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Abstract: We consider a one-sector Ramsey-type growth model with inelastic labor

and learning-by-doing externalities based on cumulative gross investment (cumulative

production of capital goods), which is assumed, in accordance with Arrow [4], to be a

better index of experience than the average capital stock. We prove that a slight memory

effect characterizing the learning-by-doing process is enough to generate business cycle

fluctuations through a Hopf bifurcation leading to stable periodic orbits. This is obtained

for reasonable parameter values, notably for both the amount of externalities and the

elasticity of intertemporal substitution. Hence, contrary to all the results available in the

literature on aggregate models, we show that endogenous fluctuations are compatible with

a low (in actual fact, zero) wage elasticity of the labor supply.

Keywords: One-sector infinite-horizon model, learning-by-doing externalities,

inelastic labor, business cycle fluctuations, Hopf bifurcation, local determinacy.
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1 Introduction

Explaining the economic fluctuations associated with the business cycle is
one of the main goals of modern macroeconomic theory. Two complemen-
tary explanations coexist in the literature: the endogenous cycle theory and
the real business cycle theory based on exogenously-driven fluctuations. The
common framework used in these two theories is given by the Ramsey [31]
optimal growth model. The standard aggregate dynamics are characterized
by a unique monotonically convergent equilibrium path and thus business
cycle fluctuations can only be obtained if exogenous shocks on the fundamen-
tals are introduced. Contrary to this, multisector optimal growth models
easily exhibit endogenous fluctuations without any stochastic perturbation.
However, depending on whether time is discrete or continuous, the number
of goods matters. In a discrete-time model, the consideration of two sectors
with both consumption goods and investment goods is sufficient to gener-
ate period-two cycles through a flip bifurcation as shown by Benhabib and
Nishimura [11].1 In a continuous-time model, Benhabib and Nishimura [10]
show that at least three sectors with one consumption good and two capital
goods need to be considered to generate endogenous fluctuations through a
Hopf bifurcation.2

It is worth noting here that Hopf bifurcations explain endogenous fluctu-
ations better than flip bifurcations. They are more likely to imply persistent,
positively auto-correlated endogenous fluctuations (see Dufourt et al. [21]),
while the latter generate several counterfactual characteristics in the simu-
lated time series.

More recently, endogenous fluctuations through the existence of local in-
determinacy and sunspot equilibria have been shown to occur even in one-
sector models. Building on the work by Romer [31], Benhabib and Farmer
[9] consider a Ramsey-type continuous-time aggregate model augmented to
include economy-wide externalities in the production function measured by
the aggregate stock of capital and total labor, which are assumed to be a
proxy for some learning-by-doing process. It is indeed assumed that by us-

1The consumption goods sector needs to be more capital intensive than the investment

goods sector.
2The optimal path necessarily converges monotonically to the steady state in two-

dimensional continuous-time models. See Hartl [25] for a proof of this result in general

autonomous control problems with one state variable.
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ing capital over time, agents increase their experience and are thus able to
increase their productivity. Within such a framework, Benhabib and Farmer
[9] show that local indeterminacy and fluctuations derived from agents’ self-
fulfilling expectations can occur can occur, but not through a Hopf bifur-
cation. Moreover, besides. However, besides external effects in production
with large enough increasing returns at the social level, the basic model also
has to be increased by the consideration of endogenous labor supply, whose
wage elasticity is sufficiently high, i.e., close enough to infinity.3 Since the
elasticity of the aggregate labor supply is usually shown to be low,4 it follows
that the occurrence of local indeterminacy relies on parameter values that
do not match empirical evidence.

In this paper, we consider a continuous-time aggregate model with in-
elastic labor and learning-by-doing externalities in the production process.5

We depart significantly from most existing contributions in the literature
and notably from Romer [31] in which the average level of capital is used as
a proxy of experience. We assume, in accordance with Arrow [4], that cumu-
lative gross investment (cumulative production of capital goods) is a better
index of experience than the instantaneous average capital stock. More
precisely, the learning-by-doing effects are measured by the whole gross in-
vestment process over some fixed period of time.6 This assumption, which
will importantly shape the equilibrium dynamics, represents a memory ef-
fect suggesting that investments made a long time ago do not have the same
impact on the index of experience as recent ones. This can be justified, for
instance, by the finite life expectancy of the workers.7 For computational
convenience, we have chosen a memory process similar to a one-hoss shay

3Nishimura et al. [29] show that this is a generic condition for local indeterminacy in

one-sector models.
4Most econometric analyses available in the literature conclude that the wage elasticity

of labor lies in (0, 0.3) for men and (0.5, 1) for women (see Blundell and MaCurdy [13]).
5It is possible to consider a discrete time framework, but this would yield to a large

scale dynamical system for which the analytical characterization is tricky.
6D’Autume and Michel [5] consider the original formulation by Arrow in which society’s

stock of knowledge, measured as the cumulative gross investment over an infinite past,

acts as an externality in the production of all firms. They prove that endogenous growth

can occur as a result of this.
7Nevertheless, in the present paper, we do consider an infinitely-lived representative

individual. For the dynamics of an economy with learning-by-doing externalities and a

continuum of finitely-lived individuals, see d’Albis and Augeraud-Véron [2].
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depreciation: the weight of a given vintage in the index of experience is one
during a given time interval, then zero. Our results extend to more general
specifications.

Given this assumption, the equilibrium path is described by a system
of functional differential equations. Some papers have already studied func-
tional differential equations with Ramsey-type aggregate models, notably
with vintage capital. As initially shown by Kalecki [27], some production
lag is a possible source of aggregate fluctuations. Benhabib and Rustichini
[12] and Boucekkine et al. [14] thus show that vintage capital leads to oscil-
latory dynamics governed by replacement echoes.8 More recently, Bambi [6]
considers an endogenous growth model based on some AK technology with
time-to-build, and shows that damped fluctuations occur, but that persis-
tent endogenous fluctuations through a Hopf bifurcation are ruled out. A
similar result has been obtained by Bambi and Licandro [7] in the Benhabib
and Farmer [9] model augmented to include time-to-build. However, once
utility and production functions are non linear, Hopf bifurcations can occur
(see Benhabib and Rustichini [12]9, Rustichini [32]10, Asea and Zak [3]11).

The main difficulty that emerges in the course of the analytical resolu-
tion of vintage capital models is that optimality conditions are formulated
as a system of mixed functional differential equations in which delayed (the
capital stock) and advanced (the shadow price) terms are considered si-
multaneously. In our paper, introducing a lagged capital stock through
a Romer-type externality leads to optimality conditions formulated as a
system of delay functional differential equations. This simpler framework
notably allows us to provide results on local stability and determinacy.

The main purpose of our paper is to show the existence of a Hopf bi-

8See also Boucekkine et al. [16], Boucekkine et al. [17] and Fabbri and Gozzi [22].
9Benhabib and Rustichini [12] mention the possibility of a Hopf bifurcation in an

aggregate model with non-linear utility and vintage capital but do not provide any formal

proof of its existence and do not discuss the stability of the bifurcating solutions.
10Rustichini [32] considers a two-sector optimal growth model in which delays are in-

troduced on both the control (investment and output) and state (capital stock) variables

and derives a system of mixed functional differential equations. He shows that endogenous

fluctuations can occur through a Hopf bifurcation.
11Asea and Zak [3] consider an exogenous growth model with time-to-build and claim

that the steady state can exhibit Hopf cycles. However, their result is puzzling because a

time-to-build assumption should lead to a system of mixed functional differential equations

with both delay and advance, whereas they only consider delay in their model.
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furcation and to establish the conditions under which the equilibrium path
converges towards the periodic solution in an aggregate growth model with
learning-by-doing externalities. In particular, we prove that persistent en-
dogenous fluctuations can occur, first without considering endogenous labor
and external effects coming from the labor supply, and second with stan-
dard CES preferences and technology characterized by small values for the
elasticity of intertemporal substitution in consumption and a capital-labor
elasticity of substitution in line with recent empirical estimates. We hence
demonstrate that a simple aggregate model may generate business cycle
fluctuations under plausible parameterization of the fundamentals and a
low amount of externalities based on a Arrow-type learning-by-doing pro-
cess. Moreover, we show that the equilibrium, be it convergent toward the
steady state or the periodic cycle, is locally determinate, i.e. unique.

The economic intuition for such fluctuations is the following. Assume,
for instance, that the initial level of experience is low. Then, private returns
to capital are high as well as the level of investment. This increases the
experience and reduces the returns to capital. Investments are then slowed
down. However, due to the memory function, experience is reduced, which
subsequently increases the return to capital. Permanent fluctuations are
then possible, whereas they are ruled out with Romer [31]’s assumption.

Our paper also proposes an analysis of the local determinacy around
the steady-state. Even though this exercise is intuitively similar to the
ones that are performed with systems of ordinary differential equations,
one has here to deal with a continuum of initial values and with a stable
manifold whose dimension is infinite. We show that the steady-state cannot
be indeterminate and give a condition for local determinacy. Non existence
of equilibrium paths cannot be excluded in our framework.

The paper is organized as follows: Section 2 presents the model and
defines the intertemporal equilibrium. Section 3 contains the main results
on the existence of a Hopf bifurcation, the local stability properties of the
periodic orbits, the local determinacy of the steady state, and presents a
numerical example. Section 4 contains concluding comments and proofs are
provided in a final Appendix.
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2 The model

2.1 The production structure

Let us consider a perfectly competitive economy in which the final output
is produced using capital K and labor L. Although production at the firm
level takes place under constant return-to-scale, we assume that each of
the many firms benefits from positive externalities due to learning-by-doing
effects. We consider indeed that by using capital over time, agents increase
their experience and are thus able to increase their productivity. Contrary
to most contributions in the literature following Romer [31], in which the
average level of capital is used as a proxy of experience, we assume, in
accordance with Arrow [4], that cumulative gross investment (cumulative
production of capital goods) is a better index of experience. “Each new
machine produced and put into use is capable of changing the environment in
which production takes place, so that learning is taking place with continually
new stimuli” (Arrow [4], page 157). However, like Romer [31], we consider
that these learning-by-doing effects enter the production process as external
effects. In what follow, we consider a model with no endogenous growth but
our framework could be easily extended to constant return to scale in the
accumulation factor.

The production function of a representative firm is thus F (K,L, e), where
F (K,L, .) is homogeneous of degree one with respect to (K,L) and e ≥ 0
represents the externalities. Denoting, for L 6= 0, k = K/L the capital stock
per labor unit, we consider a CES production function in intensive form
such that

f (k, e) = A
[
αk−ν + (1− α)e−βν

]− 1
ν (1)

with α ∈ (0, 1), β ∈ (0, 1), ν > −1 and A > 0. At the optimum of the firm,
the interest rate r(t) and the wage rate w(t) then satisfy:

r(t) = f1(k(t), e(t))− δ, w(t) = f(k(t), e(t))− k(t)f1(k(t), e(t)) (2)

with δ ≥ 0 the depreciation rate of capital.
We also compute the share of capital in total income:

s(k, e) = kf1(k,e)
f(k,e) = α

α+(1−α)e−βνkν
∈ (0, 1) (3)

the elasticity of capital-labor substitution σ = 1/(1 + ν), and the following
share and elasticity related to the externalities e:
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εe(k, e) = ef2(k,e)
f(k,e) = β(1− s(k, e)),

εke(k, e) = ef12(k,e)
f1(k,e) = β(1−s(k,e))

σ

(4)

The share εe(k, e) provides a measure of the size of the externalities and
εke(k, e) is the elasticity of the rental rate of capital with respect to e. Note
that the restriction β ∈ (0, 1) implies that the externalities are small enough
to be compatible with a demand for capital which is decreasing with respect
to the rental rate and that the marginal productivity of capital is an increas-
ing function of the externalities. We will also assume in the following that
ν > 0, i.e. σ ∈ (0, 1). This restriction ensures that over the business cycles,
the labor share is countercyclical while the capital share is pro-cyclical.12

Assuming a stationary population, the dynamics of capital per capita
writes:

k̇(t) = f(k(t), e(t))− δk(t)− c(t) (5)

where c(t) denotes the consumption per capita. As explained previously,
we assume that the externalities are generated by a learning-by-doing pro-
cess in the sense described by Arrow [4], and correspond to the per capita
cumulative gross investment:

Assumption 1. e (t) =
∫ t
t−τ

(
k̇ (s) + δk (s)

)
ds ≥ 0, with t ≥ τ ≥ 0.

The parameter τ is exogenous and represents a memory effect. We as-
sume indeed that workers improve their experience by using capital over
time but their memory is bounded in the sense that after some time τ ,
experiences that are too old are forgotten. It is worth noting that a differ-
ent formulation for the depreciation of memory could be considered. For
instance Boucekkine et al. [15] assume an exponential depreciation rate.

Remark 1. The formula in Assumption 1 encompasses the Ramsey [30]
model when δ = τ = 0 and the Romer [31] model when δ = 0, τ → +∞ and
limt→−∞ k(t) = 0 as particular cases.

2.2 Preferences and intertemporal equilibrium

The representative infinitely-lived individual supplies a fixed amount of labor
l = 1 and derives utility from consumption c according to a CRRA function

12These properties are shown to match empirical evidences from the US economy over

the period 1948-2004 (see Guo and Lansing [24]).
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such that
u(c) = c

1− 1
εc

1− 1
εc

(6)

with εc ∈ (0,+∞) that denotes the elasticity of intertemporal substitution
in consumption.

The intertemporal maximization program of the representative agent is
given by:

max
c(t),k(t)

∫ +∞

t=0
e−ρtu(c(t))dt

s.t. k̇(t) = f(k(t), e(t))− δk(t)− c(t)
k(t) = k0(t) for t ∈ [−τ, 0] and {e(t)}t≥0 given

(7)

where ρ > 0 denotes the discount factor. By substituting c(t) from the
capital accumulation equation into the utility function we obtain a problem
of calculus of variations

max
k(t)

∫ +∞

t=0
e−ρtu

(
f(k(t), e(t))− δk(t)− k̇(t)

)
dt

s.t. (k(t), k̇(t)) ∈ D({e(t)}t≥0)

k(t) = k0(t) for t ∈ [−τ, 0] and {e(t)}t≥0 given

(8)

with

D({e(t)}t≥0) =
{

(k(t), k̇(t)) ∈ R+×R|f(k(t), e(t))− δk(t)− k̇(t) ≥ 0, ∀e(t) ≥ 0
}

being the convex set of admissible paths. An interior solution to problem
(8) satisfies the Euler equation[

(f1(k(t), e(t))− δ)k̇(t) + f2(k(t), e(t))ė(t)− k̈(t)
]
u′′(c(t)) +

[f1(k(t), e(t))− δ − ρ]u′(c(t) = 0
(9)

and the transversality condition

lim
t→+∞

u′ (c(t)) k (t) e−ρt = 0 (10)

for all given e(t). At the individual level, a solution of the Euler equation
(9) is thus a path of capital stock parameterized by a given path of exter-
nalities, namely k(t, {e(s)}s≥0). At the aggregate level, as the externalities
are defined according to Assumption 1, an equilibrium path is the solution
of a fixed-point problem defined such that

e (t) =
∫ t

t−τ

(
k̇ (s, {e(z)}z≥0) + δk (s, {e(z)}z≥0)

)
ds (11)
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for all t ≥ 0. Assuming that such a fixed-point problem has a solution,13

the capital dynamics are characterized by the following non-linear functional
differential equation with distributed delays. By deriving equations (5) and
(9) as well as e (t) with respect to time, and replacing the elasticity of in-
tertemporal substitution by the parameter defined above, we obtain:

k̈ (t) =
[
f1

(
k (t) , k (t)− k (t− τ) + δ

∫ t
t−τ k (s) ds

)
− δ
]
k̇ (t)

+ f2

(
k (t) , k (t)− k (t− τ) + δ

∫ t
t−τ k (s) ds

)
×
[
k̇ (t)− k̇ (t− τ) + δ [k (t)− k (t− τ)]

]
− εc

(
f
(
k (t) , k (t)− k (t− τ) + δ

∫ t
t−τ k (s) ds

)
− δk (t)− k̇ (t)

)
×
[
f1

(
k (t) , k (t)− k (t− τ) + δ

∫ t
t−τ k (s) ds

)
− δ − ρ

]
(12)

together with the transversality condition (10).
We now study the existence of an interior steady state in the neighbor-

hood of which an equilibrium path exists by continuity.

2.3 Steady state and characteristic equation

We consider the dynamics in the neighborhood of the steady state. Along a
stationary path k(t) = k̄ for any t ≥ 0, Assumption 1 implies e(t) = ē = δτ k̄

provided that τ � +∞. An interior steady state is thus a k̄ that solves:

f1

(
k̄, δτ k̄

)
= δ + ρ (13)

and the corresponding stationary consumption level is

c̄ = f
(
k̄, δτ k̄

)
− δk̄ > 0 (14)

We immediately obtain:

Proposition 1. Under Assumption 1, there exists a unique steady state

k̄ = (δτ)
β

1−β

(“
αA
δ+ρ

” ν
1+ν −α

1−α

) 1
(1−β)ν

(15)

13In a continuous-time framework, the existence of a solution of this kind of fixed-point

problem is a difficult issue. Simple cases in endogenous growth settings have nevertheless

been studied by Romer [31] and d’Albis and Le Van [1].
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We easily derive from (3) and (4) that at the steady state:

s = α
(
δ+ρ
αA

) ν
1+ν

, εe = β(1− s), εke = β(1−s)
σ

(16)

The elasticity of intertemporal substitution in consumption εc will be used as
the bifurcation parameter. Let us now establish the characteristic equation.

Lemma 1. The characteristic equation is D (λ) = 0 with

D (λ) = λ2 − ρλ− εc(1−s)(δ+ρ)[δ(1−s)+ρ]
sσ

− β(1−s)(δ+ρ)
sτ

[
λ2

δ +
(

1− εc[δ(1−s)+ρ]
σδ

)
λ

− εc[δ(1−s)+ρ]
σ

] ∫ 0
−τ e

λsds = 0

(17)

When τ ∈ (0,+∞), the characteristic equation is transcendental and
there exist an infinite number of roots, some of them being complex with
negative real part. When τ /∈ (0,+∞), one may in some cases derive char-
acteristic polynomials that are easy to study. For instance, when τ = 0,
there is no externality and the characteristic equation becomes:

D (λ) = λ2 − ρλ− εc(1−s)(δ+ρ)[δ(1−s)+ρ]
sσ

There are two real roots of opposite sign and the steady-state is saddle-point
stable. Similarly, if δ = 0, τ → +∞ and limt→−∞ k(t) = 0, the characteristic
equation becomes

D (λ) = λ2 − ρλ− εc(1−s)ρ2
sσ

and again there are two real roots of opposite sign.
When there is no externality (τ = 0), the formulation corresponds to a

standard optimal growth model with one state variable, the capital stock,
and one forward variable, the associated implicit price, or equivalently the
time derivative of the capital stock k̇(t). One negative, i.e. stable, charac-
teristic root is then associated to the state variable, while one positive, i.e.
unstable, characteristic roots is associated with the forward variable. Start-
ing from a given initial value for the capital stock k(0), the unique optimal
path is obtained from the existence of a unique value for the implicit price
which allows to select the unique converging path.

When externalities are present (τ > 0), while there is still one state
variable, we have now to define a continuum of initial values for the capital
stock, i.e. k(t) = k0(t) for t ∈ [−τ, 0]. Moreover, as we will show in the
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next section, the initial condition for the forward variable is no longer a real
number but is now a continuously differentiable function of time t that has
also to be defined on t ∈ [−τ, 0].

Because of the delays, the spectral decomposition features an infinite
number of characteristic roots with negative real parts. Let us now establish
an important result:

Lemma 2. D (λ) = 0 has at least a positive real root.

The existence of characteristic roots with positive real parts implies that
any path is unstable in the initial state of continuously differentiable func-
tions on [−τ, 0]. As the transversality condition rules out divergent paths,14

the initial conditions for the forward variable should be chosen such that
the equilibrium path belongs to the space associated with the stable char-
acteristic roots.15 As it will be shown below, the restrictions imposed on
this choice will then depend on the (finite) number of unstable characteristic
roots.

3 Endogenous business cycle fluctuations

The occurrence of business cycle fluctuations is obtained through the exis-
tence of a Hopf bifurcation, which generates periodic cycles. The analysis is
conducted in two steps: first, we study the existence of a Hopf bifurcation
and provide conditions for the occurrence of locally stable periodic cycles.
Second, we analyze the local determinacy property of the steady state and
the bifurcating cycles.

3.1 Hopf bifurcation: existence

In this first part of the analysis, we propose conditions that ensure the
existence of a critical value εHc > 0 for the elasticity of intertemporal substi-
tution in consumption such that when εc = εHc , a pair of purely imaginary
roots is the solution of the characteristic equation. Let us then consider the
following lower bound:

14This property can be shown using standard methods.
15From a mathematical point of view, the initial conditions have to be chosen to belong

to the direct sum of the stable space and the center space.
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εc = δσβ

(1−s)(δ+ρ)(β− δτ2 ) (18)

that is positive if τ < 2β/δ. We introduce the following restrictions:

Assumption 2. εc > εc > 0.

We provide the following result:

Theorem 1. Under Assumptions 1-2, there exists a critical value εHc such
that when εc = εHc a Hopf bifurcation occurs generically.

We prove that endogenous business cycle fluctuations are compatible
with small externalities as εke is bounded above by (1 − s)/σ, but cannot
be obtained for arbitrarily low elasticities of intertemporal substitution in
consumption. In Section 3.3, we nevertheless show that the critical value εHc
can remain compatible with plausible values. It is also worth noting that
this result still applies to endogenous labor as long as the wage elasticity of
the labor supply remains low enough.

We are now interested in the stability and the direction of the periodic
orbit. Indeed, two different cases may occur: the periodic orbit may arise
in the right neighborhood of εHc and be stable, or may arise in the left
neighborhood of εHc and be unstable.

We use the methodology of Hassard et al. [26] to compute coefficients
that determine the Hopf bifurcation direction and the stability properties of
the bifurcating periodic solution. Our strategy can be described as follows:
We write our system of delay functional differential equations as a system
of ordinary differential equations but on a particular space (of functions
C1([−τ, 0],R2)), on which we define a bilinear form. We look for the tangent
space of the central manifold. We project the solution of the delay functional
differential equations system on this tangent space and look at the dynamics
that are described by an ordinary differential equation. Some coefficients
of the Taylor approximation of this ordinary differential equation give the
conditions for stability.

Let y (t) = k (t) − k and let us write equation (12) by considering the
variable y instead of k. The resulting dynamic system admits 0 as a steady
state. Let ϕ = (ϕ1, ϕ2)t with y (t) = ϕ2 (t) and dy(t)/dt = ϕ1 (t). System
(12) becomes:

11



dϕ1(t)
dt =

[
f1

(
ϕ2 (t) + k,X (t)

)
− δ
]
ϕ1 (t) + f2

(
ϕ2 (t) + k,X (t)

)
× [ϕ1 (t)− ϕ1 (t− τ) + δ [ϕ2 (t)− ϕ2 (t− τ)]]
− εc

(
f
(
ϕ2 (t) + k,X (t)

)
− δϕ2 (t)− δk − ϕ1 (t)

)
×

[
f1

(
ϕ2 (t) + k,X (t)

)
− δ − ρ

]
dϕ2(t)
dt = ϕ1 (t)

(19)

where
X (t) = ϕ2 (t)− ϕ2 (t− τ) + δτk + δ

∫ t

t−τ
ϕ2 (s) ds

Let εc = εHc + ε. System (19) can be written as:

ϕ̇ (t) = G (ε, ϕt) (20)

A Taylor expansion in the neighborhood of the steady state allows us to split
this system into linear and non linear parts. Let z(t) = ϕt be a solution of
equation (20) when ε = 0. Following Hassard et al. [26], the projection of
this dynamical system on the center manifold gives the following equation

ż (t) = iω0 + g (z, z) (21)

which allows to discuss the stability of the limit cycle. Let us indeed consider
a Taylor expansion of g (z, z) such that: g (z, z) = g20

z2

2 + g11zz + g02
z2

2 +
g21

z2z
2 + h.o.t. From the terms (g02, g11, g20, g21), applying the main results

of Hassard et al. [26], we can compute three coefficients µ1, µ2 and µ3 which
will allow to characterize the bifurcation.

Theorem 2. There exist three coefficients µ1, µ2 and µ3 such that the
stability of the periodic solution is determined as follows:

1. µ1 determines the direction of the Hopf bifurcation. If µ1 > 0 then the
Hopf bifurcation is supercritical and the bifurcating periodic solutions exist
for εc > εHc .

2. µ2 determines the stability of the bifurcating periodic solutions. If
µ2 < 0 then the bifurcating periodic solutions are stable.

3. Period T of the periodic solutions is given by

T = 2π
ω0

[
1 + µ3(εc − εHc )2 +O

(
(εc − εHc )4

)]
In the Appendix 5.4, we show how to compute these coefficients explicitly
and provide, in the section 3.3, some numerical illustrations.
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3.2 Local determinacy

Externalities often generate local indeterminacy, i.e. the existence of a con-
tinuum of equilibrium paths from a given initial stock of capital. On a
more formal basis, this is obtained when the number of stable characteristic
roots is larger than the number of pre-determined variables, or equivalently,
when the number of unstable characteristic roots is lower than the number
of forward variables.

The main difference of our framework with the the standard optimal
growth model hinges on the initial condition associated with the forward
variable, i.e. the time derivative of the capital stock k̇(t). Contrary to the
framework with ordinary differential equations, the initial value in presence
of delays is a continuously differentiable function k̇0(t) that is defined over
the interval [−τ, 0]. Therefore, k̇0(t) has to be compatible with the fact that
the initial value for the capital stock is given by k(t) = k0(t) for t ∈ [−τ, 0].
As a result the only degree of freedom to compute the initial condition is to
define a value for k̇0(0).

Now, using the result obtained in Lemma 2 such that there exists at
least one positive real root, we define the equilibrium path on a particular
sub-space. Denoting by n ≥ 1 the (finite) number of unstable characteristic
roots, it can be shown that the function k̇0(t) also has to satisfy n constraints.
We then get the following result:

Proposition 2. If n = 1, the steady state is locally determinate, i.e. there
exists a unique equilibrium path, while there does not exist any equilibrium
path when n > 1.

Under Assumptions 1-2, the existence of the critical value εHc allows now
to discuss more precisely the local determinacy property of the steady state.
Indeed, we can provide simple conditions on the share of capital s and the
delay τ to get n = 1 when εc ∈ [εc, εHc ).

Assumption 3. s ∈ (0, 1/2)

Theorem 3. Under Assumptions 1-3, there exists τ ∈ (0, 2β/δ] such that
when τ ∈ (0, τ) and εc ∈ [εc, εHc ), the steady state is locally determinate.

Theorem 3 is based on the fact that, when τ ∈ (0, τ) and εc ∈ [εc, εHc ),
the characteristic equation admits exactly one root with positive real part,

13



i.e. n = 1. As a result, there does not exist any fluctuations based of self-
fulfilling expectations although external effects occur into the production
process.

The local determinacy of periodic cycles can be also characterized. When
εc is in a right neighborhood of εHc , we get n = 3 and the steady state is
now unstable. But using similar arguments, we conclude that if µ1 > 0 and
µ2 < 0, the periodic cycle occurs when εc > εHc and is locally determinate,
in the sense that there exist a unique initial value for the forward variable
such that the equilibrium converges toward the limit cycle.

3.3 A numerical illustration

Considering a yearly calibration, we assume that the fundamental parame-
ters are set to the following values: ν = 1, α = 0.5, δ = 0.1, ρ = 0.0808,
and τ = 0.1.16 It follows that the share of capital is, as usual, s = 0.3 and
the elasticity of capital-labor substitution is σ = 0.5. Such a value for σ is
in line with recent empirical estimates which show that σ is in the range
of 0.4 − 0.6.17 The size of externalities in all the following simulations is
contained between 0.15 and 0.20, an interval which is in line with the es-
timations of Basu and Fernald [8], although the latter consider a different
production function. We also note that the learning-by-doing process is
based on a rather small memory lag τ . But, in the following, we show that
this small departure from the standard Ramsey model is enough to generate
endogenous business cycle fluctuations.18

Recent empirical estimates of the elasticity of intertemporal substitution
in consumption provide divergent views. Some authors like Campbell [18]
and Vissing-Jorgensen [33] argue that it is definitely below one, while others,
like Mulligan [28] and Gruber [23] repeatedly obtained estimates above the
unity. However, all acknowledge that the elasticity should belong to the
range 0.2-2.2. In the table that follows, we present the Hopf bifurcation
value εHc and the period of the cycle T computed for various combinations
of parameters β and εe.

16We have also checked that in a neighborhood of those parameters, the fixed point as

defined by (11) exists and satisfies k (t) > 0 and e (t) > 0.
17See Chirinko [19] for a review of the many studies that have attempted to estimate

the elasticity of capital-labor substitution using various econometric methods.
18Similar results can be obtained with larger values of τ as long as τ < 0.7.

14



β εe εHc T

0.286 20% 0.6 12.35
0.245 17.2% 1 4.03
0.243 17% 1.2 3.3
0.24 16.8% 2 2.17

In each configuration, the bifurcating periodic orbit solutions exist when
εc > εHc (i.e. µ1 > 0) and are orbitally stable (i.e. µ2 < 0). Moreover, for
any εc in the right neighborhood of εHc , the period of the bifurcating solutions
is proportional to T . Note that the lower the amount of externalities εe, the
higher the Hopf bifurcation value εHc and the lower the period of the cycle
T .

These numerical illustrations prove that with standard values of the fun-
damental parameters, persistent endogenous fluctuations easily arise with an
elasticity of intertemporal substitution in consumption that is sufficiently
high but that still remains compatible with the recent empirical estimates
of Campbell [18]. It is also worth noting that similar results still apply to
bifurcation values such that εHc ∈ (0.5, 2.1) when different sizes of external-
ities are considered, or with endogenous labor as long as the wage elasticity
of the labor supply remains low enough, a property that is compatible with
the empirical studies of the labor market.19

4 Concluding comments

We have considered a one-sector Ramsey-type growth model with inelastic
labor and learning-by-doing externalities based on cumulative gross invest-
ment, which is assumed, in accordance with Arrow [4], to be a better index
of experience than the Romer-type formulation based on the instantaneous
aggregate capital stock. We have proven that a slight memory effect charac-
terizing the learning-by-doing process and a small amount of externality are
enough to generate business cycle fluctuations through a Hopf bifurcation
if the elasticity of intertemporal substitution is high enough but remains
within limits compatible with recent empirical estimates. Moreover, con-
trary to all the results available in the literature on aggregate models, we
have shown that endogenous fluctuations are compatible with a zero (or at

19See, for instance, Blundell and MaCurdy [13].
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least low enough) wage elasticity of the labor supply. Finally, we have shown
that the equilibrium, be it convergent toward the steady state or the limit
cycle, is always locally unique.

5 Appendix

5.1 Proof of Lemma 1

Let us use the following notations:

f = f
(
k, δτk

)
, f1 = f1

(
k, δτk

)
, f2 = f2

(
k, δτk

)
,

f11 = f11

(
k, δτk

)
, f12 = f12

(
k, δτk

)
Linearizing system (12) around the steady state k and defining k (t) = k +
εx (t) leads to

ẍ (t) = [f1 − δ + f2] ẋ (t)− f2ẋ (t− τ) + [f2δ − εcc (f11 + f12)]x (t)

− [f2δ − εccf12]x (t− τ)− εccf12δ

∫ t

t−τ
x (s) ds

(22)

The characteristic equation D (λ) = 0 is obtained by replacing x (t) =
x (0) eλt and rearranging using f1 = δ + ρ together with the shares and
elasticities (3), (4).

5.2 Proof of Lemma 2

From the definition of D (λ), we get limλ→∞D (λ) = +∞, and D (0) < 0.
The result follows.

5.3 Proof of Theorem 1

Adding the extra root λ = 0 and letting ∆ (λ) = λD (λ), the characteristic
polynomial can then be written as a third-order quasi-polynomial

∆ (λ) = P (λ) +Q (λ) e−λτ (23)
with

P (λ) = λ3 + p2λ
2 + p1λ+ p0, Q (λ) = q2λ

2 + q1λ+ q0
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and
q0 = − εcβ(1−s)(δ+ρ)[δ(1−s)+ρ]

sτσ = −p0

q1 = β(1−s)(δ+ρ)
sτ

[
1− εc[δ(1−s)+ρ]

δσ

]
q2 = β(1−s)(δ+ρ)

sδτ = −(ρ+ p2)

p1 = −
(
u′

u′′ f11 + q1

)
= −

(
εc(1−s)(δ+ρ)[δ(1−s)+ρ]

sσ + q1

)
(24)

The proof of Theorem 1 is given through the next three lemmas.

Lemma 5.1. Under Assumption 2, there exists q > 0 such that |Q(iq)| = 0.

Proof : We study the occurrence of imaginary roots of the characteristic
equation. Let λ = p+ iω and then rewrite equation ∆ (λ) = 0 such that:

−iω3 − p2ω
2 + iωp1 + p0 +

(
−q2ω

2 + iq1ω + q0

)
(cos (ωτ)− i sin (ωτ)) = 0

We are looking for ω0 > 0 such that Q (iω0) = 0. Separating real and
imaginary parts, we have

p2ω0 − p0 =
(
q0 − q2ω

2
0

)
cos (ω0τ) + q1ω0 sin (ω0τ)

−ω3
0 + p1ω0 =

(
q0 − q2ω

2
0

)
sin (ω0τ)− q1ω cos (ω0τ)

Squaring both sides of the previous equation yields to

ω4
0 +

(
p2

2 − 2p1 − q2
2

)
ω2

0 +
(
p2

1 + 2p0ρ− q2
1

)
= 0

which rewrites:
x2 + 2ηx+ ψ = 0 (25)

where x = ω2
0 and, using the shares and elasticities (3)-(4):

η = εc
(1−s)(δ+ρ)[δ(1−s)+ρ]

σsδτ (δτ − β) + β(1−s)(δ+ρ)2

sδτ + ρ2

2

ψ =
εc(1−s)2(δ+ρ)2[δ(1−s)+ρ]2(δτ−2β)

 
εc− δβσ

(1−s)(δ+ρ)(β− δτ2 )

!
s2σ2δτ

The discriminant of (25) is ∆ = η2 − ψ and the roots are x1,2 = −η ±√
η2 − ψ. A first condition for the existence of a real root is ∆ ≥ 0. Then

there are two cases depending on the sign of ψ:
- if ψ < 0 then ∆ ≥ 0 and there exists a unique positive real root for any

sign of η.
- if ψ ≥ 0, then the existence of a positive real root requires η < 0 and

η2 ≥ ψ.
Assumption 2 implies ψ < 0. It follows that the positive root of x2 + 2ηx+
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ψ = 0 is x1 = −η +
√
η2 − ψ. As η and ψ are functions of εc, let us denote

ω0 = ω (εc) =
√
x1. We also have

cos (ω0τ) = ω4
0(q1−p2q2)+ω2

0(p0q2−p1q1+q0p2)−p0q0“
(q1ω0)2+(q0−q2ω2

0)2
”

sin (ω0τ) = ω5
0q2+ω3

0(p2q1−p1q2−q0)+ω0(p1q0−p0q1)“
(q1ω0)2+(q0−q2ω2

0)2
” (26)

It follows that the bifurcation value εHc is obtained as the value of εc that
solves the following equation:

cos
(
τ
√
x1

)
≡ G1 (εc) = x2

1(q1−p2q2)+x1(p0q2−p1q1+q0p2)−p0q0
(q21x1+(q0−q2x1)2) ≡ G2 (εc) (27)

Recall from Assumption 2 that εc ∈ (εc,+∞). We can easily show that

lim
εc→εc

G1 (εc) = lim
εc→εc

G2 (εc) = 1

We can also compute a series expansion of G2 (εc) in order to compute the
limit when εc → +∞. We obtain:

G2 (εc) = −1 + δsτ
εc

h
2q2
“
εke− (1−s)δτ

2σ

”
+δεke+ρ

“
εke− (1−s)τ

2σ

”i2
ε2ke(δ+ρ)[δ(1−s)+ρ]

“
εke− (1−s)δτ

2σ

” + o
(

1
ε2c

)
It follows that under Assumption 2, limεc→+∞G2 (εc) = −1+. Moreover,
as εc increases from εc to +∞, the function G1 (εc) oscillates continuously
between 1 and −1. It follows that there necessarily exist an infinite number
of solutions to equation (27) for εc large enough.

Let us then consider the smallest solution of equation (27), denoted
εHc , which corresponds to the Hopf bifurcation value such that ±iω0 is an
imaginary root of (23).

Lemma 5.2. ±iω0 is generically a simple root.

Proof : If we suppose by contradiction that it is not a simple root, we have

P
′
(iω0) +

(
Q
′
(iω0)− τQ (iω0)

)
e−iω0τ = 0

separating imaginary and real part, and squaring each member, we have:

ω4
0

(
τ2q2

2 − 9
)

+ ω2
0

(
6p1 − 4p2

2 + 2τq2 (q1 − τq0) + (2q2 − τq1)2
)

+ (q1 − τq0)2 − p2
1 = 0

As it is also a root of the characteristic equation, we also have

ω4
0 +

(
p2

2 − 2p1 − q2
2

)
ω2

0 +
(
p2

1 + 2p0ρ− q2
1

)
= 0

That implies
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(
−
(
p2

2 − 2p1 − q2
2

)
+
√(

p2
2 − 2p1 − q2

2

)2 − 4
(
p2

1 + 2p0ρ− q2
1

) )

=


−
(

6p1 − 4p2
2 + 2τq2 (q1 − τq0) + (2q2 − τq1)2

)
−

√√√√√
(

6p1 − 4p2
2 + 2τq2 (q1 − τq0) + (2q2 − τq1)2

)2

−4
(

(q1 − τq0)2 − p2
1

) (
τ2q2

2 − 9
)


Such equality is non generic.

Let εHc be the value for εc for which we have an imaginary root.

Lemma 5.3. Re
(
dλ(εc)
dεc

)
|εc=εHc

6= 0

Proof : Let us differentiate the following equation according to εc:

∆ (λ, εc) =
(
λ3 + p2λ

2 + p1 (εc)λ+ p0 (εc)
)
+
(
q2λ

2 + q1 (εc)λ+ q0 (εc)
)
e−λτ = 0

As iω0 is a simple root, we can use the implicit function theorem(
dλ
dεc

)
|εc=εHc

= −
““
p
′
1(εHc )λ+p

′
0(εHc )

”
+
“
q
′
1(εHc )λ+q

′
0(εHc )

”
e−λτ

”
(P ′ (λ)+(Q′ (λ)−τQ(λ))e−λτ)

q
′ (
εHc
)

= − εke(δ+ρ)(δ(1−s)+ρ)
sδτ = q1

εHc
− εe(δ+ρ)

εHc sτ

p
′ (
εHc
)

= −
(

((1−s)(δ+ρ)(δ(1−s)+ρ))
sσ + q1

εHc
− εe(δ+ρ)

εHc sτ

)
p
′ (
εHc
)

= p1
εHc

+ εe(δ+ρ)
εHc sτ

q
′
0 = q0

εHc
= −p′0 = −p0

εHc(
p
′
1

(
εHc
)
λ+ p

′
0

(
εHc
))

+
(
q
′
1

(
εHc
)
λ+ q

′
0

(
εHc
))
e−λτ

=
(
p1
εHc

+ εe(δ+ρ)
εHc sτ

)
λ+ p0

εHc
+
((

q1
εHc
− εe(δ+ρ)

εHc sτ

)
λ+ q0

εHc

)
e−λτ

= p1
εHc
λ+ p0

εHc
+
(
q1
εHc
λ+ q0

εHc

)
e−λτ +

(
1− e−λτ

) εe(δ+ρ)
εHc sτ

λ =
−λ2

 
λ+p2+q2e−λτ−

(1−e−λτ)
λ

δq2

!
εHc

Substituting λ = iω0, we get:
(
p
′
1

(
εHc
)
λ+ p

′
0

(
εHc
))

+
(
q
′
1

(
εHc
)
λ+ q

′
0

(
εHc
))
e−λτ


|λ=iω0

= ω2

εHc

 p2 + q2 cos (ω0τ)− sin(ω0τ)
ω δq2

+i
(
ω0 − q2 sin (ω0τ) + 1−cos(ω0τ)

ω0
δq2

)
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Moreover

P
′
(λ) +

(
Q
′
(λ)− τQ (λ)

)
e−λτ = P

′
(λ) +Q

′
(λ) e−λτ + τP (λ)

= τλ3 + (3 + τp2)λ2 + (2p2 + τp1)λ+ (p1 + τp0)

+ e−λτ (2q2λ+ q1)

(
P
′
(λ) +

(
Q
′
(λ)− τQ (λ)

)
e−λτ

)
|λ=iω0

=


− (3 + τp2)ω2

0 + (p1 + τp0)
+ cos (ω0τ) q1

+2q2ω sin (ω0τ)

+i

(
−τω3

0 + (2p2 + τp1)ω0

− sin (ω0τ) q1 + 2q2ω0 cos (ω0τ)

)


Let us then consider

Re



− (3 + τp2)ω2
0 + (p1 + τp0)

+ cos (ω0τ) q1

+2q2ω0 sin (ω0τ)
+i

0@ −τω3
0 + (2p2 + τp1)ω0

− sin (ω0τ) q1 + 2q2ω0 cos (ω0τ)

1A
p2+q2 cos(ω0τ)− sin(ω0τ)

ω0
δq2+i

“
ω0−q2 sin(ω0τ)+

1−cos(ω0τ)
ω0

δq2
”


=

 − (3 + τp2)ω2
0 + (p1 + τp0)

+ cos (ω0τ) q1

+2q2ω0 sin (ω0τ)

(p2 + q2 cos (ω0τ)− sin(ω0τ)
ω0

δq2

)

+

((
−τω3

0 + (2p2 + τp1)ω0

− sin (ω0τ) q1 + 2q2ω0 cos (ω0τ)

)(
ω0 − q2 sin (ω0τ) + 1−cos(ω0τ)

ω0
δq2

))
= p1p2 + q1q2 + τp0p2 + 2δp2q2 + τδp1q2 − τω4

0 − ω2
0p2 + τω2

0p1 − τδω2
0q2 − τω2

0p
2
2 − 2δq2

2

+

(
3δω0q2 − ω0q1 − τω0p1q2 + τδω0p2q2 + τω3

0q2

− δ
ω0
p1q2 − δ

ω0
q1q2 − τ δ

ω0
p0q2

)
sin τω0

+

(
p1q2 + p2q1 + τp0q2 − 2δp2q2 − τδp1q2

+2δq2
2 − ω2

0q2 + τδω2
0q2 − τω2

0p2q2

)
cos τω0 = H (ω0)

H (ω0) rewrites

H (ω0) = H0 +H2ω
2
0 +H4ω

4
0 +H6ω

6
0
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where expressions of Hi can be computed. As ω4
0 +

(
p2

2 − 2p1 − q2
2

)
ω2

0 +(
p2

1 + 2p0ρ− q2
1

)
= 0, H̃ (ω0) = H (ω0) where H̃ is defined by

H̃ (ω) = H (ω)−
(
H6ω

2 +H4 − H6

(p22−2p1−q22)

)(
ω4 +

(
p2

2 − 2p1 − q2
2

)
ω2

+
(
p2

1 + 2p0ρ− q2
1

) )
= A2ω

2 +A0

So replacing ω2
0 we can compute Re

((
dλ
dεc

)
|εc=εHc

)
as a function of εc

Re

((
dλ
dεc

)
|εc=εjc

)
= ϕ0 + ϕ1ε

j
c + ϕ2

(
εjc
)2

where ϕ0, ϕ1, ϕ2 are independent of εjc. Then there exists εjc such that

Re

((
dλ
dεc

)
|εc=εjc

)
6= 0.

5.4 Proof of Theorem 2

We follow the procedure described by Hassard et al. [26] and we provide
various Lemmas to derive the dynamics of the system on the center manifold.

Lemma 5.4. System (20) can be written as the following functional differ-
ential equation in C:

ϕ̇ (t) = Λεϕt + F (ε, ϕt) (28)

where ϕt (θ) = ϕ (t+ θ) and Λε : C → R2 is given by

Λεϕ = L
(
εHc + ε

)
ϕ (0) +R

(
εHc + ε

)
ϕ (−τ) +M

(
εHc + ε

) ∫ 0

−τ
ϕ (u) du

with

L (εc) =

[
−p2 −p1

1 0

]
, R (εc) =

[
−q2 −q1

0 0

]
,M (εc) =

[
0 −p0

0 0

]
the coefficients pi, qi being defined in (24), and F (ε, ϕt) = G (ε, ϕt)− Λεϕt.

Proof : Equation in the y variable writes

ÿ (t) =
[
f1

(
y (t) + k, y (t)− y (t− τ) + δk + δ

∫ t
t−τ y (s) ds

)
− δ
]
ẏ (t)

+ f2

(
y (t) + k, y (t)− y (t− τ) + δk + δ

∫ t
t−τ y (s) ds

)
×

[
ẏ (t)− ẏ (t− τ) + δ

[
y (t)− y (t− τ)

]]
− εc

(
f
(
y (t) + k, y (t)− y (t− τ) + δk + δ

∫ t
t−τ y (s) ds

)
− δk − δy (t)− ẏ (t)

)
×

[
f1

(
y (t) + k, y (t)− y (t− τ) + δk + δ

∫ t
t−τ y (s) ds

)
− δ − ρ

]
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The linearization of the system at (0, 0, 0) is

ϕ̇1 (t) = [ρ+ f2]ϕ1 (t)− f2ϕ1 (t− τ) + [f2δ − εcc (f11 + f12)]ϕ2 (t)

− [f2δ − εccf12]ϕ2 (t− τ)− εccf12δ (ϕ3 (t)− ϕ3 (t− τ))

ϕ̇2 (t) = ϕ1 (t)

ϕ̇3 (t) = ϕ2 (t)

(29)

Let F : R×C → R and denote the partial derivatives of f as fi = fi
(
k, δτk

)
,

fij = fij
(
k, δτk

)
, fijk = fijk

(
k, δτk

)
, fijkl = fijkl

(
k, δτk

)
, i, j, k, l = 1, 2.

The following Lemma gives a Taylor expansion up to order three of
F
(
ε, ϕ1t (0) , ϕ1t (−τ) , ϕ2t (0) , ϕ2t (−τ) ,

∫ 0
−τ ϕ2t (u) du

)
.

Lemma 5.5. Let
(
ϕ1t (0) , ϕ1t (−τ) , ϕ2t (0) , ϕ2t (−τ) ,

∫ 0
−τ ϕ2t (u) du

)
=

(x1, x2, x3, x4, x5). Then

F

(
ε, ϕ1t (0) , ϕ1t (−τ) , ϕ2t (0) , ϕ2t (−τ) ,

∫ 0

−τ
ϕ2t (u) du

)
=

5∑
i=1

5∑
j=i

aijxixj +
5∑
i=1

5∑
j=i

5∑
m=j

aijmxixjxm

with aij and aijm some coefficients that depend on the second, third and
fourth order derivatives of the production function evaluated at the steady
state.20

We can also formulate Λεϕ as follows:

Λεϕ =
∫ 0

−τ
dη (u)ϕ (u)

with
dη (εc, u) = L (εc) δ (u) +R (εc) δ (u+ τ) +M (εc) du

To determine the normal form, the projection method is used as in Has-
sard et al. [26]. We first need to compute the eigenvector relative to the
eigenvalue iω0. Instead of writing the delay dynamic system, we use the
infinitesimal generator expression, as is usually done for delay functional
differential equations. For ϕ ∈ C1

(
[−τ, 0] ,R2

)
, let us define

A (ε)ϕ =


dϕ(θ)
dθ , if θ ∈ [−τ, 0[

L
(
εHc + ε

)
ϕ (0) +R

(
εHc + ε

)
ϕ (−τ) +M

(
εHc + ε

) ∫ 0
−τ ϕ (u) du, if θ = 0

20The expressions of these coefficients are available upon request.
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and

G (ε)ϕ =

{
0, if θ ∈ [−τ, 0[

F (ε, ϕ) , if θ = 0
It follows that (28) is equivalent to

ϕ̇t = A (ε)ϕt +G (ε)ϕt (30)

To compute the normal form on the center manifold, we use the projec-
tion method, which is based on the computation of the eigenvector relative
to iω0 and the corresponding adjoint eigenvector. The computation of the
adjoint eigenvector requires the definition of the adjoint space and adjoint
operator of A (ε) .

We define the adjoint space C∗ of continuously differentiable functions
χ : [0, τ ]→ R2 with the adjoint operator A∗ (ε).

A∗ (ε)χ =

 −dχ(σ)
dσ , for σ ∈ ]0, τ ]∫ 0

−τ dη
t (ε, t)χ (−t) for σ = 0

Remark 2. As dη (ε, t) is real, we have dηt (ε, t) = dηt (ε, t).

We consider the bilinear form

(v, u) = vt (0)u (0)−
∫ 0

θ=−τ

∫ θ

ξ=0
vt (ξ − θ) dη

(
εHc + ε, θ

)
u (ξ) dξ

= vt (0)u (0) +
∫ 0

ξ=−τ
vt (ξ + τ)R

(
εHc + ε

)
u (ξ) dξ

−
∫ 0

θ=−τ

∫ θ

ξ=0
vt (ξ − θ)M

(
εHc + ε

)
u (ξ) dξdθ

The following Lemma now provides a basis for the eigenspace and adjoint
eigenspace.

Lemma 5.6. Let q (θ) be the eigenvector of A associated with eigenvalue
iω0, and q∗ (σ) be the eigenvector associated with −iω0. Then

q (θ) =

(
iω0

1

)
eiω0θ, q∗ (θ) = u1

 1

−
“
p1+q1e−iω0τ−ip0 1−e−iω0τ

ω0

”
iω0

 eiω0θ

with

u1 =

 iω0 + i
(−p1−q1eiω0τ+ip0

(−1+eiω0τ )
ω0

)

ω0
− τ(iq2ω0 + q1)e−iω0τ

−p0
(−1+iω0τe−iω0τ+e−iω0τ )

ω2
0

−1
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Proof : As q (θ) is the eigenvector of A associated with eigenvalue iω0, q (θ)
solves, for θ 6= 0

dq
dθ = iω0q ⇒ q (θ) = q (0) eiω0θ

For θ = 0, initial conditions write:

L
(
εHc
)
q (0) +R

(
εHc
)
q (−τ) +M

(
εHc
) ∫ 0

−τ
q (u) du = iω0q (0)

Let q (0) = v = (v1, v2)t. Replacing the expression we first obtained in the
second equation yields to

L
(
εHc
)
q (0) +R

(
εHc
)
ve−iω0τ +M

(
εHc
)
v

1− e−iω0τ

iω0
= iω0v

that is

−
[(
p2 + q2e

−iω0τ
)
v1 +

(
p1 + q1e

−iω0τ + p0
1−e−iω0τ

iω0

)
v2

]
= iω0v1

v1 = iω0v2

Substituting v1 obtained in the second equation as a function of v2 we have

−v2

[
−ω2

0 +
(
p2 + q2e

−iω0τ
)
iω0 +

(
p1 + q1e

−iω0τ + p0
1−e−iω0τ

iω0

)]
= 0

v1 = iω0v2

which rewrites v2 [D (iω0)] = 0
v1 = iω0v2

As iω0 is a root of the characteristic equation, we can choose v2 as we want
(for example v2 = 1), so v is completely determined. Similarly we obtain:

η1 (σ) = eiω0σ

with initial conditions:

Lt
(
εHc
)
η1 (0) +Rt

(
εHc
)
η1 (−τ) +

∫ 0

−τ
M t
(
εHc
)
η1 (u) du = iω0η1 (0)

Let η (0) = u = (u1, u2)t , the previous expression rewrites:

−u1

(
p2 + q2e

−iω0τ
)

+ u2 = iω0u1

−u1

(
p1 + q1e

−iω0τ + p0

∫ 0

−τ
eiω0udu

)
= iω0u2

Substituting u2 in the first expression we have

−u1

(
+ω2

0 + iω0

(
p2 + q2e

−iω0τ
)

+
(
p1 + q1e

−iω0τ + p0

∫ 0
−τ e

iω0udu
))

= 0

−u1

(
p1 + q1e

−iω0τ + p0

∫ 0
−τ e

iω0udu
)

= iω0u2

u1D (iω0) = 0

−u1

(
p1 + q1e

−iω0τ + p0

∫ 0
−τ e

iωudu
)

= iω0u2
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As iω0 is a root of the characteristic equation, we can choose u1 as we want,
so u rewrites.

u = u1

(
1

i
(p1+q1e−iω0τ+p0

R 0
−τ e

iωudu)
ω0

)
We now compute u1 thanks to equation (q∗, q) = 1, which leads to:

u1 =

 iω0 + i
(−p1−q1eiω0τ+ip0

(−1+eiω0τ )
ω0

)

ω0
− τ(iq2ω0 + q1)e−iω0τ

−p0
(−1+iω0τe−iω0τ+e−iω0τ )

ω2
0

−1

Remark 3. Computations lead to (q∗, q) = 0.

Let ϕt be a solution of equation (30) when ε = 0. We associate a pair
(z, w) where

z (t) = (q∗, ϕt) (31)
Solutions ϕt (θ) on the central manifold are given by

ϕt = w (z, z, θ) + z (t) q (θ) + z (t) q (θ) (32)
Let us denote w (t, θ) = w (z, z, θ), where z and z are local coordi-
nates for the center manifold in direction q∗ and q∗, and F0 (z, z) =
F (0, w (z, z, 0) + 2Re (z (t) q (0))). Hassard et al. [26] then show that the
dynamics on the center manifold is given by

ż (t) = iω0 + g (z, z)

and in the neighborhood of εHc the complete dynamic of the system is given
by

ẇ (t, θ) = A (0)w (t, θ)− 2Re (g (z, z) q (θ)) if θ ∈ [−τ, 0)

ẇ (t, θ) = A (0)w (t, θ)− 2Re (g (z, z) q (θ)) + F0 (z, z) if θ = 0

Let

w (z, z, θ) = w20 (θ)
z2

2
+ w11 (θ) zz + w02 (θ)

z2

2
+ h.o.t.

Lemma 5.7.

F0 (z, z) =

( (
φ20

z2

2 + φ11zz + φ02
z2

2 + φ21
zz2

2 + h.o.t
)

0

)
with φ20, φ11, φ02, φ21 some complex functions of the coefficients aij and aijm
derived in Lemma 5.4.21

21The expressions of these functions are available upon request.
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Proof : We know from the proof of lemma 5.4 that

F

(
ε, ϕ1t (0) , ϕ1t (−τ) , ϕ2t (0) , ϕ2t (−τ) ,

∫ 0

−τ
ϕ2t (u) du

)

=
5∑
i=1

5∑
j=i

aijxixj +
5∑
i=1

5∑
j=i

5∑
m=j

aijmxixjxm

(33)

As on the central manifold we have:

ϕt (θ) = w (t, θ) + 2Re (q (θ) z (t))

and q (θ) = (iω0, 1)T eiω0θ, coefficients of the solution can be expressed as:

ϕ1t (θ) = w1
20 (θ) z

2

2 + w1
11 (θ) zz + w1

02 (θ) z
2

2

+ z (t) iω0e
iω0θ − z (t) iω0e

−iω0θ +O (|z, z|)

ϕ2t (θ) = w2
20 (θ) z

2

2 + w2
11 (θ) zz + w2

02 (θ) z
2

2

+ z (t) eiω0θ + z (t) e−iω0θ +O (|z, z|)

We use the preceding formula to compute (ϕjt (.))j=1..3. Then replacing
(ϕjt (.))j=1..3 in (33) we obtain coefficients φ20, φ02, φ11 and φ21 as in the
lemma.

It is worth noting that φ20, φ02, φ11 are obtained as constants, while φ21

depends on w20 (.) , w11 (.), which will be computed later on.

Lemma 5.8. g20 = u1φ20, g11 = u1φ11, g02 = u1φ02. and g21 = u1φ21.

Proof : As

q∗ (0) = u1

1, i

(
p1 + q1e−iω0τ + p0

∫ 0
−τ e

iωudu
)

ω0


and using g (z, z) = q∗ (0)F0 (z, z) we obtained easily the result of this
lemma.

To end the computation of coefficients (g02, g11, g20, g21) , we need to
compute w11 (θ) and w20 (θ).

Lemma 5.9.

w20 (θ) = E1e
2iω0θ +

ig20

q0
q (0) eiω0θ +

ig02

3q0
q (0) e−iω0θ

w11 (θ) =
−ig11

q0
q (0) eiω0θ +

ig11

q0
q (0) e−iω0θ + E2
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with

E1 =

(
2iω0

φ20

[∆(2iω0)]
φ20

[∆(2iω0)]

)
and E2 =

( −φ11

(p2+q2e−2iτω0)
0

)

Proof : We rewrite

ẇ (t, θ) = Aw − 2Re (g (z, z) q (θ)) if θ ∈ [−τ, 0)
ẇ (t, 0) = Aw − 2Re (g (z, z) q (0)) + F0 (z, z) if θ = 0

as
ẇ = Aw +H (z, z, θ) (34)

And we consider a Taylor expansion of H (z, z, θ) = H20
z2

2 +H11zz+H02
z2

2 +
h.o.t. As

H (z, z, θ) = −g (z, z) q (θ)− g (z, z)q (θ) if θ ∈ [−τ, 0)

we have
H20 (θ) = −g20q (θ)− g02q (θ) if θ ∈ [−τ, 0)
H11 (θ) = −g11q (θ)− g11q (θ) if θ ∈ [−τ, 0)

(35)

Moreover, we have on the central manifold

w (z, z, θ) = w20
z2

2 + w11zz + w02
z2

2 + h.o.t

which implies that
dw(z,z,θ)

dt = 2w20zż + w11

(
żz + z

.
z
)

+ w02z
.
z + h.o.t

This rewrites, as ż = iω0z + g (z, z)
dw(z,z,θ)

dt = 2w20z (iω0z + g (z, z))

+ w11

(
(iω0z + g (z, z)) z + z

(
−iω0z + g (z, z)

))
+ w02z

(
−iω0z + g (z, z)

)
+ ...

= 2iω0w20z
2 − iω0z

2w02 + ....

(36)

Coefficient identification in (34) and (36) leads to

(2iω0 −A)w20 (θ) = H20 (θ)
Aw11 (θ) = −H11 (θ)

(2iω0 +A)w02 (θ) = −H02 (θ)

Comparing (35) with the last expression, we have

(2iω0 −A)w20 (θ) = −g20q (θ)− g02q (θ)
Aw11 (θ) = g11q (θ) + g11q (θ)
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which rewrites, using definition of operator A,

ẇ20 (θ) = 2iω0w20 (θ) + g20q (θ) + g02q (θ) if θ ∈ [−τ, 0)

Solving this equation, we obtain

w20 (θ) = E1e
2iω0θ + ig20

q0
q (0) eiω0θ + ig02

3q0
q (0) e−iω0θ

In a similar way, we have

ẇ11 (θ) = g11q (θ) + g11q (θ) if θ ∈ [−τ, 0)

which implies

w11 (θ) = −ig11
q0

q (0) eiω0θ + ig11
q0
q (0) e−iω0θ + E2

where E1 and E2 can be determined with initial conditions

H (z, z, 0) = −2Re (g (z, z) q (0)) + f0 (z, z)

that is

H20 (0) = −g20q (0)− g02q (0) +

(
φ20

0

)

H11 (0) = −g11q (0)− g11q (0) +

(
φ11

0

)
Remembering the definition of A and

(2iq0 −A)w20 (θ) = −g20q (θ)− g02q (θ)
Aw11 (θ) = g11q (θ) + g11q (θ)

we have

2iω0w20 (0) + g20q (0) + g02q (0) = L (εc)w20 (0) +R (εc)w20 (−τ)

+ M (εc)
∫ 0
−τ w20 (u) du+

(
φ20

0

)
w20 (0) = E1 + ig20

ω0
q (0) + ig02

3ω0
q (0)

w20 (−τ) = E1e
−τ2iω0 + ig20

ω0
q (0) e−τiω0 + ig02

3ω0
q (0) e−τiω0

w20 (u) = E1e
2iω0u + ig20

ω0
q (0) eiω0u + ig02

3ω0
q (0) e−iω0u

Using the fact that L
(
εHc
)
q (0) − R

(
εHc
)
q (−τ) − M

(
εHc
) ∫ 0
−τ q (u) du =

iω0q (θ) and that q (θ) is the eigenvector of A according to iω0, we derive(
2iω0 − L

(
εHc
)
−R

(
εHc
)
e−τ2iω0 −M

(
εHc
) ∫ 0

−τ
e2iω0udu

)
E1 =

(
φ20

0

)
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which implies[(
2iω0 + p2 + q2e

−2iτω0
)
E1

1 +
[
p1 + q1e

−2iτω0 + p0

∫ 0
−τ e

2iω0udu
]
E2

1

]
= φ20

2iω0E
2
1 − E1

1 = 0

and thus
E2

1 = φ20

[∆(2iω0)]

E1
1 = 2iω0

φ20

[∆(2iω0)]

Similarly, we have(
−
[(
p2 + q2e

−2iτω0
)
E1

2 +
[
p1 + q1e

−2iτω0 + p0

∫ 0
−τ e

2iω0udu
]
E2

2

]
E2

2

)
=

(
φ11

0

)
which implies

E1
2 = −φ11

(p2+q2e−2iτω0)
E2

2 = 0

Consider Lemma 5.3 and let us denote λ
′ (
εHc
)

= (dλ/dεc)|εc=εHc . From all
these computations we derive the formula

C1 = i
2ω0

(
g20g11 − 2|g11|2 − 1

3 |g02|2
)

+ g21
2 , µ1 = − Re(C1)

Re(λ′ (εHc ))

µ3 = −
Im(C1)+µ2Im

“
λ
′(εHc )

”
ω0

, µ2 = 2Re (C1)
(37)

and the result follows from Hassard et al. [26].

5.5 Proof of Proposition 2

Let us linearise the equation (12) round the steady state and rewrite the
dynamics as {

k̇ (t) = y (t)
ẏ (t) = α

∫ 0
−τ k (t+ x)φ (x) dx+ bk (t) + ay(t)

with

a =

(
ρ+ β(1−s)(δ+ρ)

s

(
1− εc[δ(1−s)+ρ]

σδ

))
(1− β(1−s)(δ+ρ)

sδ )

b =
εc[δ(1−s)+ρ]

σ
(1−s)(δ+ρ)

s

(1− β(1−s)(δ+ρ)
sδ )

(1− β)

Initial conditions for this dynamics are such that k (t) = k0 (t) and y (t) =
y0 (t), both functions in C ([−τ, 0]). Moreover for t ∈ [−τ, 0], we need to
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have y0 (t) = k̇0 (t). It follows that k0 (t) has to be given in C1 ([−τ, 0[) ∩
C ([−τ, 0]), and that it contraints y0 (t) for t ∈ [−τ, 0[ .

The characteristic matrix is

J (λ) =

(
λ −1
−α

∫ 0
−τ e

λxφ (x) dx− β λ− a

)
Let n ≥ 1 be the number of eigenvalues with Re (λ) ≥ 0. Assume first that
we have a simple eigenvalue λ0 > 0 and that this is the only eigenvalue with
Re (λ) ≥ 0, i.e. n = 1. The criteria for an initial condition (k0(t), y0(t)) with
t ∈ [−τ, 0] to be continued to a bounded solution for t ≥ 0 is then given by

Qλ0(k0(.), y0(.)) = 0

where Qλ is the spectral projection (The reasonning is the same if we have
a set Σ with a finite number n > 1 of roots with positive real part, exept
that we have to consider the spectral projection on the set vect

(
eθ, θ ∈ Σ

)
).

According to the spectral projection formula given by equation (IV.3.3)
in [20], then

(Qλ(k0(.), y0(.))) (θ) = eλθH

((
(k0(0), y0(0))

+
(

0, α
∫ 0

−τ
φ (x) eλ0x

∫ 0

x
e−λ0uk0 (u) dudx

)))
where H has to be now determined. We are looking for some H of the form
H = pqt, with some vectors p ∈ R2 and q ∈ R2, such that{

J (λ0) p = 0
J (λ0)t q = 0

where J (λ0)t is the transpose matrix of J (λ0). We thus find that q =
(λ0 − a, 1) and p = (1, λ0). Expliciting H, Qλ0 (k0(.), y0(.)) = 0 implies that

y0 (0) + (λ0 − a)k0 (0) + α

∫ 0

−τ
φ (x) eλ0x

∫ 0

x
e−λ0uk0 (u) dudx = 0 (38)

Considering now that k(t) = k0(t) is given for t ∈ [−τ, 0] and that y0 (t)
must satisfy y0 (t) = k̇0 (t) for t ∈ [−τ, 0], when n = 1 the only degree
of freedom to solve (locally) our problem is to choose y (t) ∈ C ([−τ, 0])
with the condition that y0 (0) is specified as y0 (0) = −(λ0 − a)k0 (0) −
α
∫ 0
−τ φ (x) eλ0x

∫ 0
x e
−λ0uk0 (u) dudx. On the contrary, if n > 1 we derive,

applying the same argument as above, n constraints similar to (38). But as
y0 (0) is the only unknown, there does not exist any solution.
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5.6 Proof of Theorem 3

For τ = 0 the characteristic equation admits one positive real root and one
negative real root. Assuming that τ > 0 implies that an infinite number of
roots with negative real part will now exist. Our aim here is to prove that
for a non empty set of values of τ , the characteristic equation admits only
one positive real root. To prove this, we show that there exists τ > 0 such
that for 0 < τ < τ , there are no pure imaginary roots. According to the
proof of Lemma 5.1, under Assumption 2, if there exists a pure imaginary
roots iω0, with ω0 > 0, it has to solve{

2η (εc) + x = 0
ω2

0 = x

Let us consider the critical value εc as defined by (18). We get

η (εc) = εc
(1−s)(δ+ρ)[δ(1−s)+ρ]

σsδτ (δτ − β) + β(1−s)(δ+ρ)2

sδτ + ρ2

2

= β
sδ

(
(1− s)(δ + ρ)2 − δβ[δ(1−s)+ρ]

β− δτ
2

)
1
τ +O (1)

It follows that there exists τ1, such that for τ ∈ (0, τ1), we have

(1− s)(δ + ρ)2 − δβ[δ(1−s)+ρ]

β− δτ
2

> 0

if
δ(1− s) + ρ < (1−s)(δ+ρ)2

δ ⇔ 1
2+ ρ

δ
< 1− s

If s ∈ (0, 1/2), the previous condition is always satisfied. We then conclude
that when τ ∈ (0, τ1), η (εc) > 0. Let us now consider τ ≡ min{τ1, 2β/δ}.
According to Theorem 1, for εc ∈ [εc, εHc ), the characteristic polynomial
admits no pure imaginary roots. Thus for τ ∈ (0, τ) and εc ∈ [εc, εHc ), there
exists only one root with positive real part which corresponds to the unique
positive real root.
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