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Abstract

Suppose that the decision-maker is uncertain about the variance of the payoff of a
gamble, and that this uncertainty comes from not knowing the number of zero-mean
i.i.d. risks attached to the gamble. In this context, we show that any n-th degree increase
in this variance risk reduces expected utility if and only if the sign of the 2n-th derivative
of the utility function u is (−1)n+1. Moreover, increasing the statistical concordance
between the mean payoff of the gamble and the n-th degree riskiness of its variance
reduces expected utility if and only if the sign of the 2n + 1 derivative of u is (−1)n+1.
These results generalize the theory of risk apportionment developed by Eeckhoudt and
Schlesinger (2006), and is useful to better understand the impact of stochastic volatility
on welfare and asset prices.
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1 Introduction

Suppose that the variance of the payoff of an asset is uncertain. How does this uncertainty
affect the attitude towards this asset? More generally, how does a shift in the distribution
of this variance influence expected utility? In this paper, we build a theory of stochastic
dominance on variance that is based on the seminal work of Eeckhoudt and Schlesinger
(2006) who raised the following question: Do you prefer to bear a zero-mean risk for sure,
or two independent and identically distributed zero-mean risks with probability 1/2? They
showed that shifting from the first risk context to the second one is an example of fourth
degree risk increase as defined by Ekern (1980), in the sense that it is perceived as undesirable
by any von Neumann-Morgenstern individual with a negative fourth derivative of the utility
function, a condition coined as "temperance" in decision theory (Kimball (1993), Gollier and
Pratt (1996)). We generalize this result by showing that any Rothschild-Stiglitz increase in
risk in the number of zero-mean risks attached to the gamble reduces expected utility if and
only if u(4)) is negative. In other words, in this context of additive i.i.d. risks, temperant
people dislike increasing variance risk.

The role of putting risk on risk has emerged has an important research object over the last
decade or so. For example, Weitzman (2007) has shown that the uncertainty surrounding
the variance of the growth rate of consumption can have a first-order impact on welfare
and asset prices. Using a Bayesian approach, he assumed an inverted gamma posterior
distribution for the variance of the growth rate and consumption, which implies a Student-t
distribution for log consumption. This yields an unbounded risk premium at equilibrium,
under constant relative risk aversion (CRRA). This is an extreme illustration of our result,
since constant relative aversion implies temperance, and the Student-t has fatter tails, a
necessary condition for a 4th degree risk increase. This is also related to the literature on
long-run risk pioneered by Bansal and Yaron (2004), in which the variance of the growth rate
of consumption is subject to persistent stochastic shocks. In the discounted expected utility
model, this positively affects the systematic long-term risk premium under temperance, as
shown in Gollier (2017).

In the spirit of Eeckhoudt and Schlesinger (2006), Eeckhoudt et al. (2009), Crainich et al.
(2013), Ebert (2013) and Deck and Schlesinger (2014), we systematize the risk apportionment
approach by considering other classes of changes in distribution of variance. Following Ekern
(1980), we say that a random variable x̃ undergoes a n-th degree increase in risk if and only
if it reduces the expectation of f(x̃) for all real-valued functions f such that (−1)nf (n) is
negative. Cases n = 1 and n = 2 correspond respectively to first-degree stochastic dominance
and Rothschild-Stiglitz increases in risk. A n-th degree risk increase in x̃ does noth affect its
(n− 1) first moments. It raises its n-th moment if n is even, and it reduces it when n is odd.
We show that a n-th degree increase in the variance risk generates a (2n)th degree increase
in consumption risk if n is even. The opposite result holds when n is an odd number. For
example, an increase in downside (i.e., third degree) risk in variance yields a sixth degree
reduction in consumption risk, which increases expected utility if the sixth derivative of the
utility function is negative, as in the CRRA case.

An interesting feature of this property comes from the possibility to use it recursively.
For example, suppose that the uncertainty affecting the variance ṽ of a gamble is measured
by the variance of ṽ, and that this object is itself uncertain. Performing a second degree
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risk increase on the variance of ṽ generates a fourth degree increase in the risk affecting ṽ,
and thereby a eighth degree increase in consumption risk. This "vol-of-vol" type of model
exists in the asset pricing literature. For example, the standard long-run risk model with an
AR(1) stochastic volatility generates a deterministic term structure of risk premia, which is
counterfactual. To solve this problem, Bollerslev et al. (2009), Tauchen (2011) and Drechsler
and Yaron (2011) introduced some uncertainty on the volatility of the volatility to generate
a time-varying variance premium as observed on financial markets. Our result indicates that
on top of these time variations of the equilibrium price of risk, this new ingredient generates
the additional result to raise the expected premium if and only if the eighth derivative of
the utility function of the representative agent is negative, which is the case under constant
relative risk aversion.

Observe that all those findings provide a new characterization of the (2n)th derivatives
of the utility function, leaving odd derivatives aside. Eeckhoudt and Schlesinger (2006)
explored a road to characterize odd derivatives by combining zero-mean risks with sure losses.
For example, they showed that shifting a zero-mean risk from a low income state to an
equally likely larger income state raises expected utility when the third derivative of the
utility function is positive, i.e., when the individual is prudent. To generalize this result, we
use the concept of increasing concordance between two random variables, as introduced in
economics by Epstein and Tanny (1980) and Tchen (1980). This concept is stronger than
the linear concept of increasing correlation, and it preserves the marginal distributions of the
two random variables. In this paper, we show that increasing the concordance between the
background income and the number of zero-mean risks of the gamble increases expected utility
if and only if the individual is prudent. In other words, it generates a third degree reduction in
the consumption risk. This is linked to the result by Tinang (2017) who introduced a negative
correlation between the shock on the trend and the shock on the volatility of consumption
growth. From our analysis, the third degree risk increase that it generates should raise the
risk premium, because CRRA individuals are prudent.1

We generalize this finding by showing that increasing concordance between background
income and the n-th degree riskiness of the variance of the gamble yields a (2n+ 1)th degree
change in consumption risk. Therefore, we obtain a complete characterization of all even and
odd derivatives of the utility function by considering various changes in the distribution of
the variance of the lottery under consideration and in its correlation with the background
income.

The paper is structured as follows. In Section 2, we characterize the impact of increasing
the n-th degree riskiness of the variance of consumption on expected utility. This impact is
univocally linked to the sign of the successive even derivatives of the utility function. We
characterize the impact of increasing the statistical relationship between the mean and the
n-th degree riskiness of the variance of consumption in Section 3. This impact is univocally
linked to the sign of the successive odd derivatives of the utility function. Section 4 is
devoted to the implications of these results for asset pricing in a simple two-date Lucas tree

1The important contribution of Tinang (2017) is to show that the persistence of these correlated shocks
makes the term structure of equity premia increasing, as observed on financial markets. This persistence
generates a concordance between mean consumption and its variance that is increasing with maturity. Thus,
the positive effect of the positive concordance is magnified for longer maturity, thereby contributing to the
upward slope of the term structure. We emphasize that this effect is possible only because of the fact that
power utility functions that are concave all have a positive third derivative.
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economy. In the last section, we warn the reader that our results cannot easily be extended
to a multiplicative framework for the variance risk.

2 N-th degree risk increase in variance

Let us first define a n-th degree risk increase. Consider a pair (ṽ1, ṽ2) of random variables
characterized by cumulative distribution functions (P1, P2) whose supports are bounded above
by V .To any cdf Pi = P 0

i , we can associate a set of functions (P 2
i , P

3
i , ...) that are defined

recursively as follows: ∀v ≤ V :

Pni (v) =
∫ v

Pn−1
i (t)dt. (1)

Definition 1. (Ekern (1980)) ṽ2 has more n-th degree risk than ṽ1 if and only if

P k2 (V ) = P k1 (V ) for k = 1, 2, ..., n, (2)
Pn2 (v) ≥ Pn1 (v) for all v ≤ V. (3)

A n-th degree risk reduction is defined in the same way, with a reversed inequality in
(3). Equation (2) means that the first n − 1 moments of ṽ are unaffected by the change in
distribution, whereas equation (3) implies that the nth moment of ṽ is increased (decreased)
if n is even (odd). Ekern (1980) demonstrated that ṽ2 has more n-th degree risk than ṽ1 if
and only if Ef(ṽ2) is smaller than Ef(ṽ1) for all functions f such that (−1)nf (n) ≤ 0, where
f (n) denotes the n-th order derivative of f .

We consider an individual whose preferences under risk can be represented by a von
Neumann-Morgenstern utility function u. The final consumption of the agent is given by

c̃ = c̃∗ + x̃ṽ, (4)

where x̃ṽ is a zero-mean risk. We assume that, conditional to v, x̃v is the sum of v independent
risks:

x̃v =
v∑
i=1

ε̃i. (5)

We assume that (ε̃1, ε̃2, ...) is a set of i.i.d. zero-mean random variables that are distributed
as ε̃. We assume that Eε̃ = 0 and that Eε̃2 = 1, so that v can be interpreted as the variance
of risk x̃v. Random variable ṽ has its support in N, and that it is bounded above by V . In
this section, we also assume that c̃∗, ε̃ and ṽ are statistically independent. In this section, we
are interested in determining the impact of a change in distribution of variance ṽ on expected
utility. The key result of this section is given in the next proposition, whose proof is relegated
to the Appendix.

Proposition 1. Suppose that u is 2n times differentiable and that c̃∗ and ṽ are independent.
Any n-th degree risk increase in the variance ṽ of lottery x̃ṽ reduces (raises) expected utility if
and only if (−1)nu(2n) is negative (positive). It yields a 2n-th degree risk increase (reduction)
in c̃ if n is even (odd).
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The simplest illustration of Proposition 1 is obtained for n = 1. A first degree increase in
risk of ṽ transfers some probability mass from high variance levels to lower ones. Proposition
1 states that risk-averse individuals like any such first degree increase in risk in variance ṽ,
because it yields a second degree risk reduction in consumption.

The case n = 2 is more interesting. The simplest illustration of this case is when ṽ is
initially certain, and then becomes uncertain with the same mean. Because this is obviously
a second degree risk increase in variance, Proposition 1 states that expected utility is reduced
by this shift in the distribution of ṽ if and only if the fourth derivative of the utility function
is negative. Eeckhoudt and Schlesinger (2006) provide some illustrations of this result in
their section on temperance and on risk apportionment of order 4, by assuming that ṽ can
take value in set {0, 1, 2}, with some stringent restrictions on probabilities. Our proposition
generalizes this result to any second degree risk increase in the distribution of variance ṽ.
Suppose for example that the distribution of ṽ shifts from (1, 1/2; 2, 1/2) to (1, 3/4; 3, 1/4),
which is an example of a second degree risk increase in variance that is not covered by
Eeckhoudt and Schlesinger (2006). If ε̃ takes value −1 or +1 with equal probabilities and if
c̃∗ = 3 with certainty, Table 1 describes the initial and final distributions of consumption. The
first three moments of c̃ are unaffected by the change in distribution, but the fourth moment
is increased. Expected utility is decreased (increased) by it if u(4) is negative (positive).

We now turn to the case n = 3. As explained by Eeckhoudt and Schlesinger (2006), a third
degree risk increase can be obtained by transferring a zero-mean risk η̃ from a high outcome
to a lower outcome with the same probability. Suppose for example that the variance ṽ is
initially distributed as (1, 1/2; 2 + η̃, 1/2). Shifting this white noise from the high variance
level to the lower one yields the new distribution ṽ ∼ (1 + η̃, 1/2; 2, 1/2). This shift does not
change the mean and the variance of ṽ, but it reduces its skewness. This is an example of
third degree risk increase in the variance. For example, if η̃ takes value −1 or +1 with equal
probabilities, the probability distribution of the number ṽ of zero-mean risks in x̃ṽ shifts
from (1, 3/4; 3, 1/4) to (0, 1/4; 2, 3/4). Proposition 1 tells us that this third degree increase
in variance risk generates a sixth degree reduction in consumption risk. Therefore, it raises
expected utility when the sixth derivative of the utility function is negative. Table 2 describes
the initial and final distributions of consumption when c̃∗ = 3 and ε̃ takes value −1 and +1
with equal probabilities.

We can pursue this exploration to the fourth order, this time by using Proposition 1
recursively. This can be done by assuming that the variance ṽ is itself the sum of an uncertain
number of i.i.d. zero-mean risks. More precisely, suppose that ṽ is distributed as

ṽ = ṽ∗ + ỹθ̃, with ỹθ =
θ∑
i=1

η̃i, (6)

where (η̃, η̃1, η̃2, ...) are i.i.d. with Eη̃ = 0 and η̃2 = 1, (c̃∗, ṽ∗, ε̃, η̃, θ̃) are independent random
variables, and ṽ and θ̃ have their support in N. Suppose that n is an even number. Then,
applying Proposition 1 to ṽ rather than to c̃ implies that a n-th degree risk increase in the
variance θ̃ of the variance ṽ of lottery x̃ṽ yields a 2n-th degree risk increase in ṽ. Applying
Proposition 1 again yields a 4n-th degree risk increase in lottery x̃ṽ. This has a negative
impact on expected utility if u(4n) is negative. This result is restated as follows.

Proposition 2. Suppose that consumption satisfies equations (4), (5) and (6), and that u is
4n times differentiable. Any n-th degree risk increase in the variance η̃ of the variance ṽ of c̃
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reduces (raises) the expected utility Eu(c̃) if and only if (−1)nu(4n) is negative (positive). It
yields a 4n-th degree risk increase (reduction) in c̃ if n is even (odd).

We hereafter illustrate this result in the case of n = 2, which corresponds to the case
of increasing the volatility of the volatility. The role of this "vol-of-vol" in asset pricing
is examined by Bollerslev et al. (2009), Tauchen (2011) and Drechsler and Yaron (2011).
Suppose that both ε̃ and η̃ take value −1 or +1 with equal probabilities, and that c̃∗ and ṽ∗
take respectively value 4 and 2 with certainty. Finally, suppose that the initial distribution of
θ̃ is degenerated at 1, and that it undergoes a second degree risk increase to (0, 1/2; 2, 1/2).
This implies that the distribution of ṽ shifts from (1, 1/2; 3, 1/2) to (0, 1/8; 2, 3/4; 4, 1/8),
which is indeed a fourth degree risk increase in the variance of c̃. Table 3 describes the 8th
degree increase in risk in consumption c̃ that it generates. It reduces expected utility when
the eighth derivative of the utility function is negative. The first seven moments of the two
distributions are identical, but the 8th moment is increased by the shift in distribution.

3 More concordance between income and the n-th degree risk-
iness in variance

In the previous section, we assumed that the conditional mean income c̃∗ is independent of
the conditional variance ṽ of x̃ṽ. In this section, we allow for some statistical dependence
between c̃∗ and ṽ. More precisely, we are interested in determining the impact on expected
utility of an increase in concordance between c̃∗ and the n-th degree riskiness of ṽ. We show
that signing this effect is linked to the sign of the odd derivatives of u. Because the previous
section characterized the even derivatives of u, this section completes the characterization of
the sign of the successive derivatives of the utility function.

As in the previous section, suppose that consumption c̃ is governed by equations (4) and
(5), but we relax the assumption that income c̃∗ and variance ṽ are independent. Suppose
that ṽ is related to c̃∗ only through some random variable z̃. Suppose also that ṽ|z can be
ordered according to the n-th degree risk order, for some n ∈ N0. This means that for all z1
and z2 in the support of z̃, we have that

z2 > z1 ⇒ ṽ|z2 is a n-th degree risk increase of ṽ|z1. (7)

Thus, z can be interpreted as an index of n-th degree riskiness of ṽ. In the following definition,
we use the concept of increasing concordance introduced in economics by Epstein and Tanny
(1980), Tchen (1980) and Atkinson and Bourguignon (1982). If F and G represent respec-
tively the initial and final joint probability distribution of (c̃∗, z̃), an increase in concordance
between these two random variables prevails if and only if G(c∗, z) is larger than F (c∗, z) for
all (c∗, z) in the support of (c̃∗, z̃), assuming that the marginal distributions are unchanged.
More intuitively, any increase in concordance between c̃∗ and z̃ can be constructed by a se-
quence of simple marginal-preserving transfers of probability masses as described in Figure
1.

Definition 2. We say that the concordance between mean income c̃∗ and the n-th degree risk
in variance ṽ is increased if condition (7) is satisfied and (c̃∗, z̃) becomes more concordant.
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Figure 1: A simple increase in concordance in mean consumption c̃∗ and the index z̃ of the n-th degree
riskiness of variance ṽ expressed as two symmetric transfers of probability mass in the support of this pair of
random variables.

Let us now define function m as follows:

m(c∗, z) = E [u (c∗ + x̃ṽ) |z] . (8)

This implies that
Eu (c̃∗ + x̃ṽ) = Em (c̃∗, z̃) . (9)

As is intuitive from the way simple increases in concordance are built, we know from Epstein
and Tanny (1980) that any increase in concordance in (c̃∗, z̃) raises the expectation of m if
and only if m is supermodular. This is true iff

m′(c∗, z) = E
[
u′ (c∗ + x̃ṽ) |z

]
. (10)

is increasing in z. Thus, the problem simplifies to determining the condition under which
a n-th degree risk increase in the variance ṽ raises expected marginal utility. Proposition 1
tells us that this is the case if and only if the (−1)nu(2n+1) is positive. This demonstrates
the following result.

Proposition 3. Suppose that u is 2n+ 1 times differentiable. Any increase in concordance
between the mean income c̃∗ and the n-th degree risk in variance ṽ raises (reduces) the expected
utility if and only if (−1)nu(2n+1) is positive (negative). It yields a (2n+1)-th degree risk
reduction (increase) in c̃ if n is even (odd).

The case n = 1 arises when states with larger mean incomes c∗ are associated to first-
degree stochastically deteriorated distributions of variance ṽ. A simple illustration of this case
is the risk apportionment of order 3, as defined by Eeckhoudt and Schlesinger (2006).2 Using
Figure 1, this is a case in which c∗1 and c∗2 > c∗1 are the only two possible mean consumption
levels and are equally likely. Moreover, the distribution of the conditional variance ṽ | z takes

2This case was examined earlier by Eeckhoudt et al. (1995).
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value 1 − z with certainty. This obviously implies that an increase in z yields a first-degree
stochastic deterioration in the distribution of ṽ | z. Initially, both z̃ | c∗1 and z̃ | c∗2 are
degenerated, respectively at values z = 1 and z = 0. These two degenerated distributions are
switched under the new joint distribution, which indeed illustrates an increased concordance.
In words, this corresponds to the transfer of a zero-mean risk from a high income level c∗2 to
the lower income level c∗1. Proposition 3 tells us that this generates a third degree increase
in consumption risk, which is disliked if the third derivative of u is positive.

In order to illustrate the generality of Proposition 3, let us consider a more sophisticated
application of the case n = 1 where c̃∗ is not uniformly distributed and z̃ | c∗ is not degener-
ated as in the risk apportionment of order 3. Suppose that the marginal distributions of c̃∗
and z̃ are respectively (1, 1/3; 2, 2/3) and (0, 1/2; 1, 1/2). Suppose also that ṽ | z = 1 − z as
in the previous example. Initially, c̃∗ and z̃ are independent. They are then made positively
concordant by shifting a probability mass ∆p = 1/6 as in Figure 1. This increase in concor-
dance between mean income and the first degree riskiness of variance ṽ also implies a third
degree increase in consumption risk, as described in Table 4.

We now provide an illustration of Proposition 3 in case n = 2. This is a case in which
higher mean income levels are associated with a riskier variance in the sense of Rothschild
and Stiglitz. Suppose for example that c̃∗ and z̃ can take two values, 2 or 3, with equal
probabilities. Suppose also that ṽ | z = 2 equals 1 with certainty, whereas ṽ | z = 3 takes
value 0 or 2 with equal probabilities. Initially, the mean income c̃∗ and the index z̃ of riskiness
of the variance are independent. This joint distribution is shifted to make c̃∗ and z̃ perfectly
correlated, an example of increased concordance between mean income and the second degree
riskiness of the variance. This shift in distribution is described in Figure 5. From Proposition
3, we know that this implies a fifth degree reduction in consumption risk, as described in
Table 5. In fact, the four first moment of c̃ are unaffected by the increased concordance, but
the fifth moment is increased. People with a positive fifth derivative of their utility function
like this.

4 Variance stochastic orders and asset pricing

Our results have useful immediate consequences for asset pricing in the discounted expected
utility framework, as we show in this section. Consider a simple two-date Lucas tree economy
with a representative agent who consumes c0 today and c̃ = c̃∗+ x̃ṽ in the future. This yields
a lifetime utility equaling

u0(c0) + Eu1(c̃), (11)

where u0 and u1 are two increasing utility functions. An investment opportunity arises today
that would generate a net benefit b̃ = ξ̃g(c̃) dollars in the future per dollar invested today.
We assume that ξ̃ and c̃ are independent, that Eξ̃ equals one, and that g is a real-valued
function. The marginal willingness to pay for this investment equals

P (g) = Eb̃u′1(c̃)
u′0(c0) = Ef(c̃)

u′0(c0) , (12)
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with
f(c) = g(c)u′1(c). (13)

P (g) can also be interpreted as the equilibrium price of the asset that delivers b̃ = ξ̃g(c̃) in
the future. Equation (12) is the standard asset pricing formula of the consumption-based
CAPM, with a price kernel u′1(c)/u′0(c0).

We are interested in determining the effect of the uncertain variance – which is usually
referred to as stochastic volatility in the asset pricing literature – of future consumption on
the equilibrium price of assets. The results presented in this section are direct consequences of
propositions 1 and 3 when applied to equation (12). Let first examine the case of the risk-free
asset that is characterized by b̃ = g(.) = 1. The interest rate is defined as rf = − log(P (1)),
and is inversely related to the equilibrium price P .

Proposition 4. Suppose that the future consumption c̃ of the representative agent satisfies
the additive structure (4) and (5). Suppose also that the successive derivatives of the utility
function u1 alternate in sign in the relevant domain of future consumption. If n is even (odd),
then

• Assuming that c̃ and ṽ are independent, a n-th degree risk increase in the variance ṽ of
future consumption reduces (raises) the equilibrium interest rate;

• An increase in concordance between the mean income c̃∗ and the n-th degree risk in
variance ṽ reduces (raises) the equilibrium interest rate.

For example, a second degree risk increase in the variance of future consumption reduces
the interest rate, as does a reduction in concordance between the mean and the variance of
future consumption. As an alternative illustration, we can also examine the price of a claim
on future consumption in order to evaluate the systematic risk premium in the economy.
This corresponds to a function f such that f(c) = cu′1(c) for all c. The equilibrium expected
return of equity ρ is defined as − log(P (c)/Ec̃), and is decreasing in P (c).

Proposition 5. Suppose that the future consumption c̃ of the representative agent satisfies
the additive structure (4) and (5). Suppose also that the successive derivatives of function
f(c) = cu′1(c) alternate in sign in the relevant domain of future consumption, starting with a
negative first derivative. If n is even (odd), then

• Assuming that c̃ and ṽ are independent, a n-th degree risk increase in the variance ṽ of
future consumption raises (reduces) the equilibrium expected return of equity;

• An increase in concordance between the mean income c̃∗ and the n-th degree risk in
variance ṽ raises (reduces) the equilibrium equilibrium expected return of equity.

A special case of this result is obtained when u1 exhibits a constant relative risk aversion
larger than unity.3 In that case, a second degree risk increase in the variance of future
consumption or a reduction in concordance between the mean and the variance of future
consumption raises the equilibrium expected return of equity.

It is noteworthy that when constant relative risk aversion is larger than unity, reducing
the concordance between the mean and the variance of future consumption reduces the risk-
free rate and raises the expected rate of return of equity, so that it also raises the equity

3When constant relative risk aversion is less than one, the results of Proposition 5 are reversed.
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premium. This is linked to a recent observation by Tinang (2017). This author proposes a
generalization of the long-run risk model of Bansal and Yaron (2004) in which the shocks on
the trend of consumption growth and the shock on its volatility are negatively correlated.
It generates a third degree increase in consumption risk (negative skewness), yielding the
above mentioned consequences on asset prices. This can contribute to solve the standard
asset pricing puzzle.

5 A final remark

In this paper, we have characterized the impact of the uncertainty surrounding the variance
of consumption on expected utility and asset prices. A crucial element of our analysis is
the additive structure of the lottery, which is assumed to be the sum of independent and
identically distributed zero-mean risks. The uncertainty is about the number v of risks
contained in this lottery. The additive structure of the uncertainty affecting the variance
implies that that a n-th risk increase in ṽ does not affect the 2n− 1 moments of the lottery.4
For example, It is easy to verify that, given (5), we have

Ex̃3
v = vEε̃3. (14)

Because this conditional expectation is linear in v, it implies that a second degree risk increase
in ṽ does not affect the third unconditional moment of x̃ṽ.

The structure of the problem is different if we would consider a multiplicative version of
the lottery where equation (5) would be replaced by the following specification:

x̃v =
√
vε̃, (15)

with Eε̃ = 0 and Eε̃2 = 1, and where ṽ and ε̃ are independent. This multiplicative speci-
fication is standard in the long-run risk literature initiated by Bansal and Yaron (2004) for
example. But it is not true in general that a n-th degree risk increase in ṽ preserves the 2n−1
first moments of x̃ṽ. For example, it is immediate that in the multiplicative specification (15),
we have that

Ex̃3
v = v3/2Eε̃3. (16)

Because this is a convex function of v, a second degree risk increase in v yields an increase
(reduction) in the skewness of x̃ṽ if ε̃ is positively (negatively) skewness. It is thus generally
not true in general that a Rothschild-Stiglitz increase in risk in the variance of a random
variable yields a 2n-th degree risk increase in that random variable. This illustrates the key
role of the additive risk specification (5) of the results presented in this paper.

4It is a direct consequence of Proposition 1. It can also be demonstrated from the main result in Packwood
(2012) who provides an analytical formula to evaluate the moments of the sum of i.i.d. random variables.
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Appendix

Appendix 1: Proof of Theorem 1

Suppose that the initial probability distribution of ṽ is given by (p0, p1, ..., pV ), with pi =
Pr[ṽ = vi], whereas the final distribution is (q0, q1, ..., qV ). For all v ∈ {0, ..., V }, and for all
n ∈ N0, let us define

Pn(v) =
v∑
i=0

Pn−1(i), Qn(v) =
v∑
i=0

Qn−1(i), (17)

where P 0(i) and Q0(i) are respectively equal to pi and qi. Let us define function h(., 0) : N→
R as follows:

h(v, 0) = Eu (c̃∗ + x̃v) . (18)

We can then define recursively functions h(., n) for any integer n in such a way that for all
v ∈ N,

h(v, n) = h(v + 1, n− 1)− h(v, n− 1). (19)

In fact, the finite-difference function f(., n) plays the same role as the n-th derivative of f
if v would be a continuous variable. We are interested in signing the difference in expected
utility generated by the shift in distribution of ṽ from (p0, ..., pV ) to (q0, ..., qV ). It is defined
as follows:

∆EU = Equ(c̃)− Epu(c̃) =
V∑
v=0

(qv − pv)h(v, 0). (20)

By definition of functions h(., 1), Pn and Qn, this implies that

∆EU = h(V + 1, 0)
(
Q1(V )− P 1(V )

)
−

V∑
v=0

h(v, 1)
(
Q1(v)− P 1(v)

)
. (21)

proceeding by recursion, we obtain more generally that

∆EU =
n∑
k=1

(−1)k−1h(V + 1, k − 1)
(
Qk(V )− P k(V )

)

+(−1)n
V∑
v=0

h(v, n) (Qn(v)− Pn(v)) . (22)

This equation is the discrete equivalent version of the traditional integration by part equation
that is ubiquitous in stochastic dominance theory (see for example Ekern (1980)). The
following lemma is a direct consequence of this equation combined with Definition 1.

Lemma 1. Any n-th degree risk increase in the variance ṽ increases (reduces) EU if and
only if (−1)nh(., n) is positive (negative).

Let us now define the sequence of functions g(., v, k) : R→ R as follows:

g(z, v, 0) = Eu (z + c̃∗ + x̃v) (23)
g(z, v, k) = Eg(z + ε̃, v, k − 1)− g(z, v, k − 1), k = 1, 2, 3, ... (24)
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This implies that
g(0, v, k) = h(v, k), (25)

for all (v, k) ∈ N2. Observe also that for all k ∈ N0, we have that

g(i)(z, v, k) = Eg(i)(z + ε̃, v, k − 1)− g(i)(z, v, k − 1), (26)

where g(i) is the ith order derivative of g with respect to z. Now, observe that, by Jensen’s
inequality, g(i)(., v, k) is positive (negative) if and only if g(i+2)(., v, k−1) is positive (negative).
By recursivity, this implies that h(v, n) = g(0, v, n) is positive (negative) if and only if
g(2n)(., v, 0) is positive (negative). By equation (23), this is true if and only if u(2n)(.) is
positive (negative). This result is summarized in the following lemma.

Lemma 2. Assume that u is 2n times differentiable. Function h(., n) is positive (negative)
if and only if u(2n)(.) is positive (negative).

Combining these two lemmata implies that any n-th degree risk increase in the variance
ṽ increases (reduces) EU if and only if (−1)nu(2n)(.) is positive (negative). From Ekern
(1980), this means that a n-th degree risk increase in the variance ṽ generates a 2n-th degree
risk increase in consumption c̃ if n is an even number, and it generates a 2n-th degree risk
reduction in consumption c̃ if n is an odd number. This completes the proof of Proposition
1. �
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Fourth degree increase in consumption risk

Figure 2: Example of a second degree increase in variance risk.

consumption initial probability final probability
0 1/32
1 1/8
2 1/4 15/32
3 1/4
4 1/4 15/32
5 1/8
6 1/32

Table 1: The second degree increase in variance risk described in Figure 5 generates a 4th
degree increase in consumption risk. Illustration of Proposition 1 with ε̃ ∼ (−1, 1/2; +1, 1/2)
and c̃∗ = 3. The initial distribution of ṽ is (1, 1/2; 2, 1/2). Its final distribution undergoes a
second degree risk increase to (1, 3/4; 3, 1/4). Individuals with u(4) negative dislike this shift
in distribution.
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Sixth degree reduction in consumption risk

Figure 3: Example of a third degree increase in variance risk.

consumption initial probability final probability
0 1/32
1 3/16
2 15/32
3 10/16
4 15/32
5 3/16
6 1/32

Table 2: The third degree increase in variance risk described in Figure 5 generates a 6th degree
reduction in consumption risk. Illustration of Proposition 1 with ε̃ ∼ (−1, 1/2; +1, 1/2) and
c̃∗ = 3. The initial distribution of ṽ is (1, 3/4; 3, 1/4). Its final distribution undergoes a
third degree risk increase to (0, 1/4; 2, 3/4). Individuals with u(6) negative like this shift in
distribution.
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Eight degree increase in consumption risk

Figure 4: Example of a second degree risk increase in the variance θ̃ of the variance ṽ.

consumption initial probability final probability
0 1/128
1 1/16
2 28/128
3 7/16
4 70/128
5 7/16
6 28/128
7 1/16
8 1/128

Table 3: A fourth degree increase in variance risk generates a 8th degree risk increase in
consumption. It is obtained by a second degree risk increase in the variance θ̃ of the variance
ṽ, as described in Figure 5. It is therefore also an illustration of Proposition 2 with ε̃ ∼ η̃ ∼
(−1, 1/2; +1, 1/2), c̃∗ = 4, and ṽ∗ = 2. The initial distribution of θ̃ is degenerated at 1. Its
final distribution undergoes a second degree risk increase to (0, 1/2; 2, 1/2). Individuals with
u(8) negative dislike this shift in distribution.
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Third degree increase in consumption risk

Figure 5: Example of an increase in concordance between the mean income and the first degree
risk in variance. We assume that z̃ = 1− ṽ. The initial and final distributions of (c̃∗, z̃) are
as in Figure 1, with c∗1 = 1, c∗2 = 2, z1 = 0, z2 = 1, p11 = p12 = 1/6 , p21 = p22 = 1/3 and
∆p = 1/6.

consumption initial probability final probability
0 1/12 2/12
1 4/12 1/12
2 5/12 8/12
3 2/12 1/12

Table 4: The increase in concordance between the mean income and the first degree risk in
variance described in Figure 5 yields a third degree increase in consumption risk. We assume
that ε̃ ∼ (−1, 1/2; ,+1, 1/2). Individuals with u(3) positive dislike this shift in distribution.
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Fifth degree reduction in consumption risk

Figure 6: An increase in concordance between the mean income and the second degree risk
in variance. We assume that ṽ | z1 equals 1 with certainty, and ṽ | z2 is distributed as
(0, 1/2; 2, 1/2). The initial and final distributions of (c̃∗, z̃) are as in Figure 1, with c∗1 = 2,
c∗2 = 3, p11 = p12 = p21 = p22 = 1/4 , ∆p = 1/4.

consumption initial probability final probability
0 1/32
1 5/32 5/16
2 10/32
3 10/32 10/16
4 5/32
5 1/32 1/16

Table 5: The increase in concordance between the mean income and the second degree risk
in variance described in Figure 5 yields a fifth degree reduction in consumption risk. We
assume that ε̃ is distributed as (−1, 1/2; ,+1, 1/2). Individuals with u(5) positive like this
shift in distribution.
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