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Abstract

In this article, the effect of a change in the distribution of age differences
between sexual partners on the dynamics of the HIV epidemic is studied.
In a gender and age structured compartmental model, it is shown that if
the variance of the distribution is small enough, an increase in this variance
strongly increases the basic reproduction number. Moreover, if the variance
is large enough, the mean age difference barely affects the basic reproduction
number. We therefore conclude that the local stability of the disease-free
equilibrium relies more on the variance than on the mean.



1 Introduction

30 years after the discovery of the first confirmed clinical cases, the HIV

epidemic is still not under control. Worldwide, UNAIDS (2010) estimates

at 2.6 million the number of adults and children newly infected with HIV

in 2009. These cases affect Africa disproportionately, and especially Sub-

Saharan Africa that accounts for 69% of the new infections (1.8 million in

2009, according to UNAIDS, 2010). This article is concerned with a demo-

graphic explanation of the differences in the evolution of the epidemic that

have been observed across regions. More precisely, we study the effect of

the distribution of age differences between sexual partners on the long-run

dynamics of the epidemic and on its endemic nature.

The age mixing, or age differences, among marital partners is particularly

widespread in Africa compared to other parts of the world. Spijker (2011)

illustrates this pattern by providing some statistics on the distribution of mar-

ried couples by age differences using the most recent census data from the

Integrated Public Use Microdata Series. In Africa, the proportion of couples

having more than 8 years of difference ranges from 22.5 (South Africa, 1996)

to 80.3% (Guinea, 1996) while the same proportion ranges from 6 (China,

1990) to 26.2% (Malaysia, 1980) in Asia, and from 17.5 (Chile, 1992) to

28% (Panama, 1990) in Latin America. A large literature documents the

particular frequency of age mixing in Sub-Saharan Africa. Historically, age

mixing has been commonplace in Africa (Casterline et al., 1986) as a result

of practices such as polygamy, the remarrying of widows and the premature

marrying of young girls. Studies have shown that age differences persist

nowadays throughout Africa1 both within marital and non marital partner-

ships, and both within casual and regular relationships (Auvert et al., 2001,

Gregson et al., 2002). It has been found that about 40% of young girls are

1See Luke (2003) for a literature review on age mixing and possible reasons why it is
widespread in the African context.
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involved in partnerships with a partner who is five to nine years older (Greg-

son et al., 2002, Kelly et al., 2003) and they were up to 50% in Konde-Lule

et al. (1997). Greater age differences are also common as between 16 to 27%

of the young girls’ partnerships involve an age difference of ten years or more

(Konde-Lule et al., 1997; Gregson et al., 2002; Kelly et al., 2003). This age

mixing persists for older women as the majority of the married women of age

15 to 44 years old, studied in Boerma et al. (2003), have an husband who is

at least six years older. Studying male non marital unions, Luke (2005) finds

that 70% of the sampled men are five or more years older than at least one

of their recent partners and 20% are ten years or more older.

Grounded on the empirical evidence that the HIV prevalence rate is much

greater among young women than among young men (e.g. Buvé et al., 2001,

Glynn et al., 2001, Gouws et al., 2008), a growing body of research examines

age differences between partners as a potential risk factor of HIV-infection.

Some articles document the association between age difference between sex-

ual partners and the increased risk of HIV-infection (Gregson et al., 2002,

Kelly et al., 2003). The increase in risk is significant as documented by Kelly

et al. (2003), who find that the 15-29 years old women engaged in partner-

ship with a partner 5 to 9 years older or 10 years and more have a respective

risk of infection of 1.1 and 1.28 times higher than that of their counterparts

having partners 0 to 4 years older. Related papers have shown that part-

nerships involving large age differences are less likely to adopt safe practices

than their counterparts, as women in long-term partnerships involving age

difference of more than 5 years (Blanc and Wolff, 2001) and men engaged in

non marital partnerships involving age difference of 10 years or more (Luke,

2005) are less likely to use condom than their counterparts.

The importance of age differences between partners on the diffusion and

persistence of the epidemic was first brought up by Anderson et al. (1992).

Through numerical simulations, the authors showed that the epidemic spreads

more rapidly when there are infectious contacts between generations. An in-
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tuition has been proposed by Brouard (1994) who stressed the importance

of the variance of the distribution. The latter could be one of the explana-

tory causes of a markedly higher prevalence of HIV in Africa. Whatever the

mean, if the variance is very low, one can imagine that there would only be

minimal transmission of the virus from the first cohorts of a given gender to

be affected by the epidemic to the younger cohorts of the same sex. Thus, the

dynamics of HIV infection would be epidemic in nature. On the other hand,

if there is significant variance, transmission of the disease to younger cohorts

is potentially significant and so the dynamics are likely to be endemic.

The objective of our article is to propose a formal framework to evaluate

the impact of the distribution of age differences between partners on the

dynamics of the epidemics. We will proceed in three steps. First of all, we

seek to show that the distribution of age differences between sexual partners

has not been modified by the emergence of HIV. This analysis is performed on

a sample of African countries given data constraint. However one could argue

that if such a scenario prevails, that is if people have changed their matching

preferences as a protective behavior against HIV, it is much more likely to

have occurred in the region that exhibits the highest levels of prevalence in

the world. Using the distribution of age differences for married couples, we

show that its mean and variance have not undergone significant variation

over time.

Secondly, this preliminary evidence is used to establish a theoretical model

in which the distribution of age differences between partners is exogenous

to the path of the epidemic. Our model, which is both age- and gender-

structured, is an extension of Feng et al. (2005)’s framework, which allows us

to take into account the unique nature of epidemics involving sexually trans-

mitted diseases. We study the stability of the disease-free equilibrium. One

important element of our model is the contact function that incorporates the

distribution of age differences between partners. Unlike most models in the

literature, our function is necessarily non-separable, which makes it impossi-
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ble to calculate the basic reproduction number, R0, explicitly. Nevertheless,

by using the operators theory, we are able to establish the local properties

as well as some global properties of R0.

Finally, we assume that the distribution of age differences between part-

ners is characterized by a given distribution and we analyze the effect of

both the mean and the variance on R0. Numerical computations show that

variance plays a crucial role as R0 strongly increases with the variance if it

is sufficiently low. Moreover, if the variance is large enough, the mean age

difference barely affects R0. We conclude that, whatever the mean age differ-

ence, the disease-free equilibrium would thus have a greater chance of being

stable if the variance is small.

This paper is organized as follows. Section 2 presents our empirical evi-

dence. Section 3 describes the dynamic model and presents our theoretical

results. Our numerical results are developed and commented in section 4.

Section 5 concludes.

2 Empirical evidence

This section examines the distribution of age-difference between spouses,

especially the evolution of its mean and variance over time. In industrialized

countries like Sweden, the average age-difference has been found to be stable

among the cohorts born between 1883 and 1942, despite a decrease in the age

at marriage (Bergstrom and Lam, 1994). In Sub-Saharan Africa where the

epidemic has reached tremendously high levels and where the age-difference

has been pointed out as a risk-factor of HIV-infection, one might wonder

whether individuals have adjusted their behavior toward a reduction in the

age difference since the onset of the epidemic, as a self-protective device.

Data from the Demographic and Health Surveys2 conducted in Sub-Saharan

Africa suggest that this scenario is very unlikely.

2These surveys are publicly available at http://www.measuredhs.com
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In order to find out whether the AIDS epidemic has changed matching

behaviors and shifted individuals’ preferences toward fewer age mixing, we

use the distribution of age differences for married couples. As time series

of spousal age differences are not available, we obtained data from the self-

reported age differences in the most recent Demographic and Health Surveys

conducted in Sub-Saharan Africa. In these surveys, women respondents who

are currently married are asked to report their current age, the current age of

their partner and the year in which they got married. Given the spousal age

difference and the marriage year, we are able to establish the empirical dis-

tribution of spousal age differences for each marriage year. The year in which

the marriage was celebrated is an indicator of the time period in which the

individual made her decision about partner selection. Consequently, it pro-

vides more accurate information about individual behaviors than any cross

sectional analysis.

We restrict the sample to women who married when aged between 15

and 25 years old for two reasons. Firstly, most women get married in this

age interval. In Lesotho, for instance, this sub-sample accounts for 90% of

the total sample. Secondly, and more importantly, this sample restriction

allows us to rule out heterogeneities in the marital pattern from our analysis.

Indeed women who get married after reaching 25 years old might have been

previously married to someone else, or might have different preferences in

terms of partner selection compared to women who get married at younger

age.

To obtain a first indicator as to whether the spread of AIDS in Africa has

induced changes in the choice of partner, we draw the distribution of spousal

age differences for a low-prevalence and a high-prevalence country and for two

distinct samples: women who married before 1990 and those who married

after 1990. Figure 1 charts the empirical distributions for Lesotho which is

one of most affected countries in Sub-Saharan Africa since 23.6% of its adult

population was HIV-infected in 2009 (UNAIDS, 2010). Similarly, Figure
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2 charts the distributions for Niger, a country which has one of the lowest

infection rates on the continent as its adult HIV prevalence rate reached 0.8%

in 2009 (UNAIDS, 2010).

Figure 1, about here.

Figure 2, about here.

Taking 1990 as a benchmark year, the two distributions are very similar, sug-

gesting that there was no adjustment in behavior after populations became

informed about the HIV/AIDS epidemic and its ways of transmission.

The Demographic and Health Surveys are standardized nationally rep-

resentative household surveys that collect data in various African countries

based on a standardized questionnaire. We are, thus, able to generalize our

analysis by using a large set of countries3 in order to test whether the distri-

bution of the spousal age differences is constant over time.

We use the survey to compute the mean and the coefficient of variation

of the distribution of the spousal age differences by country and by marriage

year. Figures 3 and 4 provide the dynamics of the mean and the coefficient

of variation4, respectively, for each country of the sample.

Figure 3, about here.

Figure 4, about here.

There is no clear pattern suggesting a change in the distribution of the age

differences over time, except for Ghana and Malawi, where one could notice

a downward trend in the mean from the mid-1980s onwards. The mean

of age differences decreases from 1985 in Ghana and from 1986 in Malawi,

3The countries, with the date of the DHS survey, are the following: Burkina Faso
(2003), Cameroon (2004), Democratic Republic of Congo (2007), Ethiopia (2005), Ghana
(2003), Guinea (2005), Kenya (2003), Lesotho (2004), Liberia (2007), Mali (2006), Malawi
(2004), Niger (2006), Rwanda (2005), Senegal (2005), Swaziland (2006/07), Zambia (2007)
and Zimbabwe (2005/06).

4The coefficient of variation is the standard deviation divided by the mean.
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but these decreases are not statistically significant. If we go back to the

individual data, and implement a T-test to test for the difference between

the population mean of age differences in these years and at the end of the

period, we find that in both cases, we cannot reject the null hypothesis that

the population mean is equal in 1985 and in 2003 in Ghana (and in 1986 and

in 2005 for Malawi).

To test the stability of the distribution of spousal age differences over

time, we use a linear fixed effects model to successively estimate the mean

and the coefficient of variation of the spousal age differences at the country-

year level using as independent variables the marriage year and a dummy

variable that takes value one if the marriage was celebrated before 1990

and zero otherwise. Empirical results presented in Table 1 suggest that the

marriage year and the act of getting married before the spread of the AIDS

epidemic have no statistically significant effect on the dependent variables,

i.e. the mean (column 1) and the coefficient of variation (column 2).

Dependent variable mean coefficient of variation

Marriage year
−0.0311
(0.021)

0.0021
(0.002)

1 if marriage before 1990
0.0234
(0.244)

0.0467
(0.027)

Constant
70.6746
(41.161)

−3.315
(3.198)

Country effects Yes Yes
Number of observations 604 600
Number of countries 17 17

Table 1
Linear fixed effects estimates

(in parentheses: robust standard errors, clustered at the country level)

These stylized facts suggest that controlling for country-specific effects,

distributions of spousal age differences are stable over time and that the onset

of the epidemic disease does not imply any adjustment in preferences regard-

ing the age difference between spouses. Therefore, grounded on this empirical
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evidence, the next section will consider the dispersion of age differences as

an exogenous parameter of the model.

3 Model

3.1 Basic setting

Our model can be seen as an extension of the model developed by Feng et

al. (2005), which describes the spread of an epidemic disease in a multi-

group model. Multi-group modeling, comes for us, in the gender specific

variables we use. Our main departure from the work of these authors lies in

the definition of the boundary conditions that characterize the birth process.

Indeed, we assume that the latter depends on sexual behaviors and that, as

a consequence, it is intrinsically linked to the spread of the epidemic disease.

Let Sg (t, a) and Ig (t, a) denote, respectively, the density at time t ∈ R+ of
susceptible and infective individuals of age a ∈ [0, ω] and gender g ∈ {f,m} ,
where ω > 0 is the maximal length of life, and where f corresponds to the

population of women and m to the population of men. Their dynamics are

given by the following system of equations:

∂Sg (t, a)

∂t
+

∂Sg (t, a)

∂a
= −Sg (t, a) [μ (a) + λg (t, a)] , (1)

∂Ig (t, a)

∂t
+

∂Ig (t, a)

∂a
= −Ig (t, a) [μ (a) + μ1 (a)] + Sg (t, a)λg (t, a) ,(2)

where μ (a) and μ1 (a) are, respectively, the mortality rate of individuals

at age a and the over-mortality rate of infected individuals at age a. The

probability of an individual of gender g and age a being infected at time

t, the so-called force of infection denoted by λg (t, a), will be characterized

below.

Let Ng (t, a) = Sg (t, a) + Ig (t, a) denote the density of individuals of

gender g and age a at time t. Using (1) and (2), we obtain:

∂Ng (t, a)

∂t
+

∂Ng (t, a)

∂a
= −μ (a)Ng (t, a)− Ig (t, a)μ1 (a) . (3)
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The per head variables are defined as:

sg (t, a) =
Sg (t, a)

Ng (t, a)
and ig (t, a) =

Ig (t, a)

Ng (t, a)
.

One important feature of our model is that the probability of being in-

fected depends on the age of the partner, denoted a0. The minimum age at

which individuals become sexually active is denoted a0 ∈ [0, ω). We suppose
that the force of infection is given by:

λg (t, a) =

Z ω

a0

βg (a, a
0) ρg (a, a

0) i−g (t, a
0) da0. (4)

Note that the probability of being infected has three components. The com-

ponent that will be crucial for our analysis is denoted by ρg (a, a
0) and rep-

resents the average number of partners of age a0 and of opposite gender −g
per individual of age a and gender g (see Iannelli, 1995; Yang and Milner,

2009). We will below specify this function as a product of three factors and

make its various components explicit. Two notable features are to be high-

lighted here. On one hand, unlike Anderson et al. (1992), we assume that

function ρg (a, a
0) is time-independent. The assumption is crucial to derive

the theoretical results we present in this section. Our numerical simulations,

presented in Section 4, suggest that allowing for time dependence barely af-

fects the quantitative results. On the other hand, homosexual relationships

are not considered in our model. The function βg (a, a
0) is the infectious-

ness of the disease, i.e. the probability of being infected when having an

infected partner of age a0. For most of the results that will be derived below,

we will keep this function general and dependent on the ages of both part-

ners. Lastly, the force of infection depends on i−g (t, a
0), the proportion of

infectious individuals among those of age a0 and gender −g.
Let us now describe the boundary conditions that characterize the birth

process. Let b (a) be the probability at age a of susceptible and infected

women who have a sexual partner giving birth to a child. Furthermore, in

order to simplify the model, assume that there is no vertical transmission of
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the disease (i.e. all children are born susceptible). The boundary conditions

are: ⎧⎨⎩ Sg (t, 0) = σg
R ω
0
b (a)Nf (t, a)

R ω
a0
ρf (a, a

0) da0da,

Ig (t, 0) = 0,

where σg is the secondary sex ratio that satisfies σg [Nf (t, 0) +Nm (t, 0)] =

Ng (t, 0). Unlike Feng et al. (2005), we thus assume that birth depends on

contact behavior, which is the same as the one involved in the transmission of

the disease, and that there is no vertical transmission. The initial conditions

are: ⎧⎨⎩ Sg (0, a) = S0g (a) ,

Ig (0, a) = I0g (a) ,

with S0g (a) , I
0
g (a) ∈ L1 (0, ω) and S0g (a) , I

0
g (a) ≥ 0 a.e. in [0, ω]. In

summary, the system that is studied reduces to:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂ig(t,a)
∂t

+ ∂ig(t,a)
∂a

= (1− ig (t, a)) [λg (t, a)− μ1(a)ig (t, a)] t > 0, a ∈ (0, ω)

ig (t, 0) = 0 g ∈ {m, f},

ig (0, .) = i0g (.) ∈ L1(0, ω;R+) g ∈ {m, f}.
(5)

Because of the biological definition of ig, we introduce the following state

Banach lattice spaces X = L1(0, ω;R) × L1(0, ω;R) endowed together with
the usual product norm. We also consider

C =
½µ

if
im

¶
∈ X : 0 ≤ ig ≤ 1 a.e. g ∈ {f,m}

¾
. (6)

Finally, let us assume:

Assumption 1 Assume that μ1 ∈ L∞+ (0, ω;R+) and, for each g ∈ {f,m},
functions βg (., .), ρg (., .) belong to L∞ ((0, ω)× (0, ω);R+).
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System (5) can hence be re-written as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂ig(t,a)
∂t

+ ∂ig(t,a)
∂a

= (1− ig (t, a)) [Λg[i−g(t, .)](a)− μ1(a)ig (t, a)] ,

ig (t, 0) = 0, ∀g ∈ {m, f},Ã
if (0, .)

im(0, .)

!
=

Ã
i0f (.)

i0m(.)

!
∈ C,

(7)

wherein we have set for each g ∈ {f,m}, the bounded linear operator Λg :

L1(0, ω;R)→ L∞(0, ω;R) defined as follows

Λg[ϕ](.) =

Z ω

0

γg(., a
0)ϕ(a0)da0, ∀ϕ ∈ L1(0, ω;R),

where functions γg ≡ γg (a, a
0) stand for the so-called rate of infection from

contacts between an infective individual of age a0 and a susceptible individual

of age a (see Li and Brauer, 2008) such that

γg(a, a
0) = βg (a, a

0) ρg (a, a
0) .

3.2 Local properties of the disease-free equilibrium

This section aims at deriving some basic mathematical properties of (7).

The local dynamics are studied by analyzing the spectral radius of a linear

operator of a related system. The difficulty comes from the fact that in

contrast to most papers in the literature, we do not assume the separability of

function γg (a, a
0). It is therefore not possible to derive an explicit expression

for the spectral radius. Spectral theory provides however well-known tools to

obtain properties for the spectral radius. We establish some of its properties

that will allow us, in the last part, to obtain some properties about the

dynamics for specified contact rate functions.

The functional framework is defined as follows. Let us recall first that

X = L1(0, ω;R)× L1(0, ω;R) is a Banach Lattice partially ordered with its
positive cone X+ defined by

X+ = L1(0, ω;R+)× L1(0, ω;R+).
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Moreover following the standard notion, for each (ϕ,ψ) ∈ X, the symbol

ϕ ≤ ψ means that ψ − ϕ ∈ X+.

Our first Lemma establishes the existence of a weak solution of system

(7). Let α > 0 be given such that

α > μ1(a) + Λg[1](a), g ∈ {f,m}, a.e. a ∈ (0, ω). (8)

Then, consider the linear operator A : D(A) ⊂ X → X defined by

D(A) =

⎧⎨⎩ϕ =

⎛⎝ϕf

ϕm

⎞⎠ ∈W 1,1(0, ω;R)2 : ϕ (0) = (0, 0)

⎫⎬⎭ ,

and

A

⎛⎝ϕf

ϕm

⎞⎠ =

⎛⎝−ϕ0f
−ϕ0m

⎞⎠ ,

and the nonlinear operator F : C → X defined by

F

⎛⎝ϕf

ϕm

⎞⎠ =

⎛⎝ ¡
1− ϕf

¢ ¡
Λf [ϕm]− μ1(a)ϕf

¢
(1− ϕm)

¡
Λm[ϕf ]− ϕm

¢
⎞⎠ .

Then, using u(t) = (if(t, .), im(t, .)), the system (7) can be rewritten as the

following abstract Cauchy problem:⎧⎨⎩
du(t)
dt
= Au (t) + F (u (t)) , t > 0

u (0) = ϕ ∈ C.
(9)

Note that given the choice of α, for each (ϕ,ψ) ∈ C2 such that ϕ ≤ ψ, one

obtains that:

F (ϕ) + αϕ ≤ F (ψ) + αψ.

Consequently, system (9) is equivalent to⎧⎨⎩
du(t)
dt
= (A− α)u (t) + (F + α) (u (t)) , t > 0

u (0) = ϕ ∈ C.
(10)

We directly deduce the following result.
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Lemma 1. Let Assumption 1 be satisfied. Then, the operator (A,D(A))

is the infinitesimal generator of a C0−positive semigroup {TA(t)}t≥0 on X.

There exists a unique strongly continuous semiflow {U(t; . ) : C → C}t≥0
such that for each ϕ ∈ C, the map t → U(t;ϕ) is a mild solution of system

(9), that is

U(t;ϕ) = TA(t)ϕ+

Z t

0

TA(t− s)F (U(s;ϕ) ds, ∀t ≥ 0.

Moreover for each (ϕ,ψ) ∈ C2 one has

ϕ ≤ ψ, ⇒ U (t;ϕ) ≤ U (t;ψ) , ∀t ≥ 0.

Proof. The proofs of similar results can be found inWebb (1985), Busenberg

et al. (1991) and Feng et al. (2005). A key ingredient is given by the

positivity of the semigroup generated by A, namely

TA(t)ϕ(a) =

⎧⎨⎩ϕ(a− t) if t < a

0 if t > a

, ∀ϕ ∈ X. ¤

Let us now study the local dynamics in the neighborhood of the so-called

disease free equilibrium (DFE, hereafter) that corresponds to the station-

ary solution: IDFE =
¡
iDFE
f , iDFE

m

¢
= (0, 0) of (7). The DFE satisfies

Ig (t, a) ≡ 0, implying that Sg (t, a) = Ng (t, a) , where Ng (t, a) solves the

classical Lotka-McKendrick equation given by:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂Ng(t,a)
∂t

+ ∂Ng(t,a)
∂a

= −μ (a)Ng (t, a) ,

Ng (t, 0) = σg
R ω
0
b (a)Nf (t, a)

R ω
a0
ρf (a, a

0) da0da,

Ng (0, a) = N0
g (a) g ∈ {m, f}.

(11)

Remark 1. Textbooks like Webb (1984) and Iannelli (1995) can be used to

prove the existence of a DFE with intrinsic growth rate λ characterized by:

1 = σf

Z ω

0

b (a) e−
a
0 (μ(z)+λ)dz

Z ω

a0

ρf (a, a
0) da0da,
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with densities for men and women given by:

N∗
g (t, a) = eλtNg0e

− a
0 (μ(z)+λ)dz,

where the Ng0 can be computed easily.

We now aim at proving that the linear stability of the DFE is related

to the so-called basic reproduction number. The corresponding linearized

equation around the DFE is given by:

∂uf(t, a)

∂t
+

∂uf(t, a)

∂a
= −μ1 (a)uf + Λf [um(t, .)](a),

∂um(t, a)

∂t
+

∂um(t, a)

∂a
= −μ1 (a)um + Λm[uf(t, .)](a),

(12)

and

uf(t, 0) = um(t, 0) = 0,

(uf , um) (0, .) =
¡
u0f , u

0
m

¢
∈ X.

(13)

In order to study this linear equation, we consider linear operator bA : D ³ bA´ ⊂
X → X and bounded linear operator B : X ⊂ X → X defined by

D
³ bA´ = D(A), bA = µ− d

da
− μ1(a) 0
0 − d

da
− μ1(a)

¶
,

and

B =

µ
0 Λf

Λm 0

¶
.

Then, by setting u(t) = (uf(t, .), um(t, .)), system (12)-(13) can be written as

follows:

du(t)

dt
=
³ bA+B

´
u(t), t > 0, u(0) = u0 =

µ
u0f
u0m

¶
∈ X.

In order to study some properties of the above linear problem, let us first

establish the following result:

Theorem 1. Linear operator bA+ B : D(A) ⊂ X → X is the infinitesimal

generator of positive C0−semigroups {TA+B(t)}t≥0 on X. We also have the

14



fixed-point formulation:

T(A+B)(t) = TA(t) +

Z t

0

BTA+B(s)ds, ∀t ≥ 0,

and

ωess( bA+B) = −∞, ω0( bA+B) = s( bA+B) ∈ σ
³ bA+B

´
. (14)

Here, ωess( bA+B) denotes the essential growth rate of {T(A+B)(t)}t≥0, while
ω0( bA+B) and s( bA+B) respectively denote the growth rate of TA+B(t) and

the spectral bound of ( bA+B).

Proof. It is easy to see that

TA(t)ϕ =

⎧⎨⎩0 if t > a

e−
a
a−t μ1(s)dsϕ(a− t) if a > t.

This proves that TA(t) is a nilpotent semigroup and therefore, we obtain that

ωess

³ bA´ = −∞. To prove the other part of (14), we need to prove that for
each t > 0, the operator BTA(t)B is weakly compact in X. Recalling that

TA(t) = 0 for all t ≥ ω, it is sufficient to consider the case t ∈ (0, ω). Let
t ∈ (0, ω) be given. Then, we have:

BTA(t)B =

µ
C1 0
0 C2

¶
,

wherein we have set

C1ϕf =

Z ω

0

daγ(a, .)1(t,ω)(a)e
− a

a−t μ(s)ds

Z ω

0

γm(a− t, a0)ϕf(a
0)da0

C2ϕm =

Z ω

0

daγm(a, .)1(t,ω)(a)e
− a

a−t μ(s)ds

Z ω

0

γf (a− t, a0)ϕm (a
0) da0.

Note that operators C1 and C2 both act on L1(0, ω) and are bounded linear

operators. Moreover, they satisfy

0 ≤ Ciϕ ≤M

Z ω

0

ϕ(s)ds, ∀ϕ ∈ L1+(0, ω),

for some constantM > 0 independent of ϕ. We conclude that C1 and C2 are

both weakly compact operators, and thus BTA(t)B is also weakly compact.

¤
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Before establishing the local stability of the DFE, let us propose a formal

definition of the basic reproduction number and make a remark.

Definition 1 (Basic reproduction number). Consider the bounded linear

operator T0 ∈ L(X) defined by T0 =
³
− bA´−1B and define the following

quantity

R0 = r (T0) .

Remark 2. One has the following explicit expression for operator T

T0ϕ =

Z ω

0

G0(., u)ϕ(u)du, ∀ϕ ∈ X,

wherein we have set:

G0(a, u) =

Z a

0

e−
a
a0 μ1(s)ds

µ
0 γf (a

0, u)
γm (a

0, u) 0

¶
da0.

The next Theorem establishes the local stability of the DFE.

Theorem 2. Let Assumption 1 be satisfied. The disease free equilibrium is

locally asymptotically stable if R0 < 1, and is unstable if R0 > 1.

To prove Theorem 2, we demonstrate two Lemma. We first notice that

due to Theorem 1, the local stability of the DFE is related to the location of

the real value s
³ bA+B

´
with respect to zero. Consider for each λ ∈ R the

bounded linear operator Tλ : X → X defined by:

Tλ

µ
ϕf (a)
ϕm (a)

¶
=

Z ω

0

Gλ(a, u)

µ
ϕf (u)
ϕm (u)

¶
du,

where

Gλ(a, u) =

Z a

0

e−(a−a
0)λ− a

a0 μ1(s)ds

µ
0 γf (a

0, u)
γm (a

0, u) 0

¶
da0.

Then, one has the following Lemma.

16



Lemma 2. For each λ ∈ R, the operator Tλ is positive and compact. More-

over, for each λ ≤ λ0, one has:

Tλ0ϕ ≤ Tλϕ, ∀ϕ ∈ X+.

Proof. The positiveness is obvious as well as the decreasing property with

respect to λ. The compactness follows by noticing that for each λ ∈ R,
operator Tλ is regularizing in the sense that it maps the unit ball of X into

a bounded set of W 1,∞ (0, ω;R2). ¤

Next, consider the map R : R→ [0,∞) defined by

R(λ) = r (Tλ) , ∀λ ∈ R,

wherein for each L ∈ L(X), the quantity r (L) denotes the spectral radius of
L. Then, we obtain the following result.

Lemma 3. Let Assumption 1 be satisfied. Then, the map λ 7→ R(λ) is

continuous, decreasing and satisfies

lim
λ→∞

R(λ) = 0,

R(0) = R0 (see Definition 1) and R(s) = 1 where s := s
³ bA+B

´
denotes

the spectral bound of operator bA+B.

Proof. Let us first notice that the map λ 7→ Tλ is continuous from R to
L(X). Since Tλ is compact for each λ ∈ R, we conclude that λ 7→ R(λ)

is continuous. As a consequence, due to Lemma 2, the map λ 7→ R(λ) is

decreasing. Then, it is easy to check that

lim
λ→∞

kTλkL(X) = 0,

which implies that R(λ)→ 0 when λ→∞. It is also easy to check that

λ ∈ R ∩ σp
³ bA+B

´
⇐⇒ 1 ∈ σp (Tλ) ,

17



wherein σp denotes the point spectrum. From this and the positivity, it

follows that R(s) = 1. ¤

Adirect consequence of Lemma 3, is that ifR0 < 1, then s = s
³ bA+B

´
<

0 and if R0 > 1, then s > 0. This completes the proof of Theorem 2.

Theorem 3. Let Assumption 1 be satisfied. If R0 > 1, then system (7) has

at least one endemic stationary state, i.e. there exist (ief , i
e
m) ∈ C∩D(A)\{0}

such that : ⎧⎨⎩
dieg(a)

da
=
¡
1− ieg (a)

¢ £
Λg[i

e
−g](a)− μ1(a)i

e
g (a)

¤
,

ieg (0) = 0, ∀g ∈ {m, f}.

Proof. Let us recall that as R0 > 1, there exists λ > 0 such that R(λ) = 1.

Let ϕ =
µ
ϕf

ϕm

¶
∈ X+ be given such that Tλϕ = ϕ. Consider now the follow-

ing fixed point problem: find u ∈ C\{0} such that u =
³
− bA− α

´−1
(F + α)u.

Since the operator
³
− bA− α

´−1
is positive and F is increasing, one obtains

by setting e = (1, 1) that³
− bA− α

´−1
(F + α) e ≤

³
− bA− α

´−1
αe ≤ e.

On the other hand, for each ε > 0 one has³
− bA− α

´−1
(F + α) [εϕ](a)

= ε

Z a

0

eα(t−a)
µ¡
1− εϕf(t)

¢ ¡
Λf [ϕm]− μ1(a)ϕf

¢
+ αϕf

(1− εϕm)
¡
Λm[ϕf ]− μ1(t)ϕm

¢
+ αϕm.

¶
dt

= ε

Z a

0

eα(t−a)
µ

Λf [ϕm]− μ1(a)ϕf + αϕf − εϕf

¡
Λf [ϕm]− μ1(a)ϕf

¢
Λm[ϕf ]− μ1(t)ϕm + αϕm − εϕf(t)

¡
Λf [ϕm]− μ1(a)ϕf

¢¶ dt

This implies that:³
− bA− α

´−1
(F + α) [εϕ](a)

= εϕ(a) + ε

Z a

0

eα(t−a)
µ
ϕf(t)

¡
λ− ε

¡
Λf [ϕm]− μ1(a)ϕf

¢¢
ϕm

¡
λ− ε

¡
Λf [ϕf ]− μ1(a)ϕm

¢¢ ¶ dt.
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As a consequence, if ε > 0 is chosen small enough so that

εϕ ≤ e and ε

µ
Λf [ϕm]− μ1(a)ϕf

Λf [ϕf ]− μ1(a)ϕm

¶
≤ λe,

one obtains that ³
− bA− α

´−1
(F + α) [εϕ] ≥ εϕ.

The above inequality allows us to start a monotone iterative procedure to

get complete the proof of the result. ¤

Theorem 4. Assume that no nontrivial equilibrium exists. Then the fol-

lowing holds true for each ϕ ∈ C:

U(t;ϕ)→ 0 as t→∞.

Proof. Let ϕ ∈ C be given and set e = (1, 1)T ∈ C. Let us first notice that
the map t 7→ U(t; e) is decreasing. Indeed for each t ≥ 0 one has U(t; e) ∈ C
so that

U(t; e) ≤ e.

Then since U is monotone, for each s ≥ 0, one gets that

U(t+ s; e) ≤ U(s; e),

and the result follows. Therefore U(t; e) converges to some equilibrium point

when t→∞. Due to the assumption, this leads us to

U(t; e)→ 0 as t→∞.

Finally since ϕ ≤ e, due to the monotony, one gets that

U(t;ϕ) ≤ U(t; e), ∀t ≥ 0. ¤
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3.3 Global properties of the disease-free equilibrium

Theorem 2 provided some local conditions about the stability of the DFE.

We now aim at exhibiting a condition such that the DFE is unique, which

allows for assessing its global stability. First of all, Lemma 4 provides a

re-formulation of the equilibrium system of equations.

Lemma 4. Let Assumption 1 be satisfied. Let u = (uf , um) be a non trivial

equilibrium of (7). Then, u satisfies

ug = F (Λg[u−g]) , g ∈ {f,m},

where F is defined by

F (ϕ) (a) =
R a
0
e

t
0 μ1(s)dsϕ(t)e−

t
0 ϕ(s)dsdt

e
a
0 μ1(s)dse−

a
0 ϕ(s)ds +

R a
0
e

t
0 μ1(s)dsϕ(t)e−

t
0 ϕ(s)dsdt

.

Proof. The proof of this lemma is related to the well known quadrature for-

mula for the logistic equation. If one considers the non-autonomous logistic

equation:

u0(t) = u(t) (a(t)− b(t)u(t)) ,

u(0) = x0 > 0,

then the solution is given by

u(t) =
exp

³R t
0
a(τ)dτ

´
1
x0
+
R t
0
b(τ) exp

¡R τ
0
a(ξ)dξ

¢ .
The re-formulation follows after some algebra. ¤

From this re-formulation, one can obtain the following result.

Theorem 5. Consider the linear bounded and positive operator bT : X → X

defined by bTϕ(a) = Z ω

0

bG(a, u)ϕ(u)du,
20



wherein we have set

bG(a, u) = Z a

0

e−
a
t μ1(s)ds

µ
0 e

a
t Λf [1](s)dsγf(t, u)dt

e
a
t Λm[1](s)dsγm(t, u) 0

¶
dt.

If r
³bT´ < 1, the only equilibrium of system (7) is the DFE.

Proof. Let u = (uf , um) be a nontrivial equilibrium of (7). If we set

ξ−g = Λg[u−g] then we obtain

ug(a) ≤
Z a

0

e−
a
t μ1(s)dsξ−g(t)e

a
t ξ−g(s)dsdt.

Thus

ug(a) ≤
Z a

0

e−
a
t (μ1(s)−Λg(s))dsΛg[u−g](t)dt.

As a consequence, one obtains that u ≤ bTu. This implies that r ³bT´ ≥ 1
and the result follows. ¤

Note that T0 ≤ bT so that R0 ≤ r
³bT´. As a consequence of the two

results presented above, we obtain that when r
³bT´ < 1 then the disease

free equilibrium is globally asymptotically stable. These results could be

completed by a global analysis of endemic equilibrium. This task, however,

is beyond the scope of this paper.

4 The impact of the dispersion of age differ-
ences between partners

In this section, we compute numerically the value of the epidemic threshold,

R0, as a function of the mean and the variance of the distribution of age

differences between partners.

4.1 Parameters and functions of the model

The model is simulated using parameters that are similar to those used in

Anderson et al. (1992), including the age-specific mortality and fertility rates
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displayed in Figure 5.

Figure 5, about here.

For mortality, which is supposed to be similar for men and women, we use

the Siler approximation, and obtain that life expectancy at birth is 55.069

years. Concerning fertility, we obtain a Total Fertility Rate of 7.15. The

demographic growth rate of the disease-free population can be computed

using the formula given in Remark 1, and is equal to λ = 0.076. Concerning

the epidemiological parameters, we suppose that the infectiousness of the

disease is age-independent, βg (a, a
0) = βg and that a susceptible woman has

a risk of infection when having a sexual contact with an infected man which

is three times higher than those involving a susceptible man and an infected

woman. The over-mortality rate of infected individuals is also supposed to be

age independent, μ1 (a) = μ1, and has been set such that the life expectancy

(ignoring other causes of death) is 5 years.

Parameters are given in Table 2.

Sex ratio at birth, σg 0.5
Maximal age at death, ω 80
Minimal age of sexual activity, a0 15
Lower and upper limits ages for fertility, a1 and a2 15 and 50
Over-mortality rate, μ1 0.2
Infectiousness of the disease, βf and βm 0.3 and 0.1

Table 2
Parameters of the simulated model

The main difficulty when simulating our model concerns the function

describing the average number of partners. In Section 3, the average number

of partners of age a0 and gender −g per individual of age a and gender g
was characterized by a general time-independent function, ρg (a, a

0). Time

independence was a necessary assumption in order to develop the theoretical

analysis. In the present section, we relax this assumption and extend the

analysis. Following Anderson et al. (1992), we allow for time-dependence for

one gender and propose to decompose the function. Suppose that the average
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number of partners can be represented by the product of two functions:

cg (a, t), the rate of partner change for an individual of age a and gender

g at time t, and Jg (a, a
0, t), a mixing function indicating, at time t, the

probability that an individual of age a and gender g chooses a partner of age

a0. It satisfies
R a2
a1

Jg (a, a
0, t) da0 = 1. We hence have:

ρg (a, a
0, t) = cg (a, t)Jg (a, a

0, t) .

Functions cg (a, t) and Jg (a, a
0, t) are linked to each other through the fol-

lowing constraint:

cf (a) Jf (a, a
0)Nf (a, t) = cm (a

0, t)Jm (a
0, a, t)Nm (a

0, t) (15)

Then, assume that, for women, the mixing function is given by:

Jf (a, a
0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e
− (

a−a0+ν)2

2σ2

a2
a1

e
− (a−α+ν)

2

2σ2 dα

for a, a0 ∈ [a1, a2] ,

0 otherwise.

where ν > 0 stands for the mean age difference between men and women

and σ > 0 for the standard deviation that measures the dispersion of age

differences within couples. The function describing the mean rate of partner

change comes from Anderson et al. (1992), so that:

cf (a) =

⎧⎨⎩ η for a ∈ [a1, a2] ,

0 otherwise.

The mean rate of partner change for men is given by:

cm (a
0, t) =

R a2
a1

cf (a)Jf (a, a
0)Nf (a, t) da

Nm (a0, t)
,

while the mixing function is computed according to (15). For instance, in

the following figures, the mean rates of partner change per year as functions

of age are pictured at the endemic equilibrium. We use the mean values of ν
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and σ computed among our sample of African countries, namely ν = 8.78 and

σ = 2.62. Concerning the parameter of function cf (a), we follow Anderson

et al. (1992) by using η = 3.4 and η = 5.7, as depicted in Figure 6 and

Figure 7, respectively.

Figure 6, about here.

Figure 7, about here.

Similarly, we compute the average prevalence at the endemic equilibrium as

well as the prevalence per age for men and women. Using η = 3.4 (Figure 8)

and η = 5.7 (Figure 9), we obtain that the prevalence is equal to 1.5% and

5%, respectively.

Figure 8, about here.

Figure 9, about here.

Two notable features of these figures are that (i) women are proportionally

more infected than men and (ii) the mean age of the infected population is

lower for women than for men. Both conclusions are consistent with empirical

evidence found in previous studies (e.g. Buvé et al.; 2001, Glynn et al., 2001;

Gouws et al., 2008; UNAIDS, 2010, chapter 2).

4.2 Numerical results

The aim of the numerical simulations is twofold. Firstly the numerical sim-

ulations aim at evaluating the effect of both the mean and the variance of

the age differences on the basic reproduction number. Secondly, it allows us

to analyze the quantitative implication of assuming the time-independence

of function ρ (a, a0), as we made in the previous section.

We compute the basic reproduction number as a function of the mean

age difference, ν, and the standard deviation, σ using two different values

of the parameter of function cf (a) used in Anderson et al. (1992): η = 3.4

and η = 5.7. Results are displayed in Figure 10 and 11 respectively. Both
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figures clearly show that the epidemic threshold, R0, is an increasing function

of ν and an increasing and concave function of σ. The latter relationship

becomes almost flat for values of σ greater than 3. Figure 10 shows that if

the women’s rate of partner change is not too large, the standard deviation

of age differences is a key parameter. Indeed, we find that if the standard

deviation is small enough, the basic reproduction number remains below one

whatever the value of the mean age difference. Conversely, if the standard

deviation is large enough, the basic reproduction number is always greater

than 1 even for very low mean age difference.

Figure 10, about here.

Figure 11, about here.

In order to evaluate the impact of the assumption of time-independence

of function ρ (a, a0), we compare the R0 computed by our model and those

computed by another model, for which the only difference lies in the way the

function ρ (a, a0) is defined. Precisely, we consider an approximation of the

rate of partner change for men by assuming that μ1 is small and by using

the stationary values of Nf (a, t) and Nm (a
0, t) . With this approximation,

we obtain the following time independent functions:

cm (a
0) =

Z a2

a1

cf (a)Jf (a, a
0) e−

a
a0 μ(u)+λduda,

and

Jm (a
0, a) =

cf (a)Jf (a, a
0) e−

a
0 μ(u)+λduR a2

a1
cf (α)Jf (α, a0) e

− α
0 μ(u)+λdudα

.

As a consequence, the kernel of λg is time independent. Figure 12 represents

the R0 as a function of σ for ν = 8.78 and η = 3.4 for both the initial model

and the approximated model.

Figure 12, about here.
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We conclude that the approximation of the function ρ (a, a0, t) with a time

independent counterpart does not yield to notable quantitative differences,

except that the approximation overestimates the R0.

5 Conclusion

In this paper, we have analyzed the effect of a change in the dispersion of

age differences between sexual partners on the endemic nature of the HIV

epidemic. Once we established empirically that the distribution of age dif-

ferences in Sub-Saharan Africa had not been modified since the onset of the

epidemic, we went on to create an age- and gender-structured dynamic model.

We characterized the stability of the epidemic equilibrium and showed that

variance plays a crucial role in the determination of the stability properties

of this equilibrium. Moreover, the mean age difference has barely no impact

on the stability of the disease-free equilibrium if the variance is sufficiently

high.

Importantly, our model constitutes a tool in order to evaluate the impact

of the two first moments of the age differences distribution on the asymptotic

dynamics of the HIV epidemics. We show that a larger variance increases the

likeliness that the disease-free equilibrium is unstable, and consequently that

the epidemic is endemic. This is an asymptotic result that is not necessarily

connected to the prevalence rate at a given point in time. It cannot be tested

using past prevalence rates, be used to forecast the dynamics of HIV in the

next few years in African countries and is not able to evaluate the various

policies that have been launched in the countries of our sample. It rather

argues that, everything equal, countries that have a large variance of age

difference between partners should be particularly active in the fight against

the spread of HIV within the population.

Moreover, in order to focus on the age differences, we have not considered

other factors that may influence the dynamics of the epidemics. Our model
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builds a framework suitable for incorporating other contextual features that

could allow for more realism. Especially, our model may be extended by

describing precisely the different variables that influence the contact function

between generations. We have, indeed, concentrated on the probabilities of

having some infectious contacts for an exogenous number of contacts per age.

Since this number appears to be important, we must seek to understand the

underlying behaviors, which would be a promising avenue of research.
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Figure 3: Dynamics of the mean of age differences
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Figure 4: Dynamics of the coefficient of variation of the distribution of age differences
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Figure 5: Mortality and fecondity as functions of age
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Figure 6: Mean rate of partner change as a function of age for η = 3.4
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Figure 7: Mean rate of partner change as a function of age for η = 5.7
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Figure 8: Prevalence rate as a function of age for η = 3.4
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Figure 9: Prevalence rate as a function of age for η = 5.7
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Figure 10: R0 as a function of ν and σ for η = 3.4

9



Figure 11: R0 as a function of ν and σ for η = 5.7
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Figure 12: R0 as a function of σ for the initial model and the approximated one
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