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Abstract

We provide tight bounds on the rate of convergence of the equilibrium payo� sets for

repeated games under both perfect and imperfect public monitoring. The distance between

the equilibrium payo� set and its limit vanishes at rate (1− δ)1/2 under perfect monitoring,

and at rate (1− δ)1/4 under imperfect monitoring. For strictly individually rational payo�

vectors, these rates improve to 0 (i.e., all strictly individually rational payo� vectors are

exactly achieved as equilibrium payo�s for δ high enough) and (1− δ)1/2, respectively.
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1 Introduction

Most of the results in repeated games apply to the case of low discounting, especially once

imperfect monitoring is considered. The paper by Abreu, Pearce and Stacchetti (1990) is the

exception that con�rms the rule: in the quarter century since its publication, no paper has

managed to improve on its �xed-point characterization of the set of perfect public equilibrium

payo�s under imperfect monitoring. In contrast, asymptotic analysis has not only progressed
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since then (Fudenberg, Levine and Maskin, 1994; Hörner, Sugaya, Takahashi and Vieille, 2011,

etc.), but it has also been successfully extended to games with private monitoring.

One of the downsides of asymptotic analysis is its lack of nuance. Whether the folk theorem

holds or not depends on linear algebraic properties of the monitoring structure (e.g., the rank

of the matrix that summarizes it). Fixing this rank, the amount of noise is irrelevant for the

limit characterization. To be sure, Kandori (1992) shows that for any �xed discount factor,

the equilibrium payo� set becomes weakly larger as signals become more informative about

players' actions. As remarkable as this result may be, it does not help quantify how noise

a�ects equilibrium outcomes. Yet, it is important to know whether the limit characterization is

a reasonable approximation for the game with a �xed but high discount factor, in the range of

values that are usually used in calibration exercises.

Similar frustration arises in other sciences, in which asymptotic methods allow clear-cut

results that are seemingly out of reach for �xed discounting. Undiscounted models are routinely

used in engineering and operations research, in particular. However, it is also standard practice in

these disciplines to complement such models with an analysis of the rate of convergence (see, for

instance, Whitt, 1974, for a survey in queueing; Altman and Zeitouni, 1994, more recently).1 As

imperfect a measure as such a rate might be, it is the next best thing to an exact characterization

for �xed discounting.

The goal of this paper is to provide such an analysis for repeated games under perfect as well

as imperfect public monitoring. Throughout, we maintain standard assumptions that ensure that

the limit (as discounting vanishes) equilibrium payo� set is the entire feasible and individually

rational payo� set.2

Our results are as follows. First, under perfect monitoring: the (subgame perfect) equilibrium

payo� set converges to its limit at a rate at least as fast as (1−δ)1/2 (Proposition 1). We show by

an example that this rate is tight (Proposition 2). However, there are two caveats to this result.

First, all strictly individually rational payo� vectors, often including a large part of the Pareto

frontier, are exactly achieved as equilibrium payo�s for high enough discount factors. Second,

the example showing that the rate (1− δ)1/2 is tight is non-generic. Generically (in the sense of

1This is not to say that rates of convergence have not been studied in economics (and not only with respect to
the discount rate, in particular, with respect to growth); see Barro and Sala-i-Martin (1992) and Ortigueira and
Santos (1997), among many other examples in macroeconomics. Rates of convergence also play a critical role in
econometric theory.

2That is, the �folk theorem� holds as stated by Fudenberg and Maskin (1986) in the case of perfect monitoring
and by Fudenberg, Levine and Maskin (1994) in the case of imperfect public monitoring.
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stage-game payo�s), the rate can be improved to 1− δ (Proposition 3).

Second, under imperfect public monitoring: the (perfect public) equilibrium payo� set con-

verges to its limit at a rate at least as fast as (1 − δ)1/4 (Proposition 5). Here as well, we show

by an example that this rate is tight (Proposition 6). In this case also, the result comes with two

caveats. First, strictly individually rational payo� vectors can be approached at rate (1 − δ)1/2

under mild conditions (Propositions 7 and 8 give precise statements and assumptions), and this

rate cannot be improved in general (Proposition 4). Second, the rate (1− δ)1/4 can be improved

to (1− δ)1/3 if the stage game is the prisoner's dilemma (Proposition 9).

We also show that faster rates can be obtained for an important class of monitoring structures,

namely, all-or-nothing monitoring, in which the action pro�le is either perfectly observed (with

some probability) or not at all. For such structures, the rate is (1− δ)1/2, and generically 1− δ

(consequences of Lemma 7).3

The spread between these rates is signi�cant for applications. For instance, using a discount

rate of 1 − δ = 2%, as is frequently done in applications to macroeconomics, it holds that

(1 − δ)1/2 ≈ 14%, and (1 − δ)1/4 ≈ 38%. In a standard prisoner's dilemma (Section 4.2), the

e�cient payo� vector is achieved under perfect monitoring (given that particular choice of δ),

but the loss under imperfect monitoring is of the order (1 − δ)1/2 ≈ 14%.4 From a theoretical

point of view, our results establish that the type of monitoring structure makes a quantitative

di�erence in terms of rates of convergence, even under those assumptions that guarantee that

there is no asymptotic di�erence whatsoever.

Related Literature: Surprisingly, we seem to be the �rst to study the rate of convergence in

non-zero-sum discounted repeated games. Obviously, a similar exercise has been carried out in

related areas. We start with a brief overview of those.

There is a sizable literature on the rate of convergence of the value in zero-sum games (both

repeated and stochastic games). In the case of one-sided incomplete information and perfect

monitoring, Aumann and Maschler (1967) establish that the value converges at rate (1− δ)1/2.5

3On the other hand, product monitoring, as is often assumed, does not improve the rate of convergence. To the
contrary, to the extent that, under full support, Nash equilibria and perfect public equilibria are payo�-equivalent
for such games, our results extend to Nash equilibrium payo�s.

4Clearly, the constant of proportionality matters. Our analysis leaves open the question on how this constant
can be bounded in terms of stage-game payo�s and the monitoring structure.

5As far as we can tell, the coincidence of this rate with the one we derive for non-zero-sum games with perfect
monitoring is fortuitous, although, as in our case, the rate can be substantially improved in speci�c classes of
games, see Zamir (1971�72).
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Mertens (1998) extends the analysis to the case of imperfect monitoring. The rate (1−δ)1/3 then

plays a prominent role.

The rate of convergence of the value of Markov decision processes (the special case of a

stochastic game with only one player) has been thoroughly investigated. It has been shown that,

under fairly weak assumptions (e.g., Yushkevich, 1996), the rate of convergence is 1− δ.6

In discounted zero-sum stochastic games under perfect monitoring, Bewley and Kohlberg

(1976) show that the value admits a Puiseux series in the discount rate 1−δ. More speci�cally, as

a function of the dimension of the game (the cardinality of the state and action sets), there exists

an integer N such that the value admits an expansion in powers of the form i/k, i = 0, . . . , k,

for some integer k ≤ N , in some neighborhood of δ = 1. As is well known, there is surprising

�exibility in reverse-engineered games with speci�c power expansions.

In repeated games, some questions related to the rate of convergence have been examined

before. In particular, authors have asked whether (i) the Pareto frontier can be exactly achieved

under imperfect monitoring for high discount factors, and (ii) payo� vectors that exactly give a

player his minmax payo� (as opposed to strictly more) can be achieved for high discount factors

under perfect monitoring.

Regarding (i), see Fudenberg, Levine and Takahashi (2007), who provide a su�cient condition

(see their Section 4.4), and Azevedo and Moreira (2007), who (in addition to providing su�cient

conditions as well) establish an �anti-folk theorem:� an exact folk theorem is valid only for a zero

measure set of (two-player) games under imperfect monitoring (see their Theorem 4 for a formal

statement). Relative to these results, we provide a measure of the rate at which the equilibrium

payo� set approaches the Pareto frontier. Regarding (ii), see Thomas (1995) as well as Berg and

Kärki (2014).

Finally, some papers consider particular games and derive exhaustive analyses of the equilib-

rium payo� set under perfect monitoring, as a function of the discount factor. For the prisoner's

dilemma, these include Stahl (1991) and Mailath, Obara and Sekiguchi (2002).

We discuss some of these papers further as we proceed.

6Obviously, in the case of a single state, as in the case of a repeated game, the rate is 0.
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2 Notation

We �x a �nite stage game. There are n ≥ 2 players. Each player i = 1, . . . , n has a �nite

set Ai of actions and a stage-game payo� function, or reward, ui : A → R, where A = ×n
i=1Ai.

Throughout, we assume that |Ai| ≥ 2 for all i. The domain of ui is extended to mixed action

pro�les α ∈ ∆(A) as usual. Let ū := maxi,a |ui(a)|. For each player i, we normalize his minmax

payo� (based on mixed actions) to 0, that is,

0 = min
α−i∈×j ̸=i∆(Aj)

max
ai∈Ai

ui(ai, α−i).

Throughout this paper, we let αi = (aii, α
i
−i) refer to any of the action pro�les that minmaxes

player i (in particular, aii is a best reply to αi
−i). We let

F+ := conv u(A) ∩Rn
+

denote the set of feasible and individually rational payo� vectors.7 Throughout, we maintain the

assumption that F+ has non-empty interior. Let

vi := min {vi : v ∈ F+}

denote the lowest payo� that player i can receive in F+. Obviously, vi ≥ 0 for all i, and the

inequality can be strict for some i.8

This stage game is repeated in�nitely many times. Monitoring is imperfect and public. We

let Y denote the �nite set of public signals, and π : A → ∆(Y ) describe the monitoring structure.

Section 3 is concerned with the special case of perfect monitoring, which obtains when Y = A

and π(· | a) assigns probability 1 to y = a for all a. We say that a mixed action pro�le α has

individual full rank for player i if {π(· | ai, α−i) : ai ∈ Ai} is linearly independent; it has pairwise

full rank for distinct players i and j if {π(· | ai, α−i) : ai ∈ Ai} ∪ {π(· | aj, α−j) : aj ∈ Aj}
contains |Ai|+ |Aj| − 1 linearly independent vectors.

7We let convS refer to the convex hull of S ⊆ Rn.
8For example, consider the following two-player stage game:

0,−1 1, 1
−1,−2 2, 0

In this game, both players have minmax payo�s of 0, whereas v1 = 1/3.
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The game unfolds as follows. In each of the rounds t = 1, 2, . . ., players simultaneously choose

actions. Given the action pro�le a ∈ A, a public signal y is then drawn with probability π(y | a).
In addition, players privately know the actions that they have chosen in the past. We assume

that no player observes his reward.9

Formally, a public history at the start of round t is a sequence ht = (y1, . . . , yt−1). We set

H1 := {∅}. The set of public histories at the beginning of round t is therefore H t := Y t−1. We

let H :=
∪

t≥1 H
t denote the set of all public histories. The private history for player i at the

beginning of round t is a sequence ht
i = (a1, y1, . . . , at−1, yt−1). Similarly, we de�ne H1

i := {∅},
H t

i := (Ai × Y )t−1 and Hi :=
∪

t≥1 H
t
i .

A (behavior) strategy for player i is a map σi : Hi → ∆(Ai). A strategy pro�le σ generates

a probability distribution over histories in the obvious way and thus also a distribution over

sequences of players' rewards. Each player seeks to maximize his payo�, that is, the average

discounted sum of his rewards, using a common discount factor δ < 1. Give that players follow

the strategy pro�le σ, the payo� of player i is de�ned as

∞∑
t=1

(1− δ)δt−1Eσ[ui(a
t)].

A strategy σi is called public if it depends on the public history only, and not on player i's private

information. That is, a public strategy is a map σi : H → ∆(Ai). A perfect public equilibrium

is a pro�le of public strategies such that, given any period t and public history ht, the strategy

pro�le is a Nash equilibrium from that period on. Perfect public equilibrium is a restrictive

equilibrium concept, but it is the only tractable one known to date. Most of the papers on public

monitoring focus on such equilibria. So do we. Perfect public equilibrium reduces to subgame

perfect equilibrium in the case of perfect monitoring.

We let E(δ) denote the (compact) set of perfect public equilibrium payo� vectors for any given

discount factor δ < 1. Because attention is restriction to perfect public equilibrium, E(δ) ⊆ F+.

Furthermore, because F+ has non-empty interior, d(E(δ), F+) → 0 as δ → 1 under perfect

monitoring (Fudenberg and Maskin, 1986) and under imperfect public monitoring and standard

rank assumptions (Fudenberg, Levine and Maskin, 1994).10 Our goal is to understand the rate

9One way to interpret this assumption is to view ui as an expectation: player i's realized reward gi(ai, y) only
depends on his action and the public signal, and ui(a) is de�ned as E[gi(ai, y) | a]. Given π, not all functions ui

can be factorized in this manner, however.
10We let d(S, S′) refer to the Hausdor� metric between two compact subsets S, S′ ⊂ Rn.
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at which d(E(δ), F+) vanishes as δ → 1.

3 Perfect Monitoring

This section focuses on perfect monitoring. In Section 3.1, we prove that the subgame perfect

equilibrium payo� set converges to the set of feasible and individually rational payo�s at a rate

at least as fast as (1− δ)1/2 (Proposition 1). We also show by an example that the rate (1− δ)1/2

is tight (Proposition 2).

Yet, for a given game, only some vertices of F+ are problematic. In Section 3.2, we review

su�cient conditions for particular vertices to be approached at faster rates. In particular, strictly

individually rational payo� vectors are exactly achieved for low enough discounting.

Furthermore, not all stage games exhibit such slow convergence. Proposition 3 establishes

that the rate can be improved to 1− δ for generic stage games.

3.1 A Tight Bound

To understand why the rate of convergence is precisely (1 − δ)1/2, consider the following

heuristic argument. Suppose that there are two players, and that the feasible and individually

rational payo� set is such that player 1's payo�, say, necessarily exceeds player 2's (i.e., ∀v ∈ F+,

v1 ≥ v2). Suppose also that minmaxing player 1 entails a per-period cost c > 0 to player

2. Suppose further that player 1 is receiving approximately his lowest payo� in E(δ), say v1,

and must be incentivized not to deviate, which would yield an immediate gain of g > 0. If

such a deviation is punished by T periods of minmaxing, the cost (to player 1) in�icted by this

minmaxing phase must exceed the gain g, for the payo� after this phase cannot serve this purpose

(player 1 is receiving his lowest payo� already anyhow). That is, we must have

(
1− δT

)
v1 ≥ (1− δ) g, (1)

where the left-hand side represents the foregone �ow payo� during the minmaxing phase which

the deviation triggers, and the right-hand side is the one-period bene�t from the deviation.

On the other hand, subgame perfection requires player 2 to be willing to carry out the

minmaxing. Hence, right after the deviation, his continuation payo� must be positive. Hence, it

must be that −
(
1− δT

)
c+ δTv2 ≥ 0. But we have v1 ≥ v2 for all v ∈ F+, and so it is necessary
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that

δTv1 ≥
(
1− δT

)
c. (2)

By multiplying each side of (1) and (2), canceling out 1 − δT and taking the square root, we

obtain

v1 ≥
(
(1− δ) gc

δT

)1/2

.

If (0, 0) ∈ F+, then this payo� vector can only be approached at rate (1− δ)1/2.

Proposition 1 Fix a �nite stage game under perfect monitoring. Then for any vertex v of F+,

there exists Kv > 0 such that for any δ < 1, there exists a subgame perfect equilibrium whose

payo� is within the distance Kv(1 − δ)1/2 of v. In particular, there exists K > 0 such that

d(E(δ), F+) < K(1− δ)1/2 for any δ < 1.

Proof. For simplicity, we assume a public randomization device. Further, we assume that

mixed actions are observable. We can dispense with both assumptions, following standard argu-

ments (Sorin, 1986; Fudenberg and Maskin, 1991).11

For the �rst statement, �x any vertex v of F+. Because the interior of F+ is non-empty, we

can �nd k1, . . . , kn, l1, . . . , ln ∈ R, independently of δ, such that for every i, (i) ki > ū if vi = 0

(hence vi = 0), (ii) li > ū, and (iii) vi(δ) = (vi1(δ), . . . , v
i
n(δ)) ∈ F+ for δ close to 1, where

vii(δ) = vi + ki(1− δ)1/2,

vij(δ) = vj + (kj + lj) (1− δ)1/2, j ̸= i.

For example, we can let (k1, . . . , kn) = K0(v
′ − v) and l1 = · · · = ln = 2ū with any interior point

v′ of F+ and su�ciently large K0 > 0. See Figure 1. Note that v1(δ) converges to v at rate

(1− δ)1/2.

11More precisely, replacing a public randomization device by a sequence of pure action pro�les could a�ect
continuation payo�s by O(1− δ). To see this, note that the key inequality in the proof of Fudenberg and Maskin
(1991) is that (1 − δd)2ū < 3ε′ (see p. 433), where d is a �xed integer, to ensure that the continuation payo�
remains at all later dates within 4ε′ of the target payo� v. It su�ces to take ε′ > 2dū(1 − δ) to ensure that
this inequality holds for δ high enough, and so the payo� distance is of order 1− δ. Also, without mixed action
observability, we could control payo�s in each reward phase Ri by O(1 − δT (δ)) = O((1 − δ)1/2) so that, during
the corresponding punishment phase P i, each punisher j ̸= i would become indi�erent among all pure actions
in the support of the minmax action αi

j . [Note that Proposition 1 requires punishment phases of length at most

1− δT (δ) ≈ (1− δ)1/2, and hence this (times ū) is the maximum adjustment to make.] Neither argument would
a�ect the target equilibrium payo� vector by more than O((1− δ)1/2).
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v

v1(δ)

v2(δ)

F+

Figure 1: Payo� vectors v1(δ), v2(δ) ∈ F+ within a distance O
(
(1− δ)1/2

)
of v such that v11(δ) <

v21(δ) and v22(δ) < v12(δ).

Following closely Fudenberg and Maskin (1986), we shall construct a strategy pro�le that

achieves payo� v1(δ) for δ close to 1. The strategy pro�le can be described in terms of reward

phases and punishment phases, as in their construction. Unlike in Fudenberg and Maskin (1986),

however, the length of each punishment phase depends on δ. More speci�cally, given δ, pick the

smallest integer T = T (δ) satisfying

1− δT > (1− δ)1/2.

Since 1− δT (δ)−1 ≤ (1− δ)1/2, we have 1− δT (δ) ≤ 1− δ + (1− δ)1/2. Combined with 1− δT (δ) >

(1− δ)1/2, this implies 1− δT (δ) ≈ (1− δ)1/2 as δ → 1.

Play starts in phase R1 in the initial period. In each phase, play proceeds as follows, according

to phases P i, Ri, i = 1, . . . , n.

Reward phase Ri: action pro�le αi ∈ ∆(A) is played (possibly taking advantage of the

public randomization device), where u (αi) = vi(δ).12 Play stays in phase Ri unless a player j

unilaterally deviates, in which case play moves to phase P j.

Punishment phase P i: The minmaxing action pro�le αi is played. Play stays in phase P i for

either T (δ) periods, or until there is a unilateral deviation by some j, whichever comes �rst. In

the former case, play transits to phase Ri.13 In the latter, it transits to phase P j.

To prove that this strategy pro�le is a subgame perfect equilibrium, we use the one-shot

12Thereafter, we will sometimes suppress the dependency of variables on δ if they stay bounded (or bounded
away from �baseline� constants) as δ → 1 and do not a�ect our asymptotic analysis.

13In case j = i, we restart the count of periods.

9



deviation principle in di�erent phases in turn.

Phase Ri: player i's incentive constraint is satis�ed if

vi + ki(1− δ)1/2 ≥ (1− δ) ū+ δT (δ)+1
(
vi + ki(1− δ)1/2

)
,

that is, (
1− δT (δ)+1

)
(vi + ki(1− δ)1/2) ≥ (1− δ) ū.

If vi > 0, then this condition is satis�ed for δ close to 1, since the term (1−δT (δ)+1)vi ≈ (1−δ)1/2vi

dominates all other terms as δ → 1. If vi = 0, then this condition reduces to (1− δT (δ)+1)ki(1−
δ)1/2 ≥ (1− δ)ū, which is satis�ed since ki > ū and 1− δT (δ)+1 > 1− δT (δ) > (1 − δ)1/2. Player

j ̸= i's incentive constraint in phase Ri follows, since the left-hand side is even higher.

Phase P i: player j ̸= i's incentive constraint is satis�ed if for all t ≤ T (δ):

−
(
1− δt

)
ū+ δt

(
vj + (kj + lj) (1− δ)1/2

)
≥ (1− δ) ū+ δT (δ)+1

(
vj + kj(1− δ)1/2

)
,

and it is su�cient to consider t = T (δ). It su�ces that

−
(
1− δT (δ)

)
ū+ δT (δ)

(
vj + (kj + lj) (1− δ)1/2

)
≥ (1− δ) ū+ δT (δ)+1

(
vj + kj(1− δ)1/2

)
,

that is,

δT (δ)lj(1− δ)1/2 ≥
(
2− δ − δT (δ)

)
ū− δT (δ)(1− δ)

(
vj + kj(1− δ)1/2

)
.

This condition is satis�ed for δ close to 1 since two terms δT (δ)lj(1 − δ)1/2 ≈ lj(1 − δ)1/2 and(
2− δ − δT (δ)

)
ū ≈ (1− δ)1/2ū dominate all other terms as δ → 1 and lj > ū. The argument for

the minmaxed player (j = i) is standard, as he is taking a short-run best-reply and deviating

would only postpone the date at which his �ow payo� is positive again.

Note that F+ is a convex polytope, and so has �nitely many vertices, and note that E(δ) is

convex because we assume the public randomization device. Hence, the second statement follows

with K = maxv Kv.

We now show by an example that the rate is tight. Consider the two-player stage game

represented in Figure 2. Each player's minmax payo� is 0, and F+ = conv {(0, 0), (1
2
, 0), (1, 1)}.

This example has all the properties used in the heuristic of equations (1) and (2): player 2's

payo� is always lower than player 1's by feasibility, and minmaxing player 1 drives player 2's

payo� below his own minmax payo�, costing him one per period of punishment, while player 1

10



L R
U 0,−1 1, 1
D 0,−1 0, 0

Figure 2: A two-player game in which the rate of convergence is (1− δ)1/2.

v2

v1

Fp

1

−1

−1
2

0
1
2 1p

linep

Figure 3: The shaded area depicts Fp, and the short solid line segment depicts linep.
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cannot get less than his minmax payo� even if he wanted to. Suppose for a simpli�ed argument

that (D,R) is the action pro�le that the equilibrium speci�es. This exposes player 1 to a

temptation equal to 1 − δ: minmaxing him for T periods scales down his payo� to (1 − δT )v1

if v1 is already as low as it gets. Therefore, it holds that (1 − δT )v1 ≥ 1 − δ. Yet, minmaxing

player 1 for T periods costs 1 − δT to player 2, and so 1 − δT must be less than δTv2, where

v2 is the payo� player 2 gets at the end of the punishment (and hence also less than v1), else

minmaxing is not individually rational. Hence, δTv21 ≥ (δTv2)v1 ≥ (1 − δT )v1 ≥ 1 − δ, and so

v1 ≥ ((1− δ)/δT )1/2.14

Proposition 2 In the stage game of Figure 2 under perfect monitoring, there exists κ > 0 such

that, for any δ < 1, there is no subgame perfect equilibrium payo� within the distance κ(1− δ)1/2

of (0, 0). Therefore, it holds that d(E(δ), F+) > κ(1− δ)1/2 for any δ < 1.

Proof. One can easily show that (0, 0) /∈ E(δ) for any δ < 1.

For each small p > 0, let Fp := conv {(p, 0), (1
2
, 0), (1, 1), ( p

1−2p
, p
1−2p

)}, and linep be the line

segment that connects (p, 0) and ( p
1−2p

, p
1−2p

). See Figure 3. Note that the vector (0,−1
2
) lies on

the extension of linep in the left-down direction. This geometric property will be used later. For

each δ < 1, since (0, 0) /∈ E(δ), we can �nd the largest p = p(δ) > 0 such that Fp ⊇ E(δ). Note

that p(δ) → 0 as δ → 1. Since the distance between Fp(δ) and (0, 0) is p(δ), it is enough to show

that p(δ) is of order at least (1− δ)1/2.

For any δ close to 1, it follows from the maximality of p(δ) and the compactness of E(δ) that

E(δ)∩linep(δ) is non-empty. Pick any v(δ) ∈ E(δ)∩linep(δ). Pick any subgame perfect equilibrium

that achieves v(δ). We denote by α the (mixed) action pro�le played in the �rst period, and

by w(a, δ) ∈ E(δ) the continuation payo� vector after (realized) action pro�le a. Since v(δ) is a

convex combination of u(α) and {w(a, δ) : a ∈ A}, v(δ) ∈ linep(δ), and w(a, δ) ∈ Fp(δ) for every

a, we have u(α) ∈ conv {(0, 0), (0,−1
2
), ( p(δ)

1−2p(δ)
, p(δ)
1−2p(δ)

)}, and hence α2(R) ≥ 1
2
.

Since player 1 has no incentive to deviate to U , we have

v1(δ) ≥ (1− δ)u1(U, α2) + δw1((U, α2), δ).

14This argument is not quite formal, as (D,R) need not be played when the lowest payo� vector obtains, nor
need player 1 be minmaxed for T consecutive periods after his deviation; a correct bound is given in the proof of
Proposition 2.
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Since v1(δ) ≤ p(δ)
1−2p(δ)

, u1(U, α2) = α2(R) ≥ 1
2
, and w1((U, α2), δ) ≥ p(δ), we have

p(δ)

1− 2p(δ)
≥ 1− δ

2
+ δp(δ).

Solving this inequality, we have

p(δ) ≥ (1− δ)1/2

2 + 2(1− δ)1/2
,

and hence p(δ) is of order at least (1− δ)1/2.

3.2 Faster Rates for Particular Payo� Vertices or Generic Games

Arguably, the rate of convergence (1 − δ)1/2 established in Section 3.1 is slow. This is a

combination of two factors: considering the entire set of equilibrium payo� vectors, as opposed

to speci�c payo� vectors, such as the Pareto frontier only; and considering all possible stage

games, as opposed to �almost all� of them, in a sense de�ned below.

Thus, one might be interested in focusing on speci�c vertices of F+, or speci�c classes of

games, for which convergence occurs at faster rates. But at what rate? Two obvious candidate

rates are the rates 1− δ and 0 (the latter means exactly achieving the desired payo� vector, or

payo� set, for all high enough discount factors).

Rate 0: Fudenberg and Maskin (1986) show that the rate 0 is achieved if we focus on strictly

individually rational payo� vectors.

Claim 1 (Fudenberg and Maskin, 1986) Fix a �nite stage game under perfect monitoring.

Then for any B ⊆ F+, closed, such that vi > 0 for all v ∈ B and i, there exists δB < 1 such that

B ⊆ E(δ) for any δ ∈ [δB, 1).

For which stage games is the rate 0 achieved for all vectors in F+? The prisoner's dilemma is

one such game (Stahl, 1991; Mailath, Obara and Sekiguchi, 2002). Berg and Kärki (2014) analyze

all symmetric 2× 2 games and compute the lowest value of δ, if any, for which E(δ) = F+. For

two-player games, Thomas (1995) provides a necessary and su�cient condition for the minmax

payo� to be attained in a subgame perfect equilibrium, a requirement closely related to the rate

0.15

15It is an open problem for games with more than two players.
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Rate 1 − δ: Fudenberg and Maskin (1990) examine under which conditions the set of Nash

equilibrium payo�s coincides with the set of subgame perfect equilibrium payo�s for δ close to

1. Yet trivially, the set of Nash equilibrium payo� vectors converges to F+ at rate 1 − δ under

perfect monitoring, as each player can be threatened by perpetual minmaxing, so that deviating

yields at most a payo� of order 1− δ.16

Claim 2 (Fudenberg and Maskin, 1990) Fix a �nite stage game under perfect monitoring

in which either

- αi
j is pure and uj(α

i) > 0 for all i and j, i ̸= j; or

- the minmax payo� vector (0, . . . , 0) is in the interior of conv u(A) and minai∈Ai
ui(ai, α

i
−i) <

0 for all i.

Then there exists K > 0 such that d(E(δ), F+) < K(1− δ) for any δ < 1.

But weaker conditions su�ce for the rate 1− δ. The next lemma gives a set of such su�cient

conditions.

Lemma 1 Fix a �nite stage game under perfect monitoring. Fix any vertex v of F+ such that

for each i, it holds that either

- vi > 0; or

- minai∈Ai
ui(ai, α

i
−i) < 0; or

- for each j ̸= i, either vj > vj or there exists v′ ∈ F+ such that v′i = vi and v′j > vj.

Then there exists Kv > 0 such that for any δ < 1, there exists a subgame perfect equilibrium

whose payo� is within the distance Kv(1− δ) of v.

In words, the �rst two conditions stated in the lemma are that any player who receives his minmax

payo� at the vertex of interest must have an action that yields strictly less than his minmax

payo�. Under these conditions, we can pick the duration Ti of player i's punishment phase to

be uniformly bounded in δ. If these conditions are violated, i.e., if vi = minai∈Ai
ui(ai, α

i
−i) = 0,

then we say that long minmaxing of player i is required. Even in this case, if the last condition

16Fudenberg and Maskin (1990) also provide several examples to illustrate the necessity of their assumptions
for the two payo� sets (Nash and subgame perfect equilibrium payo� sets) to coincide.
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is satis�ed, then we can take δTi(δ) to be arbitrarily small, and the restriction on j's payo� vj

ensures that i's opponents can be incentivized to carry out the punishment. All three conditions

play an important role in the proof of Proposition 3.

Proof. This is a modi�cation of the construction of Proposition 1, and the modi�ed construc-

tion is only sketched. We construct payo� vectors in a neighborhood of v that are associated

with continuation payo� vectors in an equilibrium characterized by phases P i and Ri, as in

Proposition 1. We �rst observe that players j such that vj > vj can be incentivized to play any

strategy whose continuation payo� vector remains in such a neighborhood, by Claim 1, for δ

high enough. It su�ces to pick a payo� vector in the interior of F+ giving player j strictly less

than the lowest payo� in the neighborhood (but strictly more than vj) in case he deviates, and

use this payo� vector as a continuation equilibrium payo� vector. Hence, we may as well assume

that there is no such j.

Let I ⊆ {1, . . . , n} denote the set of players i such that vi = minai∈Ai
ui(ai, α

i
−i) = 0 (note

that I or its complement can be empty). For every i ∈ I, by the assumption, for each j ̸= i,

there exists v′ ∈ F+ such that v′i = vi and v′j > vj. Thus we can pick vi(δ) ∈ F+ such that

vii(δ) = vi + ki(1− δ)(= ki(1− δ)),

vij(δ) ≥ vj + η, j ̸= i

with some ki > 0 (to be chosen later) and η > 0. For every i /∈ I, we proceed as before, de�ning

vi(δ) ∈ F+ by

vii(δ) = vi + ki(1− δ),

vij(δ) = vj + (kj + lj)(1− δ), j ̸= i

with some ki, li > 0 (to be chosen later).

For i ∈ I, the length Ti(δ) of punishment phase P i (during which player i is minmaxed and

best replies) is chosen such that ⌊δTi(δ)⌋ = 1−ε for some ε > 0 such that (1−ε)(vj+η)−εū > vj

for any j ̸= i. This ensures that player j ̸= i has no pro�table deviation during P i for δ high

enough. We pick ki > 0 such that εki > 2ū and hence δ
(
1− δTi(δ)

)
ki > 2ū for δ high enough.
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This ensures

− (1− δ) ū︸ ︷︷ ︸
cost of a

suboptimal action

+ δki(1− δ)︸ ︷︷ ︸
continuation payo�

≥ (1− δ) ū︸ ︷︷ ︸
deviation gain

+ δTi(δ)+1ki(1− δ)︸ ︷︷ ︸
postponed payo�
given punishment

,

and so player i has no incentive to deviate from Ri either (the cost of a suboptimal action depends

on the randomization device, and is at most (1 − δ)ū). By construction, he has no incentive to

deviate during P i. Also, with �xed η > 0, player j ̸= i has no incentive to deviate from Ri for δ

high enough.

For i /∈ I, the construction is as in Proposition 1, with the adjustment that if vi = 0 >

minai∈Ai
ui(ai, α

i
−i), then we further specify that player i plays a pure action yielding a strictly

negative payo� against αi
−i during P i and that a deviation from the pure action restarts the

punishment. Since vi > 0 or the above case applies, �ow payo�s during P i are below vi − η

with some �xed η > 0. Combined with the restart policy, this allows us to take the length Ti

of punishment phase P i to be independent of δ and yet a deviation from P i unattractive to i.

We can also pick lj > 0, j ̸= i, such that deviating from P i is not pro�table for players j ̸= i.

The incentive constraints for Ri are unchanged, which is guaranteed by the appropriate choice

of ki, li.

The assumptions in Lemma 1 can be further weakened, although a simple general criterion

appears elusive. However, Lemma 1 su�ces to establish the rate 1 − δ in many familiar stage

games. How many games fail all su�cient conditions? Not many: the next proposition states

that the rate of convergence is generically at least as fast as 1− δ.

For this proposition, we de�ne genericity relative to U0 ⊆ Rn|A|, the set of all payo� function

pro�les with full-dimensional F+, but without the normalization of minmax payo�s.17 The proof

of the next proposition is in Appendix A.

Proposition 3 Fix n and |Ai| for each i. Then there exists an open and dense subset U ⊆ U0

such that for every u ∈ U , there exists K > 0 such that d(E(δ), F+) < K(1− δ) for any δ < 1.

There are examples in which the rate of convergence is 1− δ, and which are robust to payo�

perturbations, and so the rate 1 − δ cannot be improved generically. However, there are also

robust examples in which the rate is 0. It is an interesting open question whether there exist

17Similar genericity results can be shown with appropriate normalization.
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games for which convergence does not occur at any of these three rates, namely, 1− δ, 0 or the

non-generic rate (1− δ)1/2.

4 Imperfect Public Monitoring

Our goal is to derive results analogous to those of Section 3 for the case in which monitoring

is imperfect. To focus on the rate of convergence, as opposed to a possible failure of the folk

theorem under imperfect monitoring, we impose standard rank assumptions that ensure that the

folk theorem holds.

4.1 Quantifying Surplus Destruction

While under perfect monitoring, convergence can occur relatively slowly, this phenomenon is

restricted to vertices of F+ where at least one player receives his minmax payo�. (See Claims

1 and 2 in the previous subsection.) That is, under perfect monitoring, the cause for slow

convergence is

1 Providing incentives to minmax other players.

Imperfect monitoring introduces two additional causes.

2 Surplus destruction induced by punishment being now carried out on the equilibrium path,

approximately along the �hyperplane,� in the language of Fudenberg, Levine and Maskin

(1994).

3 The randomization over actions that might help detecting deviations at the expense of

e�ciency.

As we will see, imperfect monitoring can make Cause 1 even worse (see Proposition 6 below).

Proposition 4 illustrates Cause 2. Cause 3 is assumed away by the rank assumptions that we

will impose.

Let us now illustrate Cause 2 and show that any punishment, even if it is approximately along

the �hyperplane,� entails positive surplus destruction. We illustrate this surplus destruction by

considering the prisoner's dilemma described in Figure 4.18 Each player's minmax payo� is 0,

18As the proof and the intuition that follows will make clear, the result is robust to payo� perturbations and
holds for a variety of stage games.
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C D
C 2, 2 −1, 3
D 3,−1 0, 0

Figure 4: A two-player game in which equilibrium payo�s are bounded away from e�ciency by
an order of at least (1− δ)1/2.

and F+ = conv {(0, 0), (8
3
, 0), (2, 2), (0, 8

3
)}. We give a lower bound on this surplus destruction,

provided that π(· | a) has full support.

Proposition 4 In the stage game of Figure 4 under imperfect public monitoring with full sup-

port, there exists κ > 0 such that for any δ < 1, there is no perfect public equilibrium payo�

vector within distance κ(1− δ)1/2 of (2, 2).

Proof. Because of full support, we pick η > 0 such that π(y | a) ≥ η for any a ∈ A and

y ∈ Y . One can show that (2, 2) /∈ E(δ) for any δ < 1 (Fudenberg, Levine and Maskin, 1994,

Theorem 6.5).

For each small p > 0, let Γp be the circle with center at (2− p, 2− p) and radius r =
√

17
10
p.

Note that Γp crosses the Pareto frontier of F+ at four points (2 + 3p
10
, 2 − 9p

10
), (2 + p

10
, 2 − 3p

10
),

(2 − 3p
10
, 2 + p

10
) and (2 − 9p

10
, 2 + 3p

10
). Let arcp denote the arc between (2 + p

10
, 2 − 3p

10
) and

(2− 3p
10
, 2 + p

10
).

Let Fp be the subset of F+ that excludes the neighborhood of (2, 2) separated by the arc arcp.

See Figure 5. Since (2, 2) /∈ E(δ), for each δ < 1 close to 1, we can �nd the largest p = p(δ) >

such that Fp ⊇ Eδ. Note that p(δ) → 0 as δ → 1. Let r(δ) =
√

17
10
p(δ). Since the distance

between Fp(δ) and (2, 2) is
√
2p(δ) − r(δ) =

(√
2−

√
17
10

)
p(δ), it is enough to show that p(δ) is

of order at least (1− δ)1/2.

For any δ close to 1, it follows from the maximality of p(δ) and the compactness of E(δ) that

we have E(δ) ∩ arcp(δ) ̸= ∅. Pick any v(δ) ∈ E(δ) ∩ arcp(δ), and denote by λ the unit vector

normal to the arc arcp(δ) at point v(δ). Pick an arbitrary perfect public equilibrium that achieves

v(δ). We denote by α the action pro�le played in the �rst period, and by w(y, δ) ∈ E(δ) the

continuation payo� vector after signal y. Note that for δ close to 1, both α1 and α2 put positive

probabilities on C.

Since αi puts a positive probability on C, for each i = 1, 2, we have

(1− δ)ui(C,αj) + δ
∑
y

π(y | C,αj)wi(y, δ) ≥ (1− δ)ui(D,αj) + δ
∑
y

π(y | D,αj)wi(y, δ).
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v1

v2

Fp

0

8
3

8
3

arcp

Figure 5: The shaded area depicts Fp, and the inside arc depicts arcp.
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Since ui(C, αj) = ui(D,αj)− 1, there exist y, y′ ∈ Y such that wi(y, δ)−wi(y
′, δ) ≥ 1−δ

δ
≥ 1− δ.

Thus wi(·, δ) must vary by at least 1− δ.

On the other hand, for each y ∈ Y , we have

λ · v(δ) = (1− δ)λ · u(α) + δ

(∑
y′ ̸=y

π(y′ | α)λ · w(y′, δ) + π(y | α)λ · w(y, δ)

)
≤ (1− δ)λ · (2, 2) + δ((1− η)λ · v(δ) + ηλ · w(y, δ)),

since λ · u(α) ≤ λ · (2, 2), λ · w(y′, δ) ≤ λ · v(δ) for any y′ ∈ Y , and π(y | α) ≥ η. Therefore, we

have

λ · w(y, δ) ≥ λ · v(δ)− ε(δ),

where

ε(δ) :=
1− δ

δη
λ · ((2, 2)− v(δ)).

Note that, since v(δ) ∈ arcp(δ), λ · ((2, 2) − v(δ)) is of order p(δ), and hence ε(δ) is of order

p(δ)(1 − δ). Note also that, for δ close to 1, each w(y, δ) ∈ Fp(δ) is inside the circle Γp(δ).

Therefore, w(·, δ) can vary in the direction tangent to λ by at most 2(r(δ)2− (r(δ)− ε(δ))2)1/2 =

2ε(δ)1/2(2r(δ)− ε(δ))1/2, which is of order p(δ)(1− δ)1/2.

Combining the above arguments, p(δ)(1−δ)1/2 is of order at least 1−δ, hence p(δ) is of order

at least (1− δ)1/2.

The intuition is simple and can already be gleaned from a careful reading of the proof by

Fudenberg, Levine and Maskin (1994). The key ingredient is the full support of the monitoring

structure. It implies that some continuation payo�s (the vectors w(y, δ) in the proof) must

lie at least 1 − δ apart (for each player), given that this is the order of deviation gain in the

one-shot game. At the same time, loosely speaking, if the overall payo� v(δ) is already within

some distance p(δ) of the boundary (take the closest equilibrium payo� to the boundary in a

given direction), then because continuation payo�s di�er from the overall payo� by a �ow payo�

of order 1 − δ, we also have that the distance between v(δ) and w(y, δ) is of order p(δ)(1 − δ)

(along the relevant direction). To allow for the payo�s w to be both 1 − δ �apart,� yet within

p(δ)(1 − δ) of the maximum, the best case scenario is that the boundary be nearly orthogonal

to the direction under consideration. Yet, without loss, we can focus on a point at which the

curvature of E(δ) is non-zero; indeed, at least of order 1
p(δ)

. Hence, points that are p(δ)(1 − δ)

away from the the same boundary point can only be p(δ)(1 − δ)1/2 apart from each other, and
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hence p(δ) must be of order (at least) (1− δ)1/2 as well.

Proposition 4 shows that the rate of convergence toward (2, 2) is no faster than (1 − δ)1/2.

In fact, Proposition 7 below implies that the rate is exactly (1 − δ)1/2 under standard rank

assumptions. Yet, the rate of convergence towards (0, 8
3
) and (8

3
, 0) can be slower that (1− δ)1/2.

Proposition 9 below revisits the prisoner's dilemma and provides a de�nitive answer for the rate

of convergence for the entire payo� set, namely (1− δ)1/3.

4.2 A Tight Bound

We start with showing that the rate of convergence is at least as fast as (1 − δ)1/4. Recall

that the folk theorem holds if, on top of our maintained assumption that F+ is full-dimensional,

�rst, for every player i, there exists a minmax action pro�le that has individual full rank for

any j ̸= i, and second, every pure action pro�le has pairwise full rank for any distinct pair of

players.19 The �rst assumption (individual full rank) ensures that signals are su�ciently rich

for deviations from a prescribed minmax action pro�le to be statistically detectable, and so to

be punishable; the second (pairwise full rank) ensures that signals are so rich that deviations

from pure action pro�les are not only detected (statistically), but also ascribed to a speci�c

player. This allows surplus to be redistributed rather than destroyed, in case a deviation gets

detected, so that e�ciency, for instance, does not need to be sacri�ced despite the occurrence of

punishments. The next result relies on these assumptions.

Proposition 5 Fix a �nite stage game under imperfect public monitoring in which for every

player i, there exists a minmax action pro�le with individual full rank for any j ̸= i, and that

every pure action pro�le has pairwise full rank for any distinct pair of players. Then there exists

K > 0 such that d(E(δ), F+) < K(1− δ)1/4 for any δ < 1.

To prove this proposition, we �rst review Fudenberg-Levine's program. Let Sn−1 := {λ ∈
Rn : ∥λ∥ = 1}.20 Recall that Fudenberg and Levine (1994) introduce the following program, for

each λ ∈ Sn−1:

k(λ) = sup
α,v,x

λ · v,

19Weaker su�cient assumptions for the folk theorem to hold are known. In particular, it su�ces that the
relevant action pro�le can be approximated by a sequence of action pro�les that have (individual, pairwise) full
rank.

20We let ∥v∥ :=
√∑n

i=1 v
2
i refer to the Euclidean norm of v ∈ Rn.
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where the supremum is taken over α ∈ ×n
i=1∆(Ai), v ∈ Rn, and x : Y → Rn satisfying

vi = ui(α) +
∑
y∈Y

π(y | α)xi(y)

≥ ui(ai, α−i) +
∑
y∈Y

π(y | ai, α−i)xi(y) ∀i = 1, . . . , n, ∀ai ∈ Ai,

λ · x(y) ≤ 0 ∀y ∈ Y.

Intuitively, we may think of λ as the weights assigned to players' payo�s (although they can be

negative), and v as the vector that maximizes weighted utilitarian welfare. The designer chooses

transfers x to incentivize players to choose an action pro�le that delivers v (net of the transfers),

subject to these transfers being budget-balanced, using the same weights λ in the constraint.

The maximum value is referred to as the score (in direction λ).

For any x̄ > 0, we denote by k(λ, x̄) the value of Fudenberg-Levine's program with the

additional constraints ∥x(y)∥ ≤ x̄ for every y ∈ Y . Also, let

k+(λ) := max
v∈F+

λ · v.

Under the assumptions in Proposition 5, for any λ, we have k(λ, x̄) → k(λ) ≥ k+(λ) as x̄ → ∞.

We show that this convergence is uniform in λ and of rate 1
x̄
.

Lemma 2 There exists K0 > 0 such that k(λ, x̄) > k+(λ)− K0

x̄
for any λ ∈ Sn−1 and any x̄ > 0.

Proof. For a large L0 (to be chosen, depending only on the stage-game structure, and not on

x̄), we consider the following two cases: (a) |λi| > L0

x̄
for at least two players, and (b) |λi| ≤ L0

x̄

for all but one player.

In case (a), we assume |λ1|, |λ2| > L0

x̄
without loss of generality. We further assume λ1

λ2
> 0.

(The case with λ1

λ2
< 0 is similar.) We will show that if x̄ is large enough, then every pure action

pro�le a can be enforced with respect to the line λ · x(y) = 0 such that ∥x(y)∥ ≤ x̄, and hence

k(λ, x̄) = k(λ) ≥ k+(λ). To see this, �rst note that for each i = 3, . . . , n, since a has individual

full rank for player i (implied by the pairwise full rank condition), there exists xi(·) that satis�es
player i's incentive conditions:

∑
y∈Y

(π(y | a′i, a−i)− π(y | a))xi(y) ≤ ui(a)− ui(a
′
i, a−i) ∀a′i ∈ Ai.
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Note that such xi(·) is independent of λ. Second, we substitute x2(y) = − 1
λ2

∑
i̸=2 λixi(y) and

rewrite players 1 and 2's incentive constraints as

∑
y∈Y

(π(y | a′1, a−1)− π(y | a))x1(y) ≤ u1(a)− u1(a
′
1, a−1) ∀a′1 ∈ A1,

∑
y∈Y

(π(y | a′2, a−2)− π(y | a))x1(y) ≥ −λ2

λ1

(u2(a)− u2(a
′
2, a−2))

−
n∑

i=3

λi

λ1

∑
y∈Y

(π(y | a′2, a−2)− π(y | a))xi(y) ∀a′2 ∈ A2.

Since a has pairwise full rank for players 1 and 2, there exists x1(·) that satis�es the above

condition. Note that |x1(y)| is of order 1
|λ1| +1 and |x2(y)| is of order 1

|λ2| +1. Since 1
|λ1| ,

1
|λ2| <

x̄
L0
,

we can choose L0 large enough to satisfy ∥x(y)∥ ≤ x̄ (for large enough x̄).

In case (b), without loss of generality, we assume |λ2|, . . . , |λn| ≤ L0

x̄
. We further assume

λ1 < 0. (The case with λ1 > 0 is similar.) Note that λ1 < −1 + L0

x̄
for large x̄. Since there

exists a minmax action pro�le α1 with individual full rank for players 2, . . . , n, there exists x

such that (α1, (0, . . . , 0), x) is feasible in Fudenberg-Levine's program with (−1, 0, . . . , 0). Note

that x1(y) ≥ 0. Let L1 := maxi̸=1,y |xi(y)|. Let v′ = − (n−1)L0L1

x̄
λ and x′(y) = x(y)− (n−1)L0L1

x̄
λ.

Since

λ · x′(y) = λ1x1(y) +
n∑

i=2

λixi(y)−
(n− 1)L0L1

x̄
≤ 0,

(α1, v′, x′) is feasible in Fudenberg-Levine's program with λ. Therefore, for large enough x̄, we

have

k(λ, x̄) ≥ λ · v′ = −(n− 1)L0L1

x̄
.

Let v+ ∈ F+ be such that λ · v+ = k+(λ). Note that v+,1 ≥ 0. Thus,

k+(λ) = λ1v+,1 +
n∑

i=2

λiv+,i ≤
(n− 1)L0ū

x̄
.

Therefore, we have k(λ, x̄) ≥ k+(λ)− (n−1)L0(L1+ū)
x̄

.

Next, we record two �geometric� lemmas.
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Lemma 3 For any K1 > 0, there exists K2 > 0 such that for any small r > 0, there exists a

compact, convex, and smooth set Wr such that

1. the curvature of Wr is at most 1/r; more precisely, for any boundary point v of Wr, there

exists a closed ball with radius r that includes v (in its boundary) and is contained in Wr;

2. maxv∈Wr λ · v < k+(λ)−K1r for any λ;

3. d(Wr, F+) < K2r.

Proof. With su�ciently large L2 > 0, we shrink F+ toward some interior point by a factor

1− L2r, and then smoothen the set by taking its r-neighborhood.

Lemma 4 For any r > 0 and 0 < ε < 2r, if w = (w1, . . . , wn) satis�es w1 ≤ r − ε and

∥w − v∥ ≤ (2rε)1/2 with v = (r, 0, . . . , 0), then ∥w∥ ≤ r.

Proof. We have ∥w∥2 = ∥v∥2 + 2v · (w − v) + ∥w − v∥2 ≤ r2 − 2rε + 2rε = r2, and hence

∥w∥ ≤ r.

Proof of Proposition 5. Fix K0 > 0 as in Lemma 2. Let W (δ) = Wr(δ) as in Lemma 3,

where we set K1 := K0 + 3 and r(δ) = (1 − δ)1/4. It su�ces to show that for any δ close to 1,

W (δ) is self-generating, and hence W (δ) ⊆ E(δ).

Pick any boundary point v(δ) of W (δ), and denote by λ the unit vector normal to W (δ) at

v(δ). Letting x̄(δ) = (1− δ)−1/4 in Lemma 2, we can achieve the score k(δ, x̄(δ)) > k+(λ)− K0

x̄(δ)

in Fudenberg-Levine's program by (α, v′(δ), x(·, δ)) with ∥x(y, δ)∥ ≤ x̄(δ). Let

w(y, δ) =
1

δ
v(δ)− 1− δ

δ
v′(δ) +

1− δ

δ
x(y, δ).

Then it is easy to show that α is enforceable with continuation payo� vector w(·, δ), and the

total payo� vector is v(δ).

All is left to show is that w(y, δ) ∈ W (δ). By the construction of W (δ), it su�ces to show

that w(y, δ) belongs to the ball B(δ) with center v(δ)− r(δ)λ and radius r(δ). Note �rst that

λ · (w(y, δ)− v(δ)) =
1− δ

δ
λ · (v(δ)− v′(δ)) +

1− δ

δ
λ · x(y, δ)

≤ 1− δ

δ
λ · (v(δ)− v′(δ))

<
1− δ

δ

(
(k+(λ)−K1r(δ))−

(
k+(λ)−

K0

x̄(δ)

))
=: −ε(δ) ≈ −3(1− δ)5/4.
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On the other hand,

∥w(y, δ)− v(δ)∥ =

∥∥∥∥1− δ

δ
(v(δ)− v′(δ) + x(y, δ))

∥∥∥∥
≤ 1− δ

δ
(∥v(δ)∥+ ∥v′(δ)∥+ ∥x(y, δ)∥)

≤ 1− δ

δ
(ū+ (ū+ x̄(δ)) + x̄(δ)) ≈ 2(1− δ)3/4.

Therefore, for δ high enough, we have ∥w(y, δ)− v(δ)∥ < (2r(δ)ε(δ))1/2. By Lemma 4, we have

w(y, δ) ∈ B(δ).

As a remark, notice that our individual and pairwise full rank conditions are used in the proof

of Lemma 2 only. Therefore, even if the full rank condition holds only approximately, as long

as Lemma 2 holds, the same rate (1 − δ)1/4 applies. Moreover, if there exist β > 0 and K0 > 0

such that k(λ, x̄) > k+(λ)− K0

x̄β for any λ ∈ Sn−1 and any x̄ > 0, then we can obtain the rate of

convergence (1− δ)β/(2β+2). (Proposition 5 can be regarded as a special case with β = 1.)

We now show that the rate (1− δ)1/4 is tight. Recall the two-player stage game of Figure 2.

Assume that the monitoring structure has full support, and every pure action pro�le has pairwise

full rank condition for players 1 and 2, and hence Proposition 5 applies. This example shows

that the rate (1− δ)1/4 is tight. Roughly speaking, the slow rate arises because near coordinate

directions, such as negative coordinate (minmax) directions, it is no longer possible to minimize

surplus destruction by shifting continuation payo�s across players. To avoid continuation payo�s

to interfere with the minmaxed player's incentives, we must pick these payo�s �well� inside the

equilibrium payo�, and this minimum distance exacerbates the ine�ciency. To put it di�erently,

in non-coordinate directions, it is possible to �halve� the ine�ciency of (1− δ)1/4 across players,

but that is no longer possible in coordinate directions. The same issue arises in positive coordinate

directions; see Propositions 7 and 8.

Proposition 6 In the stage game of Figure 2 under imperfect public monitoring with full sup-

port, there exists κ > 0 such that for any δ < 1, there is no perfect public equilibrium payo�

within the distance κ(1− δ)1/4 of (0, 0).

Proof. We prove this proposition by contradiction. Let d(δ) denote the distance between

E(δ) and (0, 0). Suppose that there exists a sequence {δm}m∈N of discount factors such that

δm → 1 and d(δm)(1− δm)
−1/4 → 0 as m → ∞.
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Figure 6: The shaded area depicts Fp,r, and the inside arc depicts arcp,r.

Because of full support, we may pick η > 0 such that π(y | a) ≥ η for any a ∈ A and y ∈ Y .

One can show that (0, 0) /∈ E(δ) for any δ < 1 (Fudenberg, Levine and Maskin, 1994, Theorem

6.5).

For each small p, r > 0 such that p−1r is large, let Γp,r be the circle with center at (p +
r√

4p2+1
,− 2pr√

4p2+1
) and radius r. Let arcp,r denote the arc between (p, 0) and ≈ (p, p). Let Fp,r

be the subset of F+ that excludes the neighborhood of (0, 0) separated by arcp,r. See Figure 6.

Note that the tangent line of the arc has slope approximately 1
2p
, and that extending the

tangent line in the left-down direction would cross the v2-axis at (0,−1
2
) or above. For each

δ < 1 close to 1, since (0, 0) /∈ E(δ), we can �nd the largest p = p(δ) > 0 such that Fp,r(δ) ⊇
Eδ with r(δ) = (1 − δ)1/4. Note that d(δ) and p(δ) vanish at the same rate as δ → 1, and

p(δm)
−1r(δm) → ∞ as m → ∞.
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For any δ close to 1, it follows from the maximality of p(δ) and the compactness of E(δ) that

E(δ)∩ arcp(δ),r(δ) is non-empty. Pick any v(δ) ∈ Eδ ∩ arcp(δ),r(δ). Pick an arbitrary perfect public

equilibrium that achieves v(δ), and denote by λ the unit vector normal to the arc arcp(δ),r(δ) at

point v(δ). We denote by α the action pro�le played in the �rst period, and by w(y, δ) ∈ E(δ)

the continuation payo� vector after signal y. Since v is a convex combination of u(α) and

{w(y, δ) : y ∈ Y }, and λ · v ≥ λ · w(δ, y) for any y, we have u(α) ∈ conv {(0, 0), (0,−1
2
), (1

2
, 1
2
)},

and hence α1(D), α2(R) ≥ 1
2
.

Since player 1 has no incentive to deviate from α1 to U , α1(D) > 0, and u1(D,α2) =

u1(U, α2)− α2(R) ≤ u1(U, α2)− 1
2
, w1(·, δ) must vary by order at least 1− δ.

On the other hand, for each y ∈ Y , we have

λ · v(δ) = (1− δ)λ · u(α) + δ

(∑
y′ ̸=y

π(y′ | α)λ · w(y′, δ) + π(y | α)λ · w(y, δ)

)
≤ (1− δ)λ · u(α) + δ((1− η)λ · v(δ) + ηλ · w(y, δ)),

since λ · w(y′, δ) ≤ λ · v(δ) for any y′ ∈ Y and π(y | α) ≥ η. Therefore, we have

λ · w(y, δ) ≥ λ · v(δ)− ε(δ),

where

ε(δ) :=
1− δ

δη
λ · (u(α)− v(δ)).

Note that since v(δ) ∈ arcp(δ),r(δ), λ · (u(α) − v(δ)) is of order at most d(δ), and hence ε(δ)

is of order at most d(δ)(1 − δ). Note also that, for δ close to 1, each w(y, δ) ∈ Fp(δ),r(δ) is

inside the circle Γp(δ),r(δ). Therefore, w(·, δ) can vary in the direction tangent to λ by at most

2(r(δ)2− (r(δ)− ε(δ))2)1/2 = 2ε(δ)1/2(2r(δ)− ε(δ))1/2, which is of order at most d(δ)1/2(1− δ)5/8.

Since the tangent line has a slope approximately equal to 1
2p(δm)

as m → ∞, w1(·, δm) can vary

by order at most d(δm)
3/2(1− δm)

5/8.

Combining the above arguments, d(δm)
3/2(1− δm)

5/8 is of order at least 1− δm. Hence d(δm)

is of order at least (1− δm)
1/4, which is a contradiction.
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4.3 A Faster Rate toward Strictly Individually Rational Payo� Vectors

Although Proposition 6 shows that the rate of convergence can be as slow as (1− δ)1/4, this

result depends on both imperfect public monitoring and minmaxing. As we already discussed

in Section 3, the rate of convergence is faster under perfect monitoring if we focus on strictly

individually rational payo� vectors. Here, we show that under imperfect public monitoring, the

rate of convergence is at least as fast as (1 − δ)1/2 toward strictly individually rational payo�

vectors that do not maximize any player's payo�.

Proposition 7 Fix a �nite stage game under imperfect public monitoring with the same indi-

vidual and pairwise full rank conditions as in Proposition 5. Then for any B ⊆ F+, closed, such

that 0 < vi < maxa ui(a) for all v ∈ B and i, there exists KB > 0 such that B is contained in

the KB(1− δ)1/2-neighborhood of E(δ) for any δ < 1.

To prove this, pick small ε > 0 such that ε ≤ vi ≤ maxa ui(a) − ε for all v ∈ B and i. For

each λ ∈ Sn−1, we de�ne kB(λ) := maxv∈B λ · v.

Lemma 5 There exists x̄0 > 0 such that k(λ, x̄) ≥ kB(λ) for any λ ∈ Sn−1 and any x̄ > x̄0.

Proof. For a large L0 (to be chosen, depending only on the stage-game structure, and not on

x̄), we consider the following two cases: (a) |λi| > L0

x̄
for at least two players, and (b) |λi| ≤ L0

x̄

for all but one player.

In case (a), similarly to case (a) in the proof of Lemma 2, it follows from the pairwise

full rank condition that there exists L0 such that, if x̄ is large enough, then every pure action

pro�le a can be enforced with respect to the line λ · x(y) = 0 such that ∥x(y)∥ ≤ x̄, and hence

k(λ, x̄) = k(λ) ≥ kB(λ).

In case (b), without loss of generality, we assume |λ2|, . . . , |λn| ≤ L0

x̄
. We further assume

λ1 < 0. (The case with λ1 > 0 is similar.) Note that λ1 < −1 + L0

x̄
for large x̄. Since there

exists a minmax action pro�le α1 with individual full rank for players 2, . . . , n, there exists x

such that (α1, (0, . . . , 0), x) is feasible in Fudenberg-Levine's program with (−1, 0, . . . , 0). Note

that x1(y) ≥ 0. Let L1 := maxi ̸=1,y |xi(y)|. Similarly to case (b) in the proof of Lemma 2, for

large enough x̄, we have

k(λ, x̄) ≥ −(n− 1)L0L1

x̄
.
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Let vB ∈ B be such that λ · vB = kB(λ). Note that vB,1 ≥ ε. Thus,

kB(λ) = λ1vB,1 +
n∑

i=2

λivB,i ≤
(
−1 +

L0

x̄

)
ε+

(n− 1)L0ū

x̄
.

Therefore, we have k(λ, x̄) ≥ kB(λ) for large enough x̄.

The rest is the same as the proof of Proposition 5, except that we replace (1 − δ)1/4 by

(1− δ)1/2. That is, we �nd a compact, convex, and smooth self-generating set that approximates

B at the rate (1 − δ)1/2. This corresponds to the remark after the proof of Proposition 5 with

β = ∞.

Proposition 7 excludes max points. The exclusion of max points is not an issue in the

prisoner's dilemma, because max points are not individually rational, but this need not be so in

other stage games. However, under a mild genericity assumption on stage-game payo�s, we can

extend Proposition 7 and obtain the convergence rate (1− δ)1/2 even toward max points.

Proposition 8 Fix a �nite stage game under imperfect public monitoring with the same indi-

vidual and pairwise full rank conditions as in Proposition 5. Assume that for every pure action

pro�le a ∈ A, if ui(a) = maxa′ ui(a
′), then ui(a) > ui(a

′′
i , a−i) for every a′′i ̸= ai. Then for any

B ⊆ F+, closed, such that vi > 0 for all v ∈ B and i, there exists KB > 0 such that B is

contained in the KB(1− δ)1/2-neighborhood of E(δ) for any δ < 1.

Proof. We need to modify case (b) in the proof of Lemma 5 regarding directions λ near

(1, 0, . . . , 0). Fix any λ such that λ1 > 0 and |λ2|, . . . , |λn| ≤ L0

x̄
. Pick any a ∈ A that maximizes

λ · u(a). Since λ is near (1, 0, . . . , 0), a also maximizes ui. Since a has individual full rank for

players 2, . . . , n, there exists x such that (a, u(a), x) is feasible in the program of Fudenberg-

Levine with (1, 0, . . . , 0). Let x′
1(y) = − 1

λ1

∑n
i=2 λixi(y) and x′

i(y) = xi(y) for every i = 2, . . . , n.

Since player 1 has strict incentives to play ai, and |λ2|, . . . , |λn| are su�ciently small (for x̄ large

enough), we can enforce a, and achieve the score λ · u(a).

4.4 The Prisoner's Dilemma

Proposition 6 depends also on stage-game payo�s. Here we show that in the prisoner's

dilemma of Figure 4 under imperfect monitoring, the exact rate of convergence is given by

(1−δ)1/3. Moreover, our proof suggests that this result is robust to payo� perturbations, implying
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that the rate of convergence is (1− δ)1/3 for a nonempty and open set of stage-game payo�s.21

Proposition 9 In the stage game of Figure 4 under imperfect public monitoring in which (C,C),

(C,D), and (D,C) have pairwise full rank for players 1 and 2, there exists K > 0 such that

d(E(δ), F+) < K(1− δ)1/3 for any δ < 1.

Once again, the proof is similar to that of Proposition 5. At this time, we use the following

property of k(λ, x̄).

Lemma 6 There exists L0 > 0 such that k(λ, x̄) > k+(λ) +
1
2
if λi < −1

2
and λj ≥ L0

x̄
for some

i ̸= j.

Proof. This follows from the pairwise full rank condition of (C,D) and (D,C). See case (a)

in the proofs of Lemmas 2 and 5.

Lemma 6 gives a strictly positive lower bound of k(λ, x̄)− k+(λ), which is used to show that

continuation payo�s are �inward� from the total payo� by O(1 − δ) along direction λ. Unlike

Lemmas 2 and 5, however, Lemma 6 does not give any estimate for λ close enough to (−1, 0)

or (0,−1). For such directions, we will enforce static Nash equilibrium (D,D) by constant

continuation payo�s.

Proof of Proposition 9. Let r(δ) = 5(1 − δ)1/3 and x̄(δ) = (1 − δ)−1/3. For δ high

enough, we modify Lemma 3 and construct a compact, convex, and �almost smooth� set W (δ)

with curvature at most 1/r(δ) everywhere except at (0, 0), and the boundary at (0, 0) consists

of two half-lines normal to

(
−
√

1−
(

L0

x̄(δ)

)2
, L0

x̄(δ)

)
and

(
L0

x̄(δ)
,−
√
1−

(
L0

x̄(δ)

)2)
, respectively.22

(The choice of K1 > 0 in Lemma 3 is arbitrary.) See Figure 7.

Pick any boundary point v(δ) of W (δ), and denote by λ the unit vector normal to W (δ)

at v(δ). If v(δ) is close to (0, 0), then we can enforce the static Nash equilibrium (D,D) with

constant continuation payo�s w(y, δ) = 1
δ
v(δ). If v(δ) ̸= (0, 0) and λ1, λ2 ≥ −1

2
, then we can

adapt the proofs of Propositions 5 and 7 to generate v(δ) with respect to W (δ). Thus, we assume

that v(δ) is bounded away from (0, 0) and λi < −1
2
and λj ≥ L0

x̄
for some i ̸= j. Without loss

21We do not know whether this rate applies generically. The rate of convergence is likely to depend on whether
there are vertices of conv u(A) below the minmax payo�s, whether these vertices are strictly negative, whether
the minmax pro�le is a static Nash equilibrium, whether the minmax pro�le gives minmaxing players positive,
zero or negative payo�s, etc.

22The �kink� at (0, 0) is not essential. What is essential is that the tangent line at any boundary point of W (δ)
near (0, 0) weakly separates (0, 0) and W (δ).
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Figure 7: The shaded area depicts the set W (δ) of the proof of Proposition 8.
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of generality, we assume that λ1 < −1
2
and λ2 ≥ L0

x̄(δ)
. By Lemma 6, we can achieve the score

k(δ, x̄(δ)) > k+(λ)+
1
2
in Fudenberg-Levine's program by (α, v′(δ), x(·, δ)) with ∥x(y, δ)∥ ≤ x̄(δ).

Let

w(y, δ) =
1

δ
v(δ)− 1− δ

δ
v′(δ) +

1− δ

δ
x(y, δ).

Then it is easy to show that α is enforceable with continuation payo� vector w(·, δ), and the

total payo� vector is v(δ).

All is left to show is that w(y, δ) ∈ W (δ). By construction of W (δ), it su�ces to show that

w(y, δ) belongs to the ball B(δ) with center v(δ)− r(δ)λ and radius r(δ). Note �rst that

λ · (w(y, δ)− v(δ)) =
1− δ

δ
λ · (v(δ)− v′(δ)) +

1− δ

δ
λ · x(y, δ)

≤ 1− δ

δ
λ · (v(δ)− v′(δ))

<
1− δ

δ

(
(k+(λ)−K1r(δ))−

(
k+(λ) +

1

2

))
=: −ε(δ) ≈ −1

2
(1− δ).

On the other hand, ∥w(y, δ)−v(δ)∥ is approximately bounded above by 2(1−δ)2/3. Therefore, for

δ high enough, we have ∥w(y, δ)− v(δ)∥ < (2r(δ)ε(δ))1/2. By Lemma 4, we have w(y, δ) ∈ B(δ).

It is not di�cult to modify the proof of Proposition 6 and show that the rate (1 − δ)1/3 is

tight for the prisoner's dilemma under imperfect public monitoring with full support.

4.5 All-or-Nothing Monitoring

Neither Proposition 4 nor 6 makes any special assumption on the imperfect monitoring struc-

ture. Assuming, for instance, that monitoring has a product structure does not �help� in terms

of convergence rates; recall footnote 3.

However, these propositions assume that the monitoring has full support. Yet some natural

examples of monitoring structures fail this assumption. All-or-nothing monitoring structures

o�er such an example. With probability q, players observe the chosen action pro�le perfectly,

while with probability 1 − q, they see �nothing.� Formally, the set of public signals is given by

Y = A ∪ {∅}, and π(· | a) assigns probability q to y = a and probability 1 − q to y = ∅.23 Let

E(δ, q) be the equilibrium payo� set under discount factor δ and all-or-nothing monitoring with

23We thank the Associate Editor for suggesting this example.
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q. Then we can show the following.24

Lemma 7 It holds that E(δ, q) ⊇ E(δq/(1− δ + δq), 1).

Proof. It is enough to show that E(δq/(1−δ+δq), 1) is self-generating under discount factor

δ and all-or-nothing monitoring with q. Pick any v ∈ E(δq/(1 − δ + δq), 1). Then there exist

α ∈ ×n
i=1∆(Ai) and w : A → E(δq/(1− δ + δq), 1) such that

vi =
1− δ

1− δ + δq
ui(α) +

δq

1− δ + δq
wi(α)

≥ 1− δ

1− δ + δq
ui(a

′
i, α−i) +

δq

1− δ + δq
wi(a

′
i, α−i)

for all i = 1, . . . , n and ai ∈ Ai. Then we have

vi = (1− δ)ui(α) + δ(qwi(α) + (1− q)vi)

≥ (1− δ)ui(ai, α−i) + δ(qwi(ai, α−i) + (1− q)vi)

for all i = 1, . . . , n and ai ∈ Ai. Thus, v is enforceable under discount factor δ and all-or-nothing

monitoring with q.

As a corollary, we can show that the rate of convergence under all-or-nothing monitoring is

the same as that under perfect monitoring. More precisely, combined with Propositions 1 and

3, Lemma 7 implies that for any �nite stage game under all-or-nothing monitoring with q > 0,

there exists Kq > 0 such that d(E(δ, q), F+) < Kq(1− δ)1/2, and generically the right-hand side

improves to Kq(1− δ). Imperfect monitoring in the form of all-or-nothing monitoring may a�ect

the coe�cient Kq, but does not a�ect the rate of convergence.
25

5 Discussion

Our paper has shown that even when imperfect monitoring has no cost in terms of the

limit equilibrium payo� set, it has a cost in terms of the rate at which this set is approached.

24This result extends to more general monitoring structures: the probability that each action pro�le be perfectly
observed can depend on the action pro�le as long as it is positive, and signals in the complementary event need
not be completely uninformative.

25Note that imperfect monitoring does not improve the rate of convergence beyond perfect monitoring. This
follows from Kandori (1992) if the public randomization device is available. Even without public randomization,
one can easily extend Proposition 2 to all monitoring structures.
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Speci�cally, we show that the set of equilibrium payo�s converges to its limit at rate (1 − δ)1/2

under perfect monitoring, and at rate (1− δ)1/4 under imperfect monitoring, under the standard

rank assumptions ensuring the folk theorem.

Throughout the paper, we have made a number of simplifying assumptions. Among them

is the full dimensionality of F+. Even if the full dimensionality condition is violated, the set of

equilibrium payo� vectors converges to some compact and convex set Q in the Hausdor� metric.

Moreover, Q is characterized by �nitely many steps of a version of Fudenberg-Levine's program,

where continuation payo� vectors are restricted to lower-dimensional a�ne spaces (Fudenberg,

Levine and Takahashi, 2007). In this case, if the last step of the program satis�es a counterpart

of Lemma 2, then we obtain the same rate (1 − δ)1/4. See also the remark after the proof of

Proposition 5.

In �nite-horizon repeated games, Benoît and Krishna (1985) establish the pure-strategy folk

theorem under perfect monitoring, the full dimensionality condition, and an additional condition

that requires every player to have at least two stage-game Nash equilibrium payo�s. That is, any

feasible and individually rational payo� vector can be approximately sustained in equilibrium as

the horizon T becomes longer. We conjecture that the rate of convergence is T−1/2. However, to

show the mixed-strategy folk theorem (without assuming mixed action observability), Gossner

(1995) uses a statistical test whose length becomes larger as the test becomes more precise. In

his case, the rate of convergence may be T−1/2 or strictly slower.26 We have already referred in

introduction to the literature on zero-sum games with incomplete information, in which the rates

of convergence for the discounted case are obtained as corollaries of those for the �nite-horizon

case. In the context of Markov Decision Processes, White (1963) is the �rst to derive a rate

of convergence as T → ∞. A systematic analysis of the convergence rate in the �nite-horizon

case requires an investigation of the rate of convergence of the Bellman operator (see Hörner and

Renault, 2014, for a derivation of the folk theorem based on the operator approach).

One limitation in our analysis of imperfect public monitoring, as already pointed out, is the

restriction to public strategies. Kandori and Obara (2006) show that the equilibrium payo� set

may expand strictly if we change the equilibrium concept from perfect public equilibrium to

sequential equilibrium, thereby allowing for private strategies (although the di�erence in equi-

librium concepts is irrelevant for product monitoring, as discussed in footnote 3 and Section

4.5). The ideas behind the proofs of Propositions 4 and 6 rely on perfect public equilibrium. It

26Presumably, this question can be answered, given that the rate of convergence in approachability theory (on
which he relies) has been thoroughly investigated, see Chen and White (1996).
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is certainly possible that regarding imperfect monitoring, allowing equilibria in private strate-

gies could accelerate the rate of convergence beyond the results that we have derived. Delayed

punishments in the spirit of Compte (1998) might allow to economize on the cost of deterring

deviations. This is left for future research.

Furthermore, Awaya and Krishna (2014) show that under private monitoring, communication

helps expand the equilibrium payo� set. One may wonder whether communication could have

an impact on the rate of convergence as well, even when the folk theorem holds with imperfect

monitoring. However, to the extent that we use Tomala's (2009) notion of perfect communication

equilibria, which yields a recursive structure, all of our results survive with F+ replaced by FC ,

the set of feasible payo� vectors above the correlated minmax payo� vector. That is, the set of

perfect communication equilibrium payo� vectors converges to FC at rate (1−δ)1/2 under perfect

monitoring, and at rate (1−δ)1/4 under imperfect (possibly private) monitoring. Moreover, these

bounds are tight. On the other hand, Sugaya and Wolitzky (2015) allow for general sequential

equilibria, and show that under mediated perfect monitoring, the set of sequential equilibrium

payo� vectors converges to FC at rate 1 − δ (even without the standard full dimensionality

condition).

Finally, we note that we have taken the classical �discrete-time� limit. That is, we have

analyzed the limit of the equilibrium payo� set as δ → 1, keeping the monitoring structure �xed.

Instead, one can take the �continuous-time� limit, where signals become less and less informative

as δ → 1 (Abreu, Milgrom and Pearce, 1991, Sannikov, 2007, Sannikov and Skrzypacz, 2010).

We are not aware of any result on the rate of convergence in the continuous-time limit, but some

of the tools and proof techniques in this paper may be applicable.
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A Proof of Proposition 3

We denote player i's minmax payo� by v
i
. Various objects, such as v

i
, F+, and E(δ), depend

on payo� function pro�le u = (ui)
n
i=1, but for notational simplicity, we keep such dependence

implicit.

For each i ̸= j, let Uij be the set of payo� function pro�les that satisfy the su�cient conditions

stated in Lemma 1 for the rate of convergence to be at most 1 − δ, i.e., if long minmaxing of

player i is required, then for each j ̸= i, either vj > vj or there exists v
′ ∈ F+ such that v′i = vi

and v′j > vj. We will show that each Uij is open and dense in U0, and so is U =
∩

(i,j):i̸=j Uij

by the Baire category theorem. (Note that U0 is open in Rn|A|, and hence the Baire category

theorem applies to U0.) Clearly, Uij is open. To show that Uij is dense in U0, �x any u ∈ U0 \Uij.

Then there exists a vertex v ∈ F+ where long minmaxing of player i is required (and hence
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vi = v
i
), vj = vj, and there exists no v′ ∈ F+ such that v′i = vi and v′j > vj. Then we have

{(v′i, v′j) ∈ R2 : v′ ∈ F+, v
′
i = vi} = {(vi, vj)}.

Let αi
−i be a minmax action pro�le of player i. Suppose that αi

−i is pure. Then, since long

minmaxing of player i is required at v, player i is indi�erent among all actions against αi
−i. Since

|Ai| ≥ 2, this case is nowhere dense. Thus, we can assume that αi
−i is not pure.

Suppose that vj > v
j
. Since F+ is full-dimensional, we have v

i
= mina∈A ui(a). Since |Ai| ≥ 2,

this case is nowhere dense. Thus, we can assume that vj = v
j
and hence (vi, vj) is the vector of

minmax payo�s.

Since (vi, vj) is on the boundary of the projection of conv u(A) on the ij-plane, we have

either (i) (vi, vj) = (ui(ā), uj(ā)) for some ā ∈ A, or (ii) (vi, vj) is a strict convex combination of

(ui(â), uj(â)) and (ui(ã), uj(ã)) for some â, ã ∈ A with â ̸= ã.

For Case (i), since αi
−i is not pure, for each ai ∈ Ai, there exists a−i ∈ suppαi

−i such that

(ai, a−i) ̸= ā. Consider u′ ∈ U0 such that u′
i(ā) = ui(ā) and u′

i(a) < ui(a) for any a ̸= ā. Then,

player i's minmax payo� v′
i
under u′

i satis�es

v′
i
≤ max

ai∈Ai

u′
i(ai, α

i
−i) < max

ai∈Ai

ui(ai, α
i
−i) = v

i
= ui(ā) = u′

i(ā).

Thus, this case is nowhere dense.

For Case (ii), for each such u, there exists λ ∈ (0, 1) such that

v
i
= λui(â) + (1− λ)ui(ã),

v
j
= λuj(â) + (1− λ)uj(ã).

Since v
i
is independent of u−i, λ is also independent of u−i generically (as long as ui(â) ̸= ui(ã)).

Similarly, since v
j
is independent of u−j, λ is also independent of u−j generically. Thus, we can

treat λ as a constant.

We assume without loss of generality that âi ̸= ãi. Since α
i
−i is not pure and âi ̸= ãi, for any

ai ∈ Ai, there exists a−i ∈ suppαi
−i such that (ai, a−i) ̸= â, ã. Similarly to Case (i), consider

u′′ ∈ U0 such that u′′
i (â) = ui(â), u

′′
i (ã) = ui(ã), and u′′

i (a) < ui(a) for any a ̸= â, ã. Then, player

i's minmax payo� v′′
i
under u′′

i satis�es

v′′
i
≤ max

ai∈Ai

u′′
i (ai, α

i
−i) < max

ai∈Ai

ui(ai, α
i
−i) = v

i
= λui(â) + (1− λ)ui(ã) = λu′′

i (â) + (1− λ)ui(ã)
′′.
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Thus, this case is also nowhere dense.
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