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APPENDICES

A Proofs of Propositions

A.1 Proof of Proposition 1
The first order condition of the maximization problem for ¢t < T + 1 is

W41 ] _

OH;(t+1) (A1)

(Lt em(0) + B (e + DE: |
The marginal value of human capital is the derivative of the Bellman equation so that by the

envelope theorem:

ow, 1 Wy ] Hi(t+1)
om() ~ (T {8Hi(t+ 1)} Hy(t)

For t =T + 1, condition (A.2) writes more simply as:

(A.2)

8WT+1 K; aWT—H
= H(T + 1) 57— = ki,
OH,T+1) H(T+1) (T+ )6H¢(T+1) "

so that, by backward induction, we obtain:

OWr
OH,(T)

OWr_4
OH,(T — 1)

Hy(T) =14 Bk, Hi(T — 1) =1+ B(1+ Bry)

and so on. This yields:

Wi 1- pgr

T—t,.
OHy(t+1) 1-p T8

H;(t+1)

Replacing in equation (A.1) yields:

and equation (7) follows. Furthermore, as the second term in (A.1) is constant, the second order
condition is satisfied if and only if v,¢; > 0.

Furthermore and given that ¢; > 0, the condition that investments are always positive yields:

1
p. [L 4 AT (g, — _)] ~120. Vt<T+1

1-p 1-p
As k; — ﬁ < 0and B < 1, 74(t) is decreasing in t because of the term 37" and the RHS attains

its minimum at t = 7. This yields condition (6) since:

p 1 1
Pi[erﬁ(f%—m)}—lZU@Pizﬁ

i
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A.2 Proof of Proposition 2

First, condition (8) is consistent since k;; = 1 4 BK;41 > Kitr1 € Kigp1 < ﬁ & Ko < ﬁ

and by repetition r; 71 1 = K; < ﬁ
We proceed by backward induction. By Proposition 1, we know that

1
Ti(T) >0+ ——— < fBp; < :
RiT+1-1 RiT+1

and under this latter condition, that equation (7) is satisfied for all t + 1 < T.
Assume that for some t +1 < T

V' >t+2,¢ <T+1,7(t')=0, and 7;(t + 1) > 0 <=

< fBp; < (A.3)

Rit+1 Kit4-2

and under this latter condition, that equation (7) is satisfied for all # < ¢t 4+ 1. In a proof of
Proposition 2 by backward induction, we thus shall prove that condition (A.3) is true at period
t.
We analyze separately the condition 7;(t') = 0,Vt' > t 4+ 1 and the condition 7;(¢) > 0.
Assume first that 7;(t') = 0,Vt’ > ¢t + 1 so that the condition 7,(¢') > 0 is violated for any
t" > t 4+ 1 and therefore by equation (A.3), Bp; < 1/ki41. Conversely, if Bp; < 1/kK;441 then
Ti(t") = 0,Vt' > t + 1 because equation (A.3) is satisfied for ¢’ > ¢ + 1 Furthermore, conditions

7i(t") = 0 implies simple forms for the Bellman equation (3):
Wi(Hi(t") = 0:(t') + log Hy(t') + BEy W1 (Hi(1' + 1)),
and the accumulation equation (1):
log H;(t' + 1) = log H;(t") — X\i(t).

Using equation (4) where we set k;711-1 = k; and the linearity of the previous two equations

lead to the condition derived by induction again:
Wy (H;(t') = 0" (') + kip—1log Hy(t'). (A.4)

for any ¢’ > ¢t + 1 and where rk; = 1+ ki 141.

Second, assume that 7;(¢) > 0. Proposition 1 can be recast in a set-up where the last period
becomes S; =t + 1 instead of T+ 1 since there are no further human capital investments after
this date and since the value function can be written as in equation (A.4) evaluated at ¢’ = ¢+ 1.
We rewrite equation (7) and obtain:

1 1
7'1(15)—0—{pZ |:—1f +5(Kit——)1 —1}>O,
which is equivalent to Bp; > H%
Therefore the equivalence stated in the Proposition is true at period ¢. Furthermore equation

(7) applies for any t' < t. The statement under induction is therefore true at any date t €

{0,.,T}. By convention we set = 0 in order to cover all cases since p; > 0.1

1
K40
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A.3 Proof of Proposition 5

The two equations (16) and (17) simplify to:

A5
Niz = i—:ﬁ b _ 1) . (A-5)

Taking the ratio of the second and the first equation yields:

M3 T+1

= =8 (ki ——

M2 1-p5
we derive the restriction from x; € [0, ﬁ] that:

T+1
7713 c [ 6

Up) 1—5’

Conversely, if this restriction is valid, then &; is given by:

0l. (A.6)

1 i 1
gi= —— g3 g 2
=5 e & T=p)

Furthermore, Proposition 1 proved that investments remain positive until period 7" (inclusively)
if and only if 8p;x; > 1. This yields that :

1 1

1 T+1753
/8"4’7/ 7ﬁ +/8 N2

pi > Py = >0,

by the above. The first equation of (A.5):

- p~i—1 _ pi (piBri
2 C; 11—6 CiK; 1—6 ‘)

also implies that, given that all parameters are positive that

s P 1 >0
~ — — K .

Conversely, assume that 7, > 0 and p, > pF. By construction, the condition Bp;x; > 1 is

satisfied and investments are positive until 7". Second, define

Ci = L (P‘—B - 1)
M2; 1-p

de; 1 ( >
dp; i p’l—

which is positive since pilf > 1 because Bp,r; > 1 and k; < %,8 Both expressions prove that

c(pisM2i) = 77p (&% - 1)

is positive and increasing in p;. Therefore ¢; > c; = c(p,ny;). B

and write
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B Model Specification and Likelihood function

The main difference with standard specifications lies in the introduction of three individual
heterogeneity factors that interact in a specific way with factors depending on time. Equation
(21) writes

4T — (5)[1,T] e+ ik

7 A

where ugl’T] = (Wit -, Uiy vl[l’T] = (Vi1, oy vir) 5 M5 = (05, 1S, M5) are the centered versions of
the ns and:
11 1/8
MEtT=1 s |
1 7 1/6"

is a [T, 3] matrix. The system is further completed by some initial conditions, the number of
which depends on the order of the autoregressive process. Denote p this order and write the
initial conditions as:

U, =,

(1,77

since unrestricted dependence between v, , 7 and those initial conditions will be allowed for.

We can rewrite the whole system as:

u£1_p,T} _ M(m[pp,T] e + =P

K3 K3

in which the matrix M (ﬂ)[lfp 71 is completed by p rows equal to zero, M (3) 7% = 0.

We now go further and specify the correlation structure. A comment is in order. Usually,
the autoregressive structure directly applies to earnings residuals u; and in the absence of
covariates, this is equivalent to specifying it through the residual part v;; because there is a
single individual effect. This equivalence still holds when another heterogeneity factor interacted
with a linear trend is present. Nevertheless, our specification includes a third factor interacted
with a geometric term and this breaks the equivalence. To circumvent this problem, we posit
that v;; is a (time heteroskedastic) ARMA process whose innovations are independent of the
individual heterogeneity terms, 5. As a consequence, our variable of interest, u;, is the sum of
two processes, the first one being related to fixed individual heterogeneity and the second one

to the pure dynamic process. These processes are supposed to be independent between them
[17 70}

i

(2

although they are both correlated with initial conditions, u

We are now going to derive the covariance matrix of u as a function of the parameters of

these processes in two steps . We first study the ARMA process and then include the individual

heterogeneity factors.

B.1 Time heteroskedastic ARMA specification
Following Alvarez and Arellano (2004) or Guvenen (2009), we specify
Vit = Q1Vi(¢—1) + - + QpUi(t—p) + O1Wiy
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where w;; is M A(q):
Wit = Cip — Y1Cipq — o — quz‘t—q-
Let o = (o, ., ) and Mrp(a) a matrix of size [T, T + p| where p = dim(«):

-, ... —Oq 1 0 ... 0
O
0 0 —ap —a; 1

As 'Uz[kp’T] = (Uz’(l_p), ...,viT) , we have:
(L, 0) LT o 7P
Mr(a) ! thz[l’T]

w ™ = M (). "

Since wy is M A (q), we have

1—q,T
where d ot = (Cil—q? oy Cir)-
Denote A a diagonal matrix whose diagonal is (o1, .,07) to get the following description of

the stochastic process as a function of initial conditions and idiosyncratic errors:

I, 0 ey 2 Iy Op. 744 Uz[l_pm (B.7)
Mr(a) )7 Orp AMp(9) et ) '

P ’T}, we derive the covariance matrix of ( =Pl (El_q’T] ) .

To compute the covariance of vl[l_ ;
Since ( l[-l_q’T] are i.i.d and are of variance 1, the South-East corner of the matrix is the identity
matrix of size (14 ¢+ T"). The North West corner is assumed to be an unrestricted covariance
matrix Vyz[lfp = Ty Assuming as usual that E(y;,(;,;) = 0 for any 7 < ¢, we have that

E(Uz[l_p70}~(dl7ﬂ)/) = 0. Only E(y[l_p’o].(c[l_q’o])’) remains to be defined:

B! () = Q = [w,]

where 7 € [1 — p,0] and s € [1 — ¢,0] and where:

r<s: wyrs =0
r>S: Wy is not constrained

because the innovation (; is drawn after r and is supposed to be not correlated with y;.

[17}7,0]
Hence the covariance matrix of z; = ( C[il_q’ﬂ ) writes :
plt=P0l U%_p? oo 20
L=V hoan |=V[d|=( 2 L 0
Ci ¢! 0 0 Ir



B.2 Individual heterogeneity

The covariance matrix of the individual heterogeneity factors is denoted ¥,. as said above, we
assume that the fixed heterogeneity terms are independent from the whole innovation process
¢ E*q’T]. As for the covariance structure between initial conditions and those factors, we assume
that:

L (01[1—;7,0] (77?),) = Loy

Consider the covariance matrix of initial conditions X :

Uz[l—p,O] FOO FO?Y Q
s=v[| — (1, =, 0
¢ Q 0 I

and define,

mw = (i )

[p Op, q
Srp(¥.A) = (OM AMZ@))

[17p7T]:

7

Write the covariance matrix of vector y
Q, =V (uE*p’T]) =V (vl[l*p’T] + M (B)EPT] nf)
;i

= V| [M@® " Br(a).Srp(w M) | ol
C[1*Q7T}

,U[lfpzo]

Since vl[l_p’T} = Rp(a).Srp(¢, A) ( C[il_q’T} ), the matrix

V (0lPM) = Rr(a).Srp(t6, )2 S1, (1, A) Rr(a)

and
[1—p,T] 4 [1—p, T/ U[lipm(n?)/ [1-p, T
E(Ui ’m)M(ﬁ) , = Rp(a).Srp(v,N)E CEI_Q’T](UZ‘?)’ M (B! P
r Al
= Rr(a)-Sr,(v, ) ( Orsns ) M ()

= w0 (af, 55 ) o, ) 0 0")

= RT(O&),( [p 0p,T+q >( Op’p [‘OWM<B>[1,T}/>
Or, AMrp(v) 074q.p Orsqr

= RT(Oé). ( OP,p FOT]M (6)“771}/ >

OT,p OT,T
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Hence,

Q, = R(@).Sr,(, A)2.Sr,(6, AY Re(a) + M ()T 5,01 (8) 71V
0pp LoyM (8)HTV 0p, Opr
+RT(a). < OZZ 0n 01{5) ) + < M(ﬁ)ﬁ{jﬂ FE)n O:];,T ) RT(@)/
The two first terms correspond to variances of the dynamic process and the individual heterogen-
eity factors, the other terms correspond to the correlation between the two processes induced by
initial conditions. Note that the parameters of the MA process does not appear in the correla-
tion between the two processes since innovations are supposed to be independent with individual

heterogeneity factors. Initial conditions are given by ( Elfq’o], n° and vl[l*p 0,
The Choleski decomposition of matrix > can be parametrized expressing the following matrix

into a polar coordinate basis.

1 0 .0
0
: 0 1 0
0 1 0 0
w}iz 1 0
0 wy? w23 1 0
egqu,l—p On11-p On2,1-p On3,1-p 1
0 02— p.2—p 1
S On1.0 On21.0 03,0 600 1
where 6% — 0if p > ¢ and, more generally, ) = 0if I > m
1—q,1—p p q ) g Y Im .

C Fixed Effects, Constrained Effects and Counterfactu-
als

C.1 Estimates of individual factors given observed wages

The main equation is:
4P M(B)U*P:T]ng 4+ P T

i % ’

where 7¢ and vz[l_p 71 are centered by construction and where a row of M(() is defined as

M(B)H = (1,t,1/8") as in Appendix B.
Later on, we shall reintroduce the estimated averages, 7,, of the individual effects that we
estimate by OLS using the sub-groups defined by age of entry and skill level (21 groups). Define

the average in each group as gl}*p 71 and define:
My = (M(B)! 1M ()P~ M (B) P Vg re T,

We now present the fixed effect estimation of 7. We consider first the case with no missing
values and extend it to the case with missing values. We finally analyze how to deal in the

simulations with constraints on 7,.
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C.2 Estimating individual effects

Assume first that there are no missing values. To deal with the correlation between 7n{ and v;,
we can always write:

,U[lfprT]

17p7T]
7 Y

=Cn; + wz['

where E((nf)'w[l_p’ﬂ) = 0 so that we get:

C = B " 00 ) (B (ng))) ™,

and:
Q, = B(o) ") — Bl ) ) (B (n)) T Bl ).

7

This yields the estimating equation for 7§ :

ult =PIl = Dnf + wl[l_p’T] where D = M (5)171 + C,

)

that might be estimated by GLS methods.
It is nevertheless useful to write likelihood functions that will help later to define constrained

estimates. Define the conditional (pseudo) likelihood function as:

_ 1 1 n-p1 1, [1-pT]
L™ | ) = exp (=3l - Dipy el - D) ).
(27)T/2 det 2
in which €, = V (w7,
We are secking the conditional distribution of 1§ conditional on the observed ugl_p 71 which

can be expressed by Bayes law, using a prior for n¢, Lo(n$) as:

L ) Lo (1)

L(n§ | u ™) = - .
[ LT 98) Lo(ng)dns

[l—p,T]

Consequently, the distribution function L(7n§ | u; ) can be written as:

_ 1 _ _
H (!, exp (—507: — Bu " 1YQ (o — Bu! ”])) Lo(rf)

where the constant of integration is derived by setting to one the integral over 7;. In the case
of a diffuse prior i.e. Lg(n$) = 1, the constant of integration is no longer dependent on ugl_p 1
and is equal to the usual reciprocal of (27)%/2 det, Q,l/ ?. When there are constraints on 5, these
constraints can be included in the prior (see below).

_p7T}

As all terms in 7§ and ul[l are quadratic, we can derive the unknown matrices B and (2,

by solving:

(g P = Dy T = D) = (1 = Buy P9 (0 = B TP o A

i w 7 7

o1



[lfp»T}

By identifying quadratic terms in (n¢,n5), (u; n6) and (ul 7?7 P

) Uy ), we obtain three

equations:
D'O'D =0t
-D'aQ,t =-0'B,
Q,! =DB'Q'B+A,

so that, as D'Q ' D is invertible:
Q, = (D'Q'D)7,

B = (D'Q,'D)"'D'Q L,
A =0 -0 DD D) DQ L

If those matrices are known, the (unfeasible) estimator for the individual fixed effects, by rein-

clusion of the estimated averages, are:

[1—p,T] .

it = Bul " = B(Dn¢ + wl ") = nf + Bu

They are such that:

V(i) = EV(@|n5) + VE@ | n)
— V(7f) = BQ,B" + Vni =Q, + V.

The term (2, goes to zero at least at the rate 1/7" since matrix D is determined by different
factors. Some are going to zero faster than 7" but they are dominated by the simple factors.

The feasible estimator is now given by:
7¢ = Bul T,

and by reinclusion of the estimated averages for each group, 7,5, = 7,, we have:

B = 7y 7 = 7, + Bl

P71 is not observable, only

We now analyse the case with missing values. Suppose that ugl_
Siul[l_p 11 is where S; is the matrix of dimension (7;, T 4 p + 1) selecting non missing values
and where T is the number of such non missing values. Consequently, the distribution function

L(n¢ | S;ul™™) becomes:

_ 1 _ _
Hi(Sul ™). exp <—§(77§ — B;Syuj! p’T])IQ;z'l (1¢ — BiSyuj! pﬂ)) Lo(n5),

where by simple analogy to the results of the previous section:

Qm' - (D/SZ/<SZQwSZ/)_15’1D)_1,
B; = (D'S!(5:0,5)718;D)'D'S!(SQ,S!) L.
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C.3 Constrained estimator

We reconsider the uncentered version of the individual effects 1, in this section since the con-
straints apply more naturally to those. Nevertheless, we freely borrow the likelihood expressions

derived in the previous section in which we considered the centered version 7.

Using that the likelihood function L(n; | yl[l_p ’T]) is proportional to:
1 < V- .
exp (—5(7% — ) (n; — m)) Lo(n;)

where 7); is the unconstrained estimator, we solve the following program to compute the con-
strained estimator of 7,
H}}in(m - 771)/9;1(771‘ — ;)
under the constraints:
Niz > 0,13 < 0,153 > =711
Denote i, it and ps the Lagrange multipliers associated to each constraint and write the Lag-
rangian as:
L(n;) = (n; — fh)’Q;l(m — 1) = 1T + MMz — H3(Mig + T17i2)-
Taking derivatives yields:
0
29;1(771 — ;) = | o+ TrHg | =0.
H3 — Ha

We immediately have that:

1. If gy > 0,4y = 0 then ;3 = 0 and 7, > 0, and this implies that 777,54+ 7,3 > 0 so that
i3 = 0. Therefore:
Min — i1 0 0 0
Mo—Tw |+ 0 | =0= M2€§7n€3 = i3

2
—Mis 125)

where ez = (0,0,1)". This is compatible if u, = lanl > 0 and therefore if 7;; > 0 since 2,
is definite positive. Denoting e; = (0, 1,0)’, we also have:

~ ~ o / n
Nig — Mg = —Hg-€9—/~€3.

2
This satisfies the condition p; = 0 iff 5, > 0.

2. If pg > 0,1y = 0 then 7,3 = —7r0);, and 7, > 0, and this implies that 7,3 < 0 so that
iy = 0. We have:

0
“1(n 4§ O Q
29771(771- )= ™ |pus=0= (), —10;) = MS?"UWT
1
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denoting v, = (0,7, 1)". Given that v.7, = 7,5 + T, = 0, this implies that :

if vl.n; = ;5 + T, < 0 This yields the constrained estimators, 7;, and 7;5:

o 0
(7; — ;) = usg"v;

which satisfy the constraint p; = 0 iff 1,5, > 0.

3. If u; > 0 then 7, = 0 and thus the constraints m77;,,+ 7;3 > 0 and 7,3 < 0 imply that
M;3 = 0, that pyps = 0 and that one of them is positive.

Summarizing;:

o If7n,; < 0,7, > 0, and 7),5+7r7),, > 0, constrained estimates, 7;, are equal to unconstrained

estimates, 7);.
o If 9);5 > 0,7;3 + mrf);s > 0 case 1 applies if 7,5, > 0.
o If 7,5 + mri)y <0, 7);53 < 0 case 2 applies if 77,5 > 0.
e In all other cases, 7,5, = 7,3 = 0. In this case:
ﬁi_ﬁi: 7711_7:7;7“ :%(6’2 63)(22)
i3

where v; are unknown. They are obtained using:

0
e\~ .\ [ € . ey @y U1
<€g>(77¢_77i)—(€é) 7]12 _(eé 9 (62 63) Vg

/
Denoting I,| = ( Z? ) so that:
3

-1 0
U1 _ /% / vy
( Uy ) - |:Ic ) IC:| Ic N2

—1;3

so that we get the vector:

7~h‘ - 771 - Qn]c [Iéinc]*l Ié _ﬁiz
—M;3
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C.4 Imposing constraints on simulations

Assume that we want to impose the constraints that 7,, > 0 and that n,; < 0 and 7,53 > —m7rn;,.
Drawing in a multivariate normal distribution with multiple constraints is not as easy as with
a single constraint. We use efficient Gibbs sampling as proposed by Rodriguez-Yam, Davis and
Scharf (2004).

First, denote C,, the Choleski decomposition of the permutation of matrix 2, (or €,, in the

case of missing values) such that:
C,C) = Q.

Furthermore, it is convenient to slightly change the order of ns without loss of generality. As-
suming that the generic element of the lower diagonal matrix C,, is ¢;;, we can write, assuming

that the expectation of 7, is (aq, ag, as):

Ny = a + iy,

N3 = a3 + 1€y + 2y,

= o1+ 5y + sy + sl
We start from the remark that it is easy to draw in univariate truncated normal distributions
conditional to the other variates, for instance, f(n} | n%,n%,n5 < 0,n% € [—mrny,0]). Second,
drawing repetitively in the conditional univariate distributions to construct a Markov chain yields
drawings that are distributed according to the joint distribution we are looking for. Furthermore,
Rodriguez-Yam, Davis and Scharf (2004) recommends drawing the independent errors &, £, and
&, instead of the original variables. For this, we have to rewrite the constraints as (using c¢;1, ¢o2

and c33 are positive, see Section C.2):

gl > _31_217
& Ba <o (C.8)
52 + c21 C7TT011§1 > __ a3 7TT0¢2_
22 €22

The algorithm proceeds by considering initial values (13, 13) whose construction we detail below.

Then from (1%, 1%), we construct (5™, n5*!) using:

_astmras  ca1+mrcln gk
c22 c22 iy

1. Draw &5 in a truncated normal variable, truncated by the bounds |

- -2l " (a non empty interval because of the constraint ¢, > —22).

2. Draw ¢! in a truncated normal variable, truncated by the bounds [Ly, Ly]. There are five

cases:
k+1 k+1
o If Ca1 > 0: Ll - maX(_g_QN _621+63F2TC11(a3t:2Ta2 + £2+ ))’ Ul - _g_?(?g_z + 52+ )
k
o If €21 = 0: Ll - maX(_CaTQN _C21'E72'3TCH (0434;7;27"0‘2 + €2+1))7 Ul = +00
k+1 k+1
o If Co1 € (—7TT611, 0) . Ll = max(—cal—i, _Ez_i(caz_?; + €2+ ), _Cz1f3r2TC11 (agt;Taz + £2+ )),
U1 = 400
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o If coy = —mpeyy 0 Ly = max(—22 —<22(93 4 5’5*1)), U, = +o0

c11’  co1 Nc22
. — Q3 _coa(a3 k+1 — __ co as+rras k+1
o lfeo < —mren: Ln = maX(_Cu’ ca1 (622 +&67)), U= 021+7rTC11( ca2 +&7))-

Then construct .

When the algorithm is said to have converged to (£7°,£5°) then finish by drawing &5 in a N(0,1)

variate since no constraints are binding on 7,. Construct the final values n5™ = ag + 1165,

k+1

UES

2
k+1
= a3 + 1877 + 2285, 771+ = o + 31877 + €3265° + c3385.

The initial conditions are constructed by neglecting the multivariate aspects of constraints:

e Draw £ in a truncated normal distribution, truncated by the bound &2 —2. Construct
9 = az + enl.

e Draw &) in a truncated normal distribution, truncated by the bound [Tz _ cartmren ¢0 -

C22 C22
co1 ¢0 0 __ 0 0
28] Construct 0 = ag + 217 + 2285

e Draw &) in a normal distribution and construct 7% = oy + ¢316) 4 5265 + €3363.

These draws satisfy the constraints but they are not truncated normally distributed.
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Table 1: Sample size

1977
1978
1979
1980
1982
1984
1985
1986
1987
1988
1989
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007

Age of Entry

Below 20 Between 20 and 23 Above 23 All
4460 2112 874 7446
4460 2112 874 7446
3855 1923 787 6565
3748 1930 785 6463
4460 2112 874 7446
4460 2112 874 7446
3792 1808 724 6324
3683 1800 726 6209
3569 1741 678 5988
3402 1654 637 5693
3486 1657 644 5787
3319 1598 613 5530
3299 1581 603 5483
3330 1620 627 5577
2508 1316 503 4327
3256 1566 578 5400
3236 1557 579 5372
3202 1529 556 5287
3208 1521 543 5272
3218 1503 547 5268
3180 1506 536 5222
3117 1480 517 5114
3018 1463 511 4992
2800 1323 467 4590
2844 1387 463 4694
2851 1399 467 4717
2896 1382 442 4720
2864 1377 429 4670

o7



Table 2: Missing Values

1977
1978
1979
1980
1982
1984
1985
1986
1987
1988
1989
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007

1977

.882
.868

.849
.834
.804
765
N
743
.736
749
.581
725
721

.71
.708
.708
701
.687

.67
.616

.63
.634
.634
627

1979

.882
.786
.882
.882
751
739
714
675
.689
.658
.653
.665
515
.643
.641
.629
.628
.628
.622

.61
.595
.547
.559
.560
.561
.557

1980

.868
.868
.868
743
731
.704
.668
677

.647
.653
.506
.634
.631
.621
.619
617
611
.598
.586
.539
.551
.552
.553
.547

1985

.849

.75
718
.694
701

.67
.663
.657
.508
.636
.631
622
.618
617
612
.599
.588
.544
.552
.554
.556

.55

1986

.834
737
.690
.694
.663
.655
.666
518
.644
.638

.63
.625
.623

.62
.605
.591
.542
.556
.558
557
.552

1987

.804
691
.691
.655
.649
.654
511
.632
.627
.619
.615
.614

.61
.595
.581
.532
.545
.548
.549
.542

1988

765
.689
.649
.642
631
492
.609
.603
.596
591

.59
.583
573
.559
.516
.523
.526
.525
521

1989

Nue
678
.662
.652
.506
.628
.622
.613
.61
.61
.6
.589
.575
.533
.541
.544
.544
.538

1991

743
.679
.659
513

.63
.622
612
.609
.605
.595
.584
.568
.526
.534
.536
.535
.631

1992

.736
673
517
.635
627
.618
614
.609
.601
.587
573

.53
.539
.541
.541
.535

1993

749
.544
.661
.652
.642
.636

.63
.623
.605
.592
.539
.555
.558
.556
.548

1994

.581
.535
621
511
.506
.502
497
479
471
425
441
.446
444
.436

1995

725
671
.649
.642
.635
625
.608

.59
.538
.555
.557
.553
.547

1996

721
.661
.649
.639
.629
612
.594
.541
.557
.558
.556
.549

1997

.71
.667
.652
.637

.62
.597
.546
.559
.559
.557
.551

1998

708
.665
.649
.629
.606
.553
.567
.566
.563
.556

1999

.708
.662
.639
.613
.561
.573
.570
.568
.560

2000

701

.65
617
.564
574
.574
.570
.562

2001

.687
621
.563
574
571
.567
.557

2002

.67
57T
.584
.574
.574
.561

2003

.616
.565
.543
.538
.525

2004

.63
.574
.566
.552

2005

.634
.586
.570

2006

.634
591

Notes: Frequencies of observations present in the sample at years described by row and column, relative to the full sample



Table 3: Autocorrelation matrix of earnings residuals

1977
1978
1979
1980
1982
1984
1985
1986
1987
1988
1989
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006

1978
438
.280
241
211
.223
221
.216
161
.156
134
135
.145
134
111
.102
.109
128
129
.108
117
124
122
122
128
.108
.103
.106

1979

424
.367
.343
.326
.306
.301
.266
.260
.254
.239
221
.193
179
183
197
192
.198
.194
.160
179
.180
179
.168
.170
.155
157

1980

.563
478
.439
401
.368
.386
401
.368
321
.334
.306
274
.280
.289
.305
.308
.294
294
.293
294
.257
291
.289
291
.286

1982

.539
499
411
.430
441
.459
421
.383
.370
.333
314
.330
319
315
.336
316
.291
.310
.296
.261
.299
.296
287
279

1984

733
.665
.643
.634
.634
617
557
57T
.515
.482
.480
491
497
.507
.496
478
.501
.463
415
.469
.462
470
.449

1985

.814
.785
767
.756
733
.682
.685
.619
.607
.590
.589
623
.625
.618
.600
.619
.588
.543
.589
.593
.595
.572

1986

.807
772
744
730
.681
679
.619
.606
.580
.582
623
.614
.610
.594
613
591
.558
.585
.584
587
.558

1987

.853
.809
776
726
721
.667
.644
632
.624
.653
.656
.651
.638
.635
.616
.568
.616
.610
.619
.591

1988

.871
.830
.790
.765
724
.695
.696
.686
720
716
707
.689
.696
.656
.S7T
.669
.666
671
.638

1989

.874
.824
798
738
709
711
711
741
737
735
714
715
.685
.605
697
691
.698
.670

1991

.857
.821
762
723
735
.746
.764
761
.756
.730
741
707
.622
715
707
.709
677

1992

.887
.831
.810
.809
.802
.826
.828
.819
791
.808
776
.695
.780
773
776
.738

1993

.854
.803
.815
.815
.839
.842
.835
.815
.822
787
720
794
784
794
754

1994

.823
.810
.804
.827
.833
.813
799
.802
767
.694
770
763
771
745

1995

792
795
.816
.816
797
784
795
751
697
763
757
770
732

1996

.836
.854
.862
.838
.812
.820
179
716
787
781
.790
757

1997

.878
.883
.859
837
.830
.798
.720
799
792
.800
770

1998

.932
.904
.881
.885
.855
.785
.858
.849
.853
.819

1999

.939
.908
919
.884
.810
.887
.876
.878
.840

2000

.904
913
.880
811
.883
877
.878
.845

2001

.908
.874
811
877
.873
.875
.841

2002

912
.844
.916
.905
.903
872

2003

.875
914
.903
.901
.874

2004

.862
.854
.857
.828

2005

.950
942
.909

2006

957
.931

2007

.952




Table 4: Autocorrelation matrix of earnings residuals in differences

1979
1980
1985
1986
1987
1988
1989
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007

1978
-.400
-.009
-.018

.003
.043
.004
.041
-.053
-.021
.018
.021
.012
-.052
.010
.056
-.087
.024
.008
.005
-.036
.073
-.031
-.002

1979

-.277
-.016
-.031
.093
.035
-.036
.060
.015
-.013
-.001
-.013
.032
-.010
-.017
.085
-.051
.001
-.050
.068
-.011
.063
-.022

1980

-.084
.090
-.013
.011
-.008
-.055
-.019
.024
.017
-.034
-.047
.052
-.017
-.059
.051
-.037
.001
.008
.001
-.042
-.010

1985

-.434
-.058
-.055
.028
-.014
.007
.000
-.027
.008
.026
-.047
.013
.008
.009
.027
.041
-.061
-.021
.009
-.042

1986

-.345
-.046
-.054
-.006
.013
-.021
.029
-.020
-.046
.049
.006
.016
-.082
.010
-.040
.057
-.017
.035
-.003

1987

-.299
-.020
-.074
.048
-.013
.038
.000
.006
-.040
-.013
-.014
.044
-.090
-.108
144
.026
-.025
-.026

1988

-.323
-.003
-.072
.003
.001
.036
-.022
.004
.040
-.006
-.028
.046
.001
-.005
-.011
.021
.026

1989

-.039
.000
-.037
.032
.046
-.058
.000
-.004
-.023
.052
-.025
-.015
.004
-.010
-.031
-.036

1992

-.351
-.108
.043
.029
-.007
.009
.014
.041
-.046
-.019
.061
-.047
-.019
.055
-.016

1993

-.385
-.070
-.021
-.005
.015
-.067
.023
-.018
-.002
-.028
.013
.020
-.014
.079

1994

-.519
.026
-.004
-.031
.004
.005
.032
-.043
.062
-.031
.005
.034
-.070

1995

-.440
-.019
.036
-.020
-.042
-.009
.013
-.025
.012
.004
-.023
.022

1996

-.520
-.015
.003
.022
-.062
.031
-.049
.025
-.001
-.002
.015

1997

-.391
-.010
-.003

.051

.024

.052
-.043
-.009
-.031
-.015

1998

-.244
-.047

.044
-.028
-.006

.005
-.013
-.013
-.035

1999

-.420
-.013
.005
.025
-.024
.056
-.015
.035

2000

-.539
-.010
.027
-.025
.014
.013
-.015

2001

-.298
-.010
.014
-.043
-.028
.020

2002

-.247
-.157
.002
-.002
.030

2003

-.705
.012
.039

-.028

2004

-.227
-.069
-.006

2005

-.375
.053

2006

-.254




Table 5: AIC criterion

ARMA(p,q) q=1 q=2 q=3

p=1 -344885 -344899 -344906
(43) (45) (47)

p=2 -345301 -345447 -345733
(47) (50) (53)

p=3 -345839 -346133 -346293
(51) (54) (58)

AIC criterion computed as -2log(L) + 2K, with L the like-
lihood and K the number of parameters. Number of pa-
rameters in brackets.
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Table 6: Estimated parameters

s
a3
U1
V2
Y3

p7l1,772
Pm,na

Pnzms

cov(m, yo)
cov(n1,y-1)
cov(n, y—2)
cov(n2, Yo)
cov(12, y-1)
cov(ng,y—2)
cov(n3, Yo)
cov(13, y-1)
cov(n3,y—2)
cov(yo, Co)
cov(yo, ¢-1)
cov(y—1,(-1)
cov(yo, (-2)
cov(y-1,(-2)

cov(y-2,(-2)

1-1 12 1-3 21 2-2 23 31 3-2 3-3
702 729 711 263 186 220 200 203 194
(.005) (.006) (.007) (.011) (.011)  (.011) (.012) (.011)  (.011)
145 324 143 191 143 161

(.004) (.008)  (.009) (.005) (.009)  (.009)

022 087 187

(.003) (.004)  (.008)

369 391 373 -.091 -.172  -.135 - .164 - 166 - .189
(.005) (.005) (.007) (.011) (.011) (.012) (.012) (.011)  (.011)
020 017 170 - .028 -.046 - .046

(.003) (.003) (.006)  (.008) (.008)  (.008)

- .012 - .080 114

(.004) (.004) (.007)

302 302 301 310  .306 304 306 300 208
(.001) (.003) (.003) (.003) (.003) (.003) (.003) (.003)  (.004)
038 039 039 038  .039 036 .038 037 037
(.005) (.001) (.001) (.001) (.001) (.001) (.001) (.001)  (.001)
255 259 256 263 .260 248 258 247 242
(.005) (.006) (.006) (.004) (.005)  (.005) (.005) (.006)  (.007)
A73 413 454 571 486 610 505 485 365
(.016) (.021)  .021 (.013) (.017)  (.013) (.017) (.020)  (.030)
-.604 - 548 -.586 -.694 -.618  -.729 - .636 - 620 - .509
(.003) (.0200 .019 (.011) (.015) (.012) (.016) (.019)  (.029)
-.946 - .948 - .947 -.945 - .946 - .941 - .946 - 943 - 044
(.023)  (.003)  .003 (.002) (.002) (.003) (.002) (.003)  (.004)
491 506 496 448 479 429 442 455 494
(.000) (.007) (.007) (.004) (.005) (.004) (.004) (.005)  (.008)
381 424 359 387 386 428

(.004) (.005)  (.004) (.004) (.005)  (.008)

264 270 299

(.004) (.006)  (.008)

-227  -.257 -.237 -.156 -.214  -.149  -.186 - 201 - .282
(.019) (.017) 017 (.015) (.016) (.016) (.016) (.017)  (.019)
-127  -.183  -.113 - .153 -.168 - .253

(.016) (.017)  (.017) (.017) (.018)  (.020)

- .169 - 185 - .267

(.018) (.019)  (.022)

358 402 374 232 335 155 219 253 361
(.022) (.0200 021 (.017) (.019)  (.021) (.020) (.022)  (.026)
218 331 119 242 235 352

(.019) (.021)  (.024) (.022) (.025)  (.029)

239 253 351

(.024) (.027)  (.032)

-290 -.333 -.305 -.179 -.270  -.107 -.163 -195 - .291
(.018) (.023)  .023 (.020) (.022) (.023) (.023) (.024)  (.029)
-169 - 272 -.077  -.190 -181 - .287

(.021) (.023)  (.025) (.023) (.027)  (.032)

- .181 194 - 282

(.026) (.029)  (.035)

809 036 -.024 -.823 826  -.931 841 - 795 812
(.023) (8.525) 26.529 (.269) (.059)  (.207) (.061) (.416)  (.096)
779 - 012 408 - .352 - .208 361

(.438) 1.245 (.102) (17.542) (152.666) (31.114)

798 722 - .066 830 234

(.813) (.062)  (.148) (41.955)  (17.858)

- .805 - 719

(3.931) (76.705)

- .382 - .202

(11.249) (44.061)

752

(.094)




Table 7: Yearly standard deviation of earnings

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3

1978 ~ 311 312 312
(.001) (.002) (.002)
1979 254 257 255 222 232 219
(.001) (.001) (.001) (.001) (.001) (.001)
1980 223 223 223 222 227 221 224 224 230
(.005) (.001) (.001) (.001) (.001) (.001) (.002) (.002) (.002)
1981 264 260  .263  .000  .103  .002  .004  .006  .001
(.005) (.005) (.005) (.096) (.040) (.066) (.082) (.076) (.060)
1982 152 150  .150  .194 193 197 193 195  .198
(.005) (.005) (.005) (.002) (.002) (.002) (.002) (.002) (.002)
1983 244 243 247 040 175  .096  .023  .039  .193
(.004) (.005) (.005) (.063) (.017) (.037) (.048) (.049) (.021)
1984 154 149 149 189 184 187  .188 188  .182
(.001) (.004) (.004) (.002) (.001) (.002) (.001) (.001) (.002)
1985  .182 182 182  .181  .183  .183  .181  .183  .183
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)
1986 .187 187 187 189 189 190  .190  .190  .192
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)
1987 181 .18 181 176 176 177 176 177 177
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)
1988 .180  .180  .181  .181  .181  .181  .181  .182  .183
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)
1989 171 172 172 168 170 169 169 170 171
(.008) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)
1990 012 021  .005  .358  .303 375 349 395  .363
(.002) (.007) (.008) (.012) (.008) (.015) (.012) (.016) (.013)
1991 182 184 180  .153 167  .156  .161  .157  .163
(.001) (.002) (.002) (.002) (.001) (.002) (.001) (.002) (.001)
1992 162 162 162 159 155 159 157 160  .161
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)
1993 207 207 207 209 209 209 210 209 211
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)
1994 237 236 237 250 250 251 252 253  .254
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)
1995 193 195 194 177 179 177 77 178 180
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)
1996 177 A77 177 A76 78 177 7T 177 178
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)
1997 167 167 167 162 162 162 162  .162  .164
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)
1998 137 138 138 134 137 135 135 136 .138
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)
1999 152 152 152 155 157 157 156 157  .158
(.001) (.001) (.001) (.000) (.000) (.000) (.000) (.000) (.001)
2000 159 159 159 159 159 159 159 159 .160
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)
2001 158 158 158 159 159 160  .159  .160 .16l
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)
2002 153 153 153 146 146  .146  .146  .147  .149
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)
2003 168 167  .168 178 178 179 179 180 .18l
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)
2004 147 148 148 133 133 134 133 134 135
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)
2005 128 128 128 130 132 130 131 131 .133
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)
2006  .123 124 123 124 124 124 125 125 127
(.001) (.001) (.001) (.000) (.000) (.000) (.000) (.000) (.000)
2007 117 117 117 115 116 116 115 117 118
(.003) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)




Table 8: Short term inequalities and their decomposition

Full sample

1977
1981
2007
Mean

1977
1981
2007

Short term Decomposition
Perm. (%) Trans. (%)
167 .033 .966
.095 .336 .663
151 .886 113
129 .648 351
Age of entry < 20
195 .008 991
.089 225 174
113 872 127
104 574 425

Mean

Age of entry > 20 and < 24

1977
1981
2007

Mean

121
091
187
154

Age of entry > 24

1977
1981
2007
Mean

134
125
276
233

.084
432
900
.682

197
.606
.889
721

915
567
.099
317

.802
393
110
278

Inequality is measured with the variance of logs.

Short term inequality:

cross sectional inequality.
Perm. stands for the share of cross sectional inequal-
ity due to the permanent heterogeneity components.
Trans. stands for the share of cross-section inequal-
ity due to the transitory component.
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Individual Sample Quantiles
effects periods 0.05 0.2 0.35 0.5 0.65 0.8 0.95
(3,15] -2.97 0.483 1.74 2.43 3.04 4.31 8.14
(2.31) (0.603) (0.194) (0.0557) (0.132) (0.488) (1.97)
(15,22] 1.52 2.11 2.32 2.51 2.7 3 3.8
i (0.0708) (0.023) (0.0191)  (0.0221)  (0.0208) (0.031) (0.0522)
(22,26] 2 2.25 2.39 2.52 2.67 2.87 3.46
(0.0226)  (0.0182)  (0.0161)  (0.0159)  (0.0175) (0.021) (0.0345)
(26,28] 2.13 2.35 2.47 2.58 2.7 2.86 3.26
(0.024) (0.0159)  (0.0147)  (0.0136)  (0.0138) (0.0151) (0.0318)
(3,15] -0.435 -0.162 -0.0538 0.0203 0.0937 0.205 0.539
(0.17) (0.0478)  (0.0182)  (0.00945)  (0.013) (0.0412) (0.148)
(15,22] -0.124 -0.032 0.00555 0.033 0.0601 0.0973 0.194
o (0.00983) (0.00439) (0.00321) (0.00313) (0.00322) (0.00415) (0.00951)
(22,26]  -0.0471  -0.00103 0.0203 0.0388 0.0567 0.0834 0.141
(0.00396) (0.00264) (0.00246) (0.00216) (0.00245) (0.00267) (0.00554)
(26,28]  -0.0218 0.00914 0.0254 0.0383 0.0526 0.073 0.114
(0.00333) (0.00221) (0.00214) (0.00207) (0.00216) (0.00252) (0.00415)
(3,15] -6.27 -2.14 -0.706 -0.00853 0.751 2.24 5.71
(2.11) (0.576) (0.147) (0.0858) (0.212) (0.712) (2.47)
(15,22] -1.44 -0.622 -0.324 -0.125 0.0874 0.395 1.29
73 (0.0847) (0.033) (0.0254)  (0.0221)  (0.0287) (0.0315) (0.121)
(22,26] -0.907 -0.443 -0.275 -0.142 -0.024 0.131 0.445
(0.0469) (0.019) (0.0167)  (0.0174)  (0.0171) (0.0171) (0.0344)
(26,28] -0.632 -0.36 -0.242 -0.147 -0.0542 0.0559 0.269
(0.0232)  (0.0165)  (0.0138)  (0.0136)  (0.0147) (0.0163) (0.0267)

Notes: Sample period: Number of observed periods. Standard errors (sampling and parameter uncertainty, 1000 MC

simulations) in brackets.

Table 9: Quantiles of the distribution of individual effects: unconstrained estimates



Sample periods  Var(n) Cov(n,n) Cov(m,ns) Var(n) Cov(n,ns) Var(ns)

(3,15] 11 0.93 -12 0.093 -1.1 14
(15) (1.2) (16) (0.095) (1.3) (17)
(15,22] 0.5 0.057 -0.57 0.01 -0.09 0.83
(0.081) (0.011) (0.11) (0.0016) (0.015) (0.15)
(22,26] 0.14 0.011 -0.099 0.0038 -0.027 0.2
(0.0073)  (0.0011) (0.0091)  (0.00032)  (0.0024) (0.018)
(26,28] 0.076 0.0043 -0.038 0.002 -0.013 0.09
(0.0039)  (0.00058) (0.0041)  (0.00015)  (0.00097) (0.0066)
Complete sample 2.6 0.22 -2.8 0.024 -0.27 3.3
(3.2) (0.25) (3.4) (0.021) (0.28) (3.8)
Random effects 0.093 0.0059 -0.05 0.0015 -0.0093 0.066

(0.0034)  (0.00049)  (0.0038)  (0.00011) (0.00077)  (0.0058)

Notes: The first four lines are obtained using fixed effect estimates. Sample periods = number of observed
periods. Standard errors (sampling and parameter uncertainty, 1000 MC simulations) between brackets.

Table 10: Estimates of the covariance of individual effects

Sample periods  Var(n) Cov(n,n) Cov(m,ns) Var(n) Couv(n,ns) Var(ns)

(3,15] 2.5 0.2 2.7 0.024 -0.25 3.1

(11) (0.89) (12) (0.077) (1) (13)

(15,22] 0.31 0.031 -0.31 0.005 -0.043 0.41
(0.13)  (0.016) (0.16)  (0.0023)  (0.022) (0.22)

(22,26] 0.1 0.0076 -0.065 0.0018 -0.013 0.096
(0.014)  (0.0021) (0.017)  (0.00051)  (0.0038) (0.029)
(26,28] 0.047 0.0021 0.016  0.00029  -0.001 0.0043
(0.0072)  (0.001) (0.0073)  (0.00025)  (0.0017) (0.012)

Complete sample  0.65 0.053 -0.67 0.0069 -0.068 0.78
(2.3) (0.19) (2.6) (0.017) (0.22) (2.8)

Random effects  0.093 0.0059 -0.05 0.0015  -0.0093 0.066

(0.0035)  (0.00053)  (0.0041)  (le-04)  (0.00075)  (0.0058)

Notes: See Table above

Table 11: Estimates of the covariance of individual effects: Bias-corrected
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Restrictions — 15 < 0 N3 <0  mg4+mrme <0
Sample periods

(3,15] 0.065  0.073 0.092
(0.014)  (0.015) (0.013)
(15,22] 0.058  0.087 0.11
(0.0094)  (0.013) (0.014)
(22,26] 0.023  0.037 0.079
(0.0049)  (0.0066) (0.011)
(26,28] 0.0066  0.013 0.033

(0.0026) (0.0049)  (0.0076)

Notes: Sample periods = number of observed periods. 5 per
cent level rejection frequency of single-dimensional tests of re-
strictions. Standard errors (sampling and parameter uncer-
tainty, 1000 MC simulations) between brackets.

Table 12: Frequencies of violations: single-dimensional restriction

Sample periods  P-values <0.10 0.05 0.01

(3,15] 0.18 0.14 0.09
(0.01) (0.0093) (0.0093)

(15,22] 0.19 0.14 0.076
(0.01) (0.009)  (0.0073)

(22,26] 0.13 0.093 0.06
(0.0077) (0.0068) (0.0054)

(26,28] 0.062 0.038 0.018
(0.006) (0.0047) (0.0029)

Complete sample 0.13 0.096 0.058

(0.0045) (0.0038)  (0.003)

Notes: Sample periods = number of observed periods. Fre-
quency of p-values of the test of restrictions satisfying the con-
ditions. Standard errors (sampling and parameter uncertainty,
20 Monte Carlo simulations) between brackets. Statistic dis-
tribution obtained by 150 replications.

Table 13: Frequencies of violations: global restriction
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Quantiles Observed distance Simulated distance

0.175 0 0
0.225 0.0021 0.00180
0.275 0.0141 0.0132
0.325 0.0370 0.0391
0.375 0.0763 0.0761
0.425 0.126 0.125
0.475 0.194 0.194
0.525 0.276 0.282
0.575 0.401 0.395
0.625 0.568 0.531
0.675 0.763 0.714
0.725 1.04 0.945
0.775 1.48 1.21
0.825 2.14 1.57
0.875 3.17 2.10
0.925 2.32 2.93
0.975 12.7 4.74

Notes: Distances use as a metric the inverse covariance matrix
of ns. Simulations are performed by adding to the constrained
estimates a normal noise and by reprojecting on the constrained
set.

Table 14: Distances between unconstrained and constrained estimates for observations and sim-
ulations

Summaries Mean Std error
Min. 0.0567 3.18e-05
1st Qu. 0.123 7.07e-05
Median 0.129 7.92¢-05
Mean 0.14 0.000138
3rd Qu. 0.141 0.000154
Max 1.25 0.00662

Notes: 4292 observations for which the number of periods is over
22.

Table 15: Distribution of the returns to investment (lower bound)
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Figure 1: Mean log earnings by age at entry: 1977-2007
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Figure 2: Cross-sectional variance of earnings: 1977-2007
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Figure 3: Autocorrelations with 1986 and 2007
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Figure 4: Autocorrelations of order 1 and of order 6
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Variance predictions
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Figure 5: Random, fixed effect and biased-corrected fixed effect predictions of earnings variances
using permanent components
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Variance predictions: Random and constrained fixed effects

i
Fixed effects: Periods = 22

-

Random effects

oo 800 800

sBUIUIES JO BoUBLEA

30

25

20

15

10

Periods

Random and simulated fixed effects

Fixed effects: Periods = 22

95% Cl

Random effects

T l T
810 gL'0 wLo

sBululea Jo BoUBLEA

I T
g0 010

30

25

20

15

10

Periods

Constrained estimates and simulated

permanent components):

Figure 7: Earnings variances (

constrained estimates

73



Density

0.04 0.06 0.08 0.10

0.02

Structural parameter estimates: Kappa

————————— Observed Periods = 22

| | |
5 10 15

Kappa
Range: 1%-99%

Figure 8: The density of the terminal capitalized discount rate x

74

20



Observed and counterfactual mean earnings
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Figure 9: Counterfactual: Additional Years of Life Expectancy (K=2), Mean (Top panel) and
Variance (Bottom Panel) Lower bound Impact®





