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Abstract

In this paper, we propose a simple econometric framework to disentangle the respective
roles of monetary policy inertia and persistent shocks in interest rate rules. We exploit the
restrictions of a DSGE model which is confronted to a monetary SVAR. We show that,
provided enough informative variables are included in the formal test, the data favor a
monetary policy representation with modest inertia and highly serially correlated monetary
shocks. To the contrary, when the procedure is based solely on the dynamic behavior of the
nominal interest rate, no clear-cut conclusion can be reached about the correct representation
of monetary policy.
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1 Introduction

The purpose of this paper is to investigate whether the dynamics of the nominal interest rate

are better described as featuring monetary policy inertia or as characterized by highly persistent

factors or shocks. This paper deals with this long debated issue by reconciling some of the earlier,

inconclusive results based on single-equation estimates. Essentially, we show that a multivariate
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system brings useful information to answer this question. Using such an approach, we show that

the data favor a representation of monetary policy with serially correlated shocks and modest

policy inertia.

Over the recent years, there has been a renewed interest in modeling monetary policymaking

in terms of simple rules. In this context, the Taylor rule has become the workhorse description of

central bank behavior. Nevertheless, Taylor (1993) pointed out that one should not expect that

policymakers “follow policy rules mechanically.”1 Instead, one should consider the Taylor rule as

a “hypothetical but representative” description summarizing the complex process of monetary

policy.

Applied monetary economists have followed this general guideline by specifying and estimat-

ing extended Taylor rules to better approximate the central bank policy. An important result

obtained in the literature, as exemplified by Clarida et al. (2000), is that the lagged interest

rate is highly significant in the estimated policy rule, suggesting that the nominal interest rate

exhibits a sizable degree of inertia.2 It has been argued that this apparent inertia might result

from deliberate policy inertia from the central bank, the latter enforcing a partial adjustment

process on its instrument. However, Rudebusch (2002, 2006) claimed that, if the central bank

actually smooths its policy, then future adjustments in the interest rate should be largely pre-

dictable. Unfortunately, Rudebusch (2002) showed that this is not supported by financial data

(see also Söderlind et al., 2003).

An alternative explanation to the persistence of monetary policy is the presence of serially

correlated shocks in the realizations of the interest rate. These shocks represent a set of special

factors that cannot be systematically modeled by a simple, parsimonous interest rate rule such

as an augmented Taylor rule. If these factors are persistent, the interest rate will display inertia.

While these two competing views entail very different conclusions about the behavior of

central banks, aggregate data have been fairly silent as to which is the correct representation

of actual policy. For instance, Rudebusch (2002) cannot distinguish the two competing speci-

fications in an estimated interest rate rule. English et al. (2003) find that there is supportive

evidence for both representations to be significant components of the Federal Reserve behavior.

Castelnuovo (2003) suggests that both views of monetary policy are equally important to de-

scribe the central bank decisions.3 This lack of clear–cut conclusions may be due to a well known

1See also Taylor (1999) for different possible interpretations of this monetary policy rule.
2This result was also found by Amato and Laubach (2003), Kozicki(1999), Levin, Wieland and Williams (1999),

and Sack and Wieland (2000), among others.
3Gerlach–Kristen (2004) and Apel and Jansson (2005) find similar results using Kalman filtering to account

for omitted unobserved factors in the interest rate rule.

2



problem of identification and multiple optima typically arising in models of partial adjustment

with serially correlated shocks. The latter calls into question the use of a single equation, i.e. a

Taylor rule taken in isolation, as a proper way to discriminate between the two competing views

of monetary policy.

To eschew this identification problem, we propose to resort to a Dynamic Stochastic General

Equilibrium (DSGE) model to interpret the data and disentangle these two alternative views

about monetary policy. An important and celebrated virtue of such models is that they can

generate very different aggregate dynamics when subjected to different policy rules, and this does

not just hold for the nominal interest rate but also for a broader set of macroeconomic variables.

We build on this property to assess which of the two views generates aggregate dynamics in

accordance with the data.

In order to implement these ideas, we resort to a limited information approach that allows

us to exclusively focus on that portion of aggregate fluctuations due to monetary shocks in US

data. We first estimate a structural vector autoregression (SVAR) with short-run restrictions to

identify monetary policy shocks and the implied Impulse Response Functions (IRFs) of a set of

aggregate variables. Second, we estimate the DSGE parameters that govern policy inertia and

the amount of serial correlation in monetary shocks. These parameters are pinned down so that

the DSGE model matches as well as possible the IRFs drawn from the SVAR.

When we consider the IRFs of output, inflation, wage inflation, the Fed funds rate, and money

growth, we are able to unambiguously discriminate between the two different representations.

Our results suggest that the dynamics of these variables are better fitted by a scheme with

moderate policy inertia and a high degree of serial correlation. Thus, the smoothness in the

interest rate is mainly explained by persistent factors beyond the target level of the policy rule.

In contrast, when we consider only the responses of the Fed funds rate, we find that there is not

enough information to discriminate between the two views. Therefore, we insist that in order

to disentangle the relative importance of each regime, one should take into account informative

features of the data. In our case, this role is devoted to the responses of inflation and wage

inflation. We also investigate two practical differences between these two alternative views about

monetary policy: (i) in terms of the responsiveness of the nominal interest rate to inflation and

the output gap; (ii) in terms of how the economy responds under the two rules during a specific

episode, namely the Volcker disinflation. In both cases, our findings confirm that the persistent

shock view provides a more accurate approximation of actual monetary policy.

The remainder is as follows. Section 2 presents the monetary policy rule and discusses
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identification problems when partial adjustment and serial correlation are included. Section 3

describes the main ingredients of the DSGE model used in our empirical exercise. Section 4

presents the econometric approach employed. Section 5 discusses the main estimation results.

Practical differences between policy inertia and persistent shocks are reviewed in section 6.

Finally, the last section offers some concluding comments.

2 Identification Problems with Monetary Policy Rules

Following recent studies that have estimated models of central bank behavior, we postulate a

monetary policy rule of the form

ı̂?t = aππ̂t + ay ŷt, (1)

ı̂t = ρiı̂t−1 + (1 − ρi) ı̂
?
t + et, (2)

et = ρeet−1 + νt, νt ∼ iid(0, σ2
ν). (3)

Equation (1) specifies how the target level ı̂?t evolves in response to current inflation π̂t and

output ŷt. More precisely, aπ and ay govern the sensitivity of the desired level of the nominal

interest rate to the log deviations of inflation and output, respectively.4 If the actual nominal

interest rate ı̂t were equal to ı̂?t , this would correspond to the policy rule proposed by Taylor

(1993). Instead, equation (2) allows for a partial adjustment of the nominal interest rate to its

target level at rate ρi. In addition, the rule is hit by monetary shocks et. If the latter were

iid, this would correspond to a standard specification for an augmented Taylor rule. Instead,

equation (3) specifies a parametric model of serial correlation in et that can potentially account

for part of the actual persistence found in ı̂t. These shocks may represent any contingent event

the central bank faces when deciding the interest rate, such as credit crunches or financial crises

(see Taylor, 1993, or Rudebusch, 2002). Moreover, the use of real-time data could also reinforce

the apparent degree of serial correlation in policy shocks (Orphanides, 2004). In addition, a

persistent change of the inflation target can be interpreted as a serially correlated shock to

monetary policy (see Smets and Wouters, 2003, 2005).

The empirical literature on Taylor rules has had trouble reaching clear-cut conclusion about

the correct representation of monetary policy. Although there is no evidence that the partial

adjustment hypothesis is fully responsible for the significance of the lagged interest rate term,

4Without loss of generality, we omit a constant term. Notice that, here, we assume that the Taylor rule
penalizes the logdeviations of output rather than those of the output gap. In the DSGE model presented in
the next section, it turns out that this distinction is irrelevant because the implied natural level of output is
irresponsive to monetary shocks, which are the only shocks considered in the analysis. Thus, in this framework,
the output gap exactly coincides with output. See Woodford (2003, chap. 6, p. 420).

4



there is also no evidence supporting the total rejection of monetary policy inertia.5 The absence

of clear-cut conclusion is in part due to a well-known problem of identification and multiple

optima in the partial adjustment model with serially correlated shocks (see, e.g. Griliches, 1967,

Blinder, 1986, Harvey, 1990, McManus et al. 1994). Rational expectation econometrics suffer

from the same problems, especially when the framework conveys little information, as in Sargent

(1978) or Kennan (1988).

To see this problem, let us consider our simple representation of monetary policy (1)–(3)

ı̂t = (ρi + ρe)̂ıt−1 − ρiρeı̂t−2 + (1 − ρi)
(

ı̂?t − ρeı̂
?
t−1

)

+ νt,

where the target ı̂?t is a linear function of shocks that hit the economy. We assume for simplicity

a single shock, namely the monetary shock νt:

ı̂?t =

∞
∑

k=0

ηkνt−k ,

where ηk is a complicated nonlinear function of the policy rule parameters, as well as other deep

parameters. Suppose that ηk for k = 0, ...,∞ are small and not sensitive to ρi and ρe. In this

case, ı̂?t is essentially zero with a very small amount of variance. The policy function accordingly

rewrites

ı̂t ≈ (ρi + ρe)̂ıt−1 − ρiρeı̂t−2 + νt.

In this case, the parameters ρi and ρe are not identified in general. To see this, consider the

reduced form associated to the approximate monetary policy

ı̂t = β1 ı̂t−1 + β2 ı̂t−2 + νt.

Provided that ρi 6= ρe, there does not exist a unique solution for ρi and ρe as a function of the

reduced form parameters β1 and β2. Indeed, as long as β2 6= 0, the solutions for ρi and ρe are

given by ρi = (β1 ± (β2
1 + 4β2)

1/2)/2 and ρe = β1 − ρi, where β2
1 + 4β2 = (ρi − ρe)

2 ≥ 0. This

means that two sets of values for ρi and ρe are observationally equivalent. The first solution

is associated to the monetary policy inertia view (ρi large and ρe small) whereas the second is

related to the persistent shocks view (ρi small and ρe large). When ı̂?t ≈ 0, we cannot distinguish

between a highly inertial monetary policy with transitory shocks and a monetary policy with

small partial adjustment and highly serially correlated shocks. In contrast, if ρi = ρe, the

parameters are identified, but this configuration is inconclusive since it assigns the same weights

to both views about monetary policy.

5See Rudebusch (2002), English et al. (2003), Castelnuovo (2003), Gerlach–Kristen (2004), Apel and Jansson
(2005).
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When ı̂?t is responsive to shocks, and thus is more volatile, this multiple optima problem

can potentially disappear, provided that ηk is highly sensitive to perturbations in ρi and ρe.

However, nothing guarantees this in practice, so that estimating ρi and ρe by focusing on the

nominal interest rate only might fail to reveal the correct information about monetary policy.

A way to eschew this problem is to consider additional variables and equations in the esti-

mation stage. We argue that moving from a single equation setup to a system of equations is

likely to aid in discriminating between the two views of policy dynamics (see Rudesbusch and

Wu, 2004, for a similar approach). Our strategy to identify the policy parameters rests on the

restrictions imposed by a DSGE model. When the policy rule parameters have strong effects on

aggregate dynamics, this give us an opportunity to properly identify ρi and ρe and to deliver

clear-cut conclusions. The next section gives a brief overview of the model used in our empirical

analysis.

3 The DSGE Model

We consider a standard New Keynesian model with price and wage stickiness,6 along the lines

of Giannoni and Woodford (2004) and Gaĺı and Rabanal (2005). Since, later on, we will seek to

compare this model with a monetary SVAR à la Christiano et al. (1996, 1999), it is important

to make sure that they both embed the same timing restrictions. To achieve this, we assume

that output, inflation, and wage inflation are decided prior to observing the monetary shock, as

in Rotemberg and Woodford (1997, 1999).

The first equation is the New Keynesian Phillips curve:

π̂t − γpπ̂t−1 = Et−1

{

(1 − αp)(1 − βαp)

αp((1 − µpsq)−1(1 + θpεµp
) + θpωp)

(ŵt + ωpŷt) + β(π̂t+1 − γpπ̂t)

}

, (4)

where Et−1 is the expectation operator conditional on information available to the firm when

reoptimizing its price. π̂t, ŷt, and ŵt are the logdeviations of inflation, output, and real wage,

respectively. The parameter β ∈ (0, 1) is the subjective discount factor, γp ∈ [0, 1] is the degree

of indexation of prices to the most recently available inflation measure, αp ∈ [0, 1) is the degree

of nominal rigidity, sq ∈ (0, 1) represents the share of material goods, θp > 0 is the steady state

price elasticity of demand, µp > 1 is the steady state markup factor, εµ is the steady state

elasticity of the parmkup factor, and ωp is the real marginal cost elasticity with respect to the

level of production.

6See section A for more details about the model.
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A second set of equations defines the IS and LM curves:

Et−1{βb(ŷt+1 − bŷt) − (ŷt − bŷt−1) + σχ(m̂t − βbm̂t+1) − ϕ−1λ̂t} = 0, (5)

λ̂t = ı̂t + Et{λ̂t+1 − π̂t+1}. (6)

m̂t = ηy(ŷt − bŷt−1) − ηiı̂t. (7)

where m̂t, ı̂t, and λ̂t are the logdeviations of real balances, the nominal interest rate, and the

representative household’s marginal utility of wealth, respectively. The parameter b ∈ [0, 1)

represents the degree of habit formation. The additional parameters σ, χ, ϕ, ηy and ηi are

deduced from the utility function. Notice that we enforce the implied constraints on these

parameters when we calibrate the model. Equation (5) illustrates the role played by habits in

consumption, which reinforces the backward dimension of the IS curve. Provided σχ > 0, this

equation includes a real balance effect. Equation (6) is the standard Euler equation on bond

holdings. Finally, equation (7) is the money demand function. The difference in the information

sets in equations (5) and (6) reflects the timing of decisions. Prior to observing the monetary

policy shock, the households decides how much to consume and sets its nominal wage. The

shock is then realized, and bond and money holdings decisions are taken.

The wage setting equation is given by:

π̂w
t − γwπ̂t−1 = Et−1

{

(1 − αw)(1 − βαw)

αw(1 + ωwθw)
(ωwφŷt − λ̂t − ŵt) + β(π̂w

t+1 − γwπ̂t)

}

(8)

where π̂w
t is the logdeviation of wage inflation. The parameter γw ∈ [0, 1] is the degree of wages

indexation to the most recently available inflation measure, αw ∈ [0, 1) is the degree of nominal

wage rigidity, θw > 0 is the wage elasticity of labor demand, ωw > 0 is the elasticity of the

marginal disutility of labor, and φ > 1 is the inverse elasticity of output with respect to the

labor input. Finally, π̂t and π̂w
t are linked together through the relation

π̂w
t = ŵt − ŵt−1 + π̂t, (9)

The model is closed by postulating the monetary policy rule (1)–(3).

4 Econometric Approach

This section details our monetary SVAR, the implied IRFs used to estimate the DSGE model,

and presents the MDE approach.
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4.1 The Monetary SVAR

We start our analysis by characterizing the actual economy’s response to a monetary policy

shock. As is now standard, this is done by estimating a monetary SVAR in the lines of Christiano

et al. (1996, 1999) so as to identify monetary policy shocks.7 We consider a structural VAR of

the form

A0Zt = A1Zt−1 + · · · +A`Zt−` + ηt,

where the data vector Zt can be decomposed according to Zt = (Z ′
1,t, ı̂t, Z

′
2,t)

′. Z1,t is a n1 × 1

vector composed of variables whose current and past realizations are included in the information

set available to the policymaker at t and that are assumed to be predetermined with respect to

the monetary shock εt. Z2,t is a n2 × 1 vector containing variables that are allowed to respond

contemporaneously to εt but whose value is unknown to monetary policy authorities at t. The lag

length ` is determined by minimizing the Hannan-Quinn information criterion. In our empirical

analysis, we found that ` = 4.

4.2 Minimum Distance Estimation

Let ψ denote the whole set of model parameters. Let ψ2 = (ρi, ρe, σν)
′ and let ψ1 denote

the vector collecting all the remaining parameters, so that ψ = (ψ
′

1, ψ
′

2)
′. To implement our

approach, it is important that ψ1 be fixed, so that variations in the empirical performance of

the DSGE model result only from changes in ψ2, thus revealing information about the relevant

specification of the monetary policy rule.

The policy parameters ψ2 are estimated by minimizing a measure of the distance between the

empirical responses of key aggregate variables and their model counterparts.8 More precisely,

we focus our attention on the responses of the vector Xt regrouping the actual data which we

are interested in. Here, Xt is a subset of Zt. We define θj the vector of responses of the variables

in Xt to a monetary shock at horizon j ≥ 0, as implied by the above SVAR.

Then, the object which we seek to match is θ = vec([θ0, θ1, . . . , θk])
′ where k is the selected

horizon.9 Then let h (·) denote the mapping from the structural parameters ψ2 = (ρi, ρe σν)
′ to

7See also Christiano et al. (1997, 2005), and Rotemberg and Woodford (1997,1999) for other examples of this
identifying strategy.

8See Rotemberg and Woodford (1997), Altig et al. (2004), Amato and Laubach (2003), Boivin and Gian-
noni(2006), Christiano et al. (2005), and Giannoni and Woodford (2004). Following these studies, we implicitly
assume that the SVAR is able to identify the structural monetary policy reaction function which can differ from
the reaction function in the DSGE model (see Rudebusch, 1998).

9Notice that we have to exclude from θ0 the responses corresponding to the elements in Xt that belong to the
information set available to the policy maker at t. It is important to emphasize that the DSGE model previously
expounded embeds the same exclusion restrictions as the monetary SVAR.
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the DSGE counterpart of θ. Our estimate of ψ2 is obtained by minimizing

JT = (h(ψ2) − θ̂T )VT (h(ψ2) − θ̂T )′.

where θ̂T is an estimate of θ, T is the sample size, and VT is a weighting matrix which we assume is

the inverse of a matrix containing the asymptotic variances of each element of θ along its diagonal

and zeros elsewhere. We make this particular choice for the weighting matrix to avoid singularity

problems of the covariance matrix of IRFs. In addition, as suggested by Christiano et al. (2005),

this choice of weighting matrix ensures that the model-based IRFs lie as much as possible

inside the confidence interval of the SVAR-based IRFs. Under the null hypothesis that the

DSGE model is true, JT is asymptotically distributed as a chi-squared with dim(θ̂T )− dim(ψ2)

degrees of freedom. We will use the statistic JT as a discriminating criterion between the two

representations of monetary policy. Additionally, we decompose JT into components pertaining

to each element of Xt. This decomposition provides a simple diagnostic tool that allows us

to locate on which dimension the model succeeds or fails to replicate the IRFs implied by the

SVAR.

5 Empirical Results

In this section, we first present our data and results drawn from our SVAR analysis. Second,

we discuss the calibration of the model’s parameters. Third, we present our estimation results.

Finally, we provide a sensitivity analysis to calibration.

5.1 Data and SVAR

In addition to the Fed Funds rate, we use data from the Non Farm Business (NFB) sector

over the sample period 1960(1)-2002(4).10 The variables used for estimation are the linearly

detrended logarithm of per capita GDP, ŷt, the growth rate of GDP’s implicit price deflator, π̂t,

and the growth rate of nominal hourly compensation, π̂w
t .11 We also include two “information”

variables in the SVAR model. First, though not formally justified by the theoretical model,

10Arguably, this sample period might be characterized by significant changes in monetary policy. As a conse-
quence, assuming that monetary policy can be represented by a single Taylor rule is rather strong. Unfortunately,
the estimated IRFs from the SVAR in the period 1985(1)-2002(4) exhibit a number of pathologies. For example,
output persistently rises after a contractionary monetary policy shock. In addition, the estimated IRF are not
precisely estimated, implying that estimating DSGE parameters so as to replicate these responses is meaningless.
This is reminiscent of the point raised by Sims (1998) that SVARs estimated on short time series can produce
very erratic IRFs. Thus we follow Christiano et al. (1996, 1999, 2005) and adopt a longer sample. In addition,
Sims and Zha (2006) found more evidence in favor of stable dynamics with unstable disturbance variances than
of clear changes in model dynamics. See also Leeper and Roush (2003) and Rudebusch and Wu (2004).

11The civilian non-institutional population over 16 is used as our measure of population. We also experimented
with quadratically detrended or first-differenced output, without quantitatively altering our conclusions.
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the growth rate of the logarithm of the Commodity Research Bureau price index of sensitive

commodities, π̂c
t , is included to mitigate the so-called price puzzle (see Sims, 1992, Eichenbaum,

1992, Christiano et al., 1996, 1999). Second, the growth rate of M2, ξ̂t, is included to exploit

information included in money growth.12 To implement the identification strategy outlined

above, we set Z1,t = (ŷt, π̂t, π̂
w
t , π̂

c
t )

′ and Z2,t = (ξ̂t). In addition, the variables of interest are

Xt = (ŷt, π̂t, π̂
w
t , ı̂t, ξ̂t)

′. The empirical responses of Xt are reported on figure 1, with k = 30. The

plain line is our point estimates of the empirical responses of Xt and the shaded areas indicate

the asymptotic 95% confidence interval about the point estimates.

Though we focus on a different dataset and a different sample period, our findings echo

previous results reported by Christiano et al. (1996, 1997, 1999, 2005).13 Output initially

responds very little, and then sharply drops, with an inverted hump pattern. Notice that the

latter is precisely estimated. The response of inflation displays a persistent U-shaped profile,

with a narrow confidence interval. Inflation’s lowest response is reached several quarters (more

than three years) after output has reached its trough. Moreover, inflation does not present a

significant price puzzle in the very short-run. The response of wage inflation is qualitatively

similar, with a trough response slightly lagging that of inflation. As discussed in Woodford

(2003), the delayed response of inflation is a key stylized fact that any monetary DSGE model

should accurately mimic. The Federal Funds rate instantaneously increases, and then gradually

declines, up to the point where it will eventually cross the x axis before reverting back to its

steady state value. Finally, nominal money growth drops sharply and rapidly reaches back its

steady state level.

5.2 Calibration

As explained above, parameters other than ψ2 are calibrated prior to estimation. The rationale

for doing this is that we want to make sure that the model’s IRFs depend only on the particular

specification of monetary policy. The calibration is reported in table 1.

Preferences. First, we set β = 0.99, implying a steady state annualized real interest rate of

4%. The habit persistence parameter b is set to 0.75, lying in the range of available estimates

based on aggregate data (see Boivin and Giannoni, 2006 and Christiano et al., 2005). We then

set σ = 1 − b, which implies intertemporal complementarities in consumption decisions (see

12The data are extracted from the Bureau of Labor Statistics website, except for the Fed Funds rate and M2
which are obtained from the FREDII database.

13See also Rotemberg and Woodford (1997, 1999), Bernanke and Mihov (1998), and Leeper and Roush (2003)
for similar IRFs profiles.
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Rotemberg and Woodford, 1997).

As in Christiano et al. (2005) and Altig et al. (2004), the elasticity of marginal labor

disutility, ωw, is set to 1. The money demand function implied by our model is of the form (7).

The parameter ηy governs the elasticity of real money demand to output. Following Woodford

(2003), the latter is normalized to 1.

Calibrating the semi elasticity ηi raises specific issues, especially so if the model has to

reproduce the short-run behavior of money demand, as explained by Christiano et al. (2005).

To pin down the value of ηi, we follow a different approach from theirs, yielding very similar

results. From the SVAR and identified monetary shocks, we construct data series for real

balances (m̃t), real output (ỹt), and the nominal interest rate (̃ıt) when only monetary shocks

hit the SVAR. We then estimate a linear money demand function using OLS. The estimated

money demand takes the form14

m̃t = 0.8571m̃t−1 + 0.1429ỹt − 0.1072ỹt−1 − 1.1846ı̃t + ϑt.

We use the estimated short-run semi-elasticity of money demand to the nominal interest rate

(1.1846) to calibrate ηi. Notice that in the course of estimation, we imposed ηy = 1 and took

account of the calibrated value of b. The implied long-run semi elasticity is slightly above 8,

which is the value obtained by Lucas (1988), Chari et al. (2000), and Mankiw and Summers

(1986). Consequently, our calibration of ηi must be interpreted as a way to account for the

short-run response of money growth, as in Christiano et al. (2005).

Recall that the parameter χ governs the extent to which a real balance effect is present in

our model. Under our calibration, we use the restriction χ = (1−βb)ηy/(ηiv̄). We calibrate the

money velocity from actual data, and obtain v̄ = 1.36. From these calibrated values, we obtain

χ = 0.138, implying a non negligible real balance effect.

Technology. Here φ is the inverse of the elasticity of value added to labor input. We set

φ = 1.333, which corresponds to a steady state share of labor income of 62.5%, after correcting

for the markup. Assuming further that the production function is Cobb-Douglas, direct calcu-

lations yield ωp = φ − 1. The share of material goods in gross output, sq, is set to 50%, as in

Rotemberg and Woodford (1995) and Basu (1995). Following Rotemberg and Woodford (1997)

and Christiano et al. (2005), we set the markup on prices to 20%, i.e. µp = 1.20. This implies

an elasticity of demand for goods θp = 6. The markup elasticity to relative demand, εµ, is set

14An important limit of our approach is that it assumes that OLS consistently estimate ηi. However, our
estimate is not far from previous estimations. Moreover, we conduct a sensitivity analysis of our results to ηi (see
Section 5.4). Our findings are not qualitatively affected.
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to 1, as in Bergin and Feenstra (2000) and Woodford (2003). Finally, we set θw to 21 as in

Christiano et al. (2005), implying a wage markup of 5%.

Price/Wage Setting. Following Rotemberg and Woodford (1997), we set αp to 0.66, imply-

ing an average spell of no price reoptimization of 2.5 quarters. This value is consistent with

microeconomic evidence, e.g. Bils and Klenow (2004). We set γp = 1, as in Christiano et al.

(2005). This value allows us to reinforce the backward dimension of inflation. Following Amato

and Laubach (2003), we symmetrically set αw = 0.66. As in Christiano et al. (1995), we also

set γw = 1.

Nominal Interest Rate Target Level. Following Taylor (1993), we set aπ = 1.5 and ay =

0.5/4, since we focus on quarterly measures of yt, πt and it. These values are approximately the

same as those considered by Christiano et al. (2005) in their sensitivity analysis.

5.3 Estimation Results

The estimation results are reported in table 2, for different Xt and different restrictions on the

policy rule parameters. In each case, we set the IRFs horizon k to 30. The table is organized

as follows: the left panel reports parameters estimates when Xt = (ŷt, π̂t, π̂
w
t , ı̂t, ξ̂t)

′, i.e. when

ψ2 is selected so as to reproduce the responses of output, inflation, wage inflation, the Fed

Funds rate, and money growth to a monetary policy shock; the right panel corresponds to the

case where Xt = ı̂t, i.e. when we exclusively focus on the Fed Funds rate’s behavior. In each

panel, we consider five cases, depending on the minimum value of JT reached at convergence

and on restrictions on ρi or ρe. More precisely, column (1) corresponds to the minimum value

of JT reached when using as an initial condition a large ρe and a small ρi. Conversely, column

(2) corresponds to the case with a large ρi and a small ρe. Column (3) corresponds to the

restriction ρi = 0, i.e. to a model with only serially correlated shocks and no policy inertia.

Column (4) corresponds to the restriction ρe = 0, i.e. to a model with nominal interest rate

inertia and iid shocks to monetary policy. Finally, column (5) reports the estimation outcome

when imposing the constraint ρi = ρe, thus granting the same weight on both alternative views

about monetary policy. The point estimates of ψ2 are reported together with their standard

errors, in parentheses. The table also reports the value of JT at convergence, together with

the associated P -value in brackets. Finally, with our choice of weighting matrix, we can further

decompose the JT statistic into various components pertaining to each element of Xt.

Let us first consider the case with Xt = (ŷt, π̂t, π̂
w
t , ı̂t, ξ̂t)

′. In this context, we obtain a
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global minimum associated to the model with serially correlated monetary shocks. Additionally,

the model successfully passes the over-identification test (see column 1). In contrast, the local

minimum associated to a model with monetary policy inertia is blatantly rejected by the data

(see column 2). The global minimum distance estimator yields ρi = 0.30 and ρe = 0.87. This

suggests that the correct representation of monetary policy is a mix of serially correlated shocks

and a modest degree of policy inertia, in the line of Rudebusch (2002, 2006). Notice that these

two parameters are found to be significant. In addition, the data do not reject a model version

imposing ρi = 0 while they reject the restriction ρe = 0 (see columns 3 and 4 in table 2). Notice

that a quasi-likelihood ratio test would however reject the restriction of no monetary policy

inertia (see columns 1 and 3).

To understand why the data reject the model with high monetary policy inertia, it is instruc-

tive to consider the decomposition of JT according to the components of Xt. When comparing

columns (1) and (2), we see that the two representations of monetary policy deliver very similar

results when it comes to output, the nominal interest rate, and money growth. In other words,

these three variables are weakly informative about the relevant form of monetary policy. What

turns out to be really discriminating is the behavior of inflation and wage inflation. In this

case, the DSGE model with policy inertia proves unable to mimic the delayed and persistent

responses of these variables.

This failure is illustrated by comparing IRFs in figure 1. The lines marked with circles

correspond to the DSGE point estimates with monetary policy inertia, whereas the lines marked

with stars correspond to the model with persistent shocks. The dynamic responses of output, the

Fed Funds rate, and money growth do not appear to be qualitatively affected by the specification

of monetary policy. To the contrary, the model’s IRFs of inflation and wage inflation sharply

differ. The model with persistent shocks and moderate interest rate inertia successfully matches

the essential features of the data. This is no longer the case when we consider a model with a

large degree of interest rate inertia, especially so when it comes to inflation and wage inflation.

Column (5) shows that the restriction ρi = ρe is not supported by the data. Indeed, such a

restriction deteriorates the model fit on virtually all dimensions, except maybe for money growth.

Thus, a specification of monetary policy which grants the same weights to policy inertia and

persistent shocks provides a fit which is substantially worse than the one with highly persistent

shocks and moderate policy inertia.

Second, let us consider the case with Xt = ı̂t. The latter is investigated as a simple way

of illustrating the lack of information resulting from a quantitative assessment of our model
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based on a single variable. In some sense, this problem is reminiscent of the absence of clear-cut

conclusions obtained in the literature focussing on a single policy rule equation, see Rudebusch

(2002, 2006). Now, we face the “multiple optima” problem, since the two representations of

monetary policy deliver very close objective functions at convergence. In addition, none are

rejected by the data, so that they appear to be “observationally equivalent” in terms of the JT

statistic (see columns (1)–(5) in the right panel of table 2). This experiment illustrates that

focussing only on the nominal interest rate does not yield a clear conclusion as to the relevant

representation of monetary policy. What really matters is the aggregate dynamics (especially the

dynamics of inflation and wage inflation) implied by the alternative specifications of monetary

policy.

The previous results are obtained for an horizon k = 30. Under this assumption, we were able

to discriminate between the two competing representations of monetary policy because a model

with large interest rate inertia fails to mimic the delayed U-shaped responses of inflation and

wage inflation. To further illustrate the information contained in these hump-shaped patterns,

we now vary the horizon k between 10 and 40. Figure 2 reports the JT statistic as well as its

decomposition according to the elements of Xt. In this exercise, we select Xt = (ŷt, π̂t, π̂
w
t , ı̂t, ξ̂t)

′

and reestimate the policy parameters for each selected horizon. In each panel, the plain lines

correspond to the value of the objective function JT as well as its decomposition in the case of

monetary policy inertia while the dashed lines correspond to the case with persistent shocks.

Let us first focus on the global test, i.e. the JT statistic, in the upper-left panel. We see

that for relatively short horizons (k = 10, ..., 15), the two representations of monetary policy

yield comparable results. Clearly, focussing only on short-run responses does not allow us to

discriminate between the two specifications. However, as soon as k is sufficiently large to include

the delayed hump patterns of inflation and wage inflation (see the third and fourth panels), the

performances of the two competing versions start to dramatically diverge. In particular, the

monetary policy inertia specification faces more and more troubles reproducing the data.

5.4 Sensitivity to Calibration

We check whether the previous findings crucially depend on our particular calibration. A simple

way to assess the importance of our calibration is to redo our analysis perturbing some key model

parameters. Table 3 reports the outcome of this sensitivity analysis. We identify key parameters

governing the dynamic behavior of our model relating to preferences, technology, price/wage

setting, and the nominal interest rate target level. For each alternative parameter value, we
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reestimate the model and recompute the JT statistic at convergence with Xt = (ŷt, π̂t, π̂
w
t , ı̂t, ξ̂t)

′

or Xt = (̂ıt).

Preferences. The “Preferences” panel of table 3 reports the effect of shutting habit forma-

tion down (i.e. b = 0). When Xt = (ŷt, π̂t, π̂
w
t , ı̂t, ξ̂t)

′, this has the obvious effect of dramatically

worsening the model’s performance. Notice that in this case, the two representations are un-

ambiguously rejected by the data. Following Giannoni and Woodford (2004), we drastically

decrease the elasticity of labor supply, setting ωw = 10. In this case, the model’s performances

are always improved, but the model with policy inertia is still rejected. Finally, we increase the

sensitivity of money demand to the nominal interest rate, i.e. ηi = 3. The model’s performances

with persistent shocks are affected but it still passes the over-identification test. In contrast,

when we focus exclusively on the nominal interest rate (Xt = (̂ıt)), none of the alternative repre-

sentations can be rejected. More importantly, we cannot discriminate between these two policies

based on the JT statistic. This means that while the estimated models cannot generically mimic

the dynamic responses of inflation and wage inflation, focusing exclusively on ı̂t would lead us

to incorrectly fail to reject any model versions. This is a further illustration of the need for

considering the dynamic behavior of alternative variables to properly discriminate between the

competing monetary policies.

Technology. In the “technology” panel of table 3, we investigate the sensitivity of our results

to perturbations on technology parameters. Following Gaĺı and Rabanal (2005), we assume

constant returns to scale in labor input, thus imposing φ = 1. The model’s performances are

improved for both specifications of monetary policy. However, the policy inertia is again rejected.

We also modify the markups on prices without affecting our results. To the contrary, when we

increase the degree of market power on the labor market, we substantially reduce the model’s

ability to reproduce the IRFs of Xt. Under this assumption, both versions are rejected by the

data. Once again, when we focus on Xt = (̂ıt), we fail to reject any of the two competing

representations of monetary policy.

Price/Wage Setting. In the “Price/Wage Setting” panel of table 3, we experiment with

altering the details of the price and wage setting side of the model. We first shut down the

indexation to past inflation in either the price or wage equations (γp = 0 or γw = 0). In both

cases, this dramatically worsens the model’s fit, especially so when it comes to inflation and wage

inflation. Recall that these two variables were crucial in helping us sort out which specification of
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monetary policy was supported by the data. Not surprisingly, in the present case, both versions

are rejected. Second, we assume perfect flexibility of either prices or wages (αp = 0 or αw = 0).

In both cases, the model is rejected. Contrary to the previous experiment, when we focus on

Xt = (̂ıt), we cannot reject any of the two competing representations of monetary policy, which

prove almost completely insensitive to such parameters perturbations. This illustrates once more

the need for further information.

Nominal Interest Rate Target Level. Finally, in the “Target Level” panel of table 3, we

experiment with the parameters governing the target level of the nominal interest rate, namely

aπ and ay. We set aπ to a larger value than considered by Taylor (1993), aπ = 3. When

Xt = (ŷt, π̂t, π̂
w
t , ı̂t, ξ̂t)

′, the discrepancy between the two alternative specifications of monetary

policy widens, especially so when it comes to inflation and wage inflation. This results from the

fact that increasing aπ increases the amount of information in the target level of the nominal

interest rate. When it comes to ay, the quantitative findings are left unaffected. Conversely,

when we focus on Xt = (̂ıt), we fail to reject any of the two competing representations of

monetary policy. This is more troubling than one would have expected. Indeed, increasing the

volatility of the target can potentially eliminate the identification problem. This is not the case

in practice. When we focus only on ı̂t, the discriminating power of inflation and wage inflation

is shut down, which keeps us away from reaching a clear-cut conclusion.

6 Practical Differences between policy inertia and persistent

shocks

This section presents two illustrations of the practical differences between policy inertia and

persistent shocks. We first investigate their quantitative implications for policy rule estimation.

Second, we perform forecasting exercises using the Volcker disinflation a a case study that can

potentially reveal striking differences between the two views.

6.1 Implications for Monetary Policy

The previous exercise has allowed us to discriminate between two alternative representations of

monetary policy. However, since all the parameters were calibrated, including the responsiveness

of monetary policy to inflation and output, this exercise is necessarily silent on the consequences

of a monetary policy misspecification. The question which we ask now is the following: Would

we get different estimates of the responsiveness of monetary policy to inflation and output in
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the case of monetary policy inertia and in the case of persistent shocks?

So as to answer this question, we reestimate our model under the two alternative represen-

tations and allow aπ and ay to be freely estimated. Table 4 reports the estimation results. The

first column reports results obtained with persistent shocks while the second corresponds to pol-

icy inertia. As before, the global minimum is obtained with highly serially correlated monetary

shocks and a small degree of interest rate smoothing. Once again, the responses of inflation and

wage inflation allow us to discriminate between the two competing views.

Our results also suggest is that the two alternative views yield very contrasted findings rela-

tive to the reaction of monetary authorities to inflation and output. In the case of policy inertia,

the latter is almost passive regarding inflation while highly reactive to output fluctuations. Un-

der persistent shocks, we obtain a reverse configuration suggesting a very aggressive monetary

policy in response to inflation and a zero concern for output fluctuations. The global minimum

thus corresponds to a policy rule enforcing the Taylor principle.

6.2 Inspecting the Monetary Policy Rules Through the Lenses of the Volcker

Disinflation

In this section, we compare the performances of the two altetrnative representations of monetary

policy using the Volcker disinflation as an episode that can potentially reveal striking differences

between these policy rules. This episode corresponds to what can be a priori viewed as a period

of large contractionary monetary policy shocks. Thus, comparing the model under the two rules

with what actually happened during this episode constitutes a legitimate experiment.

Since our limited information approach exclusively relies on monetary policy shocks, we start

by reconstructing historical data from the SVAR after having shut down all other shocks than

monetary shocks. We then feed the identified monetary shocks in our DSGE model using either

rules and compute artificial data. To compare the performances of the two rules on output and

inflation, we focus on the sample period preceeding and suceeding to the Volcker disinflation,

1970(1)–1990(4). To make things comparable, we use the same initial conditions in 1970 either

for the SVAR for the model. The outcome of these comparisons is reported in figures 3 and 4 for

output and inflation, respectively. In each case, the plain line corresponds to the SVAR-based

historical data while the lines marked with circles and stars correspond to the DSGE model with

policy inertia and serially correlated shocks, respectively.15

Figure 3 confirms our previous findings: the two alternative policy rules have similar im-

15Notice that this exercise contains the same information as our IRF-based assessment of the model’s perfor-
mance. What is interesting here is that it allows us to focus on a specific episode within our sample.
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plications when it comes to output dynamics. As is clear from the picture, in both cases, the

simulated samples are very similar, either in terms of persistence and volatility. To the con-

trary, as shown in figure 4, the two alternative rules have very different implications in terms

of inflation dynamics. Under the rule with policy inertia, inflation dynamics exhibit a smaller

variance when compared to its SVAR-based counterpart. In addition, inflation drops too slowly

during the Volcker disinflation and rises much too fast after 1983. Overall, this gives an inaccu-

rate description of actual inflation dynamics during this particular episode. In contrast, when

the rule features serially correlated shocks and a modest degree of policy inertia, the model is

better suited to capture the large inflation peak of 1978 as well as the sharp decline following

the disinflation. Additionally, the model does not predict a rapid rise in inflation after 1983,

consistent with what the SVAR-based path suggests.

This exercise provides a confirmation that inflation dynamics contain more useful pieces of

information than the dynamics of output for the purpose of disentangling the two alternative

representations of monetary policy. The Volcker disinflation, taken as a case study, favors the

persistent shock view as a practical approximation of actual monetary policy, as was to be

expected from our previous quantitative investigation.

7 Conclusion

In this paper, we proposed a simple econometric framework to discriminate between two alter-

native representations of monetary policy. This approach draws heavily from the restrictions

contained in the monetary DSGE model used in our empirical analysis. More precisely, thanks to

these restrictions, different monetary policies can have radically different implications in terms

of aggregate dynamics. Building on this well known property of DSGE models, we are able to

identify which policy rule best fits the data.

Our results are twofold. First, when the framework contains enough information, a policy rule

with modest interest rate inertia and highly serially correlated shocks, which contrasts with most

current implementations of monetary policy rules, satisfactorily matches the data. In particular,

we found that the dynamics of inflation and wage inflation are particularly helpful for inferring

the correct specification of monetary policy. However, output, the nominal interest rate, and

the money growth rate do not contain very discriminating information. In addition, the inverted

hump patterns displayed by the impulse responses of inflation and wage inflation are found to be

particularly relevant for this purpose. Second, when the framework is not informative enough, i.e.

when we focus on the sole dynamics of the Fed funds rate, we are unable to discriminate between
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the two alternative monetary policy rules. These results highlight the low discriminating power

of single equation approaches. Overall, our results suggest that using extra macroeconomic

information can help reach clear-cut conclusions as to the correct empirical representation of

monetary policy rules. These two main findings are confirmed when we investigate practical

differences between these two alternative monetary policy representations.
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Söderlind, P.A., Söderström, U., Vredin, A., 2005. Dynamic Taylor rules and the predictability
of interest rates. Macroeconomic Dynamics, 9, 412-428.

Taylor, J.B., 1993. Discretion versus policy rules in practice. Carnegie-Rochester Conference
Series on Public Policy, 39, 195-214.

Taylor, J.B., 1999. A historical analysis of monetary policy rules. In: Taylor, J.B. (Ed.),
Monetary Policy Rules. University of Chicago Press, Chicago, 319-341.

Woodford, M., 2003. Interest and Prices: Foundation of a Theory of Monetary Policy. Prince-
ton University Press, Princeton.

22



A Model Details

A.1 Production Side

A large number of competitive firms produce a homogeneous good that can be either consumed
(yt) or used as a material input in production (qt). The overall aggregate demand is dt ≡ yt + qt,
and Pt is the associated nominal price. Following Kimball (1995) and Woodford (2003), the
production function is of the form

∫ 1

0
G

(

dt(ς)

dt

)

dς = 1, (A.1)

where dt(ς) denotes the input of intermediate good ς ∈ [0, 1], and the function G is increas-
ing, strictly concave, and satisfies the normalization G(1) = 1. The representative final good
producer chooses {dt(ς), ς ∈ [0, 1]} and dt, in order to maximize profits

max
{dt(ς)}

Ptdt −

∫ 1

0
Pt(ς)dt(ς)dς,

subject to (A.1), where Pt(ς) is the nominal price of intermediate good ς. Monopolistic firms
produce the intermediate goods ς ∈ [0, 1]. Each firm ς is the sole producer of intermediate good
ς. Following Woodford (2003), we assume that monopolist ς produces good ς with the inputs of
aggregate labor nt(ς) and material goods qt(ς) according to the following production possibilities

min

{

F (nt(ς))

1 − sq
,
qt(ς)

sq

}

≥ dt(ς),

where F (·) is an increasing and concave production function and sq is the share of material
goods in gross output. Let θp(z) denote the elasticity of demand for a producer of interme-
diate good facing the relative demand z = dt(ς)/dt. According to our specification, θp(z) ≡
−G′(z)/(zG′′(z)). This illustrates that intermediate good firms face a varying elasticity of de-
mand for their output, implying a varying markup, which is denoted by µp(z) ≡ θp(z)/(θp(z)−1).

Following Calvo (1983), we assume that in each period of time and prior to observing the
monetary policy shock, a monopolistic firm can reoptimize its price with probability 1 − αp,
irrespective of the elapsed time since it last revised its price. As in Woodford (2003), if the
firm cannot reoptimize its price, the latter is rescaled according to the simple revision rule
PT (ς) = (1 + δp

t,T )Pt(ς), where

1 + δp
t,T =







∏T−1
j=t (1 + π)1−γp(1 + πj)

γp if T > t

1 otherwise
,

where πt = Pt/Pt−1 − 1 represents the inflation rate, π is the steady state inflation rate, and
γp ∈ [0, 1] measures the degree of indexation to the most recently available inflation measure.
Let P ?

t (ς) denote the price chosen in period t by monopolist ς if drawn to reoptimize. Then,
firm ς chooses P ?

t (ς) in order to maximize

Et−1

∞
∑

T=t

(βαp)
T−tλT

{

(1 + δp
t,T )P ?

t (ς)

PT
d?

t,T (ς) − S(d?
t,T (ς))

}

,

where λT is the representative household’s marginal utility of wealth in period T , Et−1{·} is the
expectation operator conditional on information available when the firm sets its price, S(dt(ς))

23



is the real cost of producing dt(ς) units good of ς, and d?
t,T (ς), the demand for good ς at T if

firm ς last reoptimized its price at t, obeys

G′

(

d?
t,T (ς)

dT

)

=

(

(1 + δp
t,T )P ?

t (ς)

PT

∫ 1

0

dt (u)

dt
G′

(

dt (u)

dt

)

du

)

.

Standard manipulations yield the loglinear New Keynesian Phillips curve

π̂t − γpπ̂t−1 = Et−1{κp(ŵt + ωpŷt) + β(π̂t+1 − γpπ̂t)}, (A.2)

with

κp ≡ κ

(1 − αp) (1 − βαp)

αp
, κ ≡

1

(1 − µpsq)
−1 (1 + θpεµ) + θpωp

.

In equation (A.2), π̂t is the logdeviation of 1 + πt, ŷt and ŵt are the logdeviations of yt and wt

(real wage), respectively, θp ≡ θp(1) is the steady state elasticity of demand for a producer of
intermediate good, µp ≡ µp(1) is the steady state markup factor, and

ωp ≡ −
F ′′(n)n

F ′(n)

F (n)

F ′(n)n
.

Here, F (n), F ′(n), and F ′′(n) denote the value of F and its first and second derivatives, evaluated
at the steady state value of n. Following Woodford (2003), we let εµ denote the elasticity of
µp(z) in the neighborhood of z = 1, i.e. εµ = µ′p(1)/µp(1).

A.2 Aggregate Labor Index and Households

Following Erceg et al. (2000), we assume for convenience that a set of differentiated labor inputs,
indexed by υ ∈ [0, 1], are aggregated into a single labor index ht by competitive firms, which
will be referred to as labor intermediaries. They produce the aggregate labor input according
to the following Constant Elasticity of Substitution technology

ht =

(
∫ 1

0
ht(υ)

(θw−1)/θwdυ

)θw/(θw−1)

,

where θw > 1 is the elasticity of substitution between any two labor types. The associated
aggregate nominal wage obeys

Wt =

(
∫ 1

0
Wt(υ)

1−θwdυ

)1/(1−θw)

,

where Wt(υ) denotes the nominal wage rate paid to type-υ labor. The economy is inhabited
by a continuum of differentiated households, indexed by υ ∈ [0, 1]. A typical household, say
household υ, must select a sequence of consumptions and nominal money and bond holdings,
as well as a nominal wage. The timing of events is as follows. Prior to observing the monetary
policy shock, the household decides how much to consume and sets its nominal wage. The shock
is then realized, and bond and money holdings decisions are taken. Household υ’s goal in life is
to maximize

EΦt

∞
∑

T=t

βT−t[U(cT − bcT−1,mT ) − V (hT (υ))]

24



where β ∈ (0, 1) is the subjective discount factor, b ∈ (0, 1) is the habit parameter, ct is
consumption, mt ≡ Mt/Pt denotes real cash balances at the end of the period, where Mt

denotes nominal cash balances; ht(υ) denotes household υ’s labor supply at period t. Here, EΦt

is a conditional expectation operator reflecting the particular information sets at the household’s
disposal when taking their decisions. Household υ maximizes his intertemporal utility subject
to the sequence of constraints

Pttaxt + Ptct +Mt +
Bt

1 + it
≤Wt(υ)ht(υ) +Bt−1 +Mt−1 + Ptdivt,

where divt denotes real profits redistributed by monopolistic firms; Bt denotes the nominal
bonds acquired in period t and maturing in period t + 1; it denotes the gross nominal interest
rate; taxt is a lump-sum tax levied by the government. As in Woodford (2003), we assume
that there is a satiation level m? for real balances such that Um = 0 for m ≥ m?. Thus, when
mt reaches m? from below, the transaction services of real cash balances yield lower and lower
marginal utility. Let λt denote the Lagrange multiplier associated with the household’s budget
constraint. According to the timing of decisions embedded in Φt, the loglinearization of the first
order conditions associated with ct, Bt, and Mt yields

Et−1{βb(ĉt+1 − bĉt) − (ĉt − bĉt−1) + σχ(m̂t − βbm̂t+1) − ϕ−1λ̂t} = 0, (A.3)

λ̂t = ı̂t + Et{λ̂t+1 − π̂t+1}. (A.4)

m̂t = ηy(ĉt − bĉt−1) − ηiı̂t. (A.5)

where ĉt, m̂t, ı̂t, and λ̂t are the logdeviations of ct, mt, 1 + it, and λt, respectively, and where
we defined the auxiliary parameters σ−1 = −Uccc/Uc, χ = Ucmm/Uc, ϕ

−1 = (1 − βb) σ, ηy =
−Umcc/(Ummm), ηi = −(1 − βb)Uc/(Ummm). Notice that χ = (1 − βb)ηy/(v̄ηi), where v̄ is the
steady state value of ct/mt.

A typical household υ acts as a monopoly supplier of type-υ labor. It is assumed that at each
point in time, and prior to observing the monetary policy shock, only a fraction 1 − αw of the
households can set a new wage, which will remain fixed until the next time period the household
is drawn to reset its wage. The remaining households simply revise their wages according to the
simple rule WT (υ) = (1 + δw

t,T )Wt(υ), where

1 + δw
t,T =







∏T−1
j=t (1 + π)1−γw(1 + πj)

γw if T > t

1 otherwise
,

where γw ∈ [0, 1] measures the degree of indexation to the most recently available inflation
measure.

Let us now consider the wage setting decision confronting a household drawn to reoptimize its
nominal wage rate in period t, say household υ. Let us define wage inflation πw

t ≡Wt/Wt−1 −1.
Now, let W ?

t (υ) denote the wage rate chosen in date t, and h?
t,T (υ) denote hours worked in

period T if household υ last reoptimized its wage in period t, which obey the relationship

h?
t,T (υ) =

(

(1 + δw
t,T )W ?

t (υ)

WT

)−θw

hT .

W ∗
t (υ) is then selected so as to maximize

Et−1

∞
∑

T=t

(βαw)T−t

{

λT

(1 + δw
t,T )W ?

t (υ)

PT
h?

t,T (υ) − V (h?
t,T (υ))

}
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Loglinearizing the associated first order condition yields

π̂w
t − γwπ̂t−1 = Et−1{κw(ωwĥt − λ̂t − ŵt) + β(π̂w

t+1 − γwπ̂t)} (A.6)

where π̂w
t is the logdeviation of 1 + πw

t and where we defined the composite parameters

κw =
(1 − αw) (1 − βαw)

αw (1 + ωwθw)
, ωw =

Vhhh

Vh
.

Finally, π̂t and π̂w
t are linked together through the relation

π̂w
t = ŵt − ŵt−1 + π̂t, (A.7)

The model is closed by specifying the policy rule (1)–(3).
In equilibrium, it must be the case that yt = ct and ht = nt. Furthermore, from the aggregate

production function, it must also be the case that n̂t = φŷt, where φ−1 = F ′ (n)n/F (n).
Substituting these relations in the system composed of (A.2)–(A.7), augmented with eqs. (1)–
(3), we obtain a rational expectations system of linear equations which we solve using standard
methods.
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Figure 1: IRFs to a Monetary Policy Shock (SVAR and DSGE Models)
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Figure 2: Decomposition of the JT statistic as a function of the time horizon
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Figure 3: Historical Simulation of Output
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Note: plain line: SVAR, line marked with circles: DSGE model with policy inertia, line
marked with stars: DSGE model with persistent shocks. All the data are demeaned prior
to simulation.
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Figure 4: Historical Simulation of Inflation
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Note: plain line: SVAR, line marked with circles: DSGE model with policy inertia, line
marked with stars: DSGE model with persistent shocks. All the data are demeaned prior
to simulation.
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Table 1. Calibrated Parameters

Parameters Interpretation Value

Preferences
β Subjective discount factor 0.99

b Habit persistence 0.75

σ Intertemporal elasticity of substitution (= 1 − b) 0.25

ωw Elasticity of marginal labor disutility 1.00

v̄ Steady state money velocity 1.36

ηy Money demand elasticity wrt ŷt 1.00

ηi Money demand elasticity wrt ı̂t 1.18

Technology
φ Inverse of the elasticity of ŷt wrt n̂t 1.33

ωp φ− 1 0.33

sq Share of material goods 0.50

θp Elasticity of demand for goods 6.00

µp Markup (= θp/(θp − 1)) 1.20

εµ Markup elasticity 1.00

θw Elasticity of demand for labor 21.00

µw Markup (= θw/(θw − 1)) 1.05

Price/Wage Setting
γp Price indexation 1.00

γw Wage indexation 1.00

αp Prob. of no price adj. 0.66

αw Prob. of no wage adj. 0.66

Nominal Interest Rate Target Level
aπ Monetary policy reaction to π̂t 1.500

ay Monetary policy reaction to ŷt 0.125
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Table 2. Estimation Results

Parameter Based on Xt = (ŷt, π̂t, π̂
w
t , ı̂t, ξ̂t)

′ Based on Xt = (̂ıt)

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

ρi 0.2976
(0.061)

0.8986
(0.009)

0.0000
(∗)

0.9026
(0.007)

0.7535
(0.001)

0.3018
(0.079)

0.8951
(0.049)

0.0000
(∗)

0.9091
(0.035)

0.5606
(0.002)

ρe 0.8740
(0.006)

0.0676
(0.092)

0.8900
(0.007)

0.0000
(∗)

0.8207
(0.012)

0.0440
(0.135)

0.8383
(0.016)

0.0000
(∗)

σν 0.1691
(0.010)

0.1720
(0.010)

0.1882
(0.009)

0.1760
(0.009)

0.1232
(0.005)

0.1731
(0.011)

0.1742
(0.011)

0.1898
(0.010)

0.1754
(0.010)

0.1679
(0.006)

J 145.66
[62.94]

245.54
[0.00]

162.64
[28.17]

246.15
[0.00]

246.52
[0.00]

15.78
[96.86]

14.36
[98.44]

26.97
[57.32]

14.48
[98.86]

21.63
[83.51]

Jy 40.22 40.76 43.80 40.25 43.39 — — — — —

Jπ 34.22 86.25 28.34 86.43 72.05 — — — — —

Jπw 17.03 75.55 12.74 75.73 56.64 — — — — —

Ji 23.50 14.48 37.63 14.56 50.65 15.78 14.36 26.97 14.48 21.63

Jξ 30.70 28.48 40.12 29.22 23.79 — — — — —

Notes: Standard errors in parentheses, P -value in brackets. (1): initialization with ρi small and ρe large; (2):

initialization with ρe small and ρi large; (3) constrained case ρi = 0; (4) constrained case ρe = 0; (5) constrained

case ρe = ρi . In columns (3) and (4), a star denotes a standard error not available.
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Table 3. Sensitivity to Calibration

Based on Xt = (ŷt, π̂t, π̂
w
t , ı̂t, ξ̂t)

′ Based on Xt = (̂ıt)

Initialization ρe � ρi ρi � ρe ρe � ρi ρe � ρi

Parameters Value JT

Preferences

b 0.00 396
[0.00]

528
[0.00]

25
[62.69]

#

ωw 10.00 120
[97.00]

218
[0.04]

13
[99.25]

14
[99.02]

ηi 0.00 181
[5.56]

275
[0.00]

16
[97.20]

14
[98.48]

Technology

φ 1.00 103
[99.99]

199
[0.65]

11
[99.89]

13
[99.25]

θp 11.00 110
[99.50]

211
[0.11]

25
[62.69]

13
[99.21]

θw 11.00 183
[4.33]

281
[0.00]

19
[88.62]

16
[96.47]

Price/Wage Setting

γp 0.00 235
[0.00]

300
[0.00]

10
[99.93]

16
[96.47]

γw 0.00 266
[0.00]

308
[0.00]

22
[76.44]

19
[90.21]

αp 0.00 356
[0.00]

# 20
[87.69]

#

αw 0.00 481
[0.00]

499
[0.00]

24
[70.36]

#

Target Level

aπ 3.00 133
[86.45]

264
[0.00]

15
[98.29]

16
[96.77]

ay 0.50 147
[60.38]

216
[0.05]

18
[92.15]

14
[98.88]

Notes: the label ρe � ρi refers to an initialization of the estimation with ρe larger than ρi. Symmetrically,

the label ρi � ρe refers to an initialization of the estimation with ρi larger than ρe. P -value in brackets.

A # in the ”ρi � ρe” panel refers to the corresponding figure in the ”ρe � ρi” panel.

33



Table 4. Estimation Results for the Complete Taylor Rule

Parameter

ρe � ρi ρi � ρe

ρi 0.2773
(0.187)

0.8832
(0.233)

ρe 0.9501
(0.013)

0.4169
(0.223)

aπ 3.0815
(0.568)

1.0509
(0.809)

ay 0.0000
(−)

0.7065
(2.152)

σν 0.1670
(0.010)

0.1594
(0.010)

J 129.43
[88.64]

173.64
[9.06]

Jy 46.28 42.32

Jπ 26.56 51.13

Jπw 10.90 34.73

Ji 20.87 24.43

Jξ 24.82 21.03

Notes: the label ρe � ρi refers to an initialization of the estimation

with ρe larger than ρi. Symmetrically, the label ρi � ρe refers to an

initialization of the estimation with ρi larger than ρe. Standard errors

in parentheses, P -value in brackets.
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