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Abstract

We define multi-self-similar random fields, that is, random fields that are self-similar
component-wise. We characterize them, relate them to stationary random fields using a
Lamperti-type transformation and study these stationary fields. We also extend the notion
of local stationarity and local stationarity reducibility to random fields. Our work is moti-
vated by applications arising from climatological and environmental sciences. We illustrate
these new concepts with the fractional Brownian sheet and the Lévy fractional Brownian
random field.
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1 Introduction

Let {X(t), t ∈ R} be a real-valued stochastic process. It is self-similar with index H > 0 (H-

ss) if for all a > 0, the finite-dimensional distributions of {X(at), t ∈ R} are identical to the

finite-dimensional distributions of {aHX(t), t ∈ R}; see Taqqu (2003) for a thorough review.
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The standard fractional Brownian motion BH(t) is a well-known example of an H-ss process

with 0 < H ≤ 1. It is Gaussian, has zero mean stationary increments and covariance function

E(BH(t)BH(u)) =
1
2
(|t|2H + |u|2H − |t− u|2H). (1)

A non-degenerate H-ss process cannot be stationary, but there is an important correspondence

between self-similar and stationary processes, first presented by Lamperti (1962). Namely, if

{X(t), t ∈ R+} is H-ss, where R+ denotes the positive real line, then

Y (t) = e−tHX(et), t ∈ R, (2)

is stationary. Indeed, for any h ∈ R,

Y (t + h) = e−(t+h)HX(ehet)
d= e−tHX(et)

= Y (t),

where d= denotes equality of the finite-dimensional distributions. Conversely, if {Y (t), t ∈ R} is

stationary, then

X(t) = tHY (ln(t)), t ∈ R+, (3)

is H-ss. Relations (2) and (3) characterize H-ss processes in R+.

Suppose that Y has finite second moments and denote by R(v) its stationary covariance.

Then

Cov(X(t), X(u)) = tHuHR(ln(t)− ln(u)) (4)

= eH(ln(t)+ln(u))R(ln(t)− ln(u)), (5)

which is a locally stationary reducible covariance according to the following definition of Genton

and Perrin (2004).

Definition 1 The process X has locally stationary reducible (LSR) covariance if

Cov(X(t), X(u)) = R1

(
g(t) + g(u)

2

)
R(g(t)− g(u)), (6)

where R1 is a nonnegative function, R is a stationary covariance, and g is a bijective deforma-

tion of the time index.

The covariance (6) is locally stationary after the time deformation g. Indeed, when R1 is smooth

enough, Cov(X(t), X(u)) ' R2(g(t)− g(u)) when g(u) ∈ [g(t)− ε
2 , g(t) + ε

2 ] for ε small enough.
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It follows from (5) that self-similar processes with finite second moments are a subclass of

LSR processes with

R1(w) = e2Hw and g(t) = ln(t). (7)

Note that, in this particular case, R1 is an exponentially convex covariance (Loève, 1965, p.

414), that is
∑m

i=1

∑m
j=1 aiajR1(xi + xj) ≥ 0 for all finite sets of real coefficients a1, . . . , am

and points x1, . . . , xm ∈ R. In particular, for the fractional Brownian motion, straightforward

computations yield

R(v) = cosh(Hv)− 2(2H−1)(sinh(|v|/2))2H (8)

for the corresponding stationary covariance R, see e.g. Perrin and Senoussi (1999).

In this article, we consider real-valued random fields, that is, stochastic processes {X(t), t ∈
Rn}, for which the parameter space is the Euclidean space Rn, n ≥ 1. The classical definition

of self-similarity on Rn, see Definition 8.1.1 in Samorodnitsky and Taqqu (1994), is analogous

to the one for R, namely,

Definition 2 A random field {X(t), t ∈ Rn} is self-similar with index H > 0 (H-ss) if for

all a > 0, the finite-dimensional distributions of {X(at), t ∈ Rn} are identical to the finite-

dimensional distributions of {aHX(t), t ∈ Rn}.

Two well-known H-ss random fields indexed by Rn are the fractional Brownian sheet and the

Lévy fractional Brownian random field, which are two different generalizations of the fractional

Brownian motion indexed by R.

The classical definition of self-similarity for Rn does not seem to be appropriate for the

fractional Brownian sheet. Indeed, consider the Euclidean space R2 for illustration. Let X =

{X(t), t ∈ R2} be a mean zero standardized fractional Brownian sheet with correlation

E[X(t)X(u)] =
1
4

(|t1|2H1 + |u1|2H1 − |t1 − u1|2H1
) (|t2|2H2 + |u2|2H2 − |t2 − u2|2H2

)
, (9)

where t = (t1, t2)T , u = (u1, u2)T , and 0 < H1 ≤ 1, 0 < H2 ≤ 1. Here, H1 reflects the self-

similarity in the first dimension, whereas H2 reflects the self-similarity in the second dimension.

According to Definition 2, X is H-ss with H = H1 + H2, so that this global index H does

not reflect the self-similarity component-wise. Consequently, we propose in this article a new

definition of self-similarity for random fields, called multi-self-similarity, that addresses the

previous issue and includes the classical definition of self-similarity as a particular case.

Our definition of multi-self-similarity allows us to extend the Lamperti characterization to

multi-self-similar random fields. We will see that the Lamperti characterization applies to the

Lévy fractional Brownian random field in R2 when polar coordinates are used instead of the

usual cartesian coordinates.
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From the Lamperti characterization of random fields, we derive a multivariate Lamperti

transformation and use it to generalize local stationarity reducibility to random fields. As in

the one-dimensional case, multi-self-similar random fields with finite second moments are a

subclass of locally stationary random fields. We give the explicit correlation structure of the

reduced fractional Brownian sheet in Rn and the reduced Lévy fractional Brownian random

field indexed by R2.

Our work is motivated by applications arising from climatological and environmental sci-

ences. Indeed, climatologists have recently discovered patterns of self-similarity across temporal

and spatial scales in tropical convection. Thus, there is a need for a rigorous and appropriate

definition of self-similarity for random fields. Environmental scientists use statistical methods

to reduce nonstationary spatial random fields to stationarity using a deformation of the index in

R2 or R3. Perrin and Senoussi (2000) gave a characterization of these deformations and random

fields. The multivariate Lamperti transformation mentioned above is a specific deformation of

the spatial index and thus it is of particular interest for applications.

This article is organized as follows. In Section 2, we introduce a generalization of the notion

of self-similarity to random fields and derive the associated Lamperti-type transformation. We

further extend the notion of local stationarity and local stationarity reducibility to random

fields and illustrate our results with the fractional Brownian sheet. We also discuss multi-

self-similar random fields with superficial stationary increments. In Section 3, we study the

Lévy fractional Brownian random field indexed by R2 and discuss properties of the associated

stationary correlation function.

2 Multi-self-similar random fields

2.1 Multi-self-similarity

We use the following generalization of the notion of self-similarity to real-valued random fields.

Let Rn
+ denotes the n cartesian product R+ × · · · × R+.

Definition 3 A random field {X(t), t = (t1, . . . , tn)T ∈ Rn} is multi-self-similar with index

H = (H1, . . . ,Hn)T ∈ Rn
+ (H-mss) if

{X(a1t1, . . . , antn), t = (t1, . . . , tn)T ∈ Rn} d= {aH1
1 · · · aHn

n X(t1, . . . , tn), t = (t1, . . . , tn)T ∈ Rn},
(10)

for all a1 > 0, . . . , an > 0, where, as usual, d= denotes equality of the finite-dimensional distri-

butions.
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Note that Definition 3 depends on the coordinate system t = (t1, . . . , tn)T ∈ Rn used to

parameterize the random field X. If a1 = · · · = an = a > 0 and H1 + · · · + Hn = H > 0,

then Definition 3 reduces to Definition 2, for which the self-similarity index is the same in

all dimensions. In contrast, our definition allows for a component-wise self-similarity with

possibly different self-similarity indices in each dimension. Based on Definition 3, we extend

the Lamperti theorem (Lamperti, 1962) to random fields.

Proposition 1 If {X(t), t = (t1, . . . , tn)T ∈ Rn
+} is H-mss, then

Y (t) = e−tT HX(et1 , . . . , etn), t = (t1, . . . , tn)T ∈ Rn, (11)

is stationary. Conversely, if {Y (t), t = (t1, . . . , tn)T ∈ Rn} is stationary, then

X(t) = tH1
1 · · · tHn

n Y (ln(t1), . . . , ln(tn)), t = (t1, . . . , tn)T ∈ Rn
+, (12)

is H-mss.

Proof. Let θ1, . . . , θp be real numbers. If {X(t), t = (t1, . . . , tn)T ∈ Rn
+} is H-mss, then for

any t1, . . . , tp ∈ Rn, with tj = (tj1, . . . , tjn)T , and h = (h1, . . . , hn)T ∈ Rn,

p∑

j=1

θjY (tj + h) =
p∑

j=1

θje
−(tj1H1+···+tjnHn)e−(h1H1+···+hnHn)X(eh1etj1 , . . . , ehnetjn)

d=
p∑

j=1

θje
−(tj1H1+···+tjnHn)X(etj1 , . . . , etjn)

=
p∑

j=1

θjY (tj),

proving that {Y (t), t = (t1, . . . , tn)T ∈ Rn} is stationary.

Conversely, if {Y (t), t = (t1, . . . , tn)T ∈ Rn} is stationary, then for any t1, . . . , tp ∈ Rn
+ and

a1 > 0, . . . , an > 0,

p∑

j=1

θjX(a1tj1, . . . , antjn) =
p∑

j=1

θja
H1
1 · · · aHn

n tH1
j1 · · · tHn

jn Y (ln(a1) + ln(tj1), . . . , ln(an) + ln(tjn))

d=
p∑

j=1

θja
H1
1 · · · aHn

n tH1
j1 · · · tHn

jn Y (ln(tj1), . . . , ln(tjn))

=
p∑

j=1

θja
H1
1 · · · aHn

n X(tj),

proving that {X(t), t = (t1, . . . , tn)T ∈ Rn
+} is H-mss.
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2.2 Locally stationary random fields

Let {X(t), t = (t1, . . . , tn)T ∈ Rn
+} be an H-mss random field with finite second moments.

According to Equation (12) in Proposition 1, the covariance of X can be written as:

E(X(t)X(u)) =
n∏

i=1

[
e
2Hi

ş
ln(ti)+ln(ui)

2

ť]
R (ln(t1)− ln(u1), . . . , ln(tn)− ln(un)) ,

= R1

(
g(t) + g(u)

2

)
R (g(t)− g(u)) , (13)

where

R1(w) = e2HT w, g(t) = (ln(t1), . . . , ln(tn))T and R is a stationary covariance. (14)

In light of this remark, we extend the notions of local stationarity of Silverman (1957) and local

stationarity reducibility of Genton and Perrin (2004) to random fields.

Definition 4 A random field {X(t), t = (t1, . . . , tn)T ∈ Rn} with finite second moments is

locally stationary (LS) if its covariance function c can be written in the form:

c(t,u) = R1

(
t + u

2

)
R (t− u) , t,u ∈ Rn, (15)

where R1 is a nonnegative function and R is a stationary covariance.

Definition 5 A random field {X(t), t = (t1, . . . , tn)T ∈ Rn} with finite second moments is

locally stationary reducible (LSR) if its covariance function c can be written in the form:

c(t,u) = R1

(
g(t) + g(u)

2

)
R (g(t)− g(u)) , t,u ∈ Rn, (16)

where R1 is a nonnegative function, R is a stationary covariance and g is a bijective deformation

of the index space Rn. If X is Gaussian with zero mean, then X(t) d= Y (g(t)), where Y is an

LS random field. We call Y the reduced random field.

Therefore, multi-self-similar random fields with finite second moments are a subclass of LSR

random fields. In this particular case, the deformation g does not depend on the index H.

Note also that R1(w) = e2HT w is an exponentially convex covariance. Ehm et al. (2003)

establish a bijection between exponentially convex functions and entire positive definite func-

tions that provides parametric covariance models R1 for LS random fields. However, it is not

necessary that R1 be exponentially convex in Definitions 4 and 5.
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2.3 Fractional Brownian sheet

Let X = {X(t), t ∈ Rn
+} be a mean zero standard fractional Brownian sheet with covariance

E[X(t)X(u)] =
1
2n

n∏

i=1

(
t2Hi
i + u2Hi

i − |ti − ui|2Hi

)
, (17)

where t = (t1, . . . , tn)T , u = (u1, . . . , un)T , and 0 < Hi ≤ 1, i = 1, . . . , n. Then it follows from

Definition 3 that X is H-mss with H = (H1, . . . , Hn)T . From Proposition 1, we obtain that:

X(t) = tH1
1 · · · tHn

n Y (ln(t1), . . . , ln(tn)),

where Y (t) is a mean zero Gaussian stationary process with covariance E[Y (t)Y (t+v)] = R(v),

with

R(v) =
n∏

i=1

(
cosh(Hivi)− 2(2Hi−1)(sinh(|vi|/2))2Hi

)
. (18)

If we restrict the process X to one dimension, for example setting t = (t, c, . . . , c)T , where

c > 0, then Z(t) = X(t), t > 0, is the classical fractional Brownian motion indexed by R, which

is H-ss with index H = H1. On the other hand, with Definition 2, Z(t) is H-ss with index

H = H1 + · · ·+ Hn, which does not reflect the self-similarity component-wise.

It follows from Definition 5 and Relation (14) that fractional Brownian sheets are LSR

random fields with

R1(w) = e2HT w, g(t) = (ln(t1), . . . , ln(tn))T and R given by (18).

2.4 Multi-self-similar random fields with superficial stationary increments

The following result is a generalization of Lemma 7.2.1 in Samorodnitsky and Taqqu (1994).

Proposition 2 Suppose that X = {X(t), t = (t1, t2)T ∈ R2} is a non-constant H-mss random

field with finite second moments and stationary superficial increments of the form:

Sh(t) = X(t1 + h1, t2 + h2)−X(t1 + h1, t2)−X(t1, t2 + h2) + X(t1, t2),

for all h = (h1, h2) ∈ R2. Then X(0) = X(t1, 0) = X(0, t2) = 0 almost surely, H1 ≤ 1, H2 ≤ 1

and the variance of Xh(t) is:

Var(Sh(t)) = |h1|2H1 |h2|2H2Var(X(1)). (19)

Moreover, for all t ∈ R2, if H1 < 1 or H2 < 1, then E(X(t)) = 0. If H1 = H2 = 1, then

X(t) = t1t2X(1) almost surely, where 1 = (1, 1)T .
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Proof. The H-mss property gives X(0) d= aH1
1 aH2

2 X(0) so that X(0) = 0 almost surely. For

the same reason we also get X(t1, 0) = X(0, t2) = 0 almost surely. From S1(0, 0) d= S1(−1,−1)

we obtain that X(1, 1) d= X(−1,−1) and from S(−1,1)(0, 0) d= S(−1,1)(1,−1) d= S(−1,1)(1, 0) we

obtain that X(−1, 1) d= X(1,−1)) d= −X(1, 1). Moreover

E(|X(2, 1)|) ≤ E(|X(2, 1)−X(1, 1)|) + E(|X(1, 1)|). (20)

Because X(0) = X(t1, 0) = X(0, t2) = 0 almost surely, we have X(1,1)(1, 0) d= X(2, 1)−X(1, 1)

so that (20) becomes

2H1E(|X(1, 1)|) ≤ 2E(|X(1, 1)|),

by using stationarity of the superficial increments and multi-self-similarity. Let us now prove

that E(|X(1, 1)|) 6= 0 so that the last inequality imply H1 ≤ 1. If X(1, 1) = 0 almost surely

then X(1,−1) = X(−1, 1)) = X(−1,−1) = 0 almost surely and by multi-self-similarity X is

identically vanishing which contradicts our assumption. Similar arguments give H2 ≤ 1.

For the variance of Sh(t), we have:

Var(Sh(t)) = Var(Sh(0))

= |h1|2H1 |h2|2H2Var(X(1)),

by using stationarity of the superficial increments, multi-self-similarity and the relations

X(1, 1) d= X(−1,−1) and X(−1, 1) d= X(1,−1) d= −X(1, 1).

Suppose H1 < 1 or H2 < 1. Since E(S1(0, 0)) = E(S1(1, 0)), we obtain E(X(1)) = E(X(2, 1))−
E(X(1, 1)) = (2H1 − 1)E(X(1)), so that E(X(1)) = 0, and hence E(X(t)) = 0. When H1 =

H2 = 1, we have from the H-mss property:

E
[
(X(t)− t1t2X(1))2

]
= E(X2(t))− 2t1t2E(X(t)X(1)) + t21t

2
2E(X2(1))

= (t21t
2
2 − 2t21t

2
2 + t21t

2
2)E(X2(1))

= 0,

so that X(t) = t1t2X(1) almost surely.

This can be generalized to random fields indexed by Rn, n ≥ 3.

2.5 Another illustrative example

Let X = {X(t) = B1/2(t
2H1
1 · · · t2Hn

n ), t ∈ Rn
+} where t = (t1, . . . , tn)T , 0 < Hi ≤ 1, i =

1, . . . , n and B1/2 is the standard Brownian motion indexed by R+, that is, a standard fractional
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Brownian motion with H = 1/2. The random field X is H-mss but does not have superficial

stationary increments as defined in Proposition 2 above, unlike the fractional Brownian sheet.

From (6), (7) and (8), we get the covariance function of B1/2, for t, u > 0

E[B1/2(t)B1/2(u)] = exp
(

ln(t) + ln(u)
2

)
exp

(
−| ln(t)− ln(u)|

2

)
. (21)

Therefore, we deduce from (21) the covariance function of X, for t,u ∈ Rn
+

E[X(t)X(u)] = R1

(
g(t) + g(u)

2

)
R (g(t)− g(u)) , (22)

where

R1(w) = e2HT w, R(v) = exp(−|HTv|), and g(t) = (ln(t1), . . . , ln(tn))T .

Hence X is LSR.

3 Lévy fractional Brownian random fields indexed by R2

The following theorem describes the stationary field associated with the Lévy fractional Brown-

ian random field. Observe that the arguments of the stationary field involve polar coordinates.

3.1 Lamperti characterization

Theorem 1 Let X = {X(t), t = (t1, t2)T ∈ R2} be a mean zero Lévy fractional Brownian

random field with covariance

E[X(t)X(u)] =
1
2
(‖t‖2H + ‖u‖2H − ‖t− u‖2H), (23)

where 0 < H ≤ 1 and ‖ · ‖ denotes the usual Euclidean norm in R2. Then

X(t) d= ρH
t Y (ln(ρt), θt), (24)

with ρt =
√

t21 + t22, θt = arctan(t2/t1) + kπ, k ∈ Z, and where Y (t) is a mean zero Gaussian

stationary process with correlation E[Y (t)Y (t + v)] = R(v), given by

R(v) =
1
2

(
ev1H + e−v1H − (ev1 + e−v1 − 2 cos(v2))H

)
. (25)

Conversely, if Y (t), t = (t1, t2)T ∈ R2, is a mean zero Gaussian stationary process with

correlation R(v) given by (25), then Y (t) can be expressed as:

Y (t) d= e−t1HX(et1 cos(t2), et1 sin(t2)), (26)

where X = {X(t), t ∈ R2} is a mean zero Lévy fractional Brownian random field.
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Proof. The variance of X is Var(X(t)) = ‖t‖2H and therefore its correlation is given by:

r(t,u) =
1
2

( ‖t‖H

‖u‖H
+
‖u‖H

‖t‖H
− ‖t− u‖2H

‖t‖H‖u‖H

)
.

We have:

‖t‖H

‖u‖H
+
‖u‖H

‖t‖H
=

(
e
ln

ş ‖t‖
‖u‖

ť)H

+
(

e
− ln

ş ‖t‖
‖u‖

ť)H

= ev1H + e−v1H ,

where v1 = ln ‖t‖ − ln ‖u‖ = ln(ρt)− ln(ρu), and:

‖t− u‖2H

‖t‖H‖u‖H
=

(‖t‖2 + ‖u‖2 − 2‖t‖‖u‖ cos(θt − θu)
‖t‖‖u‖

)H

=
( ‖t‖
‖u‖ +

‖u‖
‖t‖ − 2 cos(θt − θu)

)H

=
(

e
ln

ş ‖t‖
‖u‖

ť
+ e

− ln
ş ‖t‖
‖u‖

ť
− 2 cos(θt − θu)

)H

=
(
ev1 + e−v1 − 2 cos(v2)

)H
,

where v2 = θt − θu. Thus, we have:

r(t,u) =
1
2

(
ev1H + e−v1H − (

ev1 + e−v1 − 2 cos(v2)
)H

)

= R(v1, v2)

= R(ln(ρt)− ln(ρu), θt − θu),

and hence

E(X(t)X(u)) = ρH
t ρH

u R(ln(ρt)− ln(ρu), θt − θu)

= ρH
t ρH

u E(Y (ln(ρt), θt)Y (ln(ρu), θu)).

According to Definition 2, X defined by (23) and (24) is H-ss with 0 < H ≤ 1. A natural

question is whether X is also H-mss? The answer is no in cartesian coordinates, but yes in

polar coordinates. Indeed, rewriting (24) as

Z(ρt, θt) = X(t) d= ρH1
t (eθt)H2Y (ln(ρt), ln(eθt)), (27)

with H = (H1,H2)T = (H, 0)T , we conclude from Proposition 1 that X is H-mss with respect

to the polar coordinates (ρt, θt). Thus, from Definition 5, Lévy fractional Brownian random

fields indexed by R2 are LSR random fields with

R1(w) = e2HT w, H = (H1,H2)T = (H, 0)T , g(t) = (ln(t1), t2)T , and R(v) given by (25).
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Note that R(v) for H = 1/2 was already given by Perrin and Senoussi (2000). Also by setting

v1 = v and v2 = 0 in (25), we recover Relation (8).

It is still an open problem to find the appropriate coordinate system to show that Lévy

fractional Brownian random fields indexed by Rn, n ≥ 3, are H-mss.

3.2 Properties of the stationary correlation function

Consider the stationary correlation function R(v), v = (v1, v2) ∈ R2, given by (25) associated

with the Lévy fractional Brownian random field indexed by R2. R(v) is fully symmetric (see

Gneiting, 2002), i.e.

R(v1, v2) = R(−v1, v2) = R(v1,−v2) = R(−v1,−v2). (28)

It is sufficient to focus on R(v1, v2), (v1, v2) ∈ R+ × [0, 2π). Figure 1 depicts the graph of R(v)

for H = 1/4, 1/2, 3/4, 1 and shows the behavior of that correlation function. It can be checked

that for 0 < H ≤ 1
2 , 0 ≤ R(v) ≤ 1, for all v ∈ R2, and that for 1

2 < H ≤ 1, −1 ≤ R(v) ≤ 1,

for all v ∈ R2. Figure 2 depicts the graph of R(v1, v2) for H = 0, 0.1, . . . , 1 and: v2 = 0 (top),

v2 = π/2 (middle), and v2 = π (bottom). In particular,

lim
v1→+∞R(v) =

{
0 for 0 < H < 1,
cos(v2) for H = 1.

(29)

More precisely, the asymptotic behavior of R(v) as v1 → +∞ is given by

R(v) ∼
{

1
2e−v1H for 0 < H ≤ 1

2 ,

He−v1(1−H) cos(v2) for 1
2 < H ≤ 1.

(30)

It is interesting to note that, unlike the Lévy fractional Brownian random field X, the corre-

sponding reduced process Y in (26) has a short-range dependence structure for 0 < H < 1. The

correlation function R(v) is infinitely differentiable except at v1 = v2 = 0, which corresponds

to t = u in (23).
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Figure 1: Graph of R(v) for H = 1/4, 1/2, 3/4, 1.
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Figure 2: Graph of R(v1, v2) for H = 0, 0.1, . . . , 1 and: v2 = 0 (top); v2 = π/2 (middle); v2 = π
(bottom).
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