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Abstract

We consider the problem of land use prediction at di�erent spatial scales using point level data such as
the Teruti-Lucas (T-L hereafter1) survey and some explanatory variables. We analyze the components of the
prediction error using a synthetic data set constructed from the Teruti-Lucas points in the Midi-Pyrénées region
and a �ve categories land use classi�cation. The study �rst shows that the number of points in the Teruti-
Lucas survey is quite enough for estimating the probabilities of each land use category with a good quality.
Furthermore it reveals that, contrary to usual practice, when the objective is to predict land use at aggregated
levels, land use probabilities should be estimated at more locations where explanatory variables are available
rather than restricting to the initial Teruti-Lucas locations. Indeed this strategy borrows strength from the
knowledge of the explanatory variables which may be heterogeneous. Finally, guidelines for constructing the
grid of locations for estimation are given from the analysis of the heterogeneity of each explanatory variable.

Keywords: land use models, spatial scale, Teruti-Lucas survey, Gini-Simpson impurity index, classi�cation
tree

1. Introduction

It is widely accepted that land use is among the main human pressures on the environment, including
greenhouse gas emissions, biodiversity loss and water and soil pollution (Foley & al., 2005). In this context, it
is much needed to develop econometric and statistical tools that help to predict the possible land use patterns
and trajectories in order to improve our understanding of the causes and consequences of these phenomena.

Land use is determined by complex spatio-temporal interactions between biophysical factors (soil quality,
topography) as well as socio-economic factors (population growth, economic conditions and planning). There
exist numerous approaches for quantitatively modeling land use patterns in the literature Irwin & Geoghegan
(2001); Verburg et al. (2004); Chakir (2015). These approaches can be classi�ed into di�erent groups according
to the categories of land use examined (for example rural vs urban, agriculture vs forest, agriculture and urban
vs forest), the resolution of the data used (aggregated data vs individual data), the presence or absence of spatial
interaction, the inclusion or not of the dynamic dimension, the nature of modeling (statistics, econometrics,
geography, cellular automata).

The purpose of most approaches is to provide either insights into the driving factors of land use patterns
or prediction of plausible land use patterns. The distinction between these two goals is not always easy and
the delimitations of the two approaches are often not easy to distinguish Shmueli (2010).

Di�culties of land use modeling often lie in the frequent lack of data (�good� drivers) and in incompatibility
of scale between dependent variable (land use data) and explanatory variables especially for the economic
variables (rents, conversion costs and prices). There is a large literature on spatial misalignment and change
of support problem (see for example Mugglin et al. (2000); Gotway & Young (2002); Banerjee et al. (2014);
Do et al. (2015)). However most of it deals with the prediction of a univariate variable whereas in the land
use problem we predict a compositional variable, i.e. a vector of probabilities summing to one.
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The goal we consider is to de�ne a spatial scale and a strategy for predicting land use at areal level,
combining point level data (such as the T-L survey) with a set of explanatory variables which can be at point
level or areal level. As we will see in Section 3, one feature of the T-L survey is that the distribution of the
sample locations is sparse and does not �ll regularly the space. A similar, although not identical, situation
happens with the United States Department of Agriculture NRI database Nusser & Goebel (1997) used for
example for predicting landscape in Lewis & Plantinga (2007).

Most of the economic variables are collected for administrative units making it simpler to estimate econo-
metric models at the same administrative level. In the case of Teruti-Lucas data, the land use is available at
point level for some points distributed on the territory in regular clusters. One knows that the T-L sample is
representative of land use at the department level (an administrative division of France, equivalent to NUTS3
regions) and that each observed point represents 100 ha at this aggregated level. One direction of this work
is to �nd an intermediate scale between the points (which are not observed everywhere) and the coarse ag-
gregated departmental level. Indeed, for the assessment of ecological e�ects of land uses, since the ecological
process of interest, such as habitat quality or dispersal of species are relevant at �ner scales, a model of land
use at the department level within which ecological conditions vary considerably would be less relevant.

Chakir et al. (2016c) propose a simple model explaining the T-L data with easily accessible covariates
that allow to predict land use at the point level in �ve categories. Despite the di�culty of this classi�cation
problem, they show that 65% of the locations can be correctly classi�ed using land cover and altitude and that
additional variables (meteorological, socio-economic and biophysical, spatially lagged explanatory variables)
improve only marginally the prediction. Starting from a good point level model, such as the one obtained in
Chakir et al. (2016c), the objective of the present paper is to propose an e�cient way for predicting land use
at di�erent aggregated levels.

Indeed several strategies are current practice once a good model is �tted to the initial data set. The �rst is
to compute the predictions at point level for the Teruti-Lucas locations and then aggregate these predictions
at any larger scale. The second and probably most frequent among practitioners is to average the estimated
probabilities at the T-L locations and then derive the predictions from these. But the drawback of these two
approaches is to throw away the possible knowledge of explanatory variables outside the T-L locations. We
thus imagine and empirically evaluate a third strategy using this knowledge when available: it consists in using
the model to estimate the point level probabilities at a �ne grid of locations whose density depends on the
heterogeneity level of the explanatory variables and then proceed as in the second strategy.

In order to be able to evaluate the e�ciency of the di�erent strategies, we de�ne a synthetic data set
generated from the Teruti-Lucas survey of 2010. The synthetic data points are 300 meters from each other
over the whole Midi-Pyrénées region and the land use, in �ve categories, is simulated from a model driven by
the actual T-L survey locations. The synthetic data allow us to compute prediction errors which would not
be possible with a real data set.

Based on this synthetic data, we �rst analyze the prediction error at the point level by evaluating the
proportion of error due to the probability estimation step and the one due to the response prediction step.
In our example, it clearly appears that the response error part is dominant while the estimation error is
negligible. We also illustrate how the response error is related to the Gini-Simpson impurity index of the
point level probability vectors. We then proceed to the analysis of the prediction errors at di�erent levels of
aggregation. It reveals that our proposed strategy improves upon the usual practice.

The paper begins in Section 2 by explaining the simulation framework and presenting the di�erent method-
ological tools useful for analyzing the errors notably the cumulative distribution function of error tolerance and
the Gini-Simpson impurity index. In Section 3, we present the Teruti-Lucas survey and a descriptive analysis
of our synthetic data set. The results of the analysis of the prediction error are given in Section 4 at the point
level and in Section 5 at aggregated levels. Finally Section 6 concludes by the following recommendation for
practitioners: when the objective is to predict land use at a given aggregated level from the Teruti-Lucas sur-
vey (or alternatively from a model derived from this survey, as the model presented in Chakir et al. (2016c)),
one should �rst look at the spatial scale of explanatory variables to determine a �ne grid of locations, then use
the model to compute estimated probabilities on this �ne grid of locations before averaging them to obtain
the predictions at any larger scale.
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2. Simulation framework and methodological tools

In order to investigate the questions raised in the introduction, we devise a simulation framework as follows.
Starting from an actual data set from the Teruti-Lucas survey (see Section 3), after estimating a classi�cation
tree model as in Chakir et al. (2016c,b), we construct a synthetic data set simulating from this model. More
precisely, the vector of the land use probabilities estimated by our classi�cation at location i will be used as
true parameter in our Data Generating Process of the synthetic data (hereafter DGP). The purpose of creating
the synthetic data set is that it can be simulated at any location in space where the explanatory variables
are available and we will show later on that this allows to validate strategies di�erent from and better than
the classical ones for predicting land use at large scales from point data. From now on, one replication of the
synthetic data will play the role of true data. The land use variable at the T-L locations of this synthetic data
will be used for �tting the point level model and the land use variable at the remaining locations will be used
for validation only.

2.1. Fitting a model
Be it for estimating the initial model from the true data set (in order to build the DGP of the synthetic

data) or for �tting a model to the synthetic data set, we use the same technique described below.
The land use probabilities can be estimated by several methods available for categorical variables with

more than two categories. In Chakir et al. (2016c,b), we compare multinomial logit models (Train, 2009)
and classi�cation trees (Breiman et al., 1984), and get very similar results in terms of percentage of good
predictions. We have decided to use classi�cation trees for the present study.

Classi�cation trees are decision trees where the target variable is categorical. The general idea is to use
categorical and/or continuous predictors to split the sample into successive nodes corresponding to homoge-
neous subsets by recursive binary partitioning, so that the set of leaves, or terminal nodes, form a partition of
the sample in classes that are expected to be homogeneous. Each node corresponds to one of the predictors
chosen by the algorithm. The split is done according to the nature of the predictor: subset of categories
for categorical variable, cut-o� otherwise. The prediction for an individual of the sample is determined by
following the path from the root to the leaf given the values of the predictors for that individual. We use the
CART algorithm (Breiman et al., 1984) which �rst builds a maximal tree and then prune it. We implement
it with the R function rpart from the rpart package (Therneau et al., 2014), with Gini impurity (see Section
2.4.3) as a measure of the quality of the split.

From a classi�cation tree, we can derive estimated probabilities using the empirical frequency corresponding
to the group of leaves associated with each land use category. A prediction of land use for each point is usually
obtained using the majority rule in each terminal node, which means allocating the most frequent land use to
each terminal node.

2.2. Simulating synthetic data from the initial model
The model we get after �tting the classi�cation tree to the initial data, pi = f(xi), links the probability

vectors of land use with a set xi of explanatory variables. Even though these probabilities have been estimated
at the previous step, we don't use a hat notation since now they represent the true parameters of our DGP
for the synthetic data. Note that these can be computed at any location in space where the explanatory
variables are available (not only the observed locations of the initial data set) and this is true in the context
of our simulation as well as in real applications. We will use a �ne grid of points on the territory such that all
explanatory variables are known on this grid. We then demonstrate the advantage of using the knowledge of
explanatory variables on this �ne grid as opposed to restricting attention to the T-L grid points for estimations
at aggregated levels. From this set of probabilities, in order to obtain a simulated land use data, we need
a prediction method. We will code the land use variable using dummies as follows: dik = 1 if land use k
(k = 1, . . . ,K) is obtained at location i and dik = 0 otherwise. For reasons which will become clear later, we
consider two types of predictions

• �prediction by random draw� using the multinomial distribution with parameters 1 and pi as above and
denoted drik (drik = 1 if land use k is chosen by the random draw and 0 otherwise),

• �maximum probability prediction� denoted by dmik (dmik = 1 if pik is the maximum probability among the
pij j = 1, . . . ,K and 0 otherwise). Maximum probability prediction consists in predicting that land use
with maximum probability over all uses.
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For the validation process, we generate 1000 replicates of the land use variable drik at all points of the �ne
grid.

2.3. Fitting a model to the synthetic data

Once a synthetic data set is obtained and a classi�cation tree �tted, because we mimic what would be done
from a true data set, we need to �t a model to the synthetic data and also de�ne land use predictions for the
locations of our �ne grid (once again not only the observed locations of the initial data set). The vector of
estimated probabilities is denoted by p̂i and the predictions which are done as above either by random draw
or by maximizing the probability are denoted respectively by d̂ri and d̂mi . Note that the maximum probability
prediction is called the Bayes classi�er and is known to minimize the Bayes risk (Hastie et al., 2009, p. 21).

2.4. Analyzing the error at point level

2.4.1. Error decomposition
If we assume that the data are generated by random draw (dri ) and the predictions are obtained by the

maximum probability prediction (d̂mi ), we can look at the vector of errors d̂mi − dri . It can be decomposed into

d̂mi − dri = d̂mi − p̂i + p̂i − pi + pi − dri

where d̂mi − p̂i is the �estimated response error�, p̂i− pi the �estimation error� and dri − pi the �response error�.
It is important to notice that the three terms of this error decomposition are of a di�erent nature. The

response error and the estimated response error are due to categorization of probabilities into predictions while
the estimation error depends on the quality of the model which links the probabilities with the explanatory
variables. Thanks to the synthetic data, all the terms of this decomposition can be calculated and compared
in terms of sum of squares on our example.

More precisely, the Sum of Squared Errors (SSE) between d̂mik and drik de�ned by SSE =

n∑
i=1

(
d̂mik − drik

)2
can be decomposed into:

n∑
i=1

(d̂mik − drik)
2

=

n∑
i=1

(d̂mik − p̂ik)
2

+

n∑
i=1

(p̂ik − pik)
2

+

n∑
i=1

(drik − pik)
2

+ C (1)

where the remainder term C is equal to

−2

n∑
i=1

[
(d̂mik − p̂ik)(p̂ik − pik)− (d̂mik − p̂ik)(drik − pik)− (p̂ik − pik)(drik − pik)

]
.

The di�erent terms will be given in Table 3 in Section 4.1 for our data example and will be compared.

2.4.2. Cumulative Distribution Function of Error Tolerance (CDFET)
For the purpose of assessing the predictive accuracy of shares in a discrete choice model, Haaf et al. (2014)

suggests using the Cumulative Distribution Function of Error Tolerance which is the empirical cumulative
distribution function of the absolute value of the response error at point level for each category. This graph
explores the complete distribution of the point level error and allows comparisons between the errors for
di�erent categories (land use here).

2.4.3. Point level Gini-Simpson impurity index
For a population of individuals classi�ed into K categories, the Gini-Simpson impurity index (Simpson,

1949) is de�ned by gs = 1 −
K∑

k=1

p2k where pk is the probability of category k. This index is low (purity)

if one probability is very high and all others are low, and it is high (impurity) if all categories have similar
probabilities. Note that the index 1−gs is equal to the probability that two individuals taken at random from
the data set of interest are of the same category. Both indices are used in many �elds for example in ecology
for measuring biodiversity, and in economics under the name of Her�ndahl index to measure competition. In
statistics, it is also used for classi�cation trees under the name of Gini impurity index (not to be confused
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with the Gini concentration index). In our case, we want to measure how homogeneous or diverse is land use
at a given point or in a given region, with the idea that classi�cation is going to be more di�cult when there
is diversity.

At point level, we denote this index by gsi = 1−
K∑

k=1

p2ik for point i where pik is the probability of land use

k at location i. Note that when predictions are obtained using a classi�cation tree, the number of values of
gsi is �nite and less than or equal to the number of terminal nodes.

2.5. Analyzing the errors at aggregated levels

In Section 3.2, we de�ne several grids dividing our territory into regular cells (squares actually). We
denote by Gg a generic square of such a grid where g indexes the cells. For each cell, we need to de�ne how we
aggregate the point level probabilities and predictions to obtain aggregated level probabilities and predictions.

2.5.1. Aggregated probabilities
For each cell Gg, we de�ne three aggregated probabilities:

• p̄gk denotes the average of the probabilities pik derived from our initial model pi = f(xi) for the points

i that belong to the same cell Gg: p̄gk =
1

#Gg

∑
i∈Gg

pik where #Gg denotes the number of points in the

cell Gg.

• p̄drgk =
1

#Gg

∑
i∈Gg

drik, where we recall that d
r
ik is the prediction by multinomial random draw

• p̄dmgk =
1

#Gg

∑
i∈Gg

dmik, where we recall that d
m
ik is the maximum probability prediction

Note that p̄gk can be considered as our true aggregated probability whereas p̄drgk and p̄dmgk are two di�erent
empirical estimations of these probabilities. Moreover, in Section 5, we will consider two versions of p̄gk
depending on whether we use only the T-L locations or a larger number of locations (those from the �ne grid).

2.5.2. Aggregated errors
At aggregated level, we analyze two di�erent kinds of error: the response error and the sampling error.

The response error is the error due to categorization of probabilities into predictions analyzed here from an
aggregated point of view. The sampling error is the error made using only T-L locations instead of using all
the points.

One can think of two di�erent ways of aggregating the response error at the level of a cell Gg. In the �rst
case we look at the di�erence between true and estimated aggregated probability after aggregation |p̄drgk − p̄gk|
(we will refer to it as to the �aggregated absolute response error�). In the second case we compute the errors
at the level of the point and then aggregate them to obtain the �average point level absolute response error�

1

#Gg

∑
i∈Gg

|drik − pik|.

The sampling errors can only be calculated at aggregated levels because they compare the aggregation
of probabilities either of the �ne grid points or of the T-L locations. The sampling error is thus de�ned as
p̄gk(T )− p̄drgk where p̄gk(T ) is the aggregation of the probabilities in group Gg at the T-L locations and p̄drgk the
aggregation of the predictions by random draw drik at the �ne grid locations.

We analyze these two kinds of errors with RMSE and CDFET as described below. In Section 5, we compute
Root Mean Squared Error (RMSE) at di�erent aggregation levels. We will use the generic notation Gg for a
given cell of a given aggregation level, where g indexes these cells.

The aggregated probabilities p̄gk are compared to the aggregated probabilities p̄drgk with RMSE for cell Gg

by:

RMSE(p̄gk, p̄
dr
gk) =

√√√√ 1

NK

K∑
k=1

∑
g∈IG

#Gg

(
p̄gk − p̄drgk

)2
,
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with #Gg the number of squares in Gg of the baseline grid level,
⋃

g∈IG Gg is a partition of the region and
N the total number of cells Gg. Comparisons of other kinds of aggregated probabilities are done in the same
way with RMSE in Section 5.

At aggregated level, the Cumulative Distribution Function of Error Tolerance plots, for each land use, the
percentage of squares with an error less than a speci�ed value. This analysis is conducted for both kinds of
aggregation for the response error (aggregated response error and average point level absolute response error).

3. Teruti-Lucas data and synthetic data description

Our region of interest is the Midi-Pyrénées region which was (up to December 2015) the largest region in
France (8.3% of the whole territory and 3020 municipalities in January 2013) and is made of 8 departments
(see Figure 1). It is a quite rural region which accounts for 4.5% of the metropolitan population only (in 2011),
but presents the advantage of a diversity in land uses with a major urban center, Toulouse, large farming areas
in the middle, the Pyrénées mountains in the South, and pastures and forests in the North.

Figure 1: Midi-Pyrénées region and its 8 departments

3.1. Teruti-Lucas and explanatory variables description

Land use data come from the Teruti-Lucas survey (SSP, n.d.), which is conducted each year since 1982
by the �Service de la Statistique et de la Perspective� of the French Ministry of Agriculture. This survey
aims at monitoring evolutions of land use/cover from a representative sample of points across the French
territory. The sample was rede�ned in 2005 to take into account advances in georeferencing of points and to
insure compatibility with the LUCAS (Land Use and Coverage Area frame Survey) survey (Eurostat, n.d.)
conducted by Eurostat which gathers harmonized data on land use/cover in the European Union. Both surveys
combine direct observations made by the surveyors on the ground and satellite images or aerial photographs.
Since 2005, the T-L survey contains information about the land use pattern on �segments� containing 10 points
used to collect the data each year (see Figure 2). Our sample thus contains 25317 points and 2579 segments
for the Midi-Pyrénées region.

The target variable is the land use measured by the Teruti-Lucas �physical occupation� of the land recoded
in the following �ve categories: urban, farming, forests, pastures, natural land. The explanatory variables we
consider are coming from diverse data bases at several di�erent scales. Table 1 describes the source of each
explanatory variable. More detail about the data sets and variables can be found in Chakir et al. (2016c), in
particular the construction of the �ve categories. The �nest information comes from the Corine Land Cover
data, and the variables population density and altitude.

Following the initial spacing of 300m between Teruti-Lucas points, we constructed a �ne grid, called the
complete grid, so that each segment contains 200 locations vs. 10 T-L locations, for a total of 502205 points.
The precise construction of this grid is detailed in the following section.

6



Figure 2: Teruti-Lucas survey: segments and points

Table 1: Data sources
Name geographical level source year unit
Land use 6 km segment Teruti-Lucas 2010 -
CLC2 zones (>25 ha) Corine Land Cover 2006 -
Altitude grid (250 m) BDAlti (IGN) - meters
Soil texture UCS zones BGSF (GISSOL) 1998 -
Meteorology grid 25x25km Agri4cast 2010 -

annual minimum of daily temperature degrees C
annual maximum of daily temperature degrees C
annual mean of daily temperature degrees C
annual sum of rain quantity millimeters

Land and empty meadow price 32 NRA Agreste 2010 actual euros/ha
Meadow (more than 70 ha)
Population density grid (200 m) Insee 2010 inhabitants/km2

3.2. Grids
As we mentioned earlier, we consider regular square grids at several scales, as summarized in Table 2.

Level A0 corresponds to the Teruti-Lucas points, and the coarsest one, denoted by A7, corresponds to the
whole Midi-Pyrénées region. Level A1 is constructed so that each cell contains a unique T-L segment and so
as to tile the territory. Its squares are centered at the barycenter of the 10 points of the T-L segment (see
Figure 3) and will be called unit squares hereafter. Their sides have a length of 4.2 kilometers and this grid
comprises 2579 such squares. We then construct several successive aggregations of these unit squares until
level A6 where each square contains 1024 unit squares, at each step four squares are gathered together into a
single one. Below level A1 we de�ne three sub-grids, denoted by A01, A02 and A03, by dividing each cell of a
given level into four squares. For example, an A1 level square unit is divided into four A03 level squares.

Table 2: Meshes characteristics
Grid Number of aggregated Area Number of points Number of points Total number

unit squares (in km2) observed simulated of squares
per square per square

A01 1/64 0.2812 0 to 4 1 to 5 161337
A02 1/16 1.125 0 to 4 1 to 13 40608
A03 1/4* 4.5 0 to 4 1 to 50 10246
A1 1 18 1 to 10 32 to 200 2579
A2 4 72 1 to 40 32 to 800 689
A3 16 288 4 to 160 73 to 3200 192
A4 64 1152 10 to 640 130 to 12800 59
A5 256 4608 184 to 2559 3528 to 51200 20
A6 1024 18430 184 to 6605 3528 to 131400 8
A7 2579 45586.7 25317 502205 1

3.3. DGP for synthetic data
The model chosen for generating the data had to be simple and to re�ect some spatial variability with

predictors available at di�erent spatial scales. After considering several models from Chakir et al. (2016c,b),

7



Figure 3: Grids (A02 in cyan, A03 in blue and A1 in black) and points (Teruti-Lucas locations in red) in Toulouse area

we have selected the classi�cation tree Tree-E (see Figure 4) and we refer the reader to Chakir et al. (2016c,b)
for more details on the description and justi�cation of this model. Motivated by the economics literature on
land use, predictors introduced in this classi�cation tree are: CLC2, altitude, population density, soil texture,
land price, minimum temperature, maximum temperature, mean temperature and rain quantity. After pruning,
the �nal tree has 13 nodes based on 5 variables: CLC2, altitude, population density, soil texture and land price.

Figure 4: Classi�cation tree Tree-E, chosen for the DGP

Probabilities pik are then estimated for all points of the complete grid by the empirical frequency corre-
sponding to the group of leaves associated with each given land use category. Finally, dmik are obtained by
maximum probability prediction and, for each replicate of the synthetic data, drik are obtained by multinomial
random draw with pik as parameters.

8



4. Results at point level

4.1. Error decomposition at point level

From the DGP, we have the vectors of probabilities pi and the vectors of dummies dri at each location i
of the complete grid. In what follows, we will consider that the vector of dummies dri is the observed variable
to explain and we will compare two situations. In the �rst situation the dummies are considered as observed
only at the Teruti-Lucas locations while in the second situation the dummies are known on the complete grid.
The �rst situation is more realistic since only the T-L points are available in practice. The comparison brings
insight on whether the T-L locations are enough to �t the classi�cation tree.

We observe the explanatory variables at each point of the complete grid. We estimate two classi�cation
trees using either the complete grid or the T-L locations. The two trees di�er very little between them and are
also very similar to the DGP tree. Most of the splits and cuto�s are the same. Comparing the two �tted trees,
only three cuto� values are slightly di�erent and there is one more split for the T-L tree but the classi�cation
results are equivalent. So we can conclude that the T-L points are enough to �t our classi�cation tree. In
what follows we do not consider further the tree derived from the whole grid.

From the tree �tted to the T-L points we obtain some estimated vectors of probabilities p̂i and we can
predict the land use at any location of the complete grid by taking the land use associated with the maximum
probability d̂mi . For the following two tables, averages of the errors over the 1000 replicates are reported
together with the corresponding standard error below between brackets. The sum of squared errors between
the observed land uses and their estimation can be decomposed as in Equation (1) and the di�erent terms are
given in Table 3.

Table 3: Decomposition of SSE between d̂mik and drik
urban farming forests pastures natural land

mean
%

mean
%

mean
%

mean
%

mean
%

(SE) (SE) (SE) (SE) (SE)∑
i
(d̂m

ik − p̂ik)
2 5859.3

17.6
27287.9

32.2
12224.1

17.1
37196.2

33.4
8783

21.0
(348.5) (725.9) (451.4) (875.9) (558.5)∑

i
(p̂ik − pik)

2 28.8
0.1

57.1
0.1

83.5
0.1

117.2
0.1

68.8
0.2

(27.9) (33.2) (87.4) (71.5) (56.6)∑
i
(dr

ik − pik)
2 27462.1

82.3
57461.3

67.7
59265.3

82.8
74044.4

66.4
32862

78.5
(137.7) (131.2) (162.7) (141.5) (135.4)

remainder
14.4

0.0
14.6

0.0
-6.6

0.0
123.8

0.1
141.7

0.3
(307.8) (702.4) (414.1) (793.1) (392.8)∑

i
(d̂m

ik − dr
ik)

2 33364.7
100.0

84820.9
100.0

71566.4
100.0

111481.6
100.0

41855.4
100.0

(197.9) (286.9) (460.6) (450) (501.6)

On average, the response error drik − pik and the estimated response error d̂mik − p̂ik appear to be the
largest terms, whereas the estimation error p̂ik − pik is negligible with respect to SSE. The average remainder
term is also very small in comparison with the two response errors. It is not surprising to get a very small
sum of squares for the estimation error since the data have been generated using a classi�cation tree with
the same variables as the ones used to �t the model. The standard errors are reasonably small for the large
contributions, except for the remainder term but this does not invalidate the fact that the response error is
clearly the dominant one.

Finally, the response error is larger than the estimated response error. This last point was expected since
the prediction using the maximum probability is known to minimize the SSE and hence its error should be
better than that of the random draw prediction. So, the response errors are large and deserve particular
attention. In order to simplify the rest of the analysis, we decide not to consider the estimation error any
longer and only focus on the response errors dmi − dri and their decomposition without taking into account the
estimation stage. In practice, with the true T-L data set, there is no way to evaluate the estimation error and
we can just conjecture that the response error is also more important than the estimation one. Table 4 gives
the decomposition of this response error where we see that the main contribution is due to the discrepancy
between the probability and the random draw.

4.2. Analysis of the response error at point level

Since the response error is the dominant one, we further analyse it by looking at the distribution of its
absolute value |drik − pik| for each land use and by relating it to the Gini-Simpson index.

9



Table 4: Decomposition of SSE between dmik and drik
urban farming forests pastures natural land

mean
%

mean
%

mean
%

mean
%

mean
%

(SE) (SE) (SE) (SE) (SE)∑
i
(dm

ik − pik)
2 5919.5

17.7
27307.6

32.2
12138.5

17.0
37327.7

33.5
8867.3

21.2
(0.0) (0.0) (0.0) (0.0) (0.0)∑

i
(pik − dr

ik)
2 27463.7

82.3
57462.0

67.8
59270.1

83.0
74047.1

66.5
32862.4

78.7
(140.8) (134.3) (158.1) (134.1) (139.5)

remainder
1.6

0.0
-2.2

0.0
0.8

0.0
9.0

0.0
8.2

0.0
(67.7) (156.7) (82.8) (184) (87.8)∑

i
(dm

ik − dr
ik)

2 33384.9
100.0

84767.5
100.0

71409.5
100.0

111383.8
100.0

41737.9
100.0

(173.4) (242.8) (233.2) (264.3) (185.6)

4.2.1. CDFET for absolute response error
Figure 5 shows the CDFET which plots, for each land use, the percentage of points with absolute response

error less than a speci�ed threshold. For low values of the error threshold, the curves are very similar and
we observe errors for all categories less then 0.1 for approximately 35% of the points. These good predictions
correspond to homogeneous zones with either low or high probability. This trend remains the same for
increasing error threshold for the case of urban and natural land since medium probabilities are quite rare and
we have 90% of errors less than 0.1. For farming, forests and pastures, the presence of medium probabilities
causes a deterioration of the curve behavior. The long �at part of the forests curve between 0.1 and 0.2 can
be explained by the gap in the distribution of pi3 as we can see on Figure 6.

Figure 5: CDFET for pointwise absolute response error (|drik − pik|)

4.2.2. Relationship between the absolute response error and the Gini-Simpson index
We suspect that it is going to be more di�cult to predict at locations where land use is heterogeneous, and

hence that we should observe a relationship between the errors and the impurity measured by the Gini-Simpson
impurity index at point level. Due to the nature of the model (classi�cation tree), the DGP probabilities pik
are discrete with values corresponding to each terminal node of the tree of the DGP. This implies that the
values of the Gini-Simpson impurity index (see subsection 2.4.3) are also discrete. Note that low values of the
index correspond to purity and homogeneous groups in terms of land uses. In the remainder of the present
subsection and in order to be concise, we focus on the forests and pastures land uses but more detail can be
found in Chakir et al. (2016a). On its left panel, Figure 6 gives the DGP probabilities for the forests (at the
top) and pastures (at the bottom) land uses. The probabilities are always quite low for pastures compared to
forests where there exists a large number of points with a large probability (0.822). At such points the impurity
index is low (0.314) which means homogeneity in terms of land use. On the right panel of Figure 6, parallel
boxplots are displayed for the forests land use at the top and the pastures land use at the bottom. These
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Figure 6: Left panel: DGP probabilities, right panel: Absolute response error vs the Gini-Simpson index (for forests at the top
and pastures at the bottom).

boxplots give the absolute response error for forests (resp. pastures) use for locations where the forest (resp.
pastures) use is observed as a function of the Gini-Simpson index. For the forests we note that there is one
boxplot showing low errors while the remaining ones display large errors. The low error boxplot corresponds
to the value 0.314 of the Gini-Simpson index with points in a rather pure environment, where the main land
use is forests and hence a value of pi3 close to 1 which explains the low error. On the contrary, for the other
values of the Gini-Simpson index which correspond to points in a non purely forests environment, the error
is large because the probability pi3 is low. For the pastures land use, the situation di�ers because they are
situated in more heterogeneous (impure) regions. We simultaneously see errors which are neither very low nor
very large. Similar conclusions can be drawn for the other land uses as detailed in Chakir et al. (2016a). In
particular, the urban land use behaves similarly to the forests one.

To summarize, the prediction error at point level is essentially due to the response error in this synthetic data
set with di�erent patterns across land uses. Moreover, the analysis reveals that the larger errors correspond
to heterogeneous zones.

5. Results at aggregated levels

We now turn attention to analyzing the errors at aggregated levels. As mentioned in Section 4.1, the
synthetic data we consider is dri at the point level for the complete grid (see Section 2.5.1) and the aggregated
data for a given level of aggregation with cells Gg is p̄drgk. We are going to analyze the aggregated response
error in the same way as for the point level in order to compare them. Moreover we study the sampling error
(as de�ned in Section 2.5.1) which appears only at aggregated levels.

5.1. Response error
Figure 7 presents the evolution across the di�erent aggregation levels of

• the average RMSE(p̄dmgk ,p̄
dr
gk) over the 1000 replicates, which expresses the distance between the aggre-

gation p̄dmgk in group Gg of maximum probability predictions dmik and the aggregation p̄drgk in group Gg of
predictions by random draw drik,

• the average RMSE(p̄gk,p̄
dr
gk) over the 1000 replicates, which expresses the distance between aggregated

probabilities p̄gk in group Gg from point level probabilities pik and the aggregation p̄drgk in group Gg of
predictions by random draw drik.
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Figure 7: Comparison of RMSE(p̄dmgk ,p̄drgk) and RMSE(p̄gk,p̄
dr
gk)
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The average RMSE(p̄gk,p̄
dr
gk) is lower than the average RMSE(p̄dmgk ,p̄

dr
gk) at all levels and their dispersion is

negligible compared to their di�erence. Hence it is clearly better to directly aggregate estimated probabilities
rather than aggregate point level predictions. For levels A2 to A7 the average RMSE(p̄gk,p̄

dr
gk) is very good

but it increases at levels A1 and A03 and gets rather poor at lower levels. This last point can be explained by
the low number of locations at lower levels.

5.2. Comparison of aggregated response error and average point level response error with CDFET

In Figure 8, we consider aggregations at the A1 level of the response error in two di�erent ways. In the
�rst case we consider the di�erence between aggregated probabilities at the A1 level |p̄drgk − p̄gk| and call it the
�aggregated absolute response error�. In the second case we consider the average point level absolute response

error
1

#Gg

∑
i∈Gg

|drik − pik| at the A1 level.

Figure 8: CDFET for aggregated absolute response error at A1 level (|p̄drgk − p̄gk|) on the left, and CDFET for average point level

absolute response error (
1

#Gg

∑
i∈Gg

|drik − pik|) at A1 level on the right

Figure 8 shows that the aggregated response error (left panel) is much lower than the average point level
response error (right panel). Results on the aggregated response error are very good for all land uses. Even if
all curves are very similar, results are slightly better for urban and natural land: all segments have an error
less than 5% for urban use and natural land and less than 10% for other land uses. When considering the
average point level response error (right panel), results are worse, even for the urban use and natural land:
overall 80% of the segments have an aggregated error less than 13% for urban and 15% for natural land, less
than 30% for forests and 35% for pastures and farming.
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5.3. Sampling error

In this section, we will compare the aggregated probabilities in a given group Gg based on Teruti-Lucas
points data, p̄gk(T ), to the aggregated probabilities p̄drgk which are computed from all locations of our �ne grid.

The error p̄gk(T )− p̄drgk can be considered as a �sampling error� and we analyze it across the di�erent spatial
levels.

Figure 9: RMSE comparison of the aggregation of maximum probability predictions at all points (p̄dmgk ) and at Teruti-Lucas

locations (p̄dmgk (T )), aggregated probabilities at all points (p̄gk) and at Teruti-Lucas locations (p̄gk(T )), and the aggregation of

predictions by random draw at Teruti-Lucas locations (p̄drgk(T )) to the aggregation of predictions by random draw at all points

(p̄drgk)
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In Figure 9, the dashed green curve plots the evolution across the aggregation levels of the average

RMSE
(
p̄gk(T ), p̄drgk

)
which is the RMSE between the aggregated probabilities in group Gg for the T-L points

(p̄gk(T )) and the aggregation of the predictions by random draw at all locations (p̄drgk). Its dispersion is very
small compared to the distances between average curves. This average RMSE corresponds to the sampling
error, it is quite important at A1 level but it is halved at each of the next two aggregations levels and shows
a moderate decrease for the following aggregation levels. The dashed green and blue curves show that the
corresponding RMSE are higher when the probabilities are aggregated using the T-L locations only (dashed
curves) than when they are aggregated using all locations (solid curves, already seen in Figure 7), even if
the di�erences decrease when the aggregation level increases. The interpretation is the same for the dashed

salmon curve which represents the average RMSE
(
p̄drgk(T ), p̄drgk

)
and is quite high compared to zero for the

�rst aggregation levels. From level A3, the di�erences between aggregations using T-L points and aggregations
using all the �ne grid points decline for any aggregation method (aggregation of estimated probabilities in
green or aggregation of maximum probabilities predictions in blue). At large scales (A4 or A5), it is equivalent
to use the T-L points only or the �ne grid but we want to emphasize that at lower scales the bene�t of using
the �ne grid is large especially at level A1. Concerning the T-L points, the curves �rst con�rm the fact that
it is better to aggregate estimated point level probabilities rather than to predict at point level. Moreover, it
is clear that if a point prediction is used before aggregation, it is better to choose the random draw prediction
rather than the maximum probability. We note that the distance between the blue and the green curves is
the same for solid (�ne grid) and dashed curves (T-L grid), which means that the discretization has the same
e�ect for the �ne grid or the T-L grid. Finally, we observe that in general the RMSE are high at levels A1

and A2 for the dashed curves because for these levels the number of points per grid cell is lower than 10 and
40 respectively.

5.4. Sampling error for explanatory variables

The heterogeneity between the results we get using the Teruti-Lucas locations and that using all locations
is explained by the high resolution of the explanatory variables and the fact that we can observe them on the
�ne grid. For a given cell, if a di�erence between these aggregated probabilities does exist, it is due to the
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fact that the explanatory variables take values at the �ne grid points which on average on the square do not
coincide with the average obtained from the T-L locations alone due to their heterogeneity. Therefore we can
borrow strength from this heterogeneity to improve our estimations. We are going to analyze the sampling
error for the three most important explanatory variables: land cover CLC2 which is a categorical variable,
altitude and population density which are continuous variables.

For a categorical variable we de�ne, as for the land use variable, the RMSE sampling error by the di�erence
between the mean of the dichotomized categorical variable over all points of the �ne grid and the mean of
the dichotomized categorical variable over the T-L points. In Figure 10, the RMSE sampling error of the
categorical predictor CLC2 is divided by more than two at the �rst aggregation step and is almost null from
the A3 level.

Figure 10: RMSE for CLC2 sampling error

Figure 11 shows the variance of the di�erence in means between the points of the �ne grid and the T-L
points for two quantitative variables with high resolution, altitude and population density. For the �rst two
aggregation levels, the sampling error decreases with aggregation, even if the evolution is less strong for the
altitude. Except for the A4 level (where altitude presents a peak due to an artifact of collapsing squares with
low altitude and squares with very high altitude in the South of the region), values of both variables for higher
spatial levels are low and close to each other.

Figure 11: Analysis of sampling error for altitude and population density

The last two �gures can be related to Figure 9. The larger di�erences in RMSE sampling error are obtained
for the A1 level and A2 to a lesser extent. From level A3, the curves are more similar for land use as well as for
the three explanatory variables. Hence the analysis of the explanatory variables contains information about
the aggregation level at which we can consider that the T-L points are su�cient.
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6. Conclusion

At the point level, our synthetic example study illustrates that, even if the land use probabilities are very
well estimated, the prediction is poor for all the points where none of the land use probabilities are high. This
fact shows that predicting the land use in �ve categories at the point level is a di�cult classi�cation problem.
So, we advise the data-analyst to work at aggregated levels or regions rather that at point level. It is also
recommended to average the point level estimated probabilities without making any land use prediction for
points. As soon as the number of points included in the aggregated level is large enough, the strategy of
averaging estimated probabilities leads to very good results at least for our example.

Another interesting conclusion from our paper in the context of land use is that the Teruti-Lucas survey
contains enough observation points in order to �t a good classi�cation model for estimating the vector of
probabilities. However, averaging the estimated probabilities obtained at the T-L locations only, as we did in
Chakir et al. (2016c), is not very e�cient. Since the explanatory variables we use in our model are available
at any location in the Midi-Pyrénées region and not only at the T-L locations, one is better o� using this
information. The importance of estimating the probabilities at many locations is clearly illustrated by our
results. It is particularly essential at aggregated levels where the explanatory variables exhibit some hetero-
geneity. Thus the analysis of the heterogeneity of the explanatory variables should help in de�ning the grid
points on which the land use probabilities have to be estimated.

In the future, we plan to compare this approach based on aggregating point level probability estimation
with some models �tted directly at the aggregated level such as regression models for compositional data.
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