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Abstract

This paper addresses the issue of detecting misspecified conditional moment

restrictions (CMR). We propose a new Hausman-type test based on the com-

parison of an efficient estimator with an inefficient one, both derived by semi-

parametrically estimating the CMR using different bandwidths. The proposed

test statistic is asymptotically chi-squared distributed under correct specifica-

tion. We propose a general bootstrap procedure for computing critical values

in small samples. The testing procedures are easy to implement and simulation

results show that they perform well in small samples. An empirical application

to a model of female formal labor force participation and wage determination

in urban Ghana is provided.
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1 Introduction

This paper addresses the issue of detecting misspecification in models defined by

conditional moment restrictions (CMR). Such models are pervasive in econometrics.

The most popular example is the theory of dynamic optimizing agents with time

separable utility where equilibrium conditions are typically stated in terms of mar-

tingale differences. Other examples include models identified through instrumental

variables, models defined by conditional mean and conditional variance without

specific assumptions on their distribution, nonlinear simultaneous equation models,

and transformation models. Estimation of such models have been extensively inves-

tigated. One of the most popular techniques is the generalized method of moments

(GMM) introduced by Hansen (1982). But subsequent techniques have also been

considered to provide more efficient and accurate estimators. Chamberlain (1987)

showed that the semiparametric efficiency bound for CMR models can be attained

and Robinson (1987) and Newey (1993) discussed ways to obtain this semipara-

metric efficiency bound using nonparametric optimal instruments. Donald, Imbens

& Newey (2003), Kitamura, Tripathi & Ahn (2004), Smith (2007a) and Antoine,

Bonnal & Renault (2007) proposed smoothed bandwidth-dependent Empirical Like-

lihood (EL) methods. Dominguez & Lobato (2004) introduced a class of estimators

whose consistency does not depend on any user-chosen parameter, but cannot attain

the semi-parametric efficiency bound. In a recent work, Lavergne & Patilea (2013)

proposed a new class of estimators obtained by Smooth Minimum Distance (SMD)

estimation, which provides an alternative to the Dominguez and Lobato’s approach

and allows for semiparametric efficiency. Their framework provides a way to obtain
√
n-consistent and asymptotically normal estimators uniformly over a wide range of

bandwiths including arbitrary fixed ones, as well as a semiparametrically efficient

estimator using a vanishing bandwidth.

All the above estimation procedures rely on the crucial assumption that the

Conditional Moment Restrictions under consideration are correctly specified. If the

model is misspecified, the resulting estimators may have drastically different prop-

erties. A central issue for the practitioner is therefore to check the validity of these

restrictions. This paper proposes a new practical procedure for testing the hypoth-
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esis that the model is correctly specified; that is, there exists a vector of parameter

values that satisfies the conditional moments restrictions almost surely. We use an

approach à la Hausman (1978), exploiting the properties of the SMD estimators

developped by Lavergne & Patilea (2013). In particular, we base our test on the

distance between a consistent and asymptotically efficient SMD estimator - indexed

by a vanishing bandwidth - and a consistent but inefficient one - indexed by a fixed

bandwidth. The test statistic is asymptotically chi-squared distributed under the

null. We also propose a bootstrap method to approximate the critical values of this

test in small samples. The distribution and the validity of our bootstrap procedure

are studied. Simulations show that the proposed specification test has good size and

power performance in small and moderate samples. We then use it in an empiri-

cal application to detect sample selection bias in a model of female labor supply in

Ghana.

Other specification tests for CMR have been proposed in the literature. Some of

them are based on the GMM and test a finite set of arbitrary unconditional moment

restrictions implied by the conditional moment restrictions, see, e.g., Newey (1985),

Tauchen (1985) and Wooldridge (1990). However, Dominguez & Lobato (2006)

raised global identification issues surrounding the GMM-based tests and proposed,

along with Delgado, Dominguez & Lavergne (2006) consistent specification tests

based on a Cramer Von Mises criterion. But the asymptotic distribution of their

test statistics depend on the specific data generating process, thus making standard

asymptotic inference procedures infeasible. Recent approaches like those of Tripathi

& Kitamura (2003) and Otsu (2008) are based on smoothed empirical likelihood

methods that involve complex nonlinear optimization over many parameters, thus

making the tests difficult to implement in practice. A particular advantage of our test

is that it does not suffer from the possible identification issue inherent in GMM-based

tests as it uses the full information contained in the definition of the model, which

involves an infinite number of unconditional moments. Also, it is more versatile than

most existing tests since it applies to a wide range of moment functions including

non-differentiable ones as in conditional quantile regressions models. Finally, our

test statistic is easy to compute since it only requires computation of a quadratic

form which involves the difference of the parameter estimates and the difference of
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the estimated covariance matrices.

The rest of the paper is organized as follows. In Section 2, we present the

framework and the proposed test statistic. In Section 3, we discuss the asymptotic

properties. A Bootstrap procedure to compute critical values of the test in small

samples is proposed in Section 4. Section 5 reports Monte Carlo simulations results

and Section 6 provides an empirical application. Section 7 concludes and Section 8

gathers all the proofs and some technical formulas.

2 Framework and Test

In this section, we describe our general framework for the specification analysis

of CMR models, and we explain the rationale for the proposed test. We use the

following notations throughout the paper. For a real valued function l(·), ∇θl(·) and

Hθ,θl(·) denote the p-column vector of the first partial derivatives and the squared p

matrix of second derivatives of l(·) with respect to the p-dimensional vector θ ∈ Rp.

If l(·) is a r-vector valued function, that is l(·) ∈ Rr, then ∇θl(·) is rather the p× r

matrix of first derivatives of the entries of l(·) with respect to the entries of θ.

Suppose we have a random sample of n independent observations {Zi = (Y ′i , X
′
i)
′}ni=1

on Z = (Y ′, X ′)′ ∈ Rs+q, s ≥ 1, q ≥ 1. X is distributed with Lebesgue den-

sity function f(·) while Y can be continuous, discrete, or mixed. Let g(Z, θ) =

(g(1)(Z, θ), ..., g(r)(Z, θ)) be a known r-vector of real valued measurable functions

of Z and of the p-dimensional parameter vector θ that belongs to a compact set

Θ ⊂ Rp, p ≥ 1. The conditional moment restrictions are defined by

E[g(Z, θ0)|X] = 0 a.s. for some θ0 ∈ Θ (1)

Many econometric models are covered by this setup. In some contexts, the vector

g(Z, θ) is the residual vector from a nonlinear multivariate regression. In others,

E[g(Z, θ0)|X] is seen as the first order partial derivatives of a stochastic optimization

problem.

Our test statistic uses the Lavergne & Patilea (2013) smooth minimum distance

(SMD) class of estimators for θ0 characterized by (1). The typical SMD estimator

obtains as the argument minimizing

Mn,h(θ,Wn) =
1

2n(n− 1)hq

∑
1≤i 6=j≤n

g′(Zi, θ)W
−1/2
n (Xi)W

−1/2
n (Xj)g(Zj , θ)K

h
ij (2)
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where Kh
ij = K ((Xi −Xj)/h), with K(·) a multivariate kernel, h a bandwidth

parameter, and Wn(·) a sequence of r × r positive definite weighting matrices.

When the model is correctly specified, Lavergne & Patilea (2013) showed that a
√
n-consistent and asymptotically normal estimator can be obtained by minimizing

(2) for Wn(·) = Ir, the identity matrix, and a fixed bandwidth d, that is a bandwidth

that does not depend on n. Moreover, a semiparametrically efficient SMD estima-

tor θ̂n,h follows from a two-step procedure where the second step uses a vanishing

bandwidth h and a nonparametric estimator Ŵn(·) of Var[g(Z, θ0)|X = ·]f(·), the

density-weighted conditional variance of g(Z, θ0) as the weighting matrix. For any

preliminary consistent estimator θ̌ of θ0, we consider the estimator

Ŵn(x) =
1

n

n∑
k=1

g(Zk, θ̌)g
′(Zk, θ̌)b

−qK((x−Xk)/b) , (3)

where b is a bandwidth converging to zero, which we assume to be the same as h to

simplify the exposition. Likewise, we note that a different kernel could also be used

in the above estimator without affecting our results, as long as this kernel satisfies

the assumptions stated below.

However, a specification test is needed to check whether there exists a θ0 such

that the conditional moment restrictions (1) hold. Following an approach à la Haus-

man (1978), our proposed test is based on the distance between two SMD consistent

estimators involving different bandwidths. More specifically, we focus in what fol-

lows on the comparison of an efficient estimator θ̂n,h of θ0, that uses a vanishing

bandwidth h together with the estimated optimal weighting matrix (3), and a con-

sistent but inefficient one, θ̃n,d, that uses a fixed bandwidth d and the same weighting

matrix. Hence, we define the test statictics as

Td,h = n
(
θ̃n,d − θ̂n,h

)
Q̂−1
d

(
θ̃n,d − θ̂n,h

)
, (4)

where Q̂d is a consistent estimator of Qd, the asymptotic variance-covariance matrix

of
√
n(θ̃n,d − θ̂n,h). When the model is correctly specified, both estimators are

consistent for θ0 so that their difference, δd,h = θ̃n,d− θ̂n,h converges in probability to

zero. The test statistic then has a standard chi-squared limiting distribution. Under

misspecification, the two estimators converge to different values in general, so that

the distance between θ̂n,h and θ̃n,d is nonzero in large samples. Hence, significantly
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large values of Td,h are regarded as evidence that the conditional moment restrictions

are not consistent with the data. Thus, the α-level asymptotic test is I (Td,h > cα)

where cα is the 1− α quantile of a χ2
p distribution.

A practical drawback of our test, which is typical of Hausman-type tests, is that

in some instances the asymptotic variance of the estimators’ differences could be

singular, so that one should use a modified inverse, as proposed by Lutkepohl &

Burda (1997), or a regularized inverse, as proposed by Dufour & Valery (2011). Our

test statistic uses the optimal estimated weighting matrix for both estimators. Such

a choice implies that θ̃n,d is computed in a supplementary step. Given that one

already has at disposal a preliminary consistent estimator, this is easily done using

one quasi-Newton step.

3 Asymptotic Distribution

We now provide regularity conditions under which the asymptotic distribution of our

specification test statistic is analyzed. In what follows, we denote by M̂n,h(θ) the

objective function that uses Ŵn(·) as defined by (3). Under correct specification, the

objective function is then equivalent at first-order to the one using the true optimal

weighting matrix Var[g(Z, θ0)|X = ·]f(·), as shown by Lavergne & Patilea (2013).

Define τ(x, θ) = E[g(Z, θ)|X = x].

Assumption 1. (i) The parameter space Θ is compact.

(ii) θ̄h = arg minΘ EMn,h(θ) is unique and belongs to
◦
Θ, the interior of Θ.

In particular, for any fixed d > 0, the parameter θ̄d uniquely minimizes

EMn,d(θ) =
1

2
E
[
τ(X1, θ)

′W−1/2(X1)W−1/2(X2)τ(X2, θ)d
−qK((X1 −X2)/d)

]
Assumption 2. (i) The kernel K(·) is a symmetric, bounded real-valued function,

which integrates to one on Rq,
∫
K(u)du = 1.

(ii) The class of all functions (x1, x2) 7→ K(x1−x2h ), x1,x2 ∈ Rq, h > 0, is Euclidean

for a constant envelope.

(iii) The Fourier transform F [K](·) of the kernel K(·) is strictly positive, attains a

maximum at 0, and is Holder continuous with exponent a > 0.

(iv) The density f(·) of X is bounded away from zero and infinity with bounded sup-
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port D that can be written as finite unions and/or intersections of sets {x : p(x) ≥ 0},

where p(·) is a polynomial function.

Assumption 3. (i) The function x 7→ supθ ‖τ(x, θ)‖f(x) belongs to L2 ∩ L1.

(ii) The families Gk = {g(k)(·, θ) : θ ∈ Θ}, 1 ≤ k ≤ r are Euclidean for an envelope

G with supx∈Rq E[G8|X = x] <∞.

(iii) There exists c > 0 such that for all θ1, θ2 ∈ Θ, E‖g(Z, θ1)−g(Z, θ2)‖ ≤ c‖θ1−θ2‖

(iv) Let ω2(·, θ) = E[g(Z, θ)g′(Z, θ)|X = ·]. Then, for all θ1, θ2 ∈
◦
Θ and all x ∈ Rq,

‖ω2(x, θ1)− ω2(x, θ2)‖ ≤ c‖θ1 − θ2‖ν , for some c > 0 and ν > 2/3 .

(v) For any x, all second partial derivatives of τ(x, ·) = E[g(Z, ·)|X = x] exist on
◦
Θ.

There exists a real valued function H(·) with EH4 <∞ and some constant a ∈ (0, 1]

such that:

‖Hθ,θτ
(k)(X, θ1)−Hθ,θτ

(k)(X, θ2)‖ ≤ H(Z)‖θ1 − θ2‖a, ∀ θ1, θ2 ∈
◦
Θ, k = 1, . . . , r.

(vi) The components of ∇θτ(·, θ1)f(·) and of E [g(Z, θ1)g′(Z, θ2)|X = ·] f(·), θ1, θ2 ∈
◦
Θ, are uniformly bounded in L1 ∩ L2 and are continuous in θ1, θ2 ∈

◦
Θ.

Assumption 4. When(1) holds, (i) E [∇θτ(X, θ0)∇′θτ(X, θ0)] is non singular. (ii)

Each of the entries of ∇θτ(·, θ0)f(·), Hθ,θτ
(k)(·, θ0)f(·), 1 ≤ k ≤ r and H(·)f(·) is

Hölder continuous on D, with possibly different exponents.

Under correct specification, that is if the conditional moment restrictions (1)

hold for a unique θ0, then θ̄h = θ0 ∀h in Assumption 1 (Lavergne & Patilea 2013).

For Assumption 2 (ii), we refer to Nolan & Pollard (1987), Pakes & Pollard (1989),

and Sherman (1994a) for the definition and properties of Euclidean families. The

strict positivity of the Fourier transform of the kernel K(·) is useful to establish con-

sistency of SMD estimators for any bandwidth, including fixed ones (see Lavergne

& Patilea 2013). Assumption 2 is fulfilled for instance by products of the triangular,

normal, Laplace or Cauchy densities, but also by more general kernels, including

higher-order kernels taking possibly negative values. Assumption 3 guarantees in

particular that EMn,h(θ) is a continuous function with respect to both θ and h, and

that under H0 the second step estimator θ̂n,h is asymptotically efficient. Note that

twice differentiability of g(z, ·) is not needed for the construction of our Hausman

test statistic. Only the differentiability of τ(x, ·) is needed to establish our asymp-

totic results. This allows the specification test to apply to a wider variety of models

including, e.g., conditional quantile restrictions. Assumption 4 is needed only when
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studying the test’s behavior under correct specification of (1). Part (i) is a standard

local identification condition.

We first sum up the main properties of the SMD estimators that follow from

results by Lavergne & Patilea (2013). Let Hn = {1/ ln(n+1) ≥ h > 0 : nh4q/α ≥ C}

where C > 0 and α ∈ (0, 1) are arbitrary constants. Under (1), and for any fixed d,
√
n
(
θ̃n,d − θ̂n,h

)
, regarded as a process indexed by h ∈ Hn, converges in distribution

to a tight process whose marginals are zero-mean normal with covariance function

given by Qd. The definition of Qd, as well as its estimator Q̂d, are given in Section

8. Hence, when the model is correctly specified, the test statistic has the asymptotic

behavior stated below.

Theorem 1. Let Assumptions 1-4 hold. Then under (1) and for any fixed d > 0,

Td,h converges in distribution to a χ2
p uniformly over h ∈ Hn.

The proposed statistic has an asymptotic chi-squared distribution under the

null, so that standard statistical testing procedures can be used in large sam-

ples. Existing consistent tests such as those based on a Cramer-von-Mises criterion

(Dominguez & Lobato 2006, Delgado et al. 2006) have asymptotic null distribu-

tions that depend on the underlying data generating process. This makes standard

inference infeasible, and is therefore an important practical limitation. When the

model is misspecified, the population conditional moment τ(X, θ) = E[g(Z, θ)|X]

is different from zero for any value of the parameter θ. In this case, the function

EMn,0(θ) = limh→0 EMn,h(θ) =
1

2
E
[
τ(X, θ)′W−1(X)τ(X, θ)f(X)

]
is not minimized

at θ̄d for arbitrary values of d > 0, implying that Plimn→∞δd,h 6= 0 and the test

statistic diverges at rate n.

4 Bootstrap Approximation

Bootstrapping is a popular approach to approximate the distribution of statistics

when asymptotics may not reflect accurately their behavior in small or moderate

samples. For testing specification (1), application of bootstrap would require gener-

ating resamples with the same values of X, but new observations for Y that fulfill

the moment restrictions. This can be done easily in simple cases, e.g. wild boot-

strap in regression models, and has been shown to give reliable approximations in
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many situations. In general, however, generating bootstrap samples may be diffi-

cult or even infeasible. In simultaneous equations systems that are nonlinear in the

variables Y , a reduced form may not be available or unique. Here, we propose a

simple method that allows to circumvent these difficulties, if they appear, applies

generally and is easy to implement. This method has been proposed by Jin, Ying

& Wei (2001) and Bose & Chatterjee (2003), see also Chatterjee & Bose (2005) for

a similar method applied to Z-estimators and Chen & D. (2009) for sieve minimum

distance estimators. However, their method impose conditions that do not hold

in our context. More crucially, they do not investigate the use of this method for

specification testing.

Instead of resampling observations, we perturb the objective function and re-

compute our test statistic using this perturbed objective function. Consider n inde-

pendent identical copies wi, i = 1, . . . n, of a known positive random variable w with

E (w) = Var(w) = 1 and Ew4 <∞. Define the new perturbed criterion as

M∗n,h(θ) =
1

2n(n− 1)

∑
1≤i 6=j≤n

wiwjg
′(Zi, θ)Ŵ

−1/2
n (Xi)Ŵ

−1/2
n (Xj)g(Zj , θ)K

h
ij .

We can then compute new SMD estimators based on the perturbed objective func-

tion. Since the wi, i = 1, . . . n, are independent of the original sample, it is easy to

see that under the above conditions E[wg(Z, θ)|X] = E[g(Z, θ)|X] so that the per-

turbed function also fulfills the moment restrictions whenever the original function

does. With the new criterion, we repeat the optimization process by estimating θ̃∗n,d,

the bootstrap SMD estimator with fixed bandwidth d > 0 and θ̂∗n,h, the efficient one

with vanishing bandwidth h. In practice, one could simply use a Newton-Raphson

step from the original estimators to update to the new estimators. We can then

compute the bootstrap version of our test statistic by

T ∗d,h = n
(

(θ̃∗n,d − θ̃n,d)− (θ̂∗n,h − θ̂n,h)
)′
Q̂∗−1
d

(
(θ̃∗n,d − θ̃n,d)− (θ̂∗n,h − θ̂n,h)

)
,

where Q∗d is the bootstrap counterpart of Qd and θ̃n,d and θ̃n,h are the original non-

bootstrap SMD estimators. The process is repeated a large number of times, say

B, to obtain an empirical distribution of the B bootstrap test statistics {T ∗d,h,j}Bj=1.

This bootstrap empirical distribution is then used to approximate the distribution

of the test statistic Td,h under correct specification, allowing one to calculate the
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critical values empirically. Typically, one rejects H0 at α level if Td,h > c∗α,B, where

c∗α,B is the upper α-percentile of the empirical distribution {T ∗d,h,j}Bj=1.

Although the procedure does not specify the number B of bootstrap replications

to be carried out, in practice it is recommended to choose a number sufficiently large

such that further increases do not substantially affect the critical values. MacKinnon

(2009) pointed out that the number of bootstrap samples B must also be such that

the quantity α(B + 1) is an integer, where α is the level of the test. Moreover,

as explained by Dufour & Khalaf (2001), the later requirement, together with the

asymptotic pivotalness of the test statistics are necessary to get an exact bootstrap

test.

The following theorem shows the uniform in bandwidth validity of the bootstrap

method.

Theorem 2. Let Assumptions 1-3 hold. Then, conditionally on the sample,

(i) suph∈Hn supu∈R

∣∣∣P(T ∗d,h ≤ u|{Zi}ni=1)− P(Td,h ≤ u)
∣∣∣ = op(1), under H0;

(ii) T ∗d,h = op(n) uniformly over h ∈ Hn, when H0 does not hold.

The first part of the theorem implies that the level α critical value c∗α,B obtained

from the bootstrap distribution of T ∗d,h converges (conditional on the original sample)

to the critical value cα from the limiting distribution of Td,h as B →∞ and n→∞.

This suggests that the asymptotic significance level of our test using the bootstrap

critical values is as desired. Since Td,h diverges at rate n under the alternative, the

second part of the theorem implies that P[Td,h > T ∗d,h]
p−→ 1 when n → ∞, which

suffices for consistency.

5 Monte Carlo Simulations

In this section we conduct Monte Carlo simulations to provide evidence on the

behavior of our test statistic in small samples, and compare our results with some

existing tests. Two simulations are performed, one with a regression model, the

other with a binary choice model.

5.1 Simulation Study 1

The set up of this simulation is a regression model. Our main focus is to exam-

ine the behavior of the specification test statistic under the null that the model is

10



correctly specified, then assess its properties under a set of alternative hypotheses.

Throughout this simulation, the null hypothesis is:

H0 : E[Y − θ1 − θ2X|X] = 0 a.s. for some (θ1, θ2) (5)

where X and Y are univariate random variables. The variables are randomly gen-

erated from the following data generating processes:

Y = θ1 + θ2X + ν, (6)

and

Y = θ1 + θ2X + sλ ((θ1 + θ2X)/s) + ν, s = 0.3, 0.5, 0.7 (7)

where λ(·) = φ(·)/Φ(·) is the Inverse Mill’s ratio. In this formula, φ(·) and Φ(·) are

the standard normal probability and cumulative density functions respectively. The

parameters are set to θ1 = θ2/2 = 1 and X ∼ N(0, 1). As for the error term ν, we

consider two different situations:

- Homoskedastic errors, i.e. ν = ε, where ε ∼ N(0, 1) and ε is independent of X.

- Heteroskedastic errors, i.e. ν = ε
√
.1 + .1X2,

When the data is generated from Equation 6, the model being tested is correctly

specified. When it is generated from Equation 7, the model is misspecified so that

the hypothesis H0 is false and E[Y |X] has both a linear term and a nonlinear term

given by the Inverse Mill’s ratio. Different values of s correspond to different degrees

of deviation from the null. These alternatives mimic situations where the regression

model may be suffering from a specification error in the sense of Heckman (1979),

perhaps due to sample selection (see, e.g. Greene 2012, pp. 837-839).

Our specification test statistics are computed using a fixed bandwidth d = 1 for

the consistent estimator, while the size-dependent bandwidth used for the efficient

estimator is taken as h = cn−1/5, for some constant c > 0. The sensitivity to this

constant is assessed by considering different values, c = 0.8; 1.0; 1.3; 1.5.1 The gaus-

sian kernel is used for both the asymptotic test and the bootstrap approximation.

The empirical sizes and powers of the tests are computed at both the 5% and the

10% nominal levels with sample sizes n = 100 and n = 50, using 1, 000 replications.

1We only present results for c = 1.5 and c = 1; results for c = 0.8 and c = 1.3 are available upon

request.
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Table 1: Rejection frequency of the Proposed Tests

T ∗d,h Td,h T ∗d,h Td,h

Models c = 1.5 c = 1 c = 1.5 c = 1 c = 1.5 c = 1 c = 1.5 c = 1

α = 5% n = 100 n = 50

Homoskedastic

H0 0.007 0.003 0.025 0.016 0.004 0.007 0.049 0.027

H1, s = 0.3 0.601 0.486 0.953 0.823 0.177 0.138 0.708 0.522

H1, s = 0.5 0.584 0.475 0.924 0.794 0.156 0.112 0.694 0.507

H1, s = 0.7 0.580 0.473 0.927 0.811 0.152 0.110 0.633 0.476

Heteroskedastic

H0 0.027 0.016 0.081 0.043 0.009 0.012 0.082 0.088

H1, s = 0.3 0.950 0.925 1.000 0.990 0.537 0.430 0.980 0.936

H1, s = 0.5 0.956 0.929 0.999 0.989 0.527 0.427 0.977 0.931

H1, s = 0.7 0.945 0.945 0.999 0.993 0.535 0.420 0.977 0.927

α = 10% n = 100 n = 50

Homoskedastic

H0 0.026 0.026 0.076 0.061 0.036 0.027 0.076 0.071

H1, s = 0.3 0.818 0.695 0.979 0.899 0.382 0.338 0.777 0.648

H1, s = 0.5 0.803 0.686 0.962 0.869 0.365 0.332 0.770 0.634

H1, s = 0.7 0.768 0.696 0.971 0.884 0.372 0.318 0.738 0.604

Heteroskedastic

H0 0.076 0.053 0.132 0.106 0.061 0.049 0.138 0.154

H1, s = 0.3 0.989 0.965 1.000 0.992 0.758 0.666 0.987 0.962

H1, s = 0.5 0.986 0.966 0.999 0.994 0.762 0.654 0.988 0.951

H1, s = 0.7 0.989 0.976 0.999 0.994 0.751 0.678 0.988 0.950

Table 1 summarizes both our general test statistic and bootstrap results. The

figures reported on the table are simulated rejection probabilities. The first row of

each model reports simulation results under the null, H0 - thus showing the empirical

size of each test - and the remaining rows report simulation results under various

alternatives, H1. Our general test, denoted Td,h, displays both a reasonable size and

a remarkably good power under the various alternatives.

For our bootstrap test, denoted T ∗d,h, we compute 199 bootstrap statistics from

1000 replications with the sample sizes of n = 50 and n = 100. At each replication,

critical values at 5% (respectively, 10% ) significance are calculated by taking the

95th (respectively, 90th) upper percentiles of the distribution of bootstrap values as
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explained in the bootstrap procedure presented in section 4. For the wild bootstrap-

ping, the sample {ωi, i = 1, . . . , n} is generated at each experiment via a two-point

distribution defined by:

P
[
ωi =

3−
√

5

2

]
= 1− P

[
ωi =

3 +
√

5

2

]
=

5 +
√

5

10
(8)

Note that this distribution has its first, second and third central moment all equal

to one. As shown by Mammen (1992) for linear regression setups, this property is

expected to provide good bootstrap approximations of the test statistic. As reported

in Table 1 our bootstrap test has good empirical sizes since all rejection probabilities

are within the nominal range of 5% and 10% accordingly. Note, however, that

the bootstrap test appears to be somewhat conservative, although this does not

deteriorate the power. This implies that the practitioners need not fear that the

rate of type I errors would exceed the nominal rate and lead to invalid conclusion

about the model specification. The power performance of the bootstrap test is also

fairly good, though worse than our asymptotic test. This feature is however expected

since a gain in size is often traded off with a relative loss in power in the bootstrap

test due to its conservative nature. The size of the bootstrap test turns out to be very

robust to various values of the constant c > 0 while the values of the asymptotic test

are more sensitive to this constant especially for the smaller sample size of n = 50.

A possible explanation is that while the critical values of the asymptotic test are

fixed upfront, the critical values of the bootstrap test incorporate the variations in

bandwidths.

5.2 Simulation Study 2

In this simulation study, we examine the performance of our test for binary choice

models and compare it with some existing tests such as the Horowitz & Härdle (1994)

test statistic (denoted HH) and the Härdle, Mammen & Proença (2001) bootstrap

test statistics (denoted HMP). Binary choice models are examples of single index

models where the response variable, Y , takes on two possible values, 0 and 1. They

are defined by

Pr[Y = 1|X] = v(X ′θ), where v(·) is the link function.

These models can be rewritten in the form of conditional moment restrictions as

E[g(Z, θ)|X] = 0, where Z = (Y,X ′)′ and g(Z, θ) = Y − v(X ′θ).

13



We follow the simulation set-up of Härdle et al. (2001). The null hypothesis is

defined by

H0 : E[Y |X] = {1 + exp(−1− θ1X1 − θ2X2)}−1

where X1 and X2 are independent standard normal random variables and the pa-

rameter values are θ2 = 2θ1 = 2. The null hypothesis therefore assumes that the

data come from a logit model. The alternative hypothesis considered is a family of

link functions called logit with bump, defined by

H1 : E[Y |X] = {1 + exp(−1− θ1X1 − θ2X2)}−1 − a

1.5
φ
( a

1.5

)
where φ(·) is, as before, the pdf of the standard normal and a ∈ {0.75; 1; 1.25}.

Two sample sizes are considered, n = 200 and n = 500, along with 199 bootstraps

and 500 replications. For the proposed specification test, we use the gaussian kernel

for both the asymptotic and the bootstrap approximation. The bandwidth for the

consistent estimator is fixed at d = 1 while the vanishing bandwidth is taken as in

Härdle et al. (2001) at h = cn−1/5, with c = 1.44 and c = 4.33.2 The bootstraps

samples are generated as in the previous simulation example using the two-points

distribution given by Equation 8. The nominal size of the tests are fixed at 10%

and 5%. For the HH and HMP tests, we only present the one-sided tests which have

overall much better performance than their two-sided counterparts.

Table 2 reports the asymptotic and the bootstrap rejection probabilities of the

proposed asymptotic test and bootstrap (Td,h and T ∗d,h ) as well as the Horowitz &

Härdle, and Härdle et al. tests (HH and HMP) at both the 10% and 5% significance

levels for a sample size of 200 observations. The empirical size of the tests are given

in the rows corresponding to H0, a = 0.00 while the empirical powers are given in the

remaining rows corresponding to H1 at different levels of deviations from the null,

a = 0.75, a = 1.00, and a = 1.25. The proposed tests have sizes that are comparable

to the HH test but are overall smaller than the size of the HMP test. As for the

empirical powers, the HMP test displays powers that are fairly acceptable, while

the powers of the HH test are clearly unsatisfactory. In fact, the HH test is unable

to reject the misspecified models at both the 5% and 10% level. In contrast, both

2 Härdle et al. (2001) also perform their test with c = 2.88. But this corresponds to h = 1, our

fixed bandwidth.
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Table 2: Rejection frequency of specification tests for n = 200

Models T ∗d,h Td,h HMP HH

c = 1.4 c = 4.3 c = 1.4 c = 4.3 c = 1.4 c = 4.3 c = 1.4 c = 4.3

Size α = 10%

H0, a = 0.00 0.002 0.001 0.006 0.020 0.098 0.146 0.022 0.000

H1, a = 0.75 0.630 0.380 0.930 0.996 0.150 0.390 0.024 0.012

H1, a = 1.00 0.704 0.756 0.954 1.000 0.266 0.488 0.048 0.030

H1, a = 1.25 0.766 0.658 0.952 1.000 0.416 0.608 0.106 0.064

Size α = 5%

H0, a = 0.00 0.001 0.000 0.006 0.016 0.048 0.074 0.016 0.000

H1, a = 0.75 0.172 0.142 0.7920 0.996 0.150 0.390 0.024 0.000

H1, a = 1.00 0.408 0.492 0.854 0.996 0.168 0.344 0.026 0.008

H1, a = 1.25 0.350 0.372 0.878 1.000 0.286 0.424 0.068 0.022

the asymptotic and the bootstrap versions of the proposed test have remarkably

better power, and significantly outperform both the HH and the HMP tests. These

results are consistent regardless of the constant on the vanishing bandwidth, as

shown in the theory. This suggests that our tests may have a stronger ability to

detect misspecification in these types of models than the above competitors. When

a larger sample size of 500 observations is used, the simulations results show that

our tests perform even better, with the powers of the asymptotic tests consistently

hitting the limit of 1 (see Table 3).

Table 3: Rejection frequency of specification tests for n = 500 and c = 2.8

Models T ∗d,h Td,h HMP HH

Size α = 10%

H0, a = 0.00 0.001 0.014 0.114 0.010

H1, a = 0.75 0.610 1.000 0.538 0.106

H1, a = 1.00 0.966 1.000 0.790 0.268

H1, a = 1.25 0.968 1.000 0.908 0.568

Size α = 5%

H0, a = 0.00 0.001 0.004 0.062 0.010

H1, a = 0.75 0.712 1.000 0.396 0.062

H1, a = 1.00 0.996 1.000 0.658 0.196

H1, a = 1.25 0.980 1.000 0.842 0.418

To sum up, our general test statistic has very good power performance in our
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simulation experiments and are competitive with existing tests. Moreover, the em-

pirical size performance of our tests shows that our bootstrap test can properly

handle small sample size models.

6 Empirical Application

To illustrate the use of the test statistic developed in this paper, we apply it to

a model of female labor supply and wage determination in urban Ghana. The

model is a variant of the classic model of Mroz (1987) and is applied to a cross-

sectional random representative sample of 1804 Ghanaian women, 277 of which

participated in the formal labor market. The data set contains information about

wages, hours of work, experience, education, and demographic characteristics such

as age, number of children, other income, etc. All data are taken from the Ghana-

ian Standard Living Survey 2005-2006 available at the World Bank website at

http://microdata.worldbank.org/index.php/catalog/1064.

We first consider the subsample of working women and specify a simple wage

equation:

logWagei = β1 + β2Educi + β3Experi + β4Exper
2
i + εi

where Educi is education, Experi is labor market experience of the ith woman,

and εi ∼ iid(0, σ2). We estimate and test this model without controlling for selec-

tion into the formal labor market. The results of the OLS and SMD estimation as

well as the value of our general specification test are presented in the first panel of

Table 4. In computing our test, the fixed bandwidth was taken at d = 1 (the corre-

sponding SMD estimator is denoted SMDd), the size-dependent bandwidth taken at

h = n−1/5 (the corresponding SMD estimator is denoted SMDh) and the gaussian

kernel was used throughout. The p-value of the specification test Td,h is estimated

at 0.0072, suggesting that the model is misspecified at the 1% significance level. The

more obvious source of misspecification is the fact that the estimates obtained in the

above model are constructed from a sample of working women without accounting

for self-selection into the formal labor force. This sample contains only 15.4% of the

women of our whole sample and, as is well known, is likely to yield estimates that

are inconsistent due to the correlation between the regressors and the error induced
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by the sample selection mechanism.

To further assess the power of our specification test in this application, we specify

a selection-corrected version of the above wage equation as suggested by Heckman

(1979), and estimate and test this equation with our specification test statistic. Since

the latter model is an improvement over the former, so should be the p-value of the

specification test. Following Heckman (1979), we can account for sample selection

bias by associating to the above equation a participation equation as follows. Con-

sider the latent variable U representing, say, the desire to participate in the formal

labor market or the difference between the offered labor market wage and the reser-

vation wage. The ith woman participates only if Ui > 0. The selection is therefore

defined by the dummy variable Di = I(Ui > 0) where the labor force participation

equation is defined by

Ui = γ1 + γ2Educi + γ3Experi + γ4Exper
2
i + γ5Kidsi + γ6Otherinci + νi.

Here, Kids is the number of young children, Otherinc is the log of other income in-

cluding husband’s income and/or remittances from family and relatives. These vari-

ables can be seen as exclusion restrictions that influence participation but not hourly

wages. As usual, we assume νi ∼ N(0, 1). Denote x = [1, Educ,Exper,Exper2]′,

w = [1, Educ,Exper,Exper2,Kids,Otherinc]′, β = [β1, β2, β3, β4]′, and finally

γ = [γ1, γ2, γ3, γ4, γ5, γ6]′. Using both the wage equation and the participation equa-

tion above, the selection-corrected model for the working women can be rewritten

(see, eg. Greene 2012, pp. 873-876) as

E
[
logWagei − x′iβ − ρσλ(w′iγ)

∣∣xi,wi

]
= 0

where ρ is the correlation between εi and νi and λ(·) is the Inverse Mill’s ratio.

Smooth minimum distance and Heckman two-step estimates are reported in the

second panel of Table 4. Only the parameters of the wage equation are shown in the

table. Note that for the two-step method, the estimates of the joint coefficient ρσ is

first obtained and the underlying structural individual parameters ρ and σ are then

deduced by the method of moments. The SMD estimation computes the estimates

of these structural parameters directly. As expected, the differences between the

SMD estimates are larger in the initial wage equation than in the selection-corrected
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equation, as are the differences between the naive OLS estimates and the Heckman’s

two-step estimates.

Table 4: Estimated Initial and Selection-Corrected Wage Equations*

Parameters Initial Wage Equation Corrected Wage Equation

Least− Squares SMDd SMDh Two− Step SMDd SMDh

β1 4.7520 9.8614 10.1362 -77.058 -68.2782 -78.5657

(1.0031) (0.001) (0.3450) (25.865) (10.4055) (11.7241)

β2 0.2961 0.2400 0.2241 3.0339 2.7809 3.1025

(0.0365) (0.0057) (0.0097) (0.8657) (0.3410) (0.3823)

β3 0.2778 -0.0269 -0.0312 0.3271 0.1469 0.1845

(0.0821) (0.0223) (0.0260) (0.0822) (0.0409) (0.0448)

β4 -0.0027 0.0021 0.0020 -0.0048 -0.0025 -0.0033

(0.0017) (0.0004) (0.0005) (0.0018) (0.0009) (0.0010)

(ρσ) 39.697 37.5084 42.4518

(12.542) (4.9547) (5.6042)

ρ 0.799 0.7912 0.7892

(0.0109) (0.1561)

σ 3.3108 3.5201 3.5360 39.739 47.4070 42.9153

(5.0123) (4.0172)

p-Values — pTd,h= 0.0072 pρσ = 7.8 × 10−4 pTd,h= 0.0115

*Standard errors are in parenthesis

The selection-corrected model is tested using both our specification test and a

t-test of ρσ, the covariance of εi and νi. The p-value of this t-test is 0.0008, therefore

rejecting the hypothesis that ρσ is zero. This confirms the presence of a selection

bias in the initial wage equation estimates as initially suggested by the p-value of

our specification test for the wage equation obtained earlier. Moreover, the p-value

of our specification test statistic for the selection-corrected model is now estimated

at 0.0115, a much higher value than the one obtained for the initial wage equation.

This implies that the new model is a significant improvement over the initial one,

and shows that we do not have enough evidence to reject the selection-corrected

Ghanaian female wage determination equation at the 1% significance level.
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7 Conclusion

This paper provides a new specification test for models defined by conditional mo-

ment restrictions. The test is built following a Hausman (1978) approach and ex-

ploits the Lavergne & Patilea (2013) Smooth Minimum Distance estimators for Con-

ditional Moment Restrictions. The test statistic is asymptotically chi-squared under

the null hypothesis uniformly within a wide range of bandwidths. A bootstrap pro-

cedure is proposed to approximate the behavior of the test statistic in small samples.

We formally prove the validity of our bootstrap method and use it to compute crit-

ical values of our test. Both the test statistic and its bootstrap counterpart are

simple to implement and two Monte Carlo simulations studies are provided to show

that they perform well in small and moderate samples. Moreover, the test is versa-

tile and applies to a wide range of estimating functions including non-differentiable

ones. An empirical application to a model of female formal labor force participation

and wage determination in Ghana is provided to illustrate the practical usefulness

of our test.

8 Technical material

In what follows, we denote θ̌ any preliminary estimator of θ0 and θ̄ the probabil-

ity limit of θ̌, which coincides with θ0 when the model is correctly specified. Let

Wn(x, θ̌) = E[Ŵn(x, θ̌)], where Ŵn(x, θ̌)
(
also denoted Ŵ (x), for simplicity

)
is the es-

timator of the optimal weighting matrix given by (3) and denote Wn(x) = Wn(x, θ̄).

The sequence Wn(x) is a non-random process indexed by the bandwith b ∈ Hn and

its pointwise limit is denoted W (x) = limWn(x). Unless otherwise specified, we

denote M̂n,h(θ)
(
respectively, Mn,h(θ)

)
the objective function given in (2) with the

weighting matrix Ŵn(x) (respectively, Wn(x) ). Note that M̂n,h(θ) and Mn,h(θ) are

processes indexed by both the bandwidths h and b.
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8.1 SMD estimation

Let φd(z, θ) = E[∇θτ(X, θ)W−1/2(X)d−qK((x−X)/d)]W−1/2(x)g(z, θ), φ0(z, θ) =

∇θτ(x, θ)W−1(x)f(x)g(z, θ), and Gnφ(θ) = 1√
n

∑n
i=1[φ(Zi, θ)− Eφ(Zi, θ)]. Define

Vd = E[∇θτ(X1, θ0)W−1/2(X1)W−1/2(X2)∇′θτ(X2, θ0)d−qK((X1 −X2)/d)]

V0 = E
[
∇θτ(X, θ0)W−1(X)[∇′θτ(X, θ0)f(X)

]
.

Lemma 8.1. Under Assumptions 1-4 and (1), then (i)
√
n
(
θ̂n,h−θ0

)
+V −1

0 Gnφ0(θ0) =

op(1), uniformly in h, b ∈ Hn, where Gnφn,h(θ0) weakly converges to a N(0, V0).

(ii)
√
n
(
θ̃n,d − θ0

)
+ V −1

d Gnφd(θ0) = op(1) uniformly in b ∈ Hn for any fixed d,

where Gnφd(θ0) weakly converges to a N(0,∆d), with

∆d,d = E[∇θτ(X1, θ0)W−1/2(X1)W−1/2(X3)∇′θτ(X3, θ0)f−1(X2)

d−2qK((X1 −X2)/d)K((X2 −X3)/d)] .

(iii)
√
n
(
θ̃n,d−θ̂n,h

)
weakly converges to a N(0, Qd) for any fixed d and uniformly

in h, b ∈ Hn, where Qd = V −1
d ∆dV

−1
d − V −1

0 .

Proof. Part (i) follows directly from Section 5.2 of Lavergne & Patilea (2013). Part

(ii) follows similarly by noticing that their condition (2.7) also holds for M̂n,d(θ),

where d is a fixed bandwidth. Part (iii) follows from (i) and (ii).

An estimator of Qd is given by Q̂d = V̂ −1
d ∆̂dV̂

−1
d − V̂ −1

0 where the respective

estimators of Vd, V0, and ∆d,d are

1

n(n− 1)

∑
i 6=j
∇θg(Zi, θ̃n,d)Ŵ

−1/2
n (Xi)Ŵ

−1/2
n (Xj)∇′θg(Zj , θ̃n,d)d

−qK
(Xi −Xj

d

)
,

1

n

∑
i

∇θg(Zi, θ̂n,h)Ŵ−1
n (Xi)fn(Xi)∇′θg(Zi, θ̂n,h) and

1
n(n−1)(n−2)

∑
i 6=k,j 6=k∇θg(Zi, θ̃n,d)Ŵ

−1/2
n (Xi)Ŵ

−1/2
n (Xk)∇′θg(Zk, θ̃n,d)f

−1
n (Xj)

d−2qK
(Xi−Xj

d

)
K
(Xj−Xk

d

)
,

where fn(Xi) = 1
n−1

∑
j 6=i h

−qK((Xi−Xj)/h)) is the leave-one-out kernel estimator

of f(Xi)

Lemma 8.2. Let A,B ∈ Rn×p be random matrices such that E‖A‖ < ∞, E‖B‖ <

∞. Suppose E(A′B), E(B′A), and E(B′B) are non-singular matrices.

Then E−1(B′A)E(A′A)E−1(A′B)− E−1(B′B) is positive semidefinite, with equality

iff B = AE−1(B′A)E(B′B).
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Proof. Consider C = AE−1(B′A)−BE−1(B′B) ∈ Rn×p. Then

E[C ′C] = E−1(B′A)E(A′A)E−1(A′B)− E−1(B′B)

is positive semidefinite by definition, as the expectation of a matrix product of the

form C ′C, and is zero if and only if C = 0. Conclude by noticing that C = 0 is

equivalent to B = AE−1(B′A)E(B′B)

Lemma 8.3. Let Assumptions 1-4 and (1) hold. Then, uniformly in h, b ∈ Hn and

for any fixed d,

(i) Q̂d = Qd + op(1)

(ii) Qd is positive semidefinite.

Proof. For part (i), we only need to prove that the matrices V̂d, ∆̂d and V̂0 converge

in probability to Vd, ∆d and V0 respectively, and use the continuous mapping theo-

rem to conclude. The convergence results for those matrices can be found in Section

5.2 of Lavergne & Patilea (2013).

For part (ii), apply Lemma 8.2 withA = E
[
W−1/2(X2)∇′θτ(X2, θ0)d−qK((X −X2)/d)

]
f−1/2(X)

and B = W−1/2(X)∇′θτ(X, θ0)f1/2(X). The desired conclusion then follows.

8.2 Asymptotic behavior of the test

Proof of Theorem 1

The result follows from Lemmas 8.1 and 8.3.�

Lemma 8.4. Let Assumptions 1-3 hold. Then uniformly over h, b ∈ Hn,

sup
θ∈Θ

∣∣∣M̂n,h(θ)−Mn,h(θ)
∣∣∣ = op(1), (9)

Proof.

The proof proceeds in two steps.

Step 1 is to show that for any θ̄ ∈ Θ, supx∈Rq
∥∥∥Ŵn(x, θ)−Wn(x, θ̄)

∥∥∥ = op(1)

uniformly over b ∈ Hn and θ in an o(1) neighborhood of θ̄. For this purpose, we

apply a useful result given by Theorem 2 of Einmahl & Mason (2005) that establishes

that supx∈Rq
∥∥∥Ŵn(x, θ)−Wn(x, θ)

∥∥∥ = op(1) uniformly in θ ∈ Θ and over b ∈ Hn.

This result is true in this framework provided their condition (1.7) on the continuity
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of the density f(·) is replaced by the condition of a bounded density as given by our

Assumption 2(iv). On the other hand, by our Assumption 3(iv) we have

sup
x∈Rq

∥∥Wn(x, θ)−Wn(x, θ̄)]
∥∥ ≤ c‖θ − θ̄‖ν‖E[b−qK((X − x)/b)]‖ ≤ C‖θ − θ̄‖ν ,

for some constant C > 0. It then follows that for any θ̄,

sup
x∈Rq

∥∥∥Ŵn(x, θ)−Wn(x, θ̄)
∥∥∥ ≤ sup

x∈Rq

∥∥∥Ŵn(x, θ)−Wn(x, θ)
∥∥∥+ sup

x∈Rq

∥∥Wn(x, θ)−Wn(x, θ̄)
∥∥

≤ op(1) + C‖θ − θ̄‖ν

Hence, supx∈Rq
∥∥∥Ŵn(x, θ)−Wn(x, θ̄)

∥∥∥ = op(1) uniformly over θ in an o(1) neighbor-

hood of θ̄. I then follows that for any preliminary estimator θ̌, of θ0, supx∈Rq
∥∥∥Ŵn(x, θ̌)−Wn(x)

∥∥∥ =

op(1).

Step 2 uses the result of Step 1 to show Condition (9). For this purpose, we

can write M̂n,h(θ) −Mn,h(θ) = M1n + M2n, where M1n = M1n(θ, h, b) and M2n =

M2n(θ, h, b) are given by

M1n =
h−q

2n(n− 1)

∑
i 6=j

g′(Zi, θ)Ŵ
−1/2
n (Xi, θ̌)[Ŵ

−1/2
n (Xj , θ̌)−W−1/2

n (Xj)]g(Zj , θ)Kij

M2n =
h−q

2n(n− 1)

∑
i 6=j

g′(Zi, θ)[Ŵ
−1/2
n (Xi, θ̌)−W−1/2

n (Xi, θ̌)]W
−1/2
n (Xj)]g(Zj , θ)Kij

Let A and B be any two positive definite matrices. Since the euclidean matrix

norm ‖ · ‖ is unitarily invariant, then by Theorem 6.2 of Higham (2008) we have

‖A1/2−B1/2‖ ≤ 1

λmin(A)1/2 + λmin(B)1/2
‖A−B‖. If we write A−1−B−1 = A−1(B−

A)B−1, it then follows that

‖A−1/2 −B−1/2‖ ≤ 1

λmin(A)−1/2 + λmin(B)−1/2
‖A−1‖‖B−1‖‖A−B‖

Our Assumption 3(iii) together with Assumption 1(i) and step 1 guarantee that both

Ŵ−sn (x, ·) and W−sn (x, ·), s = 1, 1
2 , and their eigenvalues are uniformly bounded.

Hence, by the above inequality, there exists some constant C1 > 0 such that

sup
x∈Rq

∥∥∥Ŵ−1/2
n (x, θ̌)[Ŵ−1/2

n (x, θ̌)−W−1/2
n (x)]

∥∥∥ ≤ C1 sup
x∈Rq

∥∥∥Ŵn(x, θ̌)−Wn(x)
∥∥∥ ,

Thus, uniformly over h, b ∈ Hn,

‖M1n‖ ≤
C1

2n(n− 1)hq

∑
i 6=j
‖g(Zi, θ)‖‖g(Zj , θ)‖Kij

∥∥∥Ŵn(Xj , θ̌)−Wn(Xj)
∥∥∥

≤ C1

2n(n− 1)hq

∑
i 6=j

G(Zi)G(Zj)Kij sup
x∈Rq

∥∥∥Ŵn(x, θ̌)−Wn(x)
∥∥∥
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The same argument can be applied to M2n so that uniformly in θ ∈ Θ and over

h, b ∈ Hn and for some constant C > 0,∣∣∣M̂n,h(θ)−Mn,h(θ)
∣∣∣ ≤ C

n(n− 1)hq

∑
i 6=j

G(Zi)G(Zj)Kij sup
x∈Rq

∥∥∥Ŵn(x, θ̌)−Wn(x)
∥∥∥

The first expression on the right hand side of the last display converges in probability

to C.E[G2(Z)|X]f(X) which is finite by Assumption 3(ii). The result of Step 1 then

completes the proof.

8.3 Bootstrap

Lemma 8.5. Under Assumptions 1-4, then conditionally on the sample and uni-

formly over h, b ∈ Hn,
√
n
(
θ̂∗n,h − θ̂n,h

)
and
√
n
(
θ̃∗n,d − θ̃n,d

)
have asymptotically the

same distribution as
√
n
(
θ̂n,h − θ̄0

)
and
√
n
(
θ̃n,d − θ̄d

)
, respectively. That is,

suph,b∈Hn supu∈R
∣∣P(
√
n
(
θ̂∗n,h − θ̂n,h

)
≤ u|{Zi}ni=1)− P(

√
n
(
θ̂n,h − θ̄0

)
≤ u)

∣∣ = op(1),

supb∈Hn supu∈R
∣∣P(
√
n
(
θ̃∗n,d − θ̃n,d

)
≤ u|{Zi}ni=1)− P(

√
n
(
θ̃n,d − θ̄d

)
≤ u)

∣∣ = op(1).

Proof. see section 5.2 of Lavergne & Patilea 2013

Proof of Theorem 2

It is immediate from Lemma 8.5 that conditionally on the sample and uniformly

over h, b ∈ Hn,
√
n(θ̃∗n,d− θ̃n,d+ θ̂n,h− θ̂∗n,h) has asymptotically the same distribution

as
√
n(θ̃n,d − θ̄d + θ̄0 − θ̂n,h).

(i) Under H0, we have θ̄d = θ̄0 = θ0 and Q̂∗d is asymptotically equivalent to Q̂d

so that T ∗d,h and Td,h have asymptotically the same χ2(p) distribution conditional

on the sample and uniformly over h and b. That is,

suph,b∈Hn supu∈R

∣∣∣P(T ∗d,h ≤ u|{Zi}ni=1)− P(Td,h ≤ u)
∣∣∣ = op(1).

(ii) To prove the validity of the bootstrap when H0 does not hold, consider the

result given by Lemma 8.4. We note that if one replaces g(z, θ) by wg(z, θ) in all

the above steps, one can easily see that the result of Lemma 8.4 also holds for the

perturbed criteria M̂∗n,h(θ) and M∗n,h(θ). In other words, conditionally to the sample

and uniformly over h, b ∈ Hn we have

sup
θ∈Θ

∣∣∣M̂∗n,h(θ)−M∗n,h(θ)
∣∣∣ = op(1). (10)
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We finally also need to show that conditionally to the sample

sup
h,b∈Hn

sup
θ∈Θ

∣∣M∗n,h(θ)−Mn,h(θ)
∣∣ = op(1) (11)

Denote gn(Z, θ) = W
−1/2
n (X)g(Z, θ). We have

hq(M∗n,h(θ)−Mn,h(θ)) =
1

2n(n− 1)

∑
i 6=j

(wiwj − 1)gn(Zi, θ)gn(Zj , θ)Kij

=
1

2n(n− 1)

∑
i 6=j

(wi − 1)(wj − 1)gn(Zi, θ)gn(Zj , θ)Kij

+
1

2n(n− 1)

∑
i 6=j

(wi − 1)gn(Zi, θ)gn(Zj , θ)Kij

+
1

2n(n− 1)

∑
i 6=j

(wj − 1)gn(Zi, θ)gn(Zj , θ)Kij

= m1n(wi, wj) +m2n(wi) +m3n(wj)

Our assumptions guarantee that all the functions entering in the above terms as

indexed by θ, h and b are euclidean. The term m1n is a second-order degenerated U-

process. It follows from Corollary 8 of Sherman (1994) that suph,b>0 supθ∈Θ |m1n| =

Op(n
−1). The terms m2n and m3n are zero-mean U-processes. By Corollary 7 of

Sherman (1994), we have suph,b>0 supθ∈Θ |m2n| = Op(n
−1/2) and suph,b>0 supθ∈Θ |m3n| =

Op(n
−1/2). Hence, suph,b∈Hn supθ∈Θ h

q
∣∣∣M∗n,h(θ)−Mn,h(θ)

∣∣∣ = Op(n
−1/2), so that

supθ∈Θ

∣∣∣M∗n,h(θ)−Mn,h(θ)
∣∣∣ = op(1), uniformly over h, b ∈ Hn.

It then follows from (9) (10) and (11) that

sup
h,b∈Hn

sup
θ∈Θ

∣∣∣M̂∗n,h(θ)− M̂n,h(θ)
∣∣∣ = op(1) (12)

We now use (12) to show that conditionally on the sample, θ̂∗n,h − θ̂n,h = op(1)

uniformly in h, b ∈ Hn. By (12), we have M̂∗n,h(θ̂∗n,h) − Mn,h(θ̂∗n,h) = op(1) and

M̂∗n,h(θ̂n,h) − Mn,h(θ̂n,h) = op(1) uniformly in h, b ∈ Hn. Also, by definition,

M̂n,h(θ̂n,h) ≤ M̂n,h(θ̂∗n,h) and M̂∗n,h(θ̂∗n,h) ≤ M̂∗n,h(θ̂n,h). Hence,

M̂n,h(θ̂∗n,h) = M̂∗n,h(θ̂∗n,h) +
(
M̂n,h(θ̂∗n,h)− M̂∗n,h(θ̂∗n,h)

)
= M̂∗n,h(θ̂∗n,h) + op(1) ≤ M̂∗n,h(θ̂n,h) + op(1)

= M̂n,h(θ̂n,h) +
(
M̂∗n,h(θ̂n,h)− M̂n,h(θ̂n,h)

)
+ op(1)

= M̂n,h(θ̂n,h) + op(1) + op(1) = M̂n,h(θ̂n,h) + op(1)
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Thus, M̂n,h(θ̂n,h) ≤ M̂n,h(θ̂∗n,h) ≤ M̂n,h(θ̂n,h)+op(1), so that uniformly over h, b ∈ Hn

M̂n,h(θ̂∗n,h)− M̂n,h(θ̂n,h) = op(1) (13)

Since θ̂n,h is the minimizer of M̂n,h(θ) in the compact set Θ, then we have ∀ε > 0,

inf{‖θ−θ̂n,h‖≥ε}
M̂n,h(θ) > M̂n,h(θ̂n,h). In other words, ∀ε > 0, ∃µ > 0 such that ‖θ−

θ̂n,h‖ ≥ ε implies M̂n,h(θ) > M̂n,h(θ̂n,h) + µ. Thus, the event
{
‖θ̂∗n,h − θ̂n,h‖ ≥ ε

}
is

contained in the event
{
M̂n,h(θ̂∗n,h)− M̂n,h(θ̂n,h) > µ

}
. Since by (13) the probability

of the latter converges to zero, so is the probability of the former. That is, θ̂∗n,h −

θ̂n,h = op(1) uniformly in h, b ∈ Hn . Likewise, all the above steps can be repeated

to establish that θ̃∗n,d− θ̃n,d = op(1) uniformly in b ∈ Hn for any fixed d > 0. Hence,

n−1T ∗dh =
(

(θ̃∗n,d − θ̃n,d)− (θ̂∗n,h − θ̂n,h)
)′
Q̂∗−1
d

(
(θ̃∗n,d − θ̃n,d)− (θ̂∗n,h − θ̂n,h)

)
= op(1),

and by Markov inequality, P
[
suph,b∈Hn n

−1T ∗d,h ≥ ε|Z1, . . . , Zn

]
= op(1), ∀ε �
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Horowitz, J. L. & Härdle, W. (1994), ‘Testing a parametric model against a semi-

parametric alternative’, Econometric Theory (10), 821–848.

Jin, Z., Ying, Z. & Wei, L. (2001), ‘A simple resampling method by perturing the

minimand’, Biometrika 88(2), 381–390.

Kitamura, Y., Tripathi, G. & Ahn, H. (2004), ‘Empirical likelihood-based inference

in conditional moment restriction models’, Econometrica 72(6), 1667–1714.

Lavergne, P. & Patilea, V. (2013), ‘Smooth minimum distance estimation and test-

ing in conditional moment restriction models: Uniform in bandwidth theory’,

Journal of Econometrics 177, 47–59.

Lutkepohl, H. & Burda, M. M. (1997), ‘Modified wald tests under nonregular con-

ditions’, Journal of Econometrics 78, 315–332.

MacKinnon, J. (2009), ‘Bootstrap hypothesis testing’, Handbook of Computational

Econometrics .

Mammen, E. (1992), ‘When does bootstrap works? asymptotic results and simula-

tions’, Lecture notes in Statistics, Springer Verlag: New York .

27



Mroz, T. (1987), ‘The sensitivity of an empirical model of married women’s hours of

work to economic and statistical assumptions’, Econometrica 55(4), 765–799.

Newey, K. D. (1985), ‘Generalized method of moments specification testing’, Journal

of Econometrics 29, 229–256.

Newey, K. D. (1993), Efficient estimation of models with conditional moment re-

strictions., in C. R. G.S. Maddala & H. Vinod, eds, ‘Handbook of Statistics’,

Vol. 11, pp. 419–454.

Nolan, D. & Pollard, D. (1987), ‘U-processes: Rates and convergence’, The Annals

of Statistics 15(2), 780 – 799.

Otsu, T. (2008), ‘Conditional empirical likelihood estimation and inference for quan-

tile regression models’, Journal of Econometrics 142, 508–538.

Pakes, A. & Pollard, D. (1989), ‘Simulation and the asymptotics of optimization

estimators’, Econometrica 57(5), 1027–1057.

Robinson, P. (1987), ‘Asymptotically efficient estimation in the presence of het-

eroscedasticity of unknown form’, Econometrica 55(4), 875–891.

Sherman, R. (1994a), ‘Maximal inequalities for degenerate u-processes with appli-

cation to optimization estimators’, The Annals of Statistics 22(1), 439 – 459.

Smith, R. (2007a), ‘Efficient information theoretic inference for conditional moment

restrictions’, Journal of Econometrics 138(2), 430–460.

Tauchen, G. (1985), ‘Diagnostic testing and evaluation of maximum likelihood mod-

els’, Journal of Econometrics 30, 415–443.

Tripathi, G. & Kitamura, Y. (2003), ‘Testing conditional moment restrictions’, The

Annals of Statistics 31(6), 2059–2095.

Wooldridge, J. (1990), ‘A unified approach to robust, regression-based specification

tests’, Econometric Theory 6, 17–43.

28


	testcmr31oct2016.pdf
	Introduction
	Framework and Test
	Asymptotic Distribution
	Bootstrap Approximation
	Monte Carlo Simulations
	Simulation Study 1
	Simulation Study 2

	Empirical Application
	Conclusion
	Technical material
	SMD estimation
	Asymptotic behavior of the test
	Bootstrap



