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Abstract

We investigate identi�cation issues in estimated Taylor rules. Embedding two alternative

views about monetary policy, inertia versus serially correlated shocks, in a single equation, we

show that using euro data, it is impossible to discriminate between these two competing repre-

sentations.
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1 Introduction

Over the recent years, there has been a renewed interest in modelling monetary policymaking in

terms of simple rules. In this literature, the augmented Taylor rule has become the workhorse

description of central bank behavior. The view emerging from this rules is that of a sizable policy

inertia, either in the US or in the euro zone.1 However, following Rudebusch (2002, 2005), an alter-

native interpretation of actual persistence in monetary policy is the presence of serially correlated

shocks in the realizations of the interest rate rule. Importantly, this alternative view of monetary

policy yields implications that are completely opposite to those of the partial adjustment hypothe-

sis. Under serially correlated shocks, the central bank does not e¤ectively smooth the interest rate,

even though the latter might prove persistent.

The purpose of the present paper is to disentangle these two opposite views in the case of the euro

area. To do so, we embed both representations in a single equation so as to discriminate between the

respective roles of serially correlated shocks and interest rate smoothing. However, single equation

models of partial adjustment with serially correlated shocks are subject to well known identi�cation

and multiple optima issues (Griliches, 1967, Blinder, 1986, McManus et al. 1994). A robust �nding

of this literature is that the identi�cation problem may arise more frequently with regressors that

are of minor empirical importance. In our case, this problem would appear when the target does

not display enough variability.

So as to properly deal with this problem, we adopt a careful estimation procedure which takes into

account the potential existence of multiple local optima. This allows us to characterize multiple

interest rate rules with dramatically di¤ering implications in terms of target. Our results suggest

the presence of a the above-mentioned multiple local optima problem, which makes it very hard to

discriminate between the two competing representations about monetary policy in the euro area.

1See Clarida et al. (2000); Gerlach and Schnabel (2000); Gerlach-Kristan (2003).
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2 Augmented Taylor Rules for the Euro Area

We investigate whether monetary policy can be adequately approximated by a rule of the form

�{t = �0 + ���t + �yyt; (1)

it = �it�1 + (1� �)�{t + �t; (2)

�t = ��t�1 + �t; �t � iid(0; �2�); (3)

where �t is the in�ation rate, yt is the output gap, and it is the nominal interest rate. Equation

(1) is similar to that proposed by Taylor (1993). Here �{t is the target interest rate that depends

on current in�ation and the output gap. The parameters �� and �y govern the sensitivity of the

desired level of the nominal interest rate to �t and yt.

The above rule combines two di¤erent views about monetary policy. Equation (2) represents a

process of interest�rate smoothing by the central bank. The resulting interest rate inertia �nds

theoretical support: (a) by opting for a gradual policy, monetary authorities can decrease the

short-run volatility of the interest rate as well as that of asset prices; (b) partially adjusting the

nominal interest rate impacts on private sector expectations, so that forward�looking agents trust

that monetary authorities are committed to a gradual policy rule and thus engaged in controlling

macroeconomic �uctuations; and (c) widespread model uncertainty can call for cautious actions,

which results in inertial monetary policy.2

Equation (3) represents an alternative hypothesis to the apparent smoothing of the interest rate

and emphasizes the e¤ects of serially correlated policy shocks, �t, in the realizations of the policy

rule. These shocks may represent any contingent event the central bank faces when deciding the

interest rate, such as credit crunches or �nancial crises.3 Moreover, the use of real-time data could

also reinforce the apparent degree of serial correlation in policy shocks. Indeed, the incomplete

information used when estimating these parameters is modi�ed by revisions over time, thus a¤ecting

the policy rate level in a persistent way. Overall, even though the central bank does not especially

2See, among others, Goodfriend (1987) and Woodford (2003).
3See Taylor (1993) or Rudebusch (2002).
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smooth the nominal interest rate, the latter can exhibit a substantial amount of persistence as

observed in actual data.

3 Identi�cation Issues

Obviously one would like to discriminate between these two competing views about monetary

policy. Unfortunately, this is not an easy task because in the process of doing so, a researcher might

encounter the well-known problem of identi�cation and multiple optima in the partial adjustment

model with serially correlated shocks (see, e.g. Griliches, 1967, Blinder, 1986, McManus et al.

1994).

To see this problem most clearly, let us consider our simple representation of the monetary policy

combining partial adjustment and serially correlated shocks

it = (�+ �)it�1 � ��it�2 + (1� �) (�{t � ��{t�1) + �t:

Suppose that �{t is such that Ef�{tg = �{ and Var(�{t) = 0, so that the policy function rewrites

it = (1� �) (1� �)�{+ (�+ �)it�1 � ��it�2 + �t:

In this case, the parameters � and � are not separately identi�ed. To see this, consider the reduced

form associated to the monetary policy

it = �0 + �1it�1 + �2it�2 + �t:

Parameters � and � are only identi�ed when � = �. However, this case is inconclusive as it puts

the same weights on the two competing representations of the monetary policy. Except for this

very special case, there does not exist a unique solution for � and � as a function of the reduced

form parameters �1 and �2. Indeed, provided that �2 6= 0, the solutions for � and � are given by

� =
�1 �

q
�21 + 4�2

2
; and � = �1 � �;

where �21 + 4�2 = (�� �)2 � 0. This means that two sets of values for � and � are observationally

equivalent. The �rst solution is � large and � small. The second is � small and � large. Thus when
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�{t is constant, we cannot distinguish between an inertial monetary policy with transitory shocks

and a monetary policy with small partial adjustment and highly serially correlated shocks. When

�{t is more volatile, this problem of multiple optima can potentially disappear.4 However, nothing

guarantees this in practice.

4 Empirical Results

We focus on the euro area for the sample period 1987(1)-2004(4), using data from AWM database

(Fagan et al., 2005). The short term nominal interest rate is used as a measure of it. Following

Gerlach-Kristen (2003), the in�ation rate is calculated as a change over four quarters of the HIPC

and the output gap yt is de�ned as the residual of a regression of the logarithm of real GDP on

a polynomial in time. Contrary to Gerlach and Schnabel (2000) or Gerlach-Kristen (2003), we do

not include dummies capturing the ERM 1992 crisis since such a large shock should in principle be

captured by �t. The equation to be estimated writes

it = (�+ �) it�1 � ��it�2 + (1� �) [(1� �)�0 + �� (�t � ��t�1) + �y (yt � �yt�1)] + �t: (4)

The parameters �, �, �0, ��, and �y are estimated by Non Linear Least Squares (NLLS). Given

that we cannot exclude a priori the presence of multiple local optima, we resort to a �ne grid search

to initialize the estimation algorithm.

Table 1 reports the estimation results. The �rst column reports parameter estimates when the

estimation algorithm is initialized with a large � and a small �. The second reports results when

we impose the constraint � = 0. The third column reports parameter estimates when the estimation

algorithm is initialized with a large � and a small �. Column four gives the results when we impose

� = 0. Finally, the last column shows results obtained when we impose � = �.

In addition, �gure 1 provides a contour plot of the Sum of Squared Residuals (SSR) obtained for

a �ne grid of values on (�; �). More precisely, at each (�; �) node, the parameters (�0; ��; �y) are

re-estimated so as to minimize the SSR. The estimation results of each column of table 1 are also
4See McManus et al. (1994).
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reported (the pentagram, hexagram, triangle, square, and circle correspond respectively to columns

1, 2, 3, 4, and 5). The �gure displays the 45� line along which the restriction � = � is always true.

Finally, the �gure also includes a shaded area inside of which the Taylor principle (�� > 1) is

not enforced. The �gure clearly illustrates the presence of the above-mentioned multiple optima

problem.

Comparing columns 1 and 3 shows that there are two optima. The �rst one is obtained for persis-

tent shocks to monetary policy and moderate interest rate inertia. The second is the symmetric.

More importantly, the target parameters sharply di¤er. Under the �rst con�guration (column 1),

monetary policy is passive while very aggressive in the second (column 3). Indeed, in column 1,

the estimated values of �� and �y are rather small and �� is not signi�cantly di¤erent from 0.

To the contrary, when the policy rule is inertial, this latter is precisely estimated and �� and �y

both take on large values, close to those obtained by Gerlach-Kristen (2003). A troubling result is

that, based on the SSR or the R2 of the regression, it is extremely di¢ cult to discriminate between

these very opposite views about monetary policy. In addition, the Ljung-Box speci�cation test

of omitted serial correlation is equally supportive of both representations. Overall, our �ndings

constitute a further illustration of the lack of identi�cation of the partial adjustment model with

serially correlated shocks in �nite sample.

As explained above, the case � = � is the only instance where the identi�cation problem vanishes.

However, this restrictions does not allow us to discriminate between the two competing views

about monetary policy. Nevertheless, in this identi�ed case we are able to assess the monetary

policy target. Fortunately, we �nd that the Taylor principle is enforced. This can be veri�ed in

�gure 1, where the 45� line is well above the shaded area. In addition, the parameters are all

precisely estimated.

To complement this study, we also investigated the restriction � = 0 or � = 0 in equation (4). They

are both rejected by the Ljung-Box speci�cation test, suggesting that the data favor a scenario

with both inertia and serially correlated shocks so as to mimic the interest rate behavior in the

euro zone, as argued by Castelnuovo (2006).
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Figure 1: Value of SSR as a function of (�; �). Notice that the total sum of squared deviations

Tvar(it) = 492:574, where T is the sample size.
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