decreasing in δ and pc2 is increasing in δ. Thus, the maximum level for the collusive price

will be achieved on side 2 for lower values of the discount factor. The analysis is then

similar to case 1.2.

3. If t2 <
α1+α2

2
< t1, for low enough values of δ, pc1 is increasing in δ while pc2 is decreasing

in δ. Thus, the maximum level for the collusive price will be achieved on side 1 for lower

values of the discount factor, and the analysis is similar to case 1.1. �

Proof of Proposition 1.
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If t2 > (α1 + α2) /2 then pc2(δ) is increasing in δ as long as pc2(δ) < pm2 , and then is constant.

This implies that pc2(δ) > pc2(0) = pN2 for any δ ∈ (0, 1]. Likewise, if t1 > (α1 + α2) /2 then

pc1(δ) > pN1 for any δ ∈ (0, 1]. Consider now the scenario in which t2 < (α1 + α2) /2. In

this case, pc2(δ) is decreasing over (0, δ̃1), which implies that pc2(δ) < pN2 for any δ ∈ (0, δ̃1).

Moreover, pc2(δ) is increasing over
[
δ̃1, δ

m
]

and pc2(δ̃1) < pN2 < pm2 = pc2(δm), which implies

the existence of δ̂2 ∈ (δ̃1, δ
m) such that pc2(δ) < pN2 for any δ ∈ (0, δ̂2) and pc2(δ) > pN2 for

any δ ∈ (δ̂2, δ
m]. Finally, note that pc2(δ) = pm2 > pN2 for any δ ∈ (δm, 1]. Therefore, pc2(δ) <

pN2 for any δ ∈ (0, δ̂2) and pc2(δ) > pN2 for any δ ∈ (δ̃2, 1]. Likewise, if t1 < (α1 + α2) /2,

then there exists δ̂1 ∈ (δ̃2, δ
m) such that pc1(δ) < pN1 for any δ ∈ (0, δ̂1) and pc1(δ) > pN1 for

any δ ∈ (δ̃1, 1]. �

Proof of Lemma 7.

Let (poc1 , p
oc
2 ) denote the (unique) solution of the maximisation program (11) suubject to

(12). From (13), we know that poc2 = g(poc1 , α1, α2) = t1t2−α1α2

t1
− α1

t1
poc1 . In what follows, we

will analyse separately three scenarios, divided according to the value of α1.

If platforms set poc1 and poc2 inducing full market coverage, their individual profit is:

πoc =
poc1 + poc2

2
=
poc1 +

(
t1t2−α1α2

t1
− α1

t1
poc1

)
2

=
t1t2 − α1α2

2t1
+
t1 − α1

2t1
poc1 . (42)

1. 0 ≤ α1 < t1.

In this case, πoc given in (42) is increasing on poc1 . Thus, platforms will set a supra-

competitive price on side 1 and an infra-competitive price on side 2 (as α1 < 0). It follows,

therefore, that if side 1 is fully covered, the condition for side 2 to be fully covered under

Nash competition (Assumption 1) implies that side 2 is also fully covered under one-sided

collusion. As platforms charge symmetric prices, they equally share both sides of the

market. Thus, side 1 is fully covered if and only if the indifferent consumer, located at

x = 1
2
, gets a non-negative utility:

ui1

(
1

2
, poc1 , p

oc
2 , p

oc
1 , p

oc
2

)
≥ 0 ⇔ poc1 ≤ k1 +

α1 − t1
2

= pm1 , (43)

where pm1 is the maximum price that platforms can charge on side 1 for this side to be fully

covered, as seen in (6).
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Solving (42) with respect to poc1 , we obtain that, for a given collusive profit πoc(δ), the price

on side 1 is:

poc1 (δ) =
2t1

t1 − α1

πoc(δ)− t1t2 − α1α2

t1 − α1

. (44)

Replacing this expression in (13), we obtain the price on side 2:

poc2 (δ) =
t1t2 − α1α2

t1 − α1

− α1

t1 − α1

πoc(δ), (45)

Replacing (44) in the condition for full coverage of side 1, (43), we obtain:

poc1 (δ) ≤ pm1 ⇔ πoc(δ) ≤ 2k1(t1 − α1)− (t1 − α1)2 + 2(t1t2 − α1α2)

4t1
≡ π̃om. (46)

Let δ̃om be the value for the discount factor for which the most sustainable collusive profit

coincides with π̃om, i.e., πoc(δ̃om) = π̃om. If δ ≤ δ̃om, the prices are given by (44) and (45).

If δ > δ̃om:

poc1 (δ) = pm1 and poc2 (δ) =
t1t2 − α1α2

t1
− α1

t1
pm1 =

t1(α1 + 2t2)− α1(α1 + 2α2 + 2k1)

2t1
.

2. α1 > t1

In this case, πoc given in (42) is decreasing in poc1 . Thus, poc1 ≤ pN1 . As poc2 = g(poc1 , α1, α2) =
t1t2−α1α2

t1
− α1

t1
poc1 and pN2 = g(pN1 , α1, α2), we conclude that poc2 ≥ pN2 . Thus, if side 2 is fully

covered, the condition for full coverage under Nash competition (Assumption 1) ensures

that side 1 is also fully covered under one-sided collusion (as poc1 ≤ pN1 ). As platforms set

symmetric prices, side 2 is fully covered if and only if:

ui2

(
1

2
, poc1 , p

oc
2 , p

oc
1 , p

oc
2

)
≥ 0 ⇔ ũN2 +

α1

t1
(poc1 − pN1 ) ≥ 0 ⇔ poc1 ≥ pN1 −

t1
α1

ũN2 ≡ p̂1,

(47)

where:

ũN2 = k2 −
3t2 − 2α1 − α2

2
(48)

is the utility of the indifferent consumer on side 2 under Nash competition. Using (44), we

can rewrite the previous inequality as follows:

πoc(δ) ≤ (α1 − t1)(2k2 + α2 − t2) + 2(t1t2 − α1α2)

4α1

≡ π̂oc (49)
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Let δ̂om be the value for the discount factor for which the most sustainable collusive profit

coincides with π̂om, i.e., πoc(δ̂om) = π̂om. If δ ≤ δ̂om, the prices are given by (44) and (45).

If δ > δ̂om:

poc1 (δ) = pN1 −
t1
α1

ũN2 and poc2 (δ) = pm2 .

3. α1 < 0

In this case, πoc given in (42) is increasing in poc1 . Thus, poc1 > pN1 for δ > 0. From Lemma

6, we also conclude that poc2 > pN2 .

The expressions for prices, (44) and (45), are valid as long as consumers located at x = 1
2

on each market side get positive utility. Thus, side 2 is fully covered if and only if:

ui2

(
1

2
, poc1 , p

oc
2 , p

oc
1 , p

oc
2

)
≥ 0 ⇔ poc1 (δ) ≤ p̂1,

where p̂1 is given in (47). Thus, side 1 is fully covered if poc1 ≤ pm1 , given in (6), and side 2

is fully covered if poc1 ≤ p̂1. Furthermore:

pm1 < p̂1 ⇔ α1 > −
ũN2
ũN1

t1.

Hence:

- If − ũN2
ũN1
t1 ≤ α1 < 0, given δ, the most collusive prices are given by (16).

- If α1 < − ũN2
ũN1
t1, given δ, the most collusive prices are given by (17).

�

Proof of Lemma 8.

Looking at the expression for total welfare when platforms set symmetric prices, (24), it

follows that it is quadratic in nb1 and globally concave. In addition, total welfare would be

maximized at:
dW b

dnb1
= 0 ⇔ n∗b1 =

2k1 + α1 + α2

2t1
.

As, under Assumption 4ii, n∗b1 > 1, it follows that W b is strictly increasing ∀nb1 ∈ (0, 1).

�
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Proof of Proposition 5.

If platforms set symmetric prices, pA1 = pB1 = pcb1 and pA2 = pB2 = pcb2 , their individual profit

is:

πcb(pcb1 , p
cb
2 ) =

α1 + 2k1

2t1
pcb1 −

(pcb1 )2

t1
+
pcb2
2
.

Suppose, without loss of generality, that platform A unilaterally deviates from the collusive

agreement by choosing prices p1 and p2 that maximize its individual profit (while platform

B is setting prices pcb1 and pcb2 ). Then, its profit is:

πA(p1, p2; pcb1 , p
cb
2 ) =

1

8t1(t1t2 − α1α2)

{
− 4(2t1t2 − α1α2)p1

2 (50)

+
[
−α1α

2
2 + (α1 + 2k1)(4t1t2 − 3α1α2)− 4t1(α1 + α2)p2 + 4α1t1p

cb
2

]
p1

− t1
[
4t1p2 − 4t1(pcb2 + t2)− α2(2k1 − 3α1 − α2)

]
p2

}
.

Solving the corresponding FOCs, we obtain the following deviation prices (for given collu-

sive prices):

pdb1 (pcb1 , p
cb
2 ) =

α2(α1 − α2)

Ω
pcb1 +

t1(α1 − α2)

Ω
pcb2 +

(4k1 + α1 − α2)(t1t2 − α1α2)

Ω

pdb2 (pcb1 , p
cb
2 ) =

(4t1t2 − α2
1 − 3α1α2)

t1Ω
(α2p

c
1 + t1p

c
2)

+
(t1t2 − α1α2) [4t1t2 − α2

1 − 3α1α2 − 2k1(α1 + α2)]

t1Ω

Replacing these expressions in (50), we obtain the maximum deviation profit (for given pcb1

and pcb2 ):

πcb(pcb1 , p
cb
2 ) =

1

t1Ω

[
t21(pc2)2 + t1(2t1t2 + k1α1 − k1α2 − 2α1α2)pc2 + α2

2(pc1)2

+ α2(2t1t2 + k1α1 − k1α2 − 2α1α2)pc1 + 2α2t1p
c
1p
c
2

+ (t1t2 − α1α2)
(
2k1

2 + t1t2 + k1α1 − k1α2 − α1α2

) ]
(51)

It is straightforward to see that Lemma 3 still applies and allows us to determine the price

structure under the most profitable sustainable (two-sided) collusive agreement. Thus, pcb1

and pcb2 are those that minimize the deviation profit, πdb. Thus, for a given collusive profit
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πcb(pcb1 , p
cb
2 ) = π, the collusive prices solve the following constrained minimisation problem:

min
(pcb1 ,p

cb
2 )
πdb(pcb1 , p

cb
2 ) s.t. πcb(pcb1 , p

cb
2 ) = π,

whose Lagrangean function is:

L(pcb1 , p
cb
2 , λ) = πdb(pcb1 , p

cb
2 ) + λ

[
πcb(pcb1 , p

cb
2 )− π

]
.

Solving the corresponding FOCs, we obtain 3 candidates to constrained minimum but just

the following one satisfies the SOCs:

pcb1 = pN1 , pcb2 = 2π − (2k1 + α1 − α2)(2k1 + α1 + α2)

8t1
, λ =

1

2
+

8t1π − 2k1
2

Ω
. (52)

Replacing these expressions in (51), we obtain the deviation profit, for a given collusive

profit π:

πdb(π) =
16k4

1 − 8k1
2(16t1π − Ω) + (16t1π + Ω)2

64t1Ω
.

The (collusive) profit π ≥ πN is sustainable iff the following ICC is satisfied:

π

1− δ ≥ πdb(π) +
δ

1− δπ
Nb ⇔

π − πNb
4(1− δ)Ω

[
(3δ + 1)Ω + 4(1− δ)k1

2 − 16t1(1− δ)π
]
≥ 0 ⇔ π ≤ 1

4t1

[
k1

2 +
1 + 3δ

4(1− δ)Ω

]
.

Thus, given δ, the most profitable collusive profit is:

πcb(δ) =
1

4t1

[
k1

2 +
1 + 3δ

4(1− δ)Ω

]
. (53)

Replacing this expression in (53), we obtain the collusive prices:

pcb1 = pN1 and pcb2 (δ) = pN2 +
Ω

2t1

δ

1− δ (54)

Notice, however, that the above expressions are only valid if the market is fully covered

and there is partial multi-homing on side 1. As pcb1 = pN1 and the number of users on side

2 is the same under collusion and competition, the conditions for market coverage and

partial multi-homing on side 1 are the same as under Nash competition (Assumption 4).

As a result, we only need to check that side 2 is fully covered, i.e., that the utility of the
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consumer located at x = 1
2

is non-negative. Replacing the collusive prices in (1), we get:

ui2

(
1

2
, pcb1 , p

cb
2 (δ), pcb1 , p

cb
2 (δ)

)
≥ 0

⇔ δ ≤ 1− 2Ω

2k1(α1 + α2) + 4k2t1 + 2(t1t2 − α1α2) + Ω
≡ δmB.

Thus, expressions (53) and (54) are only valid for δ ≤ δmB. For δmb < δ < 1, we have

pcb1 = pN1 , pcb2 (δ) = pcb2 (δmb) and πcb(δ) = πcb(δmb). �

Proof of Proposition 6.

1. (Perfect collusion) Start by assuming that platforms are sufficiently patient for the

ICC in (27) to be not binding. In this case, platforms set the price on side 2 that maximises

their joint profit, which we denote by pm2b
2 . Replacing pA1 = pB1 = f (p2), given in (31), in

the platforms’ joint profit, (30), we get:

πJ(p2) =
1

t1(4t1t2 − 3α1α2)2

{
− 2α2

2t
2
1p

2
2 − 2t1

[
α1α

2
2k1 − 4(t1t2 − α1α2)(2t1t2 − α1α2)

]
p2

+ (2k1 + α1)2(t1t2 − α1α2)(2t1t2 − α1α2)
}
. (55)

As d2πJ

dp22
= − 4α2

2t1
(4t1t2−3α1α2)2

< 0,∀p2, it follows that πJ is globally concave. As a result, the

maximiser of πJ , pm2b
2 , is above the Nash level, pNb2 , iff:42

dπJ

dp2

∣∣∣∣
p2=pNb

2

> 0⇔ Γ > 0. (56)

In the LHS of the last inequality we have a second-order polynomial in α2 whose roots are:

ᾱ2 =
1

2

(
−3α1 +

√
9α2

1 + 16t1t2

)
and α2 =

1

2

(
−3α1 −

√
9α2

1 + 16t1t2

)
. (57)

It is straightforward to show that α2 < 0 < ᾱ2. Thus:

pm2b
2 > pNb2 ⇔ α2 ∈]α2, ᾱ2[. (58)

Combining this with (29), we get the comparison between the price on side 1 under collusion

and competition.

42Please note that the parameter Γ = 4t1t2 − 3α1α2 − α2
2 was defined in section 3.2.
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Let us determine the critical discount factor, i.e., the value for δ above which the ICC

is not binding. Solving the FOC corresponding to the maximization of (55), we get:

pm2b
2 = −α1(k1 − 4α1)

2t1
+

4t1t
2
2

α2
2

− 6α1t2
α2

. (59)

Replacing in (55), we get the individual (perfect) collusive profit:

πm2b = πNb +
Γ2

16α2
2t1

(60)

where πNb is given in Proposition 4 and Γ is defined in section 3.2. Solving the FOCs

corresponding to the individual profit maximization if the rival firm abides by the collusive

agreement, we can obtain the unilateral deviation profit:

πdm2b = πm2b
2 +

(t1t2 − α1α2)(2t1t2 − α1α2)(4t1t2 − α2(3α1 + α2))2

2α4
2t1Ω

.

Thus, the critical discount factor is:

δm2b =
πdm2b − πm2b

πdm2b − πNb = 1− α2
2Ω

α2
2Ω + 8(t1t2 − α1α2)(2t1t2 − α1α2)

. (61)

2. (Imperfect collusion) Consider now that platforms are little patient and, therefore

the ICC in (27) binds. As a result, that the collusive price on side 2, pc2b2 , is the solution

of:
πJ(p2)

2
− (1− δ)πd2b(p2)− δΠN = 0, (62)

where πJ is given by (55) and πd2b(p2) is the maximum profit that a platform can obtain

by unilaterally deviating from the agreement, while the rival sets prices p1 = f(p2) and p2.

To compute πd2b(p2), suppose, without loss of generality, that platform A deviates from

the collusive agreement, while platform B sets the collusive price on side 2, pc2b2 , and the

corresponding competitive price on side 1, pc2b1 = f(pc2b2 ). More precisely, platform A fix

prices pd2b
1 and pd2b

2 that maximize its individual profit:

max
p1,p2

πAb
(
p1, p2, f(pc2b2 ), pc2b2

)
.
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Solving the corresponding FOCs, we obtain:

pd2b
1 (pc2b2 ) =

1

Ω(4t1t2 − 3α1α2)

{
2k1(t1t2 − α1α2)

(
8t1t2 − 5α1α2 − α2

2

)
+ 2(α1 − α2)(t1t2 − α1α2)(2t1t2 − α1α2) + t1(α1 − α2)

(
4t1t2 − 3α1α2 − α2

2

)
pcb22

}
and

pd2b
2 (pc2b2 ) =

1

Ω(4t1t2 − 3α1α2)t1

{
2(t1t2 − α1α2)(2t1t2 − α1α2)

(
4t1t2 − α2

1 − 3α1α2 − 2α1k1

)
+ t1

(
4t1t2 − 3α1α2 − α2

1

) (
4t1t2 − 3α1α2 − α2

2

)
pc2b2

}
.

Replacing these expressions in πAb
(
p1, p2, f(pc2b2 ), pc2b2

)
, we get πd2b(p2). After plugging this

expression in (62), we obtain an equation in p2, whose solution (besides p2 = pNb2 ) is:

pc2b2 (δ) =
1

4t1 (Λ− Γ2δ)

{
Λ [4t1t2 − α1(α1 + 3α2 + 2k1)]

+ Γ
[
2α1k1Γ + α1α2

(
3α2

1 + 26α1α2 + 3α2
2

)
+ 4t1t2

(
12t1t2 − 18α1α2 − α2

1 − α2
2

) ]
δ
}

(63)

where Γ ≡ 4t1t2 − 3α1α2 − α2
2 and Λ ≡ 8(t1t2 − α1α2)(2t1t2 − α1α2) > 0. Differentiating

this expression with respect to δ, we obtain:43

dpc2b2

dδ
> 0⇔ ΓΛΩ (Γ + α2

2)

2t1 (Λ− Γ2δ)2 > 0⇔ Γ > 0,

which is exactly the same condition as the one we obtained for perfect collusion, (56). As

pc2b2 (0) = pNb2 , platforms will set a supra-competitive price on the collusive side (side 2)

iff Γ > 0, which, as seen above, is true iff α2 ∈]α2, ᾱ2[. The comparison for p1 follows

combining this result with (29).

�

Proof of Proposition 7.

If α2 ∈ (α2, ᾱ2), collusion on the single-homing side damages aggregate consumer surplus,

CSb = CSb1 + CSb2, as consumer surplus on both sides of the market decreases.

Consider now that α2 /∈ (α2, ᾱ2). Let us focus on the scenarios where platforms set

43Notice that Γ + α2
2 = 3(t1t2 − α1α2) + t1t2 > 0.
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symmetric prices (pAj = pBj = pj). Replacing expression (19) in (22) and (23) and adding

up the obtained expressions, we get:

CSb(p1, p2) =
(α1 + 2k1 − 2p1)(α1 + 2α2 + 2k1 − 2p1) + t1(4k2 − 4p2 − t2)

4t1

For price combinations that satisfy the FOCs on the competitive side, (31), we get:

C̃Sb(p2) =
[(α1 + 2k1)(2t1t2 − α1α2) + 2α2t1p2]

[
(α1 + 4α2 + 2k1)(2t1t2 − α1α2)− 2α1α

2
2 + 2α2t1p2

]
4t1(4t1t2 − 3α1α2)2

+k2−p2−
t2
4

which is a globally concave function in p2, as it is a quadratic function with coefficient
α2
2t1

(4t1t2−3α1α2)2
> 0 in p2

2. Differentiating C̃S
b

with respect to p2, we obtain:

∂C̃S
b

∂p2

=
2α2t1t2(13α1 + 2α2 + 2k1)− α1α

2
2(10α1 + 3α2 + 2k1)− 16t21t

2
2 + 2α2

2p2t1
(4t1t2 − 3α1α2)2

Evaluating this derivative at the Nash price, given in Lemma 1, we obtain:

∂C̃S
b

∂p2

∣∣∣∣∣
p2=pNb

2

< 0 ⇔ 2α2k1 < (α1 + α2)(α1 − 2α2) + Ω. (64)

• If α2 < α2 < 0, this condition is trivially satisfied (recall that, by assumption 4,

Ω > 0). Thus, pNb2 is at the decreasing branch of C̃S
b
. As, from Proposition 6,

pc2b2 < pNb2 , we conclude that aggregate surplus is greater when platforms only collude

on single-homing side than under Nash competition.

• If α2 > ᾱ2, we can rewrite (64) as follows:

∂C̃S
b

∂p2

∣∣∣∣∣
p2=pNb

2

< 0 ⇔ 2k1 <
8t1t2 − 7α1α2 − 3α2

2

α2

.

Let us show that, if α2 > ᾱ2, the expression in the RHS is negative and, therefore,

the inequality is never satisfied. As α2 > 0, this turns out to prove that f(α2) =

8t1t2 − 7α1α2 − 3α2
2 < 0:

α2 <
−
√

49α2
1 + 96t1t2 − 7α1

6
≡

˜
α2 ∨ α2 >

√
49α2

1 + 96t1t2 − 7α1

6
≡ α̃2

As f is concave downward,
˜
α2 < 0 < α̃2, ᾱ2 > 0, f(ᾱ2) < 0, we conclude that
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f(α2) < 0, ∀α2 > ᾱ2 and, consequently, ∂C̃S
b

∂p2

∣∣∣
p2=pNb

2

> 0.

Let p2 be the (global) minimum of C̃S
b
. We have shown that pNb2 > p2 and know that

pc2b2 (δ) < pNb2 (Proposition 6). Let us now compare pc2b2 (δ) to p2. As, for α2 > ᾱ2,

pc2b2 (δ) is decreasing in δ (see the proof of Proposition 6), it suffices to compare

pm2b
2 = pc2b2 (δm2b), where δm2b is given in (61) and p2:

pm2b
2 > p2 ⇔ k1 >

2t1t2 − 2α1α2 − α2
2

α2

.

Simple algebra allows us to show that Assumption 4ii ensures that this condition is

satisfied (for α2 > ᾱ2).

As a result, pc2b2 (δ) is at the increasing branch of C̃S
b
. Combining this with the

fact that pc2b2 (δ) < pNb2 , we conclude that total consumer surplus is lower when

platforms collude over the price to charge on the single-homing side than under Nash

competition, if α2 > ᾱ2.

�

Proof of Proposition 8.

From (31), if platforms set price p1 on side 1, the price on side 2 is p2 = h(p1). Replacing

p2 = h(p1) in (21), we find that, for a given p1, the platforms’ individual profit is:

πibc1(p1) = πib (p1, h(p1), p1, h(p1)) =
1

2t1

(
t1t2 − α1α2 + 2k1p1 − 2p2

1

)
. (65)

Suppose, without loss of generality, that platform A unilaterally deviates from the collusive

agreement, by choosing prices, p̃1 and p̃2, that maximize its individual profit while the rival

is charging p1 and p2 = h(p1):

max
p̃1,p̃2

πAb (p̃1, p̃2, p1, h(p1)) .
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Solving the corresponding FOCs, we get the deviation prices (for a given p1):44

pdc1b1 (p1) =
2(t1t2 − α1α2)(2k1 + α1 − α2)

Ω
− (α1 − α2)2

Ω
p1

pdc1b2 (p1) =
(t1t2 − α1α2) [Ω− (α1 + α2)(2k1 + α1 − α2)]

t1Ω
− (α1 − α2) [Ω− (α1 − α2)(α1 + α2)]

2t1Ω
p1,

Replacing these prices in πAb (p̃1, p̃2, p1, h(p1)), we get the unilateral deviation profit (for a

given p1):

πdc1b(p1) =
1

t1Ω

{
2(t1t2 − α1α2)

[
k1

2 + k1(α1 − α2) + 2(t1t2 − α1α2)
]

− (α1 − α2) [k1(α1 − α2) + 4(t1t2 − α1α2)] p1 + (α1 − α2)2p2
1

}
. (66)

1. (Perfect collusion) Consider first the case wherein platforms’ discount is so high

that the ICC is not binding. Then, platforms set p1 that maximises their joint profit

(antecipating that the price on side 2 will be p2 = h(p1)). More precisely, platforms will

choose p1 that maximises (65). Solving the corresponding FOCs, we obtain:

pm1b
1 = pNb1 −

α1 − α2

4
.

As a result:

pm1b
1 > pNb1 ⇔ α1 < α2. (67)

and:

pm1b
2 = h(pm1b

1 ) = pNb2 +
α1(α1 − α2)

4t1
.

Hence:

pm1b
2 > pNb2 ⇔ (α1 > 0 ∧ α1 > α2) ∨ (α1 < 0 ∧ α1 < α2) (68)

Replacing p1 = pm1b
1 in (65), we obtain the perfect collusive profit:

πm1b = πNb +
(α1 − α2)2

16t1
,

which, as expected, always exceeds the two-sided competition profit.

To get the expression for the critical discount factor, δm1b, it is only missing to derive the

44The expression for Ω in given by (18).

55



expression for the deviation profit. Replacing p1 = pm1b
1 in (66), we get:

πdm1b =
k2

1Ω + 16(t1t2 − α1α2)2

4t1Ω

Thus, the critical discount factor is:

δm1b =
πdm1b − πm1b

πdm1b − πNb = 1− Ω

8(t1t2 − α1α2) + Ω
.

2. (Imperfect collusion) Consider now that platforms are not sufficiently patient so

that the ICC is binding, i.e., δ < δm1b. For a given p1, the expressions for profits under

collusion, deviation and competition are respectively given in (65), (66) and Proposition

4. Replacing them in the ICC (in equality) and solving it with respect to p1, we obtain

(beyond the trivial solution p1 = pNb1 ):

pc1b1 (δ) = pNb1 −
(α1 − α2)Ωδ

2 [(1− δ)(α1 − α2)2 + Ω]
(69)

The corresponding price on side 2 is:

pc1b2 (δ) = h(pc1b1 (δ)) = pNb2 +
α1(α1 − α2)Ωδ

2t1 [(1− δ)(α1 − α2)2 + Ω]
. (70)

It follows immediately that the conditions to have supra-competitive prices on each side

of the market are exactly the same as those obtained for the case of perfect collusion, (67)

and (68).

Finally, replacing p1 = pc1b1 in (65), we obtain the most sustainable collusive profit for a

given δ < δm1b when platforms only collude on the multi-homing side:

πc1b(δ) = πNb +
2Ω(α1 − α2)2(t1t2 − α1α2)δ(1− δ)

t1 [(1− δ)(α1 − α2)2 + Ω]2
.

�
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