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Abstract

We address the problem of prediction in the spatial autoregressive SAR model
for areal data which is classically used in spatial econometrics. With the Kriging
theory, prediction using Best Linear Unbiased Predictors is at the heart of the geo-
statistical literature. From the methodological point of view, we explore the limits
of the extension of BLUP formulas in the context of the spatial autoregressive SAR
models for out-of-sample prediction simultaneously at several sites. We propose a
more tractable “almost best” alternative and clarify the relationship between the
BLUP and a proper EM-algorithm predictor. From an empirical perspective, we
present data-based simulations to compare the efficiency of the classical formulas
with the best and almost best predictions.

JEL classification: C21, C53
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1 Introduction

Prediction is a basic concern in geostatistics (Cressie 1990) and, in the spatial
econometrics literature, Bivand (2002) recognizes the importance of the question:
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“Prediction for new data ... is a challenge for legacy spatial econometric models,
raising the question of what a BLUP (best linear prediction) would look like”.

This question appears either as a prediction problem per say or as a by product of
the question of estimation of the parameters in the presence of missing observations.
In the context of a linear model with a CAR (conditional autoregressive) error,
Griffith et al. (1989) use the BLUP to estimate parameters of the model with
missing data. Based on Haining et al. (1984), they propose an iterative process:
starting from a classical OLS estimator, the missing data are predicted and then the
completed data is used to re-estimate the model, then missing data are predicted
again by the BLUP using the observed data and the process is continued until
convergence. LeSage and Pace (2004) study the problem of missing data for the SEM
and SAR models, and also for the SDM (we use the classical acronyms for spatial
models as in LeSage and Pace (2009)). They use a kind of EM algorithm, which
maximizes at step k the likelihood of the observed data completed by the prediction
of missing data by the BLUP of the missing given the observed calculated from step
k − 1. Griffith (2010) uses a similar EM algorithm to tackle missing data in the
context of a SAR. Kelejian and Prucha (2007) study the prediction specifically in the
case of the SDM model. They study some classical predictors and they introduce
a new one based on the knowledge of weighted sums of the neighboring values,
the weights coming from the spatial weights matrix involved in the models. They
compare the different predictors by computing the theoretical prediction variances,
with two choices of weighted matrices from a circular scheme, one with only first
nearest neighbors and a second one with 16 nearest neighbors. Pace and LeSage
(2008) give an overview about prediction with the BLUP. Kato (2008, 2013) explores
the best linear prediction problem in the framework of spatial error models and
using a simulation experiment. He follows a first study of Dubin (2003) comparing
the prediction process using either a geostatistical model or a SEM. In the Dubin
paper, mispecification of the model is taken into account in terms of estimation and
prediction. Note however that Dubin uses the BLUP with a geostatistical model
but not with the SEM where an ad-hoc predictor is introduced. Kato (2008, 2013)
makes a systematic comparison of the BLUP in the case of SEM and points out
the two aspects: estimation with missing data and prediction. Two kinds of spatial
estimations are performed: the first one uses maximum likelihood estimation of a
marginal SEM model based on the global model for observed data and missing data,
and the second uses an EM-like algorithm similar to that of LeSage and Pace (2004).

We first present the different types of prediction situations encountered accord-
ing to whether we predict at a sample unit or an out-of-sample one and to whether
one or several points are predicted simultaneously. In-sample prediction is used as
a measure of model fit like in the coefficient of determination and some graphical
diagnostics. To motivate the need for out-of-sample prediction in the spatial frame-
work, let us present the context of a case study in Lesne et al. (2008). Until 1999,
the French population census was exhaustive and realized by the French statistical
institute (INSEE) approximately every ten years. Since 2004, this exhaustive census
has been replaced by a census survey which consists in annual samples and deliv-
ers an up-to-date information. In particular, the communes with less than 10,000

2



inhabitants at the 1999 census (called small communes) are sampled exhaustively
every five year at the rate of one fifth per year. The sampling design of these small
communes is stratified by region and inside each region, the small communes are
partitioned into five rotational groups by using a balanced sample design taking into
account some auxiliary socio-economics variables given by the 1999 census. Between
2004 and 2009, polling organizations needed an estimate of the population for all
the small communes and of its evolution since the previous complete census of 1999.
The population of all the small communes would not be delivered by the INSEE be-
fore 2009 but data sets containing the population of the first two rotational groups,
corresponding to 2004 and 2005, were already known and could be used to predict
the population of the other three rotational groups. In that case, out-of-sample pre-
diction formulas were necessary for spatial models. Figure 1 presents the locations
of the spatial units where population data was available at the time of this case
study. We will base the simulations on the same territory.

Data available in the base

Data not available

Big communes

Figure 1: Spatial units where population data was available at the time of the Lesne et
al. study.

Our objective in the present work is to study the behavior of the BLUP in the
context of a SAR model. After a state-of-the-art overview of the spatial predictions
in the SAR framework, our first contribution is to gather in the same place the
different formulas used in the literature with a unified notation thus facilitating
their comparison by the community. In the same spirit, we make our simulation
code available as online supplemental material. All the prediction formulas cited in
our paper are implemented in the releases later than 0.5-92 of the spdep R package
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(Bivand and Piras, 2015), following the GSoC 2015 project by M. Gubri1. The
second contribution is to present simulation experiment results as in Kato (2008,
2013), which yield a vector of observed values of the dependent variables and a
collection of sites where its value is unobserved, in a large set of configurations. The
third contribution is to introduce new variants of out-of-sample prediction formulas
among which one extends work by Kelejian and Prucha (2007) and to clarify what
is the relationship between BLUP and a proper EM approach in the SAR model.

In Section 2, we first review the classical prediction formulas encountered in
the literature for the spatial simultaneous autoregressive (SAR or LAG depending
on authors) models. Then, in Section 3, we recall how best linear unbiased pre-
diction (BLUP) can be done in the framework of these models using an adapted
formulation of the Goldberger formula. We introduce several alternatives and finally
demonstrate that the classical formulas can thus be improved upon substantially.
Section 4 presents our simulations results.

2 State of the art about best prediction in

spatial autoregressive SAR models

2.1 Models and prediction situations

We consider prediction in the classical homoscedastic spatial autoregressive SAR
model (SAR model hereafter). Given a spatial weight matrix W and exogenous
variables X, this model can be written

Y = ρWY +Xβ + ϵ, (1)

where E(ϵ | X) = 0. There is no need for a normality assumption of the error term
in the sequel, except when we use the gaussian likelihood, for example in the EM
algorithm section. In reduced form, this is equivalent to

Y = (I− ρW)−1Xβ + (I− ρW)−1ϵ. (2)

Let us recall a few classical facts about this model. The conditional mean of Y in
this model is given by

µ = E(Y | X) = (I− ρW)−1Xβ (3)

and its covariance structure by

Σ = Var(Y | X) = [(I− ρW′)(I− ρW)]−1σ2. (4)

The precision matrix Q is then easily derived

Q = Σ−1 =
1

σ2
(I− ρW′)(I− ρW). (5)

1https://www.google-melange.com/gsoc/project/details/google/gsoc2015/framartin/5717271485874176
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When ρ is known, the best linear unbiased estimator (BLUE) of µ = (I−ρW)−1Xβ
is µ̂ = (I−ρW)−1Xβ̂, where β̂ = (X′X)−1X′(I−ρW)Y is the best linear unbiased
estimator of β as well as its maximum likelihood estimator in the gaussian case.

We will distinguish two types of prediction situations: the in-sample and out-
of-sample cases. In the in-sample prediction problem, we have n spatial units for
which we observe the dependent variable Y as well as the independent variables X
and we want to predict the value of Y at the observed sites after fitting the model
which is the same as computing the fitted value of Y. These predicted values can
be used for example to compute a goodness of fit criterion. In the out-of-sample
case, we have two types of spatial units: the in-sample units for which we observe
the dependent variable YS as well as the independent variable XS and the out-of-
sample units for which we only observe the independent variable XO and we want
to predict the variable YO from the knowledge of YS,XS and XO. In the out-of-
sample case, we will further distinguish according to the number of spatial units
to be predicted simultaneously: if there is only one such unit, we will talk about
a single out-of-sample prediction case, otherwise about a multiple out-of-sample
prediction case.

2.2 Submodels for in-sample and out-of-sample units

Let nO and nS denote respectively the number of out-of sample and in-sample units
with n = nO+nS . As in Kato (2008), we partitionX andY inX = (XS

′ | XO
′)′ and

Y = (YS
′ | YO

′)′ where XS (resp YS) of dimension nS×p (resp: nS×1) denote the
matrix of components of X (resp the vector of components of Y) corresponding to
in-sample spatial units and XO (resp YO) of dimension nO×p (resp: nO×1) denote
the matrix of components of X (resp the vector of components of Y) corresponding
to out-of-sample spatial units. Similarly µ = (µS

′ | µO
′)′. More generally in this

paper, when J denotes a set of indices, the vector ZJ will denote the vector of
components of Z relative to the indices in J. For the case of the spatial weights
matrix, variance and precision matrices, we will need a double index for extraction:
for two sets of indices I and J, and a matrix A, the matrix AIJ will denote the
bloc extracted from A by selecting the rows corresponding to row indices in I and
column indices in J. For example, we partition the spatial weights matrix W as
follows

W =

(
WSS WSO

WOS WOO

)
, (6)

where

• WSS is the nS × nS submatrix corresponding to the neighborhood structure
of the nS in-sample sites,

• WOO the nO ×nO submatrix corresponding to the neighborhood structure of
the nO out-of-sample sites,
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• WOS the nO × nS submatrix indicating the neighbors of the out-of-sample
units among the in-sample units

• WSO the nS × nO submatrix indicating the neighbors of the in-sample units
among the out-of-sample units.

Because for out-of-sample prediction, we need to relate the model driving the in-
sample units to the out-of-sample ones, we assume there is an overall model driving
the in-sample and out-of-sample units. The overall model M is given like (1) for
the n observations of (X,Y):(

YS

YO

)
= ρ

(
WSS WSO

WOS WOO

)(
YS

YO

)
+

(
XS

XO

)
β +

(
ϵS
ϵO

)
.

The sub-model MS driving the data (XS,YS) corresponding to the sample units
follows the equation

YS = [(I− ρW)−1Xβ]S + [(I − ρW)−1ϵ]S, (7)

where the error term has a variance equal to (V ar(Y))SS. However in practice this
model cannot be used for estimating the parameters since only in-sample units are
available. On the other hand, the following simplified model only based on in-sample
units

YS = (I− ρWSS)
−1XSβ+ϵS (8)

can be considered as a feasible approximation to (7) after row-normalization of
WSS and corresponds to the natural model people would use in this circumstance.
Exact compatibility of the two models would imply the following two constraints
((I−ρW)−1X)S = (I−ρWSS)

−1XS for the mean and (V ar(Y))SS = V ar(YS) for
the variance. First note that these two restrictions are not so strong as appeared
when we tested them on the simulations. Moreover they are very similar to the
approximations made by Kato (2013) (see section 3.3) in his EM approach. Finally
the EM approach proposed in section 3.3 does not require these restrictions and
leads to very similar results as the BLUP based on models (7) and (8).
It is important to note that while a corresponding decomposition of the precision
matrix is easily derived from (5) and is an easy combination of extractions from W,
the covariance matrix for sub-model MS on the other hand is not an extraction of
Σ because of the inversion in formula (4).

2.3 Classical prediction formulas

2.3.1 Goldberger formula

Goldberger (1962) proposed a formula for prediction in the framework of a general
linear model Y = µ+ϵ with known variance structure Σ = V ar(ϵ). The Golberger
formula (1962) gives the BLUP (Best Linear Unbiased Predictor) as a linear predic-
tor ŶBP

O := λ′YS, where λ ∈ Rn minimizes E(ŶBP
O −YO)2 under the unbiasedness

constraint that E(ŶBP
O −YO) = 0 yielding

ŶBP
O = µ̂O + Cov(YO,YS)V ar(YS)

−1(YS − µ̂S),
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where µ̂O and µ̂S are the Best Linear Unbiased Estimators respectively of E(YO)
and E(YS). In practice, one does not know the theoretical variance Σ (i.e. ρ in
the SAR model) and one needs to replace it in the formula by an estimator. To
simplify, by a slight abuse of language, we will call BLUP as well the predictor
obtained by substituting the estimated variance since the real BLUP is not feasible.
It is the application of this formula which has given rise to the famous Kriging
predictor in geostatistics. In fact Golberger (1962) gave the formula for a set O
reduced to a point but the formula remains true for a set of points O. In that case
the problem is to find ŶBP

O = Λ′YS minimizing Tr(E(ŶBP
O −YO)(ŶBP

O −YO)′)
under the constraint that E(ŶBP

O −YO) = 0 where Λ is a matrix. Note that the
matrix formulation is equivalent to applying the Goldberger formula one point at a
time. Let us emphasize the fact that the Goldberger formula applies as soon as a
model can be written in a classical general linear model form which is the case for
the SAR model in reduced form with µ given by (3) and Σ given by (4).

2.4 Another formulation of Goldberger formula for SAR
models

Using algebra results from Harville (1997), the Goldberger formula can be written in
terms of the precision matrix Q, as in the prediction formula for Markov gaussian
vector field of Rue and Held (2005, page 31). As LeSage and Pace (2008) point
out, it is based on the fact that Cov(YO,YS)V ar(YS)

−1 = −QOO
−1QOS, which

arises from expressing that the partitioned matrix Q is the inverse of the partitioned
matrix V ar(Y). The Goldberger formula can thus be expressed in terms of precision
matrices as follows

ŶBP
O = ŶTC

O −QOO
−1QOS × (YS − ŶTC

S ), (9)

with

Q =
1

σ2
(I− ρ(W′ +W) + ρ2W′W) =

(
QSS QSO

QOS QOO

)
.

Let us note that the size of the matrix to invert, QOO, is the number of out-of-
sample units whereas in the first version of the Goldberger formula, the size of the
matrix to invert is equal to the number of in-sample units. If the size of the matrix
to be inverted is a crucial point, then using the precision based formula instead of
the based variance one can help. Moreover, this formulation is to be preferred in the
SAR model since the precision matrix is a quadratic function of the weight matrix
whereas the covariance matrix requires an inversion.

2.4.1 In-sample prediction

For the in-sample prediction problem, we consider that the sample units are driven
by equation (8). To emphasize the fact that in-sample predictions for YS will be
different from out-of-sample predictions for the same vector, we will denote Y̌S the
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in-sample predictions and ŶS the out-of-sample ones. In an ordinary linear model
which is model (1) for ρ = 0, the BLUE of µS is given by XSβ̂ and the classical
in-sample predictor of Y is

Y̌T
S = XSβ̂, (10)

where β̂ is the classical estimator of β calculated by fitting the ordinary linear model
with in-sample units YS = XSβ + ϵS.

It is then easy and natural to imagine a predictor for the general case ρ ̸= 0
which we will call the “trend corrected predictor” given by

Y̌TC
S = (I− ρ̂WSS)

−1XSβ̂ := µ̂S, (11)

where β̂ and ρ̂ are the estimators of β and ρ calculated by fitting the model by
gaussian maximum likelihood (ML) with in-sample units. This predictor is used
for example in the LeSage matlab toolbox for computing the in-sample predicted
values. Note however that this one does not possess any kind of optimality property.

Another predictor introduced by Haining (1990) and detailed by Bivand (2002)
is given by

Y̌TS
S = XSβ̂ + ρ̂WSSYS. (12)

Thereafter, we call this predictor the “trend-signal-noise” predictor. This one is
used in the Bivand R package spdep.

Inspired by an idea found in Gaetan and Guyon (2010) for the case of CAR
models and LeSage and Pace (2004) for the case of SEM models, we could propose
an alternative in-sample predictor for the SAR model. This idea consists in using
the BLUP of each in-sample unit value Yi based on the knowledge of the remaining
in-sample units and yields in matrix form the following formula

Y̌BP
S = (I− ρ̂WSS)

−1XSβ̂ −Diag(Q̂SS)
−1 ˜̂QSS(YS − (I− ρ̂WSS)

−1XSβ̂). (13)

where Diag(Q̂SS) denotes the diagonal matrix containing the diagonal of the pre-
cision matrix Q̂SS of the SAR model given by Q̂SS = 1

σ̂2 (I − ρ̂WSS
′)(I − ρ̂WSS),

σ̂2 is the gaussian maximum likelihood estimate of the variance, and ˜̂QSS = Q̂SS−
Diag(Q̂SS). The index BP in the notation is to recall that this formula is based on
some kind of best prediction practice. Using a coordinate formulation rather than
a matrix one, this formula is equivalent to

Y̌i
BP

= µ̂i −
nS∑

j=1,j ̸=i

q̂ij
q̂ii

(Yj − µ̂j), (14)

where q̂ij is the (i, j) element of matrix Q̂SS and µ̂i are the components of µ̂S given
by (11) which is the formula used in LeSage and Pace (2004) for the case of the
SEM model with a µ̂ adapted to the SEM model. Table 1 summarizes the different
formulas.
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Table 1: In-sample predictors formulas
Predictor Formula

BP Y̌BP
S = (I− ρWSS)

−1XSβ̂ −Diag(Q̂SS)
−1 ˜̂QSS(Y − (I− ρWSS)

−1XSβ̂)

TS Y̌TS
S = XSβ̂ + ρ̂WSSYS

TC Y̌TC
S = (I− ρ̂W)−1

SSXSβ̂

2.4.2 Out-of-sample prediction

The trend-signal-noise predictor Y̌TS cannot be extended to the case of out-of-
sample prediction since it requires some values of YO which are unobserved. How-
ever in the case of a single prediction for unit o, it is possible to compute it because
of the presence of zeros on the diagonal of W, which yields

Ŷ TS1

o = Xoβ̂ + ρ̂WoSYS. (15)

The trend-corrected strategy can be extended here because it only involves the
values of X (and not Y) for the out-of-sample units

ŶTC :=

(
ŶTC

S

ŶTC
O

)
= (I− ρ̂W)−1Xβ̂ (16)

and we get

ŶTC
O = −(D−CA−1B)−1CA−1XSβ̂ + (D−CA−1B)−1XOβ̂ (17)

ŶTC
S = (A−BD−1C)−1XSβ̂ − (A−BD−1C)−1BD−1XOβ̂

for (I− ρ̂W) =

(
A B
C D

)
=

(
InS − ρ̂WSS −ρ̂WSO

−ρ̂WOS InO − ρ̂WOO

)
.

Note that ŶTC
S in (16) denotes something different from Y̌TC

S (11) because here
the in-sample prediction takes into account the out-of-sample units. One can check
that the ŶTC

S from (16) coincides with the predictor from (11) when there is no
out-of-sample unit.

Kelejian and Prucha (2007) use Goldberger formula for single out-of-sample
prediction in the particular case when O = {o} and replacing YS by Wo.Y, where
Wo. is row o of matrix W. Griffith (2010) proposes an EM procedure combining
estimation of spatial parameters and imputation of missing values in the framework
of the spatial filtering method (Griffith 2003). Let us mention that the information
set associated to these predictors are different: for ŶTC, it is {X,W}, for ŶTS1

o it
is {X,W,YS}.
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3 Out-of-sample prediction: extensions and

new proposals

3.1 Extension of the Kelejian-Prucha predictor for the
SAR model

In the framework of the SAR model we first propose to generalize the Kelejian-
Prucha (2007, see equation (8) page 367) approach to multiple prediction where
YO is predicted by a linear combination of WOSYS instead of YS. Compared to
our present framework, the approach of Kelejian and Prucha (2007) also includes
the spatially correlated error term model (SEM) but there is a single out-of-sample
unit and the comparisons are made in dimension one based on theoretical prediction
errors. Indeed, it is easy to extend to the case of several out-of-sample units. The
information set is then {X,W,WOSYS}. In that case, the classical formula for
gaussian conditional expectation gives

E(YO |WOSYS) = E(YO)+ΣOSWOS
′(WOSΣSSWOS

′)−1(WOSYS−WOSE(YS).
(18)

When we substitute ρ by ρ̂, σ by σ̂ and finally E(YO) and E(YS) by their natural
estimators, we obtain

ŶBPW
O = ŶTC

O +ΣOSWOS
′(WOSΣSSWOS

′)−1(WOSYS −WOSŶ
TC
S ) (19)

. However we believe that it is unlikely in practical situations that one has the
information about the linear combination of neighboring values WOSYS without
having the entire knowledge of YS. Using the linear combination WOSYS instead
of the full vector YS can only result in a useless loss of information. Moreover, if we
compare formula (19) to (9), the size of the matrix to invert is equal to the number
of out-of-sample units in both cases but (19) uses the variance matrix Σ which has
to be computed by inversion from the precision matrix Q whereas (9) directly uses
Q which is easily computed from W, ρ and σ (see (5)).

For this reason, we propose the following alternative which consists in using the
second version of the Golberger formula for a case where the set S is replaced by N,
where N is the set of all sites in S which are neighbors in the sense of W of at least
one site in O. The idea is to only use among the sample locations the neighbors
of the out-of-sample sites in order to predict: let J be the set of indices of such
neighbors and nJ its size. When necessary, J will be denoted J(O) to indicate the
dependence upon O. Let W{J,O} be the neighborhood matrix for sites which are
in J or O.

W{J,O} =

nJ nO

←→ ↔ WJJ WJO

WOJ WOO

 ↕ nJ

↕ nO

.
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The corresponding partition of the precision matrix corresponding to sites in {J,O}
is

Q̂{J,O} =
1

σ̂2
(InJ+p−ρ̂(W{J,O}+W{J,O}

′)+ρ̂2(W{J,O}
′W{J,O})) =

(
Q̂JJ Q̂JO

Q̂OJ Q̂OO

)
and thus we get the following feasible predictor

ŶBPN
O = ŶTC

O − Q̂−1
OOQ̂OJ(YJ − ŶTC

J ), (20)

where ŶTC
J is obtained by extracting the rows corresponding to units in J from

ŶTC. The advantage of this predictor lies in the fact that it reduces the computa-
tional burden since the size of the matrix Q̂−1

OOQ̂OJ is nO × nJ instead of nO × nS

for the matrix Q̂−1
OOQ̂OS. The improvement is particularly interesting when W is

sparse. When W is dense, as J is closest to S, the advantage is relatively small. In
that case, an alternative for a larger gain in computation, but with a risk of loss of
efficiency, would be to only keep in J the neighbors of O with the highest weights
(for a given threshold).

A variance based version of this new predictor can be written

ŶBPN
O = ŶTC

O + ˆCov(YO,YJ) ˆV ar(YJ)
−1(YJ − ŶTC

J ).

However note that, because of the simple expression of the precision matrix as a
function of the weight matrix in the SAR model, extractions of the precision matrix
are directly linked to extractions of the weight matrix. Hence using a precision
matrix version of Goldberger as we do is much easier than using a covariance matrix
version of Goldberger as in Kelejian and Prucha (2007).
Clearly the new predictor is not optimal, but one can hope it has some almost opti-
mality behavior. Our proposition can be related to the classical “kriging with mov-
ing neighborhood” which is often used in geostatistics. In the framework of spatial
error models (herefater SEM models), Kato (2008) uses the same best prediction
approach but substitutes to the ML parameters estimators some approximations
similar to the ones we describe in section 2.2. Note that because of the links be-
tween W and Q, if we now replace J by J′, where J′ denotes the set of indices of
sites in S which are neighbors of at least one site in O in the sense of W′W, i.e.
second order W neighbors, then the predictor ŶBPN

O will be optimal.

Indeed if S \ J is the set notation for S deprived from S∩J , we have that Q̂OS\J′ = 0
and thus

Q̂−1
OOQ̂OS × (YS − ŶTC

S ) = Q̂−1
OOQ̂OJ′ × (YJ′ − ŶTC

J′ )

and therefore the predictor ŶBPN
O based on the second order W neighbors is exactly

optimal.

3.2 Alternative: back to single prediction

Because the single prediction formulas are simpler, when p out-of-sample units have
to be predicted, we propose to apply the “single out-of-sample” formula to each of
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the out-of-sample unit separately, ignoring at each stage the remaining p− 1 units.
This allows also to include the Trend-signal strategy which only exists in the single
prediction case. This leads us to define alternatives of each of the five predictors
ŶTC, ŶTS, ŶBP, ŶBPW and ŶBPN . The resulting predictors for location o will
be denoted by Ŷ TC1

o , Ŷ TS1

o , Ŷ BP 1

o , Ŷ BPW
1

o and Ŷ BPN
1

o . The precise formulas are
detailed in Table 2. These formulas of course do not apply if an out-of-sample point
has no neighbors among the sample units but in that situation a non-spatial formula
is doing just as well.

3.3 EM approach

The EM algorithm (Dempster et al. 1977) is meant for implementing maximum
likelihood in the case of incomplete data which is our case since YS is observed
whereas YO is not. Let us briefly recall that the original EM algorithm (Dempster
et al. 1977) involves two steps called E-step and M-step. For incomplete observations
(YS observed andYO not observed) and parameter θ, the E-step is the computation
of the expected likelihood function,

H(θ1,θ) = E(L(Y|θ1)|YS,θ). (21)

The M-step then involves maximizing H(θ1,θ0) with respect to θ1, where θ is
the previous value of the parameter. After an initialization of the parameter θ, the
overall algorithm consists in alternating between an E-step and an M-step. Kato
(2013) uses an EM algorithm approach in the framework of the SEM model. Kato’s
(2013) implementation of the EM algorithm involves an approximation in the E-step
replacing H by

H ′(θ1,θ) = L(E(Y|YS,θ))|θ1). (22)

This procedure would be exact if E(Y|YS,θ) were a sufficient statistic which is
not the case. For the SAR model, we propose an exact EM-algorithm since it is
possible to evaluate the expected likelihood in the gaussian case.

Indeed let E = σ2Q and θ = (β, ρ, σ2). The conditional distribution of YO

given YS is gaussian with mean µ∗(θ) = µO + ΣOSΣSS
−1(YS − µS) = µO −

EOO
−1EOS(YS − µS) and with variance covariance matrix

Σ∗(θ) = ΣOO−ΣOSΣSS
−1ΣS0 = ΣOO+ΣOSQSOQOO

−1 = ΣOO+ΣOSESOEOO
−1.

We then get the expected likelihood (up to a constant term)

H(θ1,θ) = −n

2
log(σ2

1) + log |I− ρ1W| −
1

2σ2
1

tr(E(ρ1)OOΣ∗(θ)) (23)

− 1

2σ2
1

(Y∗ − Z(ρ1)β1)
′A(ρ1)(Y

∗ − Z(ρ1)β1) (24)

where Y∗′ = (Y′
S, µ

∗′), Z(ρ1) = (I − ρ1W)−1X, A(ρ1) = (I − ρ1W
′)(I − ρ1W).

Optimizing with respect to β1 and σ1 for given ρ1, we get

β̂1 = (Z(ρ1)
′A(ρ1)Z(ρ1))

−1Z(ρ1)
′A(ρ1)Y

∗
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and

σ̂2
1 =

1

n
(tr(A(ρ1)OOΣ∗(θ)) + (Y∗ − Z(ρ1)β̂1)

′A(ρ1)(Y
∗ − Z(ρ1)β̂1))

Finally the profile expected likelihood as a function of ρ1 which has to be max-
imized in the M-step is

H(ρ1, σ̂1, β̂1) = −
n

2
log(σ̂2

1) + log |I− ρ1W|,

and the EM predictor is

ŶEM
O = µ∗(θ̂1) = µ̂O − Ê−1

OOÊOS(YS − µ̂S) = µ̂O − Q̂−1
OOQ̂OS(YS − µ̂S)

where µ̂ = Z(ρ̂1)β̂1.
Note that this formula only differs from the BP formula (9) by the fact that

the estimators of the parameters are the ones issued from the EM algorithm (hence
involve out-of-sample values) whereas in the BP predictor, they are obtained by
gaussian maximum likelihood from the sample values only. Hence, in the case of
the BP predictor, the EM version uses information set {YS,XO,XS,W} whereas
the ML version uses {YS,XS,WSS}. The impact of this difference depends upon
the parameter estimation difference which we evaluate by simulation later.

4 Comparing the predictors by simulation

4.1 Simulation framework

In order to compare the different predictors, we design a simulation study. As in
Lesne et al. (2008), we use the Midi-Pyrénées region divided into n = 283 cantons for
our study region. We consider two well-known spatial weights matrix specifications:
W1 based on the 10 nearest neighbors scheme (distance is based on the distance
between centroids of the cantons) and W2 based on inverse distance with decay of
influence based on a cut-off beyond 125Km, such thatW1 is relatively sparse (96.5%
of null values) whereas W2 is denser (40% of null values). We use row-stochastic
scalings for both W1 and W2.

We simulate three explanatory variables as follows. X1 follows a gaussian distri-
butionN (15, 3),X2 follows (up to a constant) a binomial distribution B(100, 0.45)/100
and X3 follows a log-uniform distribution log(U[0,283]). In order not to restrict at-
tention to gaussian distributions, the choice of the second distribution is motivated
by its bounded support and the choice of the third by its right skewness. We use the
following spatial autoregressive SAR data generating processes (DGP) to generate
the dependent variable:

Y = (I− ρW)−1(β01n +X1β1 +X2β2 +X3β3 + ϵ) where ϵ ∼ N (0, σ2In), (25)

where 1n = (1, · · · , 1)′ ∈ Rn. The parameter β is fixed to β = (5, 1/4, 6, 1). We
consider two values of σ: σ = 1 which gives an R2 of approximately 90% and σ = 3
which gives 55%. We consider two values of ρ, one positive ρ = 0.35 and one negative
ρ = −0.2. Negative values are interesting to include because they correspond to
situations with competition effects (Elhorst and Zigova, 2014).
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4.2 Out-of-sample prediction simulation results

To evaluate the performance of the different predictors, the number of replications
is 1,000 and we report the average mean square error of prediction over the out-of-
sample units. Table 2 summarizes the formulas for the out-of-sample predictors. In
Table 2, Ŷ TC1

O is the extraction corresponding to unit o, of

{InS+1 − ρ̂

(
WSS WSo

WoS Woo

)
}−1

(
XS

Xo

)
β̂

and β̂ is the parameter estimated with sample units in S.

Table 2: Out-of-sample predictors formulas
Predictor Formula

BP ŶBP
O = ŶTC

O − Q̂−1
OOQ̂OS × (YS − ŶTC

S )

TC ŶTC
O = [(I− ρ̂W)−1Xβ̂]O

TS1 Ŷ TS1

o = Xoβ̂ + ρ̂WoSYS

BPW ŶBPW
O = ŶTC

O + Σ̂OSW
′
OS(WOSΣ̂SSW

′
OS)

−1(WOSYS −WOSŶ
TC
S )

BPN ŶBPN
O = ŶTC

O − Q̂−1
OOQ̂OJ(YJ − ŶTC

J )J for J = J(O)

TC1 Ŷ TC1

o = row o of {InS+1 − ρ̂

(
WSS WSo

WoS Woo

)
}−1

(
XS

Xo

)
β̂

BP 1 Ŷ BP 1

o = Ŷ TC1

o − Q̂−1
oo Q̂oS(YS − ŶTC1

S )

BP 1
W Ŷ

BP 1
W

o = Ŷ TC1

o + Σ̂oSW
′
oS(WoSΣ̂SSW

′
oS)

−1(WoSYS −WoSŶ
TC1

S )

BP 1
N Ŷ

BP 1
N

o = Ŷ TC
o − Q̂−1

oo Q̂oJ(YJ − ŶTC1

J ) for J = J(o)

We choose at random a given number of sites (27 or 54) which will be declared
out-of-sample (in O). We predict the Y variable on the out-of-sample locations
based on the sample S constituted by the remaining sites. We consider several situ-
ations depending upon the number of out-of-sample units and upon the aggregation
level of the out-of-sample units. The corresponding configurations of out-of-sample
units are shown in Figure 2 and the level of aggregation is increasing from left to
right.

Table 3 summarizes the parameter estimates results (by gaussian maximum like-
lihood (ML) and by EM-algorithm (EM)) for configurations 1 and 3 and for 54
out-of-sample units, for ρ = 0.35 and σ = 1. We do not report the case σ = 3
(see supplemental material) because it does not lead to a different interpretation.
In the ML case, the estimation of the coefficients is only based on the sample units
and a renormalization of the in-sample weight matrix is performed. When W is
sparse (W1), in general ML and EM parameter estimators are very similar but in
some cases, they differ: the intercept for configuration 3 is better for EM whereas
the variance for configuration 1 is better for ML. For some simulations, the EM
estimates yield outliers. When W is dense (W2), ML and EM parameter estima-
tors are also very similar. This explains why the predictors behave quite similarly
whatever the method used for estimating the parameters (ML or EM).
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Figure 2: The three configurations for 27 (1st row) and 54 (2nd row) out-of-sample units
positions: configuration 1 (left), configuration 2 (center), configuration 3 (right).

Table 3: Parameter estimation results. Standard deviations in parentheses.
Sparse matrix W1 Dense matrix W2

Conf. 1 (nO = 54) Conf. 3 (nO = 54) Conf. 1 (nO = 54) Conf. 3 (nO = 54)
ML EM ML EM ML EM ML EM

β̂0 6.663 5.732 6.508 5.532 11.185 10.191 11.113 10.054
(2.167) (2.226) (2.319) (2.419) (8.253) (6.752) (7.679) (6.886)

β̂1 0.25 0.251 0.25 0.251 0.251 0.251 0.25 0.251
(0.024) (0.023) (0.024) (0.024) (0.023) (0.023) (0.024) (0.024)

β̂2 5.874 5.958 5.972 5.961 5.99 5.986 5.973 5.975
(1.481) (1.479) (1.474) (1.472) (1.476) (1.475) (1.479) (1.481)

β̂3 1.004 1 1.008 0.999 1 0.999 0.999 0.999
(0.062) (0.062) (0.07) (0.069) (0.062) (0.062) (0.07) (0.069)

ρ̂ 0.284 0.32 0.287 0.328 0.097 0.138 0.1 0.144
(0.084) (0.085) (0.089) (0.094) (0.335) (0.273) (0.309) (0.278)

σ̂2 0.991 1.202 0.991 1.104 0.982 1.791 0.98 1.575
(0.097) (3.238) (0.095) (0.33) (0.096) (6.449) (0.093) (3.923)

We report in Tables 4 and 5 the average over 1,000 replicates of the total mean

square error of prediction MSEk =
1

nO
(YO − Ŷk

O)′(YO − Ŷk
O) for each method

k = BP , TC, TS1, BPW , BPN , TC1, BP 1, BP 1
W , BP 1

N with ρ = 0.35 and σ = 1.
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As before, we do not report the case σ = 3 because it does not lead to different
interpretations. Similarly, we only give comments about the case ρ = −0.2. Finally,
the predictors obtained using parameters estimated by ML or by EM being very
similar, we only report the results using ML estimation. Complete results about
these parameter choices can be found in the supplemental material. We compare
the quality of the predictors when W is sparse (Table 4) and dense (Table 5).

Table 4: Simulation results for the 27 and 54 out-of-sample units case with W1 (sparse).
Standard deviations in parentheses.

27 out-of-sample units 54 out-of-sample units
config 1 config 2 config 3 config 1 config 2 config 3

BP 1.011 1.038 1.033 1.016 1.028 1.035
(0.278) (0.295) (0.28) (0.196) (0.198) (0.203)

BPN 1.011 1.039 1.033 1.016 1.028 1.035
(0.278) (0.296) (0.28) (0.196) (0.198) (0.203)

BP
BPN

100% 100% 100% 100% 100% 100%

BPW 1.013 1.04 1.034 1.017 1.029 1.036
(0.279) (0.296) (0.279) (0.196) (0.199) (0.203)

BP
BPW

99.8% 99.8% 99.9% 99.9% 99.9% 99.9%

BP 1 1.012 1.05 1.057 1.018 1.037 1.053
(0.278) (0.3) (0.284) (0.196) (0.201) (0.208)

BP
BP 1 99.9% 98.9% 97.9% 99.8% 99.2% 98.4%

BPN
1 1.013 1.054 1.058 1.02 1.038 1.056

(0.278) (0.301) (0.284) (0.196) (0.201) (0.209)
BP

BPN
1 99.8% 98.5% 97.8% 99.6% 99.1% 98.1%

BPW
1 1.015 1.054 1.058 1.021 1.039 1.056

(0.278) (0.3) (0.283) (0.196) (0.202) (0.208)
BP

BPW
1 99.6% 98.5% 97.8% 99.5% 99% 98.1%

TS1 1.023 1.057 1.059 1.028 1.043 1.055
(0.279) (0.299) (0.283) (0.198) (0.203) (0.208)

BP
TS1 98.8% 98.2% 97.6% 98.8% 98.6% 98.1%
TC 1.063 1.081 1.069 1.061 1.067 1.07

(0.289) (0.304) (0.288) (0.206) (0.208) (0.211)
BP
TC

95.1% 96% 96.6% 95.8% 96.3% 96.7%
TC1 1.065 1.095 1.098 1.068 1.08 1.087

(0.288) (0.308) (0.293) (0.207) (0.212) (0.216)
BP
TC1 94.9% 94.7% 94.1% 95.1% 95.2% 95.2%

WhenW is sparse (Table 4), whatever configurations and number of sites to predict,
we obtain the following ranking between methods in decreasing order of efficiency

BP < BPN < BPW < BP 1 < BP 1
N < BP 1

W < TS1 < TC < TC1
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Note that the worst ratio is around 94%. As far as the impact of the level of
aggregation is concerned, predictors including a correction for spatial correlation
such as BPN , BPW , BP 1, BPN1 and BPW 1 tend to perform better when the
level of aggregation is low which is understandable since for high aggregation, the
neighborhood of an out-of-sample unit will contain few in-sample units. This effect is
not the same for the predictor TC which does not correct for spatial correlation since
we observe that the ratio BP/TC is now increasing with the level of aggregation.

When W is dense (Table 5), all the predictors seem to be very similar. This can
be explained by the fact that in that case, there is a lot more information about a
given out-of-sample point in the neighboring sample points and hence a good spatial
correction is less necessary. For ρ = −0.2, the comparison between predictors effi-
ciency yields the same ranking for the first three BP,BPN , BPW and some ranking
inversions appear for the last five but with very small efficiency differences. The
value of the worst ratio in that case, 98.4%, is higher than for the positive ρ value,
meaning less difference between the performances, which is understandable because
this particular choice of negative ρ corresponds to a smaller amount of spatial au-
tocorrelation. We also did some mispecification tests for the weight matrix using
a dense matrix to predict whereas the DGP involved a sparse one and reversely.
Detailed results included in the supplemental material show that it does not hurt to
use for predicting a matrix which is sparser than the true one whereas the reverse
may be detrimental.

Because the reported prediction errors are averages over out-of-sample units,
we suspected it may hide different situations depending on the number of missing
neighbors of a given out-of-sample unit. Table 6 reports the prediction errors as a
function of the number of missing neighbors for the following simulation framework.
This number k ranges from 0 to 9 and for each k, we repeat 1,000 times the following
process

• choose a site i0 at random

• remove k neighbors at random from the neighbors of i0, and let O contain
i0 and the indices of these missing neighbors. The in-sample set of sites S is
constituted by the remaining sites

• simulate the vector Y for all the sites

• predict theY on the sites inO and compute the prediction error of Yi0 denoted
by PEi0

The first column of the table contains the mean over the 1,000 draws of PEi0

for the BP predictor and the remaining ones report the ratio of this quantity the
mean PEi0 of all the other methods.

When W is sparse, we observe that the BP predictive mean square error indeed
slightly increases with the number of missing neighbors. The efficiency of BP 1,
BP 1

N , BP 1
W , TS1 and TC1 with respect to BP decreases with the number of missing

neighbors. The efficiency of TC with respect to BP increases with the number of
missing neighbors which we interpret as revealing the fact that when the information
gets poor in the neighborhood, it is just as well to use the mean to predict (the

17



Table 5: Simulation results for the 27 and 54 out-of-sample units case with W2 (dense).
Standard deviations in parentheses.

27 out-of-sample units 54 out-of-sample units
config 1 config 2 config 3 config 1 config 2 config 3

BP 1.02 1.042 1.021 1.023 1.022 1.022
(0.28) (0.293) (0.271) (0.197) (0.196) (0.198)

BPN 1.02 1.042 1.021 1.023 1.022 1.022
(0.28) (0.293) (0.271) (0.197) (0.196) (0.198)

BP
BPN

100% 100% 100% 100% 100% 100%

BPW 1.02 1.042 1.021 1.023 1.022 1.022
(0.28) (0.293) (0.271) (0.197) (0.196) (0.198)

BP
BPW

100% 100% 100% 100% 100% 100%

BP 1 1.02 1.041 1.021 1.023 1.022 1.023
(0.28) (0.293) (0.271) (0.197) (0.196) (0.199)

BP
BP 1 100% 100% 100% 100% 99.9% 99.9%

BPN
1 1.02 1.041 1.021 1.023 1.022 1.023

(0.28) (0.293) (0.271) (0.197) (0.196) (0.199)
BP

BPN
1 100% 100% 100% 100% 99.9% 99.9%

BPW
1 1.02 1.041 1.021 1.023 1.022 1.023

(0.28) (0.293) (0.271) (0.197) (0.196) (0.198)
BP

BPW
1 100% 100% 100% 100% 100% 99.9%

TS1 1.019 1.04 1.022 1.022 1.022 1.022
(0.279) (0.292) (0.271) (0.197) (0.196) (0.198)

BP
TS1 100% 100% 100% 100% 100% 100%
TC 1.022 1.042 1.022 1.023 1.023 1.023

(0.279) (0.292) (0.27) (0.197) (0.196) (0.197)
BP
TC

99.8% 100% 99.9% 100% 99.9% 99.9%
TC1 1.021 1.041 1.023 1.023 1.023 1.023

(0.278) (0.291) (0.27) (0.197) (0.196) (0.197)
BP
TC1 99.9% 100% 99.8% 99.9% 99.9% 99.9%

correction is inefficient). The efficiency of BPW with respect to BP remains stable.
Finally the almost-optimal predictor BPN is clearly very close to the best predictor.
When W is dense, all the predictors seem to be very similar whatever the number
of missing values.

5 Conclusion

At least in the case of this particular model, when W is sparse, the performance of
BPN , BPW , BP 1, BP 1

N ,BP 1
W are very close to that of the best prediction and much

better than that of TC, TS, TC1, TS1. Attempts to consider a larger variety of
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Table 6: Prediction errors as a function of number of missing neighbors nb.
nb BP SD BP

BPN

BP
BPW

BP
BP 1

BP
BPN

1
BP

BPW
1

BP
TS1

BP
TC

BP
TC1

0 0.992 (1.443) 100% 99.7% 100% 100% 99.7% 98.7% 94.4% 94.4%
1 0.991 (1.445) 100% 99.4% 99.8% 99.7% 99.3% 98.3% 94.4% 94%
2 0.991 (1.445) 100% 99.7% 99.3% 99.3% 99.1% 98% 94.4% 93.4%
3 1.01 (1.47) 99.9% 99.7% 97.1% 97.1% 97.1% 96.5% 95.8% 92.2%
4 1.013 (1.487) 99.9% 99.9% 93.8% 93.8% 93.6% 93.2% 96% 89.3%

W1 5 1.023 (1.495) 99.9% 99.9% 92.9% 92.8% 92.8% 93.3% 97.1% 90.6%
6 1.029 (1.5) 99.9% 99.8% 92.4% 92.2% 92.2% 93.5% 97.6% 92.5%
7 1.026 (1.495) 100% 100% 91% 91% 90.9% 92.2% 97.3% 91.4%
8 1.037 (1.502) 100% 100% 82.6% 82.4% 82.4% 84.2% 98.3% 86.3%
9 1.037 (1.503) 100% 100% 82.4% 82.4% 82.4% 84.7% 98.3% 90%
0 0.999 (1.45) 100% 100% 100% 100% 100% 100% 99.7% 99.7%
1 0.999 (1.449) 100% 100% 100% 100% 100% 100% 99.8% 99.7%
2 0.999 (1.449) 100% 100% 100% 100% 100% 100% 99.8% 99.7%
3 1.002 (1.453) 100% 100% 99.9% 99.9% 99.9% 100% 99.9% 99.8%
4 1.002 (1.457) 100% 100% 99.9% 99.9% 99.9% 99.9% 99.8% 99.7%

W2 5 1.002 (1.458) 100% 100% 99.9% 99.9% 100% 100% 99.9% 99.8%
6 1.002 (1.457) 100% 100% 100% 100% 100% 100% 99.9% 99.9%
7 1.001 (1.455) 100% 100% 100% 100% 100% 100% 99.7% 99.7%
8 1.002 (1.455) 100% 100% 100% 100% 100% 100% 99.8% 99.8%
9 1.001 (1.454) 100% 100% 100% 100% 100% 100% 99.7% 99.7%

parameter values (different values of σ and ρ) and alternative method for estimating
the parameters (EM) have shown that the results are quite stable. We also tested
a variant of this model replacing the explanatory variables by their spatially lagged
version and the results were very similar with the same conclusions in terms of
ranking of the methods.

For the out-of-sample case, BPN is better than BPW in terms of efficiency but
BPW is closer to BP in terms of projection coefficients. BPW is better than TC,
less good than TS. When W is dense, all predictors behave quite similarly.

We developed our study on the case of the SAR model. For the case of the
spatial error model SEM which is a linear model with SAR residuals, we refer the
reader to Kato (2008). Our conclusions apply for the Spatial Durbin model :

y = ρWy + αι+Xβ +WXγ + ε

with ε ∼ N (0, σ2I) because it can be written as a general linear model with
µ = (I − ρW)−1(αι + Xβ + WXγ) and variance given by (4). The difference
between the SAR and the Durbin stands only in the mean µ and it is the same
expression but with additional explanatory variables. Hence the same arguments
apply but the formulas have to be adapted. The Kato (2008) approach for the SEM
however cannot be extended directly to the SAR because the expression of the mean
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is quite different.
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