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Abstract

Catastrophe aversion and risk equity are important concepts both in risk management theory

and practice. Ralph Keeney (1980) was the first to formally define these concepts. He demon-

strated that the two concepts are always in conflict. Yet his result is based on the assumption

that individual risks are independent. It has therefore limited relevance for real-world catas-

trophic events. We extend Keeney’s result to dependent risks and derive the conditions under

which more equity and more correlation between two risks imply a more catastrophic situation.

We then generalize some of the results for multiple correlated risks.
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1 Introduction

The expected number of fatalities is perhaps the most common measure to assess and manage

social risks. However, the expectation operation does not account for important dimensions of

risk (Slovic et al., 1984). It neither reflects society’s preferences to avoid large scale accidents, nor

does it capture concerns over inequalities in the distribution of risk across individuals (Bovens and

Fleurbaey, 2012). Alternative criteria for managing public risks have therefore emerged. These

criteria aim at limiting the maximum probable loss or the maximum individual risk, reflecting

society’s anxiety to avoid a “bunching” of fatalities and its reluctance to accept risks that are

unequally distributed across people.

Ralph Keeney (1980) was the first to formally define the concepts of risk equity and catastrophe

aversion to capture both objectives. Risk equity is an ex ante concept corresponding to a preference

for equalizing the probability of dying across agents. Catastrophe aversion, on the other hand,

is an ex post concept corresponding to a preference for a mean-preserving concentration in the

distribution of fatalities. Assuming independent risks, Keeney (1980) showed that the two concepts

are always in conflict.1 Whenever one increases risk equity, the distribution of fatalities becomes

more catastrophic and vice versa. This result is challenging as it highlights the conflict between two

reasonable objectives of risk managers: limiting the risk burden to individuals and to society as a

whole. It has received some attention in the operations research and management literature (e.g.,

Fishburn, 1984; Keeney and Winkler, 1985; Sarin, 1985; Fishburn and Straffin, 1989; Fishburn and

Sarin, 1991, 1994, 1997; Gajdos et al., 2010), and more recently in the economics and social choice

literature (Bommier and Zuber, 2008; Fleurbaey, 2010; Bovens and Fleurbaey, 2012; Adler et al.,

2014; Rheinberger and Treich, 2016).

In this paper, we examine an aspect of the problem that has so far been largely overlooked—

the dependence structure of social risks. In today’s world, interdependent risks are the rule rather

than the exception. This observation is particularly true for potentially catastrophic risks such as

hurricanes, terrorist attacks, climate change or large-scale industrial accidents. In the remainder

of the paper we gradually develop this argument. In §2 we show that the more correlated the

risks faced by two agents are, the more catastrophic the corresponding distribution of fatalities is.

1Analogous results were already known in the mathematical statistics literature, see e.g. Hoeffding (1956) and
Karlin and Novikoff (1963).
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We then derive in §3 the necessary and sufficient condition under which an equity-increasing risk

transfer between two agents implies a more catastrophic distribution of risks. This condition pins

down the effects that moving toward more risk equity has on both the marginal distributions of the

two risks and on their correlation coefficient. We demonstrate that the condition holds whenever

the risk transfer has a positive effect on the correlation between the two risks.

Extending the analysis to more than two agents is challenging because pairwise correlations

provide an insufficient statistic to map out the dependence structure of multiple risks (Embrechts

et al., 2002). Nonetheless, we generalize some of the results obtained for the two-agent case in

§4 by imposing that, in a N -agent world, risk transfers between any two agents do not affect

the dependence structure of the remaining N − 2 agents, or by weakening the notion of more

catastrophic. In §5, we discuss some implications for policy makers. Longer proofs appear in the

Appendix.

2 Catastrophic and correlated risks

2.1 Definitions and notations

Consider a population of i = 1, ..., N agents, each of whom faces an individual probability of

dying pi ∈ [0, 1]. The risk of death is modeled as a Bernoulli random variable x̃i, which takes the

value 1 (i.e., agent i dies) with probability pi, and 0 otherwise. We are interested in the distribution

of fatalities:

d̃ :=
N∑
i=1

x̃i.

Following Adler et al. (2014), we define a more catastrophic distribution of fatalities based on the

concept of second-order stochastic dominance (Rothschild and Stiglitz, 1970).

Definition 1. Assume E[d̃] = E[d̃′]. We say a distribution of fatalities d̃ is more catastrophic than

another distribution d̃′ iff for any concave function f , E[f(d̃)] 6 E[f(d̃′)].

Assuming that d̃ is more catastrophic than d̃′ thus implies that d̃ is a mean-preserving spread

of d̃′. Catastrophe avoidance as defined by Keeney (1980, Theorem 2, p. 532) is a particular

case of Definition 1, in which d̃ and d̃′ apply to binary risks with one safe outcome (i.e., an

outcome which implies no fatality at all). Keeney’s analysis assumes that the social planner applies
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the axioms of expected utility to evaluate the number of fatalities occurring in scenarios with

different probabilities. Accordingly, catastrophe aversion can be formally defined as a concave

(social) vNM utility function f .2 Now, let f(d) = −d2. It follows immediately that a more

catastrophic distribution must have a greater variance, but not the other way around. This leads

to our second definition.

Definition 2. We say a distribution of fatalities d̃ is more variable than another distribution d̃′ iff

var(d̃) > var(d̃′).

Based on these two definitions, we will analyze the relationship between catastrophe aversion

and risk equity. To begin with, we focus on two agents whose risks of death, x̃1 and x̃2, may

be correlated. We introduce the probability space Ω, comprised of a finite (but potentially large)

number of states S, to describe the dependence structure of the two risks. For now, let us assume

that Ω has S := 8 equiprobable states (ω1, ..., ω8) and consider two agents, 1 and 2, who face the

probability of dying p1 and p2, respectively.3

Throughout the paper, we will make use of the following matrix notation to illustrate risky

social situations.

x̃1 x̃2

ω1

ω2

ω3

ω4

ω5

ω6

ω7

ω8



1 1

1 0

1 0

1 0

0 1

0 0

0 0

0 0



d̃A

2

1

0

π2 = 1
8

π1 = 4
8

π0 = 3
8

(A)

Each of the S := 8 rows in this matrix corresponds to one possible state of the world. For

2It is, however, not obvious that society should display catastrophe aversion. See Rheinberger and Treich (2016)
for an extensive discussion.

3We use equiprobable states to ease the exposition of our examples. We emphasize, however, that the results also
hold for unequal state probabilities as each state can be broken down into several equiprobable states.
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s = 1, ..., 8, the ith value in row s can be interpreted as x̃i(ωs), which is the value taken by the

random variable x̃i in state ωs. In situation (A), there is only one state (ω1) in which the two agents

die simultaneously. Each state in situation (A) has the same probability 1/S = 1
8 to occur. x̃1(ω)

can take two values: 1 with probability p1 := Pr(x̃1 = 1) = 1
2 (corresponding to the occurrence

of a state in which the first agent dies) and 0 with probability 1 − p1 = 1
2 (corresponding to a

state in which the first agent survives). Likewise, the probability that the second agent dies is

p2 := Pr(x̃2 = 1) = 1
4 . Note that x̃2 does not depend on the realizations of x̃1 and vice versa:

Pr(x̃2 = 1|x̃1 = 1) = Pr(x̃2 = 1) and Pr(x̃1 = 1|x̃2 = 1) = Pr(x̃1 = 1). In other words, the two

risks are independent.

Based on the matrix notation, the computation of the distribution of fatalities d̃A := x̃1 + x̃2

is straightforward. We only need to sum the values in each row to find that the probabilities of

observing zero, one, and two fatalities are equal to π0 := Pr(d̃ = 0) = 3
8 , π1 := Pr(d̃ = 1) = 4

8 , and

π2 := Pr(d̃ = 2) = 1
8 , respectively. The corresponding distribution of fatalities is represented by

the probability tree next to the matrix.

2.2 Correlation and the distribution of fatalities

In a two-agent world, there is a fundamental relationship between the distribution of fatalities

and the correlation of the risks (Meyer and Strulovici, 2012). Proposition 1 captures the relation-

ship assuming fixed marginal distributions (i.e., the parameters p1 and p2 are kept fixed). Thus, at

this stage, there is no change in risk equity involved.

Proposition 1. Under N = 2, the four following statements are equivalent:

(i) the probability of simultaneous fatalities increases;

(ii) the correlation between the individual risks increases;

(iii) the distribution of fatalities is more catastrophic (Definition 1);

(iv) the distribution of fatalities is more variable (Definition 2).

Proof. We first prove that the distribution becomes more catastrophic iff the probability of si-

multaneous fatalities, π2 := Pr(x̃1 = 1, x̃2 = 1), increases. For N = 2 agents, E[f(d̃)] =
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π0f(0)+π1f(1)+π2f(2), where πi := Pr(d̃ = i) for i = 0, 1, 2. We know that E[d̃] = p1 +p2, so that

π1 + 2π2 = p1 + p2 (for f(x) = x) and π0 + π1 + π2 = 1. Using these two equalities, we can express

π0 and π1 as functions of π2: E[f(d̃)] = (1− (p1 +p2−2π2)−π2)f(0)+(p1 +p2−2π2)f(1)+π2f(2).

This expression can be further simplified to

E[f(d̃)] = (1− p1 − p2)f(0) + (p1 + p2)f(1) + π2(f(0)− 2f(1) + f(2)).

By Jensen’s inequality we have f(0) − 2f(1) + f(2) 6 0 for all f concave. Therefore, E[f(d̃)]

decreases iff π2 increases. Thus (iii)⇔(i).

Next, we turn to the joint probability of two random Bernoulli variables. We have

π2 = Pr(x̃1 = 1, x̃2 = 1) = E[x̃1x̃2] = p1p2 + ρ
√
p1(1− p1)

√
p2(1− p2)

by the definition of the correlation coefficient ρ between the two risks x̃1 and x̃2. Thus π2 increases

whenever ρ increases: (i)⇔(ii). To conclude the proof, observe that

var(x̃1 + x̃2) = p1(1− p1) + p2(1− p2) + 2ρ
√
p1(1− p1)

√
p2(1− p2),

which increases iff correlation ρ increases. Thus (ii)⇔(iv). �

Let us provide an intuition for this result by modifying the introductory example (A). The

distribution of fatalities can be more or less catastrophic depending only on the interaction between

the two individual risks of death. In situation (B) below, we alter the dependence structure between

x̃1 and x̃2 so that the occurrence of two simultaneous fatalities becomes most likely. By contrast,

situation (C) illustrates a dependence structure in which two simultaneous fatalities are impossible:
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x̃1 x̃2

1 1

1 1

1 0

1 0

0 0

0 0

0 0

0 0



x̃1 x̃2

1 0

1 0

1 0

1 0

0 0

0 0

0 1

0 1



(B) (C)

d̃B

2

1

0

π2 = 2
8

π1 = 2
8

π0 = 4
8

d̃C

2

1

0

π2 = 0

π1 = 6
8

π0 = 2
8

Risky situation (B) implies the most catastrophic distribution of fatalities. This situation, in

which the worst outcome (i.e. the joint death of two agents) becomes as likely as it can be given

the marginals, is known as the comonotonic dependence structure. By contrast, risky situation

(C) gives rise to the least catastrophic distribution of fatalities. This situation is also known as

the antimonotonic dependence structure because outcomes are ordered in reverse order, thereby

minimizing the probability to observe simultaneous fatalities. Indeed, d̃B is more catastrophic (and

also more variable) than d̃C .

The result in Proposition 1 is linked to Epstein and Tanny’s (1980) concept of “generalized cor-

relation”. This concept characterizes the condition under which two random variables x̃1 and x̃2 are

more correlated than two other random variables x̃′1 and x̃′2 (see also Tchen, 1980 and Wright, 1987).

Epstein and Tanny show that this condition is formally equivalent to E[u(x̃1, x̃2)] 6 E[u(x̃′1, x̃
′
2)]

whenever the cross partial derivatives are nonpositive, i.e. u12 6 0. Now, take u(x1, x2) = f(x1+x2)
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so that u12 6 0 is equivalent to f ′′ 6 0. This proves that an increasing “generalized correlation”

between x̃1 and x̃2 is necessary and sufficient for obtaining a more catastrophic distribution x̃1 + x̃2,

with x̃1 and x̃2 being Bernoulli random variables.

From Proposition 1 we know that the distribution of fatalities becomes most (least) catas-

trophic when the correlation between the two risks is maximized (minimized). In the case of two

agents, it is always possible to fully identify the least and most catastrophic distribution of fatal-

ities. This result is summarized in the following lemma, and will turn out to be useful later. In

particular, we notice that the range of correlation between two risks depends on their marginal

probabilities.

Lemma 1. The correlation ρ between two Bernoulli random variables x̃1 and x̃2 with p1 > p2 is

bounded by:

• ρ ∈
[
−

√
p1p2√

1−p1
√

1−p2
,
√
p2
√

1−p1√
p1
√

1−p2

]
, if p1 + p2 6 1

• ρ ∈
[
−
√

1−p1
√

1−p2√
p1p2

,
√
p2
√

1−p1√
p1
√

1−p2

]
, if p1 + p2 > 1

• ρ = 0, if p1 = 1 (agent 1 is certain to die) or p2 = 0 (agent 2 is certain to survive)

Proof. The original proof of Lemma 1 is due to Meilijson and Nadas (1979) and Tchen (1980).

Here, we only provide a sketch of the proof. We start with minimum correlation, which is attained

when the Bernoulli variables are antimonotonic, i.e. when the number of simultaneous deaths is

minimized. Specifically, we know that π2 = E[x̃1x̃2] = Pr(x̃1 = 1, x̃2 = 1) = max(0, p1 + p2 − 1).

There are two cases p1 + p2 6 1 and p1 + p2 > 1. In both cases, the minimum correlation is equal

to
max(0, p1 + p2 − 1)− p1p2√

p1 (1− p1) p2 (1− p2)
.

By considering these two cases separately and after some simplifications, one obtains the expressions

of minimum correlation presented in the proposition.

The maximum correlation is obtained when the Bernoulli variables are comonotonic, i.e. when

the number of simultaneous fatalities is maximized. In the two-agent world comonotonicity means

that, in each state in which agent 2 dies, agent 1 dies as well. Because the maximum probability of

simultaneous fatalities is equal to Pr(x̃1 = 1, x̃2 = 1) = min(p1, p2) = p2, their maximum correlation
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equals

p2 − p1p2√
p1 (1− p1) p2 (1− p2)

=

√
p2
√

1− p1√
p1
√

1− p2
. �

One practical remark on Lemma 1 seems in order. The natural bounds of the correlation

interval are only attained in the special case where p1 = p2 = 1
2 . This implies that for most binary

risks the interval of attainable correlation is strictly narrower than ρ ∈ [−1, 1].

3 Risk equity and its implications

Following Keeney (1980) and the subsequent literature cited in the introduction, we define

risk equity based on a Pigou-Dalton transfer in risk: a non-leaky transfer of probability mass from

a more exposed to a less exposed individual, so that the transfer does not reverse the ranking of

the two individuals in terms of their probability to die.4

Definition 3. We say a distribution of fatalities d̃ is more equitable than another distribution d̃′

iff a Pigou-Dalton transfer in risk δ from a more exposed agent 1 to a less exposed agent 2 would

reduce the risk faced by agent 1 and raise the risk faced by agent 2 without switching their ranking

in terms of absolute risk and without changing other individuals’ risks. Formally, the probabilities

of dying before the transfer are p1 and p2, with p1 > p2; after the transfer, the probabilities of dying

are p′1 = p1 − δ and p′2 = p2 + δ, where 0 6 δ 6 p1−p2
2 .

Accordingly, a Pigou-Dalton transfer in risk always decreases the “gap” in risk between the

agents 1 and 2 (Keeney, 1980; Adler et al., 2014). This definition is intuitive, but also general

since any mean-preserving contraction in the distribution of individual risks within society can

be obtained through a series of Pigou-Dalton transfers. Our first objective is to extend Keeney’s

result to our more general definition of catastrophic risk. Proposition 2 asserts that, under the

assumption of independent risks before and after the transfer, more risk equity always implies a

more catastrophic distribution of fatalities.

4Cox (2012) argues that—unlike income—mortality risk is not fungible and cannot be easily transferred from one
individual to another. Regardless of whether one agrees with Cox or not, our definition does not require a direct
physical transfer of risk from one individual to another. It merely implies the existence of different policy options
under which two individuals face different risks.
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Proposition 2. Assume that the risks faced by N agents are independent. In that case, any Pigou-

Dalton transfer in risk between two agents leads to a more catastrophic distribution of fatalities, if

the risks to the N agents remain independent after the transfer.

Proof. Given independence, we can focus on the risks affected by the transfer. Consider a change in

the risks faced by agents 1 and 2, and denote ỹ := x̃3 + ...+ x̃N . We define E[f(d̃)] = E[f1(x̃1 + x̃2)],

with f1(x) = E[f(x + ỹ)]. Since under the assumption of independent risks f1 is concave iff f is

concave, the presence of N − 2 independent agents does not affect the comparative statics anal-

ysis. From Proposition 1 and the equivalence between a more catastrophic and a more variable

distribution of fatalities, we know that it suffices to show that a Pigou-Dalton transfer in risk

between agents 1 and 2 increases the variance. This is always true because var[d̃′] − var[d̃] =

[(p1 − δ)(1 − p1 + δ) + (p2 + δ)(1 − p2 − δ)] − [p1(1 − p1) + p2(1 − p2)], which is positive for any

δ 6 p1−p2
2 (and which is exactly the condition needed for the Pigou-Dalton transfer). �

3.1 Two agents facing dependent risks

Our next objective is to extend the result of Proposition 2 to the case of dependent risks. To

illustrate the complexity that arises from the interaction between only two risks (N = 2), we start

from example (A) presented in §2.1 and analyze three possible risk transfers and their respective

effect on the distribution of fatalities. Remember that in situation (A) the risks of two agents are

independent. Here, and in contrast to Keeney (Proposition 2), we do not assume that the risks

remain independent after the Pigou-Dalton transfer. Consider the following situations labeled (D),

(E), and (F ), respectively. (Risks after a transfer of δ = 1
8 are denoted by x̃′1 and x̃′2.) In all three

situations, the agents face the same probability to die (p′1 := p1 − δ = p′2 := p2 + δ = 3
8). However,

in none of the situations the two risks are independent after the transfer (as the correlation ρ′ is

not equal to zero) and, consequently, Proposition 2 no longer applies.
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x̃′1 x̃′2

1 0

1 0

1 1

0 1

0 1

0 0

0 0

0 0



x̃′1 x̃′2

1 0

1 0

1 0

0 1

0 1

0 1

0 0

0 0



x̃′1 x̃′2

1 1

1 1

1 1

0 0

0 0

0 0

0 0

0 0



(D) (E) (F )

d̃′D

2

1

0

π2 = 1
8

π1 = 4
8

π0 = 3
8

d̃′E

1

0

π2 = 6
8

π0 = 2
8

d̃′F

2

0

π2 = 3
8

π0 = 5
8

The new correlation ρ′ between the agents’ risks can be computed as follows:

ρ′ := corr(x̃′1, x̃
′
2) =

E[x̃′1x̃
′
2]− (p1 − δ)(p2 + δ)√

(p1 − δ)(1− p1 + δ)
√

(p2 + δ)(1− p2 − δ)
.

For the above situations, we have: ρ′D = −0.066, ρ′E = −0.6, and ρ′F = 1, respectively. The

distribution of fatalities d̃′ := x̃′1 + x̃′2 after each of the feasible Pigou-Dalton transfers is fully

characterized by the corresponding probability trees. Compared to situation (A), the distribution

of fatalities becomes strictly more catastrophic in situation (F ), strictly less catastrophic in situation

(E), and is identical in situation (D).

Situations (A) to (F ) make it clear that the change in the distribution of fatalities is governed

by two sources: (i) the effect of the Pigou-Dalton transfer in risk on the marginal distributions,

and (ii) the change in correlation induced by the transfer. Both changes have an impact on how

catastrophic the distribution of fatalities is. Situations (B) and (C) have illustrated that an increase
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(or decrease) in catastrophic risk might be caused by a change in correlation only. Situations (D) to

(F ) illustrate that an increase (or decrease) in catastrophic risk might also be due to a simultaneous

change in correlation and risk equity.

The comparison of (A) with (D) is particularly revealing as (D) is obtained from (A) by

switching a “1” and a “0” in a single row, and by relabeling the states. The distributions of fatalities

are fully determined by the number of “1’s” in each row. Therefore, the two distributions must

be identical before and after the transfer so that d̃A and d̃′D have the same distribution. In other

words, the induced change in the marginal distributions of individual risks x̃i is “counteracted”

by its negative impact on the correlation, which keeps the sum of x̃i’s identically distributed.

This insight underlines that it is all but simple to extend Proposition 2, and there is no hope

to generically sign the comparative statics analysis for any possible risk transfer without making

specific restrictions on the correlation.5

3.2 The necessary and sufficient condition

In this section we pin down the necessary and sufficient condition under which a Pigou-

Dalton transfer in risk between two agents results in a more catastrophic distribution of fatalities.

The condition comprises the special case in which the risks have identical correlation before and

after the transfer. Yet we also provide a more general analysis, in which we allow changes in the

correlation before and after the transfer. This degree of generality is important for many real world

applications.6

Next, we demonstrate that a Pigou-Dalton transfer in risk makes the distribution of fatalities

more catastrophic whenever the correlation after the transfer is larger than a specified threshold.

Proposition 3. Assume N = 2 and p1 > p2. Let ρ denote the correlation between the initial

risks x̃1 and x̃2. After a Pigou-Dalton transfer in risk δ ∈
[
0, p1−p22

]
, the distribution of fatalities

5For S := 8 states (ω1, ..., ω8), it is impossible to find a situation in which the correlation between x̃′1 and x̃′2 is
equal to 0 (i.e., in which the risks are still independent after the risk transfer) and for which the result of Keeney
(Proposition 2) would hence hold. It is, however, possible to construct such a situation by invoking more states of
the world. We provide one such example in the Appendix .

6Consider the introduction of a new technology—say a better navigation system in cars. This technology will
reduce differences in the individual risk of having a car accident (e.g., by balancing out heterogeneity in driving skills
or in car safety features). Therefore, the technology will increase risk equity. On the other hand, it may also raise the
dependence of individual accident risks, e.g. if there is a software bug that lets the system crash in all the cars at a
particular date. Hence, the new technology will increase both risk equity and dependence at the same time. Similar
observations have been made, for instance, on systemic risk in the banking industry (see Beale et al., 2011).
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becomes more catastrophic iff the correlation ρ′ between x̃′1 and x̃′2 is larger than the critical level

of correlation ρ∗, i.e.

ρ′ > ρ∗ :=
δ(p2 − p1 + δ) + ρ

√
p1
√

1− p1
√
p2
√

1− p2√
1− p1 + δ

√
p1 − δ

√
p2 + δ

√
1− p2 − δ

. (1)

Proof. We first extend a result in Proposition 1 showing that even when the marginals p1 and p2

are not kept fixed before and after the risk transfer, an increase in the probability of simultaneous

deaths is equivalent to a more catastrophic distribution of fatalities. Let π′2 = π2 + γ > 0. Keeping

the number of expected fatalities constant, i.e. π′1 + 2π′2 = π1 + 2π2, we have π′1 = π1− 2γ > 0 and

in turn π′0 = π0 + γ, because the sum of probabilities must equal one. Therefore, the distribution

is more catastrophic iff γ > 0, and thus π′2 > π2.

Next, we compute the respective probabilities of simultaneous deaths before and after the risk

transfer. We find that

π2 = E[x̃1x̃2] = p1p2 + ρ
√
p1(1− p1)

√
p2(1− p2), (2)

and

π′2 = E[x̃′1x̃
′
2]

= (p1 − δ)(p2 + δ) + ρ′
√

(p1 − δ)(1− p1 + δ)
√

(p2 + δ)(1− p2 − δ). (3)

π′2 > π2 whenever ρ′ is sufficiently high (i.e., iff condition (1) is satisfied). �

Note that when ρ = 0, then ρ∗ < 0. This result is intuitive as a Pigou-Dalton transfer when

risks are independent increases the joint probability of deaths (see also Proposition 4, (i)). As

stated above, a Pigou-Dalton transfer in risk may have two distinct effects on the distribution

of fatalities: i) through the change in the marginal distributions and ii) through a change in the

correlation between the two risks. Condition (1) in Proposition 3 depends on both effects, and it

seems useful to think about them separately. The effect on the marginal distributions corresponds

to a change in δ, keeping the correlation structure fixed: ρ′ = ρ. The effect on the dependence

structure corresponds to a change in correlation from ρ to ρ′ assuming no changes in the marginal

13



distributions (i.e., δ = 0). However, it would be fallacious to separate the two effects as the change

in correlation is bounded (see Lemma 1), and the range over which it is defined depends on the

marginal distributions.7 In other words, the range of attainable correlation between x̃′1 and x̃′2 is a

function of δ, because the correlation ρ′ between two risks with respective probabilities p1 − δ and

p2 + δ cannot be larger than

ρmax(δ) :=

√
p2 + δ√
p1 − δ

√
1− p1 + δ√
1− p2 − δ

. (4)

The minimum correlation depends on whether (p1 − δ) + (p2 + δ) = p1 + p2 is larger than 1 or not

and is also defined by Lemma 1. Furthermore, ρmax(0) equals the maximum correlation ρ between

the initial risks if δ = 0.

Figure 1 displays the comparative statics analysis for a numerical example where the two effects

are simultaneously at work. The grey-shaded areas in the four panels of Figure 1 represent the

admissible range for the transfer δ (on the x-axis) and the correlation ρ′ (on the y-axis) parameters

such that the distribution of fatalities is more catastrophic after the Pigou-Dalton transfer (the

example assumes that p1 = 0.8, p2 = 0.3, δ ∈
[
0, p1−p22

]
, and considers different initial values of ρ).

More specifically, Figure 1 illustrates four situations in which the initial correlation between the

two agents’ risks is equal to ρ = ρmin(0) = −0.76 (Panel A), ρ = −0.5 (Panel B), ρ = 0 (Panel C),

and ρ = ρmax(0) = 0.33 (Panel D), respectively. Each panel plots the critical level of correlation

ρ∗ as well as the attainable minimum and maximum correlation (4) as a function of δ using the

relationships of Lemma 1. Two areas are displayed, the grey hatched (light green) area corresponds

to the case in which catastrophic risk increases (decreases) after the Pigou-Dalton transfer of δ.

Several special cases of Proposition 3 are worth to be discussed in more detail. We summarize

them in Proposition 4.

Proposition 4. Assume N = 2 and p1 > p2. In the following special cases, the distribution of

fatalities becomes more catastrophic after a Pigou-Dalton transfer in risk:

(i) ρ′ > ρ and δ > 0 (which includes Keeney’s (1980) result for ρ′ = ρ = 0, and fixed correlation

ρ′ = ρ, as special cases);

7This implies that the comparative statics analysis of a change in the risk transfer δ, assuming that the correlation
ρ is kept constant, can be fallacious.
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Panel A: ρ = −0.76 Panel B: ρ = −0.5

Panel C: ρ = 0 Panel D: ρ = 0.33

Figure 1: Correlation domains of ρ′ for four initial values of ρ, assuming p1 = 0.8, p2 = 0.3, and
δ ∈

[
0, p1−p22

]
.

(ii) δ = 0 and ρ′ > ρ (no change in the marginal distribution of fatalities, but an increase in

correlation);

(iii) ρ is equal to the minimum correlation (as computed in Lemma 1) between the two risks before

the Pigou-Dalton transfer with δ > 0;

(iv) ρ′ is equal to the maximum correlation (as computed in Lemma 1) between the two risks after

the Pigou-Dalton transfer with δ > 0;

(v) δ > 0 and p1 = 1 (agent 1 is certain to die) or p2 = 0 (agent 2 is certain to survive).
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Proof. We start from the expressions of π2 and π′2 given by Eqs. (2)-(3) and show that π′2 > π2 in

each of the above statements (i)-(v).

In order to prove (i), note that by definition a Pigou-Dalton transfer imposes δ 6 p1−p2
2 , so that

p1p2 6 (p1−δ)(p2+δ) and
√

1− p1 + δ
√
p1 − δ

√
p2 + δ

√
1− p2 − δ >

√
p1
√

1− p1
√
p2
√

1− p2. For

ρ′ > ρ > 0, the proof of (i) follows directly from the expressions of π2 and π′2 in Eqs. (2)-(3) and

π′2 > π2. For ρ 6 ρ′ < 0, the result still holds but the proof is longer and therefore relegated to the

Appendix.

The proof of (ii) follows directly from Proposition 1. This case isolates the effect of correlation.

Note that (iii) and (iv) are special cases of (i).

Finally, we prove (v) as follows. First, observe that for p1 = 1 we have ρ∗ := δ(p2−1+δ)√
δ(1−δ)

√
(p2+δ)(1−p2−δ)

,

which equals the minimum bound identified by Lemma 1 (for p1 + p2 > 1). Second, observe that

for p2 = 0, ρ∗ = δ(−p1+δ)√
(1−p1+δ)(p1−δ)

√
δ(1−δ)

, which equals the minimum bound identified by Lemma 1

(for p1 + p2 6 1). Thus, we always obtain ρ′ > ρ∗ for these two special cases. �

Statement (i) of Proposition 4 is apparent in all of the four panels in Figure 1: the horizontal

line representing the level ρ′ = ρ always belongs to the grey-shaded area where the distribution

of fatalities becomes more catastrophic. Statement (ii) follows immediately from the inspection of

the ρ-values at δ = 0. Statement (iii) corresponds to Panel A in Figure 1, for which the correlation

between the initial risks is minimum. Statement (iv) is, again, apparent in all four panels as the

dashed line that represents the maximum correlation for ρ′ always belongs to the grey-shaded area,

in which the distribution of fatalities is more catastrophic. Statement (v) illustrates a Pigou-Dalton

transfer between two agents in which the correlation between the initial risks is equal to 0, which

is also the minimum attainable correlation.

4 Generalization to more than two agents

We already observed in the two-agent world that the distribution of fatalities can become more

or less catastrophic when either the correlation or the marginal distributions are altered through a

Pigou-Dalton transfer in risk. In this section, we parallel the previous discussion for N > 2 agents.

As in §2.2, we first discuss whether the distribution of fatalities becomes more (or less) catastrophic
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when only the dependence structure changes. Based on §3, we then look at the effect of a change in

the marginal distributions of two risks in the presence of N−2 other agents. Under the assumption

of a fixed dependence structure among the N − 2 other agents, we show that the results obtained

for N = 2 still hold. Next, we relax the constraint on the dependence structure and, instead,

make assumptions about pairwise correlations. As is well known, pairwise correlations alone do

not provide sufficient information to pin down the dependence structure of the x̃1, ..., x̃N risks. We

can, however, show that the distribution of fatalities becomes more variable after a Pigou-Dalton

transfer with uncorrelated risks. At the end of §4, we derive more general sufficiency conditions

under which the distribution of fatalities becomes more variable after a Pigou-Dalton transfer in

risk.

4.1 Extremal dependence and the distribution of fatalities

In situations with N > 2 agents it is not obvious how one should compare distributions of

fatalities against each other as it is unclear how the dependence structure among N risks should

be defined. Even for Bernoulli random variables, the dependence structure involves more than the

pairwise correlation coefficients ρij (as in §2.2).8 Without restricting the dependence structure of

the N -agents’ risks, we can derive results for the comonotonic and antimonotonic case, respectively.

These two extreme dependence structures are defined as follows.

Definition 4. Consider i = 1, 2, ..., N agents with pi ∈ (0, 1) and let d̃ = x̃1 + ...+ x̃N be the corre-

sponding distribution of fatalities. Let then d̃c denote the comonotonic dependence structure (also

known as the maximum correlation between the risks). Moreover, let d̃a denote the antimonotonic

dependence structure implying that in all states either M or M + 1 deaths occur. Formally, M is

the integer number such that the expected number of fatalities is µ := p1 +p2 + ...+pN ∈ [M,M+1[.

The distribution of fatalities d̃a thus takes one of two values: M with probability pM = M + 1− µ,

or M + 1 with probability 1− pM = µ−M .9

Based on this definition, we obtain the following intuitive result.

Proposition 5. The distribution of fatalities d̃ is always less catastrophic than d̃c, and always more

8Situations (J) and (K) in §4.3 provide an example of uncorrelated risks that are still not independent.
9Note that the expression of pM is computed such that the expected number of fatalities is preserved; i.e.,

pMM + (1− pM )(M + 1) = µ.
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catastrophic than d̃a. Namely, for all f concave and all possible distributions of fatalities d̃:

E[f(d̃c)] 6 E[f(d̃)] 6 E[f(d̃a)] = f(M)pM + f(M + 1)(1− pM ).

Proposition 5 is closely related to Lemma 1 as it defines an admissible range of dependence

for N > 2 agents (see the Appendix for a detailed proof). The most and least catastrophic

distributions of fatalities, d̃c and d̃a, are obtained when correlation is “maximized” and “minimized”,

respectively. Meilijson and Nadas (1979) proved that maximum correlation is obtained whenever

risks are comonotonic; i.e., concentrated to specific states of the world. The least catastrophic

distribution of fatalities is obtained by a generalization of the negative dependence structure in N

dimensions. This generalization is far from trivial, however. Take the example of three risks—x̃, ỹ,

and z̃—and assume that x̃ is negatively correlated with ỹ and also negatively correlated with z̃; then,

by definition, ỹ and z̃ must be positively correlated. This simple example highlights that it is not

straightforward to define what it means that three variables are negatively correlated (Meyer and

Strulovici, 2012). In the special case of Proposition 5, all risks are Bernoulli distributed and the least

catastrophic distribution of fatalities is therefore explicitly known (see Bernard et al. (2017) and

the proof in the Appendix.For more general distributions of risks, Puccetti and Rüschendorf (2012)

recently proposed a rearrangement algorithm, which approximates the antimonotonic dependence

structure of high-dimensional problems.10

Let us further illustrate Proposition 5. Situations (G) to (I) have the same marginal distri-

butions for x̃1, x̃2, and x̃3 (p1 = 1/2, p2 = 1/4, and p3 = 1/2), but they differ in terms of their

10The rearrangement algorithm is based on the following idea. Denote the distribution of fatalities aggregated over
all but one agent, say agent i, by d̃−i :=

∑
j 6=i x̃j . The distribution of fatalities becomes less variable iff the correlation

ρi between d̃−i and x̃i decreases (for any agent i = 1, 2, ..., N). This result follows from the fact that the variability of

the distribution of fatalities can be expressed as var(d̃) = var(x̃i + d̃−i)= var(x̃i) + var(d̃−i) + 2ρi

√
var(d̃−i)

√
var(x̃i),

in which only ρi is affected.
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dependence structure.

x̃1 x̃2 x̃3

1 0 1

1 1 0

1 0 1

1 0 0

0 0 0

0 1 1

0 0 0

0 0 1



x̃1 x̃2 x̃3

1 1 1

1 1 1

1 0 1

1 0 1

0 0 0

0 0 0

0 0 0

0 0 0



x̃1 x̃2 x̃3

1 0 1

1 0 0

1 0 0

1 0 0

0 0 1

0 1 1

0 1 0

0 0 1



(G) (H) (I)

d̃G

2

1

0

π2 = 4
8

π1 = 2
8

π0 = 2
8

d̃cH

3

2

0

π3 = 2
8

π2 = 2
8

π0 = 4
8

d̃aI

2

1

π2 = 2
8

π1 = 6
8

Situation (G) is a situation with uncorrelated risks. Specifically, all pairs {x̃1, x̃2}, {x̃1, x̃3},

and {x̃2, x̃3} have pairwise zero correlation (ρ12 = ρ13 = ρ23 = 0). Situation (H) gives rise

to the most catastrophic distribution of fatalities d̃cH , and situation (I) to the least catastrophic

distribution of fatalities d̃aI . The expected number of fatalities is in all three situations µ = E[d̃] =

1.25, but the range of possible outcomes differs across the situations. In particular, d̃aI takes on only

two values: one death with probability pM = 1 + 1− 1.25 = 0.75 and two deaths with probability

1− pM = 0.25. Also observe that the least catastrophic distribution of fatalities is such that each

individual risk x̃i is in reverse order with d̃−i :=
∑

j 6=i x̃j (i.e., with the distribution of fatalities

over all but agent i). In other words, the states wherein x̃i = 1 correspond to the states of the

smallest value of d̃−i are attained. (As outlined in footnote 10, this is necessary to attain minimum

correlation.) Lastly, note that the variability of the distributions of fatalities largely differs across

the situations: var(d̃G) = 11/16 in (G), var(d̃cH) = 27/16 in (H), and var(d̃aI ) = 3/16 in (I). By

19



definition, the latter two variance terms are the maximum and minimum variance, respectively.

The result in Proposition 5 indicates that the equivalence result between an increase in de-

pendence and a more catastrophic distribution holds under N > 2 for the two most extreme

distributions of fatalities. However, the result is not general because it does not characterize the

effect of “more dependence”. Moreover, we can easily show that another equivalence result of

Proposition 1 fails. An increasing probability of simultaneous fatalities no longer implies a more

catastrophic distribution. A simple counterexample with N = 3 suffices to demonstrate this.

Define d̃ by (π0, π1, π2, π3) = (0, 3/5, 0, 2/5) and d̃′ by (π0, π1, π2, π3) = (1/5, 0, 3/5, 1/5). Both

distributions have the same mean (i.e., 9/5), but d̃ implies a higher probability of simultaneous

fatalities π3 (i.e., 2/5 > 1/5). Nevertheless, d̃ has a lower probability that at least two fatalities

occur (i.e., 2/5 < 4/5). There exist (at least) two concave functions that do not imply the same

order: E[−max(d̃ − 1, 0)] = −0.8 > E[−max(d̃′ − 1, 0)] = −1 and E[−max(d̃ − 2, 0)] = −0.4 <

E[−max(d̃′ − 2, 0)] = −0.2. Therefore, d̃ cannot be more catastrophic than d̃′.

4.2 Pigou-Dalton transfers with fixed dependence

We now examine the impact of a Pigou-Dalton transfer in risk between two agents in a risky

social situation involving N > 2 agents. Remember that Keeney (1980)’s result considers N agents

but assumes risk independence among the N agents. In practice, independent risks are often

implausible and we therefore extend Keeney’s result assuming fixed risk dependence among the

N − 2 other agents, who are not involved in the Pigou-Dalton transfer.

Proposition 6. Let N > 2, and consider a Pigou Dalton transfer in risk between agents 1 and

2. Assume that this transfer does not affect the dependence between the other agents in the fol-

lowing sense: only the probabilities that either agent 1 or 2 dies and that both agents 1 and 2 die

simultaneously may be altered by the risk transfer. Then, the result given in Proposition 3 still

holds: the distribution of fatalities becomes more catastrophic iff ρ′ > ρ∗ where ρ′ is the correlation

between agents 1 and 2’s risks after the risk transfer and ρ∗ is the critical level of correlation given

in Equation (1).

Proof. See the Appendix.

Proposition 6 demonstrates that, if the transfer in risk does not affect the dependence structure

among the N − 2 other agents, Keeney’s result carries over to N > 2 agents provided it holds for
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agents 1 and 2 (in the N = 2 case). The latter condition is met, for instance, if the correlation

between the two agents stays the same, i.e. ρ = ρ′, as shown in Proposition 4.

Another special case assumes fixed dependence among all N agents, which implies fixed pair-

wise correlations and, therefore, ρ = ρ′. As an immediate corollary of Proposition 6, Keeney’s result

holds whenever the dependence among all N agents is kept fixed. One may argue that keeping the

dependence structure among the agents not involved in the Pigou-Dalton transfer fixed is a strong

assumption. Yet, as we show in §4.4, if one relaxes this constraint, one might not even be able to

conclude whether or not the resulting distribution of fatalities is more variable.

4.3 Pigou-Dalton transfers with pairwise uncorrelated risks

In the remainder of the paper, we will relax the constraint on the dependence structure, and

make instead assumptions about pairwise correlations. Even though it is well known that pairwise

correlations provide an insufficient statistic to map out the full dependence structure of multiple

risks (Embrechts et al., 2002), economists and decision scientists often rely on correlation coefficients

to measure the dependence between two variables.

We start with a striking negative result. Indeed, we show that Keeney’s result does not even

hold when all the N risks are pairwise uncorrelated. Again, we make use of a simple example.

Consider situations (J) and (K), below. The two situations consist of S := 16 states of the

world. In each situation, three agents are faced with the risks x̃1, x̃2, and x̃3, whose pairwise

correlation coefficients are equal to zero before (J) and after the Pigou-Dalton transfer (K). One

can easily verify that corr(x̃1, x̃2) = corr(x̃1, x̃3) = corr(x̃2, x̃3) = 0 and corr(x̃′1, x̃
′
2) = corr(x̃′1, x̃3) =

corr(x̃′2, x̃3) = 0. The distributions of fatalities, d̃J and d̃′K , are again depicted as trees.
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x̃1 x̃2 x̃3

1 0 1

1 1 1

1 0 1

1 0 1

1 0 1

1 1 1

1 0 0

1 0 0

1 0 0

1 1 0

1 0 0

1 0 0

0 0 1

0 1 0

0 0 1

0 0 0



x̃′1 x̃′2 x̃3

0 1 1

0 1 1

1 0 1

1 0 1

1 0 1

0 1 1

1 1 0

0 0 0

1 1 0

0 0 0

1 1 0

0 0 0

1 0 1

0 0 0

0 1 1

1 1 0



(J) (K)

d̃J

3

2

1

0

π3 = 2
16

π2 = 5
16

π1 = 8
16

π0 = 1
16

d̃′K

2

0

π′2 = 12
16

π′0 = 4
16

Observe that the variance increases from var(d̃J) = 5
8 to var(d̃′K) = 6

8 due to the Pigou-

Dalton transfer between agent 1 and 2, demonstrating that the post-transfer distribution of risk

is more variable. However, d̃′K is not more catastrophic. Consider the concave function f(x) =

−max(x − ψ, 0). For ψ = 2.5, E[f(d̃′K)] = 0 > E[f(d̃J)]. Therefore, the Pigou-Dalton transfer

results in an increased variability, but not in more catastrophic risk.
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Situations (J) and (K) indicate that pairwise zero-correlation is insufficient to maintain

Keeney’s result when risks are dependent. Of course, pairwise zero-correlation does not imply

independence. In the above example, x̃1, x̃2, and x̃3 are not independent:

Pr(x̃1 = 1, x̃2 = 1, x̃3 = 1) =
2

16
6= p1p2p3 =

3

32
.

Neither are x̃′1, x̃′2, and x̃3:

Pr(x̃′1 = 1, x̃′2 = 1, x̃3 = 1) = 0 6= p′1p
′
2p3 = (p1 − δ)(p2 + δ)p3 =

1

8
.

We can then prove the following result.

Proposition 7. Assume there are N > 2 agents facing the risks x̃1, ..., x̃N , all of which exhibit

pairwise zero correlation, i.e. corr(x̃i, x̃j) = 0 for all i 6= j. Moreover, assume that after a Pigou-

Dalton transfer in risk between agent 1 and 2 the pairwise correlations are still equal to zero:

corr(x̃′a, x̃
′
b) = 0 for all a 6= b. Then,

(i) the distribution of fatalities after the Pigou-Dalton transfer may or may not be more catas-

trophic;

(ii) the distribution of fatalities after the Pigou-Dalton transfer is more variable.

Proof. The counterexample shown above proves (i). To prove (ii), we compute the variance of

the distribution of fatalities before and after the Pigou-Dalton transfer for a situation in which all

risks have pairwise zero-correlation. We assume N = 3. Before the transfer, the variance of the

distribution of fatalities is given by

var(d̃) = var(x̃1) + var(x̃2) + var(x̃3) + 2ρ
√

var(x̃1)
√

var(x̃2) + 2cov(x̃1, x̃3) + 2cov(x̃2, x̃3), (5)

where var(x̃i) = pi(1 − pi) for i = {1, 2, 3}. After the transfer, the variance of the distribution of

fatalities becomes

var(d̃′) = var(x̃′1) + var(x̃′2) + var(x̃′3) + 2ρ′
√

var(x̃′1)
√
var(x̃′2) + 2cov(x̃′1, x̃

′
3) + 2cov(x̃′2, x̃

′
3), (6)

with var(x̃′1) = (p1 − δ)(1− p1 + δ), var(x̃′2) = (p2 + δ)(1− p2 − δ), var(x̃′3) = p3(1− p3).
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Using the information on the pairwise zero-correlation, we further simplify expressions (5) and

(6) to

var(d̃) = p1(1− p1) + p2(1− p2) + var(x̃3),

var(d̃′) = (p1 − δ)(1− p1 + δ) + (p2 + δ)(1− p2 − δ) + var(x̃′3).

The result underlines that the Pigou-Dalton transfer only affects the variances of x̃1 and

x̃2, while var(x̃′3) = var(x̃3) because the distribution x̃3 did not change. It follows that for all

δ ∈ [0, p1−p22 ], var(d̃′) > var(d̃). The generalization of the proof to N > 3 is straightforward. �

Proposition 7 demonstrates that, for N > 2, it is impossible to make generic statements about

whether the distribution becomes more or less catastrophic based on pairwise correlation coefficients

alone. Yet one can conclude on the variability of the distribution of fatalities. In the rest of the

paper, we will thus focus our attention on the variability of the distribution of fatalities.

4.4 Pigou-Dalton transfers with correlated risks

In this section, we address situations in which the risks to N > 2 agents are correlated. A

Pigou-Dalton transfer in risk is then implemented between agents 1 and 2 (presuming p1 > p2).

If there is dependence among the risks in a N -agent world, one cannot know whether or not the

distribution of fatalities becomes more variable after the Pigou-Dalton transfer. The following

impossibility result underpins our claim.

Proposition 8. Assume there are N > 2 agents facing the risks x̃1, ..., x̃N . The effect of a Pigou-

Dalton transfer in risk (from agent 1 to agent 2) on the distribution of fatalities is ambiguous in

the following sense: If the dependence structure among agents 3,..,N is altered by the transfer, and

if N is large enough, then it is generally impossible to conclude about whether the distribution of

fatalities becomes more or less variable.

Proof. See the Appendix.

Proposition 8 states that it is impossible to predict how a Pigou-Dalton transfer in risk alters

the degree of variability when the transfer in risk can arbitrarily affect the dependence structure of

agents not directly involved in the transfer. In the following, we further constrain the problem and
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assume that the variance of the sum of risks faced by the agents not involved in the transfer is fixed.

This additional constraint allows us to formally describe how a Pigou-Dalton transfer between two

correlated risks affects the distribution of fatalities. While the equivalence results established in

Proposition 9 resemble those established in Proposition 6, it is important to recall that, in general,

the notion of “more variable” is less demanding than that of “more catastrophic”.

Proposition 9. Assume that there are N > 2 agents facing the risks x1, ..., xN and the variance

of the distribution of fatalities of agents 3, .., N is not altered through a Pigou-Dalton transfer in

risk δ ∈
[
0, p1−p22

]
between agent 1 and agent 2. Then, the two following statements are equivalent:

(i) the distribution of fatalities after the Pigou-Dalton transfer is more variable;

(ii) the new correlation ρ′ between x̃′1 and x̃′2 is strictly larger than a critical level of correlation,

i.e.

ρ′ > ρ∗ +
cov

(
x̃1 + x̃2,

∑N
i=3 x̃i

)
− cov

(
x̃′1 + x̃′2,

∑N
i=3 x̃i

)
√

(p1 − δ)(1− p1 + δ)
√

(p2 + δ)(1− p2 − δ)
, (7)

where ρ∗ is the critical level of correlation (1) given in Proposition 3 for the two-agent world.

Proof. By assumption var(ỹ) = var(ỹ′). Therefore, var(d̃′) > var(d̃) iff

var(x̃′1) + var(x̃′2) + 2ρ′
√
var(x̃′1)

√
var(x̃′2) + 2cov(x̃′1 + x̃′2, ỹ)

> var(x̃1) + var(x̃2) + 2ρ
√

var(x̃1)
√
var(x̃2) + 2cov(x̃1 + x̃2, ỹ).

Solving for ρ′ yields:

ρ′ >
δ (δ − p1 + p2)√
var(x̃′1)

√
var(x̃′2)

+ ρ

√
var(x̃1)

√
var(x̃2)√

var(x̃′1)
√
var(x̃′2)

+
cov(x̃1 + x̃2 − x̃′1 − x̃′2, ỹ)√

var(x̃′1)
√
var(x̃′2)

,

where the first two terms on the right hand side are equal to the critical level of correlation ρ∗

found in Proposition 3 for N = 2. �

Some observations on Proposition 9 are warranted. First, note that for the special case ana-

lyzed by Keeney (1980) we have ρ = ρ′ = cov(x̃1 + x̃2 − x̃′1 − x̃′2, ỹ) = 0 so that the inequality (7)

is satisfied, because δ − p1 + p2 < 0. More generally, the extension to N agents does not yield a
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different result than the one obtained for two agents when

cov

(
x̃1 + x̃2,

N∑
i=3

x̃i

)
= cov

(
x̃′1 + x̃′2,

N∑
i=3

x̃i

)
.

In words, Proposition 9 holds whenever the Pigou-Dalton transfer in risk between agent 1 and agent

2 does not affect the correlation between the distribution of fatalities of these two agents and the

distribution of fatalities of the other N − 2 agents. This condition is less restrictive than assuming

(as we do in Proposition 6) that the dependence of among the agents is fixed. On the other hand,

Proposition 9 considers a weaker concept than that of “more catastrophic”.

5 Conclusion

Risks that may cause many thousand casualties are ubiquitous in today’s world. This paper

examines the statistical dependence structure of risky social situations. In particular, we explore

the relationship between more catastrophic and more equitable distributions of risk. To do so, we

define a more catastrophic situation as a mean-preserving spread in the distribution of fatalities,

and a more equitable situation as one that results in a smaller difference between the probabilities

of death faced by any two agents. Based on these definitions, we demonstrate that more correlation

between two risks is equivalent to a higher probability of simultaneous deaths and we characterize

a set of conditions under which more equity induces such a more catastrophic situation.

The key contribution of our paper is the extension of Keeney (1980)’s seminal result on the

ex ante / ex post conflict in risk management to a world in which risks are interdependent. It

delivers a simple message: Keeney’s result holds whenever the dependence structure is not altered

“too much” by the risk transfer, implying that it always holds when the dependence structure

remains unchanged. The result breaks down when the transfer leads to a significant change in

how the total risk burden is shared among the population at risk. This limitation is important

as it implies that, in specific situations, a policy-induced redistribution of risk can simultaneously

reduce inequity and alleviate catastrophe risk. In general, however, a tradeoff between the two

objectives is to be made. Yet, common social welfare functions (utilitarian, maximin, prioritarian)

are not flexible enough to consider the tradeoff between ex ante and ex post objectives (Bovens

and Fleurbaey, 2012; Rheinberger and Treich, 2016). Policy makers who wish to rank risky social
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situations with respect to these objectives may therefore have to fall back on different approaches

such as multi-criteria analysis.

Generalizations to more than two agents come at the cost of additional complexity. It is

impossible to obtain any result for multiple risks without specifying the change in the dependence

structure. The characterization of all pairwise correlations is—perhaps unsurprisingly—not enough

to derive results on the dependence structure of multiple risks. Keeney’s result does not even hold

when the risks are pairwise uncorrelated; it is sufficient, however, to conclude about the impact

of the risk transfer between two agents—in the presence or absence of other agents—if one is

interested in the weaker notion of more variable risk. In this case, the result applies whenever the

risk transfer does not affect the correlation between the risk distributions of the two agents involved

in the transfer and the distribution of risk among the other N − 2 agents.

While we have derived the above results in the context of mortality risk, the underlying

mathematics apply to other managerial decisions that involve risky binary outcomes. One might

think of defining the optimal vaccination strategy, or allocating resources to innovation initiatives,

or making investment decisions in pharmaceutical labs, to name only a few areas of application.

There is mounting experimental evidence that people care about ex ante and ex post tradeoffs in

risky social decisions, and that the correlation of individual risks matters. We conclude that the

analysis of the dependence structure of social risks is subtle and deserves more attention in future

theoretical and empirical studies.
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Appendix

A.1 Example of independent risks after the risk transfer

We asserted in §3 that it is possible to find examples in which the two risks before the Pigou-

Dalton transfer in risk, x̃1 and x̃2, as well as after the transfer, x̃′1 and x̃′2, are uncorrelated and

hence independent.11 Consider the below situations (X) and (Y ) with S := 16 states (ω1, ..., ω16).

x̃1 x̃2

1 1

1 1

1 1

0 1

1 0

1 0

1 0

0 0

1 0

1 0

1 0

0 0

1 0

1 0

1 0

0 0



x̃′1 x̃′2

1 1

1 1

0 1

0 1

1 1

1 1

0 1

0 1

1 0

1 0

0 0

0 0

1 0

1 0

0 0

0 0


(X) (Y )

d̃X

2

1

0

π2 = 3
16

π1 = 10
16

π0 = 3
16

d̃′Y

2

1

0

π2 = 4
16

π1 = 8
16

π0 = 4
16

The individual risks x̃1 and x̃2 in the initial situation (X) are independent, and so are the

individual risks x̃′1 and x̃′2 after a Pigou-Dalton transfer of δ = 1
4 . When the risks are independent

before and after the Pigou-Dalton transfer, as in situations (X) and (Y ), the distribution of fatalities

d̃′ = x̃′1 + x̃′2 is more catastrophic than d̃ = x̃1 + x̃2 as predicted by Keeney (Proposition 2).

11In settings with more than two risks, zero correlation does not necessarily imply independence (see situations (J)
and (K) in §4.3). Yet for two Bernoulli random variables zero correlation always implies independence.
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A.2 Proof of statement (i) in Proposition 4 when ρ < 0

Proof. From (1) we have that

ρ∗(δ) :=
δ(p2 − p1 + δ) + ρ

√
p1
√

1− p1
√
p2
√

1− p2√
1− p1 + δ

√
p1 − δ

√
p2 + δ

√
1− p2 − δ

.

Using Proposition 3, we need to show that ρ′ > ρ∗(δ) for all δ ∈ (0, p1−p22 ). As we assume that

ρ′ > ρ, it is enough to show that ρ > ρ∗(δ). Note that ρ∗(0) = ρ, thus we study the sensitivity of

ρ∗(δ) to δ. We first compute the derivative of ρ∗(δ) with respect to δ:

∂ρ∗(δ)

∂δ
=

(p1 − p2 − 2δ)(A(δ)ρ+B(δ))

2 [(p1 − δ)(1− p1 + δ)(1− p2 − δ)(p2 + δ)]
3
2

(8)

where

A(δ) :=
√
p1(1− p1)p2(1− p2)(2δ2 + 2δ(p2 − p1)− (1 + 2p1p2 − p2 − p1))

and

B(δ) := (p1p2 + (1− p1)(1− p2))(δ2 + δ(p2 − p1)− 2p1p2) + 2p2
1p

2
2.

Observe then that the sign of δ 7→ ∂ρ∗(δ)
∂δ over [0, p1−p22 ] is the same as the sign of the function

δ 7→ A(δ)ρ+B(δ) for δ ∈ (0, p1−p22 ).

Lemma 2. When ρ < 0, the function δ 7→ A(δ)ρ+B(δ) satisfies the following property

∀δ ∈ (0,
p1 − p2

2
), A(δ)ρ+B(δ) < 0. (9)

Proof of Lemma 2. From the expressions of A(δ) and B(δ), we know that A(δ)ρ+B(δ) is a second-

degree polynomial of δ. Differentiating δ 7→ A(δ)ρ+B(δ) gives an affine equation in δ and solving

for its zero gives δ = p1−p2
2 . The function A(δ)ρ + B(δ) achieves its minimum at this value. In

addition, we now prove that

A(0)ρ+B(0) < 0 A′(0)ρ+B′(0) < 0. (10)

Thus (9) follows because of the properties of a polynomial of the second degree in δ (it is decreasing

over the interval [0, p1−p22 ] and thus takes only negative values over this interval).

To prove (10), we need the expressions of A(0), B(0), A′(0) and B′(0) :

A(0) = −
√
p1(1− p1)p2(1− p2)(p1p2 + (1− p1)(1− p2))

B(0) = −2p1p2(1− p1)(1− p2)

A′(0) = 2(p2 − p1)
√
p1(1− p1)p2(1− p2)

B′(0) = (p2 − p1)(p1p2 + (1− p1)(1− p2)).

We distinguish two cases:
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Case 1: when p1 + p2 6 1. Then from Lemma 1, ρ >
−√p1p2√

1−p1
√

1−p2
then

A(0) + ρB(0) 6 p1p2(p1 + p2 − 1) 6 0

A′(0) + ρB′(0) 6 (p2 − p1)(1− p1 − p2) < 0

because p2 < p1.

Case 2: when p1 + p2 > 1. Then from Lemma 1, ρ > −
√

1−p1
√

1−p2√
p1p2

then

A(0) + ρB(0) 6 (1− p1)(1− p2)(1− p1 + p2) < 0

A′(0) + ρB′(0) 6 (p2 − p1)(p1 + p2 − 1) < 0

because p2 < p1. �

Proof of statement (i) in Proposition 4 when ρ < 0. Since δ 6 p1−p2
2 , then from the expression (8)

and Lemma 2, it is clear that

∀δ ∈
[
0,
p2 − p1

2

]
∂ρ∗(δ)

∂δ
6 0. (11)

When δ = 0, then ρ∗ = ρ. Using the fact that ρ∗ is decreasing in δ (i.e. (11)), then for all

δ ∈
[
0, p2−p12

]
ρ∗(δ) 6 ρ∗(0) = ρ 6 ρ′. Since ρ′ satisfies (1), then the distribution of fatalities is

more catastrophic and (i) is proved. �

A.3 Proof of Proposition 5

The fact that the distribution of fatalities d̃ is always less catastrophic than d̃c was first proved

by Tchen (1980). The proof of the first side of the inequality in Proposition 5 follows. The proof

of the other side of the inequality is similar to that of Lemma 3.1 in Bernard et al. (2017). We use

here the fact that the resulting distribution is less catastrophic and not only less variable as it is

the case in their paper.

Lemma 3 (Least catastrophic distribution of fatalities). Denote by µ the average number of fatal-

ities. Define for j = 1, . . . , N,

aj =

(
j∑
i=1

pi

)
mod 1,

and the sets

Ij =

{
[aj−1, aj ] if aj > aj−1

[0, aj ] ∪ [aj−1, 1] if aj < aj−1

,

with the convention that a0 = 0. Then, the least catastrophic distribution is d̃a :=
∑N

j=1 ỹj where
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ỹj are defined by

ỹj = 1ũ∈Ij , (12)

where ũ is a standard uniformly distributed random variable over (0,1). Furthermore, d̃a takes only

two values M with probability pM = M + 1− µ and M + 1 with probability 1− pM where M = bµc
(largest integer inferior or equal to µ).

Proof. Let us first observe that ỹj defined by (12) are Bernoulli with parameter pj . Furthermore,

d̃a = ỹ1 + ỹ2 + · · · + ỹN only takes values M with probability pM or (M + 1) with probability

1 − pM (where pM = 1 may hold if it is constant). Consider any other distribution of fatalities

d̃ = x̃1 + x̃2 + · · · + x̃N with x̃j being a Bernoulli distribution with parameter pj and let us show

that d̃ is more catastrophic than d̃a. Observe that any such distribution of fatalities d̃ takes values

in {0, 1, 2, . . . ., N}.

It is clear that ∀x ∈]0,M [, Fd̃(x) > Fd̃a(x) = 0 and ∀x ∈ [(M + 1),+∞[, Fd̃(x) 6 Fd̃a(x) = 1.

Since Fd̃(x) and Fd̃a(x) are constant on the interval [M,M + 1[ one has

∃c > 0,

{
∀x ∈ (0, c), Fd̃(x) > Fd̃a(x)

∀x ∈ (c,+∞), Fd̃(x) 6 Fd̃a(x)
(13)

namely, c = M + 1 if Fd̃(M) > Fd̃a(x) and c = M if Fd̃(M) 6 Fd̃a(x). In other words, the distribu-

tion function Fd̃ crosses Fd̃a exactly once from above. Since E[d̃] = E[d̃a] this implies the well-known

one-crossing property that characterizes second-order stochastic dominance. �

A.4 Proof of Proposition 6

Proof. The following notation is useful to demonstrate this result. Let Θ be a subset of {1, 2, ..., N}
agents and pΘ be the probability that exactly this subset of agents die. The probability that agent

i dies can then be rewritten as

pi = p{i} +
∑
k1 6=i

p{i,k1} +
∑

k1,k2 6=i
p{i,k1,k2} + ...+ p{1,2,...,N} (14)

because agent i can die alone or together with k = 1, ..., N − 1 other agents.

We demonstrate the result for N = 3. Using Definition (14), we have:

p1 = p{1} + p{1,2} + p{1,3} + p{1,2,3}

p2 = p{2} + p{1,2} + p{2,3} + p{1,2,3}

p′1 = p′{1} + p′{1,2} + p′{1,3} + p′{1,2,3}

p′2 = p′{2} + p′{1,2} + p′{2,3} + p′{1,2,3}.
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Let us now apply a Pigou Dalton transfer in risk: p′1 = p1 − δ and p′2 = p2 + δ, where

0 6 δ 6 p1−p2
2 . Because of the assumption of fixed dependence, the Pigou-Dalton transfer in risk

between agents 1 and 2 can only affect p′{1}, p
′
{2} and p′{1,2}. Let the probability that agents 1 and 2

die simultaneously become: p′{1,2} = p{1,2}+γ. This leads to p1−δ = p′{1}+p{1,2}+γ+p′{1,3}+p
′
{1,2,3},

which using p{1,3} = p′{1,3} and p{1,2,3} = p′{1,2,3} due to the fixed dependence assumption, implies

p′{1} = p{1} − δ − γ.

Similarly, we have p2 + δ = p′{2} + p{1,2} + γ + p′{2,3} + p′{1,2,3} which using again p{2,3} = p′{2,3} and

p{1,2,3} = p′{1,2,3} implies

p′{2} = p{2} + δ − γ.

Therefore, the probability of exactly one death after the Pigou-Dalton transfer is π′1 = p′{1} +

p′{2} + p′{3}, which using p′{3} = p{3}, implies

π′1 = π1 − 2γ.

Similarly, the probability of exactly two deaths is π′2 = p′{1,2} + p′{1,3} + p′{2,3}, which using p′{1,3} =

p{1,3} and p′{1,2} = p{1,2} + γ, implies

π′2 = π2 + γ.

Finally, the probability that all N = 3 agents die simultaneously does not change due to the

assumption of fixed dependence of agent 3’s risk:

π′3 = p′{1,2,3} = p{1,2,3} = π3.

This further implies that the probability that nobody dies is equal to

π′0 = 1− π′1 − π′2 − π′3
= 1− (π1 − 2γ)− (π2 + γ)− π3

= π0 + γ.

The expressions above for π′0, π′1, π
′
2 and π′3 permit to conclude that the distribution of fatalities

becomes more catastrophic after the transfer in risk iff γ > 0, namely iff π′2 > π2. We may follow

the proof of Proposition 3 to demonstrate the result. The proof for N > 3 is analogous. �

A.5 Proof of Proposition 8

Proof. We study the distribution of fatalities d̃ = x̃1 + x̃2 + ...+ x̃N . For notational convenience we

partition the distribution into d̃ = x̃1 + x̃2 + ỹ with ỹ := x̃3 + ... + x̃N . It suffices to show that it
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is not possible to conclude about whether the distribution becomes more variable when N is large

enough. To do so, we compute the variance before and after the Pigou-Dalton risk transfer. The

variance of the pre-transfer distribution of fatalities, var(d̃), and the post-transfer distribution of

fatalities, var(d̃′), follows from (5) and (6), respectively. We are interested in the change in variance:

var(d̃′)− var(d̃) = ∆PD + ∆OA + 2∆cov,

which we split into three terms.

The first term is the change in variance caused by the Pigou-Dalton transfer:

∆PD := var(x̃1
′ + x̃2

′)− var(x̃1 + x̃2);

the second term captures the change in dependence among the other agents not involved in the

Pigou-Dalton transfer:

∆OA := var(ỹ′)− var(ỹ);

and the third term captures the change in dependence between the two agents involved in the

Pigou-Dalton transfer and all the others:

∆cov := cov(x̃1
′ + x̃2

′, ỹ′)− cov(x̃1 + x̃2, ỹ).

The three terms are not of the same size. If N is large, the change in variance caused by the

Pigou-Dalton transfer ∆PD is bounded, whereas ∆OA is not. Specifically, for any p1 > p2 and any

δ ∈ [0, p1−p22 ],

1 > ∆PD > −2. (15)

The proof of (15) is straightforward and thus details are omitted.12 To compute ∆OA, we

use the two extreme cases identified in Proposition 5, in which ỹ′ is a sum of Bernoulli variables

with the respective probabilities pj for j = 3, ..., N . Let µOA := p3 + ... + pN ∈ [Z,Z + 1[ define

the expected number of fatalities among the agents not involved in the transfer (with Z being an

integer). Then

my 6 var(ỹ′) 6My,

where the definitions of minimum variance my := (1− µOA + Z) (µOA − Z) and maximum variance

My :=
(√

p3(1− p3) + ...+
√
pN (1− pN )

)2
hold for both var(ỹ′) and var(ỹ), respectively. Both

extreme situations are possible in the sense that there exists a change in the dependence structure

12Equation (15) follows directly from Lemma 1. There are two possible ways to compute ∆PD: (i) as the difference
between the minimum and maximum variances between the two initial risks x̃1 and x̃2; or (ii) as the difference
between the minimum and maximum variances between the two risks x̃′1 and x̃′2 after the Pigou-Dalton transfer.
When p1 + p2 > 1 then the difference between the maximum variance after the transfer and the minimum variance
before the transfer is equal to 2(δ + (1− p1)), which is less than unity under the assumption on the range of δ. The
difference between the maximum variance before the transfer and the minimum variance after the transfer is equal
to −2(1 − p1), which is larger than −2. In the case of p1 + p2 6 1 the bounds are 2(δ + p2) and −2p2 respectively
and the same conclusion holds.
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of the risks faced by agents 3, ..., N such that var(ỹ) is either equal to the minimum variance my;

or equal to the maximum variance My. When N → ∞, the maximum variance My goes to +∞
and the minimum variance satisfies my ∈ [0, 1] (because 0 6 µOA − Z < 1). Thus,

my −My 6 ∆OA 6My −my,

where the lower (upper) bound is obtained when ỹ has maximum (minimum) variance and ỹ′ has

minimum (maximum) variance. In other words, the lower bound is equal to the maximum decrease

in variance due to the change in the dependence structure among the risks x̃3, ..., x̃N and the upper

bound is the maximum change of variance due to this change in dependence.

The term ∆cov may increase variability, but what is more important to notice is that the

change in the dependence structure of the risks to the agents not involved in the Pigou-Dalton

transfer (∆OA) potentially offsets any other change in variability (∆PD or ∆cov or their sum), be-

cause the effect is unbounded when N →∞. �
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