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APPENDICES

A Proofs of Propositions

A.1 Proof of Proposition 1

The first order condition of the maximization problem for t < T + 1 is

− (1 + ciτ i(t)) + βρiHi(t+ 1)Et

[
∂Wt+1

∂Hi(t+ 1)

]
= 0. (A.1)

The marginal value of human capital is the derivative of the Bellman equation so that by the

envelope theorem:
∂Wt

∂Hi(t)
=

1

Hi(t)
+ βEt

[
∂Wt+1

∂Hi(t+ 1)

]
Hi(t+ 1)

Hi(t)
(A.2)

For t = T + 1, condition (A.2) writes more simply as:

∂WT+1

∂Hi(T + 1)
=

κi
Hi(T + 1)

=⇒ Hi(T + 1)
∂WT+1

∂Hi(T + 1)
= κi,

so that, by backward induction, we obtain:

Hi(T )
∂WT

∂Hi(T )
= 1 + βκi, Hi(T − 1)

∂WT−1

∂Hi(T − 1)
= 1 + β(1 + βκi)

and so on. This yields:

Hi(t+ 1)
∂Wt+1

∂Hi(t+ 1)
=

1− βT−t

1− β + βT−tκi.

Replacing in equation (A.1) yields:

(1 + ciτ i(t)) = βρi

[
1

1− β + βT−t(κi −
1

1− β )

]
= ρi

[
β

1− β + βT+1−t(κi −
1

1− β )

]
,

and equation (7) follows. Furthermore, as the second term in (A.1) is constant, the second order

condition is satisfied if and only if γici > 0.

Furthermore and given that ci > 0, the condition that investments are always positive yields:

ρi

[
β

1− β + βT+1−t(κi −
1

1− β )

]
− 1 ≥ 0. ∀t < T + 1

As κi− 1
1−β < 0 and β < 1, τ i(t) is decreasing in t because of the term β−t and the RHS attains

its minimum at t = T . This yields condition (6) since:

ρi

[
β

1− β + β(κi −
1

1− β )

]
− 1 ≥ 0⇐⇒ ρi ≥

1

βκi
.
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A.2 Proof of Proposition 2

First, condition (8) is consistent since κit = 1 + βκi,t+1 > κi,t+1 ⇔ κi,t+1 <
1

1−β ⇔ κi,t+2 <
1

1−β
and by repetition κi,T+1−1 = κi <

1
1−β .

We proceed by backward induction. By Proposition 1, we know that

τ i(T ) > 0⇐⇒ 1

κi,T+1−1

< βρi ≤
1

κi,T+1

,

and under this latter condition, that equation (7) is satisfied for all t+ 1 ≤ T .

Assume that for some t+ 1 ≤ T :

∀t′ ≥ t+ 2, t′ < T + 1, τ i(t
′) = 0, and τ i(t+ 1) > 0⇐⇒ 1

κi,t+1

< βρi ≤
1

κi,t+2

(A.3)

and under this latter condition, that equation (7) is satisfied for all t′ ≤ t + 1. In a proof of

Proposition 2 by backward induction, we thus shall prove that condition (A.3) is true at period

t.

We analyze separately the condition τ i(t′) = 0,∀t′ ≥ t+ 1 and the condition τ i(t) > 0.

Assume first that τ i(t′) = 0,∀t′ ≥ t + 1 so that the condition τ i(t′) > 0 is violated for any

t′ ≥ t + 1 and therefore by equation (A.3), βρi ≤ 1/κi,t+1. Conversely, if βρi ≤ 1/κi,t+1 then

τ i(t
′) = 0,∀t′ ≥ t + 1 because equation (A.3) is satisfied for t′ ≥ t + 1 Furthermore, conditions

τ i(t
′) = 0 implies simple forms for the Bellman equation (3):

Wt(Hi(t
′)) = δi(t

′) + logHi(t
′) + βEt′Wt′+1(Hi(t

′ + 1)),

and the accumulation equation (1):

logHi(t
′ + 1) = logHi(t

′)− λi(t′).

Using equation (4) where we set κiT+1−1 = κi and the linearity of the previous two equations

lead to the condition derived by induction again:

Wt′(Hi(t
′)) = δ∗(t′) + κi,t′−1 logHi(t

′). (A.4)

for any t′ ≥ t+ 1 and where κit = 1 + βκi,t+1.

Second, assume that τ i(t) > 0. Proposition 1 can be recast in a set-up where the last period

becomes Si = t+ 1 instead of T + 1 since there are no further human capital investments after

this date and since the value function can be written as in equation (A.4) evaluated at t′ = t+1.

We rewrite equation (7) and obtain:

τ i(t) =
1

ci

{
ρi

[
β

1− β + β(κit −
1

1− β )

]
− 1

}
> 0,

which is equivalent to βρi >
1
κit
.

Therefore the equivalence stated in the Proposition is true at period t. Furthermore equation

(7) applies for any t′ ≤ t. The statement under induction is therefore true at any date t ∈
{0, ., T}. By convention we set 1

κi0
= 0 in order to cover all cases since ρi > 0.�
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A.3 Proof of Proposition 5

The two equations (16) and (17) simplify to: ηi2 = ρi
ci

(
ρi

β
1−β − 1

)
,

ηi3 = ρi
ci
βT+1(κi − 1

1−β )
(
ρi

β
1−β − 1

)
.

(A.5)

Taking the ratio of the second and the first equation yields:

ηi3
ηi2

= βT+1(κi −
1

1− β )

we derive the restriction from κi ∈ [0, 1
1−β ] that:

ηi3
ηi2
∈ [− β

T+1

1− β , 0]. (A.6)

Conversely, if this restriction is valid, then κi is given by:

κi =
1

1− β + β−(T+1)ηi3
ηi2
∈ (0,

1

1− β ).

Furthermore, Proposition 1 proved that investments remain positive until period T (inclusively)

if and only if βρiκi > 1. This yields that :

ρi > ρLi =
1

βκi
=

1
1

1−β + βT+1 ηi3
ηi2

> 0,

by the above. The first equation of (A.5):

ηi2 =
ρi
ci

(
ρi

β

1− β − 1

)
=

ρi
ciκi

(
ρiβκi
1− β − κi

)
,

also implies that, given that all parameters are positive that

ηi2 >
ρi
ciκi

(
1

1− β − κi
)
> 0.

Conversely, assume that ηi2 > 0 and ρi > ρLi . By construction, the condition βρiκi > 1 is

satisfied and investments are positive until T. Second, define

ci =
ρi
η2i

(
ρi

β

1− β − 1

)
,

and write
∂ci
∂ρi

=
1

η2i

(
2ρi

β

1− β − 1

)
which is positive since ρi

β
1−β > 1 because βρiκi > 1 and κi ≤ 1

1−β . Both expressions prove that

c(ρi, η2i) =
ρi
η2i

(
ρi

β

1− β − 1

)
is positive and increasing in ρi. Therefore ci ≥ cL = c(ρL, η2i).�
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B Model Specification and Likelihood function

The main difference with standard specifications lies in the introduction of three individual

heterogeneity factors that interact in a specific way with factors depending on time. Equation

(21) writes

u
[1,T ]
i = M (β)[1,T ] ηci + v

[1,T ]
i

where u[1,T ]
i = (ui1, ..., uiT )′, v[1,T ]

i = (vi1, ..., viT )′ , ηci = (ηci1, η
c
i2, η

c
i3) are the centered versions of

the ηs and:

M (β)[1,T ] =

 1 1 1/β
...
...

...
1 T 1/βT

 ,
is a [T, 3] matrix. The system is further completed by some initial conditions, the number of

which depends on the order of the autoregressive process. Denote p this order and write the

initial conditions as:

u
[1−p,0]
i = v

[1−p,0]
i

since unrestricted dependence between v[1,T ]
i , ηci and those initial conditions will be allowed for.

We can rewrite the whole system as:

u
[1−p,T ]
i = M (β)[1−p,T ] ηci + v

[1−p,T ]
i

in which the matrix M (β)[1−p,T ] is completed by p rows equal to zero, M (β)[1−p,0] = 0.

We now go further and specify the correlation structure. A comment is in order. Usually,

the autoregressive structure directly applies to earnings residuals uit and in the absence of

covariates, this is equivalent to specifying it through the residual part vit because there is a

single individual effect. This equivalence still holds when another heterogeneity factor interacted

with a linear trend is present. Nevertheless, our specification includes a third factor interacted

with a geometric term and this breaks the equivalence. To circumvent this problem, we posit

that vit is a (time heteroskedastic) ARMA process whose innovations are independent of the

individual heterogeneity terms, ηci . As a consequence, our variable of interest, uit, is the sum of

two processes, the first one being related to fixed individual heterogeneity and the second one

to the pure dynamic process. These processes are supposed to be independent between them

although they are both correlated with initial conditions, u[1−p,0]
i .

We are now going to derive the covariance matrix of u[1−p,T ]
i as a function of the parameters of

these processes in two steps . We first study the ARMA process and then include the individual

heterogeneity factors.

B.1 Time heteroskedastic ARMA specification

Following Alvarez and Arellano (2004) or Guvenen (2009), we specify

vit = α1vi(t−1) + ...+ αpvi(t−p) + σtwit
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where wit is MA(q):

wit = ζ it − ψ1ζ it−1 − ...− ψqζ it−q.

Let α = (α1, ., αp) and MT (α) a matrix of size [T, T + p] where p = dim(α):

MT (α) =


−αp ... −α1 1 0 ... 0

0 −αp ... −α1 1
. . .

...
...

. . . . . .
...

. . . . . . 0
0 ... 0 −αp ... −α1 1

 .

As v[1−p,T ]
i =

(
vi(1−p), ..., viT

)
, we have:( (

Ip 0
)

MT (α)

)
v

[1−p,T ]
i =

(
v

[1−p,0]
i

σtw
[1,T ]
i

)

Since wit is MA (q), we have

w
[1,T ]
i = MT (ψ).ζ

[1−q,T ]
i

where ζ [1−q,T ]
i = (ζ i1−q, ..., ζ iT ).

Denote Λ a diagonal matrix whose diagonal is (σ1, ., σT ) to get the following description of

the stochastic process as a function of initial conditions and idiosyncratic errors:(
Ip 0
MT (α)

)
.v

[1−p,T ]
i =

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)(
v

[1−p,0]
i

ζ
[1−q,T ]
i

)
. (B.7)

To compute the covariance of v[1−p,T ]
i , we derive the covariance matrix of

(
v

[1−p,0]
i ζ

[1−q,T ]
i

)
.

Since ζ [1−q,T ]
i are i.i.d and are of variance 1, the South-East corner of the matrix is the identity

matrix of size (1 + q + T ). The North West corner is assumed to be an unrestricted covariance

matrix V y[1−p,0]
i = Γ00. Assuming as usual that E(yiτζ it) = 0 for any τ < t, we have that

E(v
[1−p,0]
i .(ζ

[1,T ]
i )′) = 0. Only E(y

[1−p,0]
i .(ζ

[1−q,0]
i )′) remains to be defined:

E(v
[1−p,0]
i .(ζ

[1−q,0]
i )′) = Ω = [ωrs]

where r ∈ [1− p, 0] and s ∈ [1− q, 0] and where:

r < s : ωrs = 0
r ≥ s : ωrs is not constrained

because the innovation ζsi is drawn after r and is supposed to be not correlated with y
r
i .

Hence the covariance matrix of zi =

(
v

[1−p,0]
i

ζ
[1−q,T ]
i

)
writes :

Ωz = V

(
v

[1−p,0]
i

ζ
[1−q,T ]
i

)
= V

 v
[1−p,0]
i

ζ
[1−q,0]
i

ζ
[1,T ]
i

 =

 Γ00 Ω 0
Ω′ Iq 0
0 0 IT

 .
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B.2 Individual heterogeneity

The covariance matrix of the individual heterogeneity factors is denoted Ση. as said above, we

assume that the fixed heterogeneity terms are independent from the whole innovation process

ζ
[1−q,T ]
i . As for the covariance structure between initial conditions and those factors, we assume

that:

E
(
v

[1−p,0]
i (ηci)

′
)

= Γ0η

Consider the covariance matrix of initial conditions Σ :

Σ = V

 v
[1−p,0]
i

ηci
ζ

[1−q,0]
i

 =

 Γ00 Γ0η Ω
Γ′0η Ση 0
Ω 0 Iq

 .

and define,

RT (α) =

( (
Ip 0

)
MT (α)

)−1

ST,p(ψ,Λ) =

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)
Write the covariance matrix of vector y[1−p,T ]

i :

Ωy = V
(
u

[1−p,T ]
i

)
= V

(
v

[1−p,T ]
i +M (β)[1−p,T ] ηci

)
= V

[M (β)[1−p,T ] , RT (α).ST,p(ψ,Λ)
] ηci

v
[1−p,0]
i

ζ
[1−q,T ]
i



Since v[1−p,T ]
i = RT (α).ST,p(ψ,Λ)

(
v

[1−p,0]
i

ζ
[1−q,T ]
i

)
, the matrix

V
(
v

[1−p,T ]
i

)
= RT (α).ST,p(ψ,Λ).Ωz.ST,p(ψ,Λ)′RT (α)′

and

E
(
v

[1−p,T ]
i η′i

)
M (β)[1−p,T ]′ = RT (α).ST,p(ψ,Λ)E

(
v

[1−p,0]
i (ηci)

′

ζ
[1−q,T ]
i (ηci)

′

)
M (β)[1−p,T ]′

= RT (α).ST,p(ψ,Λ)

(
Γ0η

0T+q,3

)
M (β)[1−p,T ]′

= RT (α).

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)(
Γ0η

0T+q,3

)(
03,p,M (β)[1,T ]′

)
= RT (α).

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)(
0p,p Γ0ηM (β)[1,T ]′

0T+q,p 0T+q,T

)
= RT (α).

(
0p,p Γ0ηM (β)[1,T ]′

0T,p 0T,T

)
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Hence,

Ωy = RT (α).ST,p(ψ,Λ).Ωz.ST,p(ψ,Λ)′RT (α)′ +M (β)[1−p,T ] ΣηM (β)[1−p,T ]′

+RT (α).

(
0p,p Γ0ηM (β)[1,T ]′

0T,p 0T,T

)
+

(
0p,p 0p,T

M (β)[1,T ] Γ′0η 0T,T

)
RT (α)′

The two first terms correspond to variances of the dynamic process and the individual heterogen-

eity factors, the other terms correspond to the correlation between the two processes induced by

initial conditions. Note that the parameters of the MA process does not appear in the correla-

tion between the two processes since innovations are supposed to be independent with individual

heterogeneity factors. Initial conditions are given by ζ [1−q,0]
i , ηc and v[1−p,0]

i .

The Choleski decomposition of matrix Σ can be parametrized expressing the following matrix

into a polar coordinate basis.

1 0 ... ... 0

0
. . .

. . .
. . .

.

.

.

.

.

. 0 1 0
. . .

... 0 1 0 0
. . .

ω12η 1 0

0 ω13η ω23η 1 0

.

.

. θ
(1)
1−q,1−p θη1,1−p θη2,1−p θη3,1−p 1

0

.

.

.
.
.
.

.

.

. θ2−p,2−p
. . . 1

θ
(1)
0,0 θη1,0 θη21,0 θη3,0 ...

. . . θ0,0 1



where θ(1)
1−q,1−p = 0 if p > q and, more generally, θ(1)

l,m = 0 if l > m.

C Fixed Effects, Constrained Effects and Counterfactu-
als

C.1 Estimates of individual factors given observed wages

The main equation is:

u
[1−p,T ]
i = M(β)[1−p,T ]ηci + v

[1−p,T ]
i ,

where ηci and v
[1−p,T ]
i are centered by construction and where a row of M(β) is defined as

M(β)[t] = (1, t, 1/βt) as in Appendix B.

Later on, we shall reintroduce the estimated averages, ηg, of the individual effects that we

estimate by OLS using the sub-groups defined by age of entry and skill level (21 groups). Define

the average in each group as ȳ[1−p,T ]
g and define:

η̄g = (M(β)[1−p,T ]′M(β)[1−p,T ])−1M(β)[1−p,T ]′ȳ[1−p,T ]
g .

We now present the fixed effect estimation of ηci . We consider first the case with no missing

values and extend it to the case with missing values. We finally analyze how to deal in the

simulations with constraints on ηi.
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C.2 Estimating individual effects

Assume first that there are no missing values. To deal with the correlation between ηci and vi,

we can always write:

v
[1−p,T ]
i = Cηi + w

[1−p,T ]
i ,

where E((ηci)
′w

[1−p,T ]
i ) = 0 so that we get:

C = E(v
[1−p,T ]
i (ηci)

′)(E(ηci(η
c
i)
′))−1,

and:

Ωw = E(v
[1−p,T ]
i v

[1−p,T ]′
i )− E(v

[1−p,T ]
i (ηci)

′)(E(ηci(η
c
i)
′))−1E(ηciv

[1−p,T ]′
i ).

This yields the estimating equation for ηci :

u
[1−p,T ]
i = Dηci + w

[1−p,T ]
i where D = M(β)[1−p,T ] + C,

that might be estimated by GLS methods.

It is nevertheless useful to write likelihood functions that will help later to define constrained

estimates. Define the conditional (pseudo) likelihood function as:

L(u
[1−p,T ]
i | ηci) =

1

(2π)T/2 det Ω
1/2
v

exp

(
−1

2
(u

[1−p,T ]
i −Dηci)′Ω−1

w (u
[1−p,T ]
i −Dηci)

)
,

in which Ωw = V (w
[1−p,T ]
i ).

We are seeking the conditional distribution of ηci conditional on the observed u
[1−p,T ]
i which

can be expressed by Bayes law, using a prior for ηci , L0(ηci) as:

L(ηci | u
[1−p,T ]
i ) =

L(u
[1−p,T ]
i | ηci)L0(ηci)∫

L(u
[1−p,T ]
i | ηci)L0(ηci)dη

c
i

.

Consequently, the distribution function L(ηci | u
[1−p,T ]
i ) can be written as:

H(u
[1−p,T ]
i ). exp

(
−1

2
(ηci −Bu

[1−p,T ]
i )′Ω−1

η (ηci −Bu
[1−p,T ]
i )

)
L0(ηci)

where the constant of integration is derived by setting to one the integral over ηci . In the case

of a diffuse prior i.e. L0(ηci) = 1, the constant of integration is no longer dependent on u[1−p,T ]
i

and is equal to the usual reciprocal of (2π)3/2 det Ω
1/2
η . When there are constraints on ηci , these

constraints can be included in the prior (see below).

As all terms in ηci and u
[1−p,T ]
i are quadratic, we can derive the unknown matrices B and Ωη

by solving:

(u
[1−p,T ]
i −Dηci)′Ω−1

w (u
[1−p,T ]
i −Dηci) = (ηci −Bu

[1−p,T ]
i )′Ω−1

η (ηci −Bu
[1−p,T ]
i ) + u

[1−p,T ]′
i Au

[1−p,T ]
i .
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By identifying quadratic terms in (ηci , η
c
i), (u

[1−p,T ]
i , ηci) and (u

[1−p,T ]
i , u

[1−p,T ]
i ), we obtain three

equations: 
D′Ω−1

w D = Ω−1
η ,

−D′Ω−1
w = −Ω−1

η B,
Ω−1
w = B′Ω−1

η B + A,

so that, as D′Ω−1
w D is invertible:

Ωη = (D′Ω−1
w D)−1,

B = (D′Ω−1
w D)−1D′Ω−1

w ,
A = Ω−1

w − Ω−1
w D(D′Ω−1

w D)−1D′Ω−1
w .

If those matrices are known, the (unfeasible) estimator for the individual fixed effects, by rein-

clusion of the estimated averages, are:

η̃ci = Bu
[1−p,T ]
i = B(Dηci + w

[1−p,T ]
i ) = ηci +Bw

[1−p,T ]
i .

They are such that:

V (η̃ci) = EV (η̃ci | ηci) + V E(η̃ci | ηci)
=⇒ V (η̃ci) = BΩwB

′ + V ηci = Ωη + V ηci .

The term Ωη goes to zero at least at the rate 1/T since matrix D is determined by different

factors. Some are going to zero faster than T but they are dominated by the simple factors.

The feasible estimator is now given by:

η̂ci = B̂u
[1−p,T ]
i ,

and by reinclusion of the estimated averages for each group, η̄g3i = η̄g, we have:

η̂i = η̄g + η̂ci = η̄g + B̂u
[1−p,T ]
i ,

We now analyse the case with missing values. Suppose that u[1−p,T ]
i is not observable, only

Siu
[1−p,T ]
i is where Si is the matrix of dimension (Ti, T + p + 1) selecting non missing values

and where Ti is the number of such non missing values. Consequently, the distribution function

L(ηci | Siu
[1−p,T ]
i ) becomes:

Hi(Siu
[1−p,T ]
i ). exp

(
−1

2
(ηci −BiSiu

[1−p,T ]
i )′Ω−1

ηi (ηci −BiSiu
[1−p,T ]
i )

)
L0(ηci),

where by simple analogy to the results of the previous section:{
Ωηi = (D′S ′i(SiΩwS

′
i)
−1SiD)−1,

Bi = (D′S ′i(SiΩwS
′
i)
−1SiD)−1D′S ′i(SiΩwS

′
i)
−1.
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C.3 Constrained estimator

We reconsider the uncentered version of the individual effects ηi in this section since the con-

straints apply more naturally to those. Nevertheless, we freely borrow the likelihood expressions

derived in the previous section in which we considered the centered version ηci .

Using that the likelihood function L(ηi | y
[1−p,T ]
i ) is proportional to:

exp

(
−1

2
(ηi − η̂i)′Ω−1

η (ηi − η̂i)
)
L0(ηi)

where η̂i is the unconstrained estimator, we solve the following program to compute the con-

strained estimator of ηi
min
ηi

(ηi − η̂i)′Ω−1
η (ηi − η̂i)

under the constraints:

ηi2 > 0, ηi3 < 0, ηi3 > −πTηi2.

Denote µ1, µ2 and µ3 the Lagrange multipliers associated to each constraint and write the Lag-

rangian as:

L(ηi) = (ηi − η̂i)′Ω−1
η (ηi − η̂i)− µ1ηi2 + µ2ηi3 − µ3(ηi3 + πTηi2).

Taking derivatives yields:

2Ω−1
η (η̃i − η̂i)−

 0
µ1 + πTµ3

µ3 − µ2

 = 0.

We immediately have that:

1. If µ2 > 0, µ1 = 0 then η̃i3 = 0 and η̃i2 > 0, and this implies that πT η̃i2+ η̃i3 > 0 so that

µ3 = 0. Therefore: η̃i1 − η̂i1
η̃i2 − η̂i2
−η̂i3

+
Ωη

2

 0
0
µ2

 = 0 =⇒ µ2e
′
3

Ωη

2
e3 = η̂i3,

where e3 = (0, 0, 1)′. This is compatible if µ2 = η̂i3

e′
Ωη
2
e
> 0 and therefore if η̂i3 > 0 since Ωη

is definite positive. Denoting e2 = (0, 1, 0)′, we also have:

η̃i2 − η̂i2 = −µ2.e
′
2

Ωη

2
e3.

This satisfies the condition µ1 = 0 iff η̃i2 > 0.

2. If µ3 > 0, µ1 = 0 then η̃i3 = −πT η̃i2 and η̃i2 > 0, and this implies that η̃i3 < 0 so that

µ2 = 0. We have:

2Ω−1
η (η̃i − η̂i)−

 0
πT
1

µ3 = 0 =⇒ (η̃i − η̂i) = µ3

Ωη

2
vπT
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denoting vπ = (0, πT , 1)′. Given that v′πη̃i = η̃i3 + πT η̃i2 = 0, this implies that :

µ3 = − v′πη̂i

v′π
Ωη
2
vπ

> 0,

if v′πη̂i = η̂i3 + πT η̂i2 < 0 This yields the constrained estimators, η̃i2 and η̃i3:

(η̃i − η̂i) = µ3

Ωη

2
v′π

which satisfy the constraint µ1 = 0 iff η̃i2 > 0.

3. If µ1 > 0 then η̃i2 = 0 and thus the constraints πT η̃i2+ η̃i3 ≥ 0 and η̃i3 ≤ 0 imply that

η̃i3 = 0, that µ2µ3 = 0 and that one of them is positive.

Summarizing:

• If η̂i3 < 0, η̂i2 > 0, and η̂i3+πT η̂i2 > 0, constrained estimates, η̃i, are equal to unconstrained

estimates, η̂i.

• If η̂i3 > 0, η̂i3 + πT η̂i2 > 0 case 1 applies if η̃i2 > 0.

• If η̂i3 + πT η̂i2 < 0, η̂i3 < 0 case 2 applies if η̃i2 > 0.

• In all other cases, η̃i2 = η̃i3 = 0. In this case:

η̃i − η̂i =

 η̃i1 − η̂i1
−η̂i2
−η̂i3

 =
Ωη

2

(
e2 e3

)( v1

v2

)

where vj are unknown. They are obtained using:

(
e′2
e′3

)
(η̃i − η̂i) =

(
e′2
e′3

) 0
−η̂i2
−η̂i3

 =

(
e′2
e′3

)
Ωη

2

(
e2 e3

)( v1

v2

)

Denoting I>c =

(
e′2
e′3

)
so that:

(
v1

v2

)
=

[
I ′c

Ωη

2
Ic

]−1

I ′c

 0
−η̂i2
−η̂i3


so that we get the vector:

η̃i − η̂i = ΩηIc [I ′cΩηIc]
−1
I ′c

 0
−η̂i2
−η̂i3

 .
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C.4 Imposing constraints on simulations

Assume that we want to impose the constraints that ηi2 > 0 and that ηi3 < 0 and ηi3 > −πTηi2.
Drawing in a multivariate normal distribution with multiple constraints is not as easy as with

a single constraint. We use effi cient Gibbs sampling as proposed by Rodriguez-Yam, Davis and

Scharf (2004).

First, denote Cη the Choleski decomposition of the permutation of matrix Ωη (or Ωηi in the

case of missing values) such that:

CηC
′
η = Ωη.

Furthermore, it is convenient to slightly change the order of ηs without loss of generality. As-

suming that the generic element of the lower diagonal matrix Cη is cij, we can write, assuming

that the expectation of ηi is (α1, α2, α3):
η2 = α2 + c11ξ1,
η3 = α3 + c21ξ1 + c22ξ2,
η1 = α1 + c31ξ1 + c32ξ2 + c33ξ3.

We start from the remark that it is easy to draw in univariate truncated normal distributions

conditional to the other variates, for instance, f(ηu1 | ηu2 , ηu3 , ηu2 ≤ 0, ηu3 ∈ [−πTηu2 , 0]). Second,

drawing repetitively in the conditional univariate distributions to construct a Markov chain yields

drawings that are distributed according to the joint distribution we are looking for. Furthermore,

Rodriguez-Yam, Davis and Scharf (2004) recommends drawing the independent errors ξ1, ξ2 and

ξ3 instead of the original variables. For this, we have to rewrite the constraints as (using c11, c22

and c33 are positive, see Section C.2):

ξ1 > − α2

c11
,

ξ2 + c21

c22
ξ1 < − α3

c22
,

ξ2 + c21+πT c11

c22
ξ1 > −α3+πTα2

c22
.

(C.8)

The algorithm proceeds by considering initial values (η0
2, η

0
3) whose construction we detail below.

Then from (ηk2, η
k
3), we construct (ηk+1

2 , ηk+1
3 ) using:

1. Draw ξk+1
2 in a truncated normal variable, truncated by the bounds [−α3+πTα2

c22
− c21+πT c11

c22
ξk1,

− α3

c22
− c21

c22
ξk1] (a non empty interval because of the constraint ξ1 > − α2

c11
).

2. Draw ξk+1
1 in a truncated normal variable, truncated by the bounds [L1, L2]. There are five

cases:

• If c21 > 0: L1 = max(− α2

c11
,− c22

c21+πT c11
(α3+πTα2

c22
+ ξk+1

2 ));U1 = − c22

c21
( α3

c22
+ ξk+1

2 )

• If c21 = 0 : L1 = max(− α2

c11
,− c22

c21+πT c11
(α3+πTα2

c22
+ ξk+1

2 )), U1 = +∞

• If c21 ∈ (−πT c11, 0) : L1 = max(− α2

c11
,− c22

c21
( α3

c22
+ ξk+1

2 ),− c22

c21+πT c11
(α3+πTα2

c22
+ ξk+1

2 )),

U1 = +∞
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• If c21 = −πT c11 : L1 = max(− α2

c11
,− c22

c21
( α3

c22
+ ξk+1

2 )), U1 = +∞

• If c21 < −πT c11 : L1 = max(− α2

c11
,− c22

c21
( α3

c22
+ξk+1

2 )), U1 = − c22

c21+πT c11
(α3+πTα2

c22
+ξk+1

2 )).

Then construct .

When the algorithm is said to have converged to (ξ∞1 , ξ
∞
2 ) then finish by drawing ξ3 in a N(0,1)

variate since no constraints are binding on η1. Construct the final values η
k+1
2 = α2 + c11ξ

∞
1 ,

ηk+1
3 = α3 + c21ξ

∞
1 + c22ξ

∞
2 , η

k+1
1 = α1 + c31ξ

∞
1 + c32ξ

∞
2 + c33ξ3.

The initial conditions are constructed by neglecting the multivariate aspects of constraints:

• Draw ξ0
1 in a truncated normal distribution, truncated by the bound ξ

0
1 > − α2

c11
. Construct

η0
2 = α2 + c11ξ

0
1.

• Draw ξ0
2 in a truncated normal distribution, truncated by the bound [−α3+πTα2

c22
− c21+πT c11

c22
ξ0

1,− α3

c22
−

c21

c22
ξ0

1]. Construct η0
3 = α3 + c21ξ

0
1 + c22ξ

0
2.

• Draw ξ0
3 in a normal distribution and construct η

0
1 = α1 + c31ξ

0
1 + c32ξ

0
2 + c33ξ

0
3.

These draws satisfy the constraints but they are not truncated normally distributed.
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Table 1: Sample size

Age of Entry
Below 20 Between 20 and 23 Above 23 All

1977 4460 2112 874 7446
1978 4460 2112 874 7446
1979 3855 1923 787 6565
1980 3748 1930 785 6463
1982 4460 2112 874 7446
1984 4460 2112 874 7446
1985 3792 1808 724 6324
1986 3683 1800 726 6209
1987 3569 1741 678 5988
1988 3402 1654 637 5693
1989 3486 1657 644 5787
1991 3319 1598 613 5530
1992 3299 1581 603 5483
1993 3330 1620 627 5577
1994 2508 1316 503 4327
1995 3256 1566 578 5400
1996 3236 1557 579 5372
1997 3202 1529 556 5287
1998 3208 1521 543 5272
1999 3218 1503 547 5268
2000 3180 1506 536 5222
2001 3117 1480 517 5114
2002 3018 1463 511 4992
2003 2800 1323 467 4590
2004 2844 1387 463 4694
2005 2851 1399 467 4717
2006 2896 1382 442 4720
2007 2864 1377 429 4670
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Table 2: Missing Values
1977 1979 1980 1985 1986 1987 1988 1989 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

1977 1
1978 1
1979 .882 .882
1980 .868 .786 .868
1982 1 .882 .868
1984 1 .882 .868
1985 .849 .751 .743 .849
1986 .834 .739 .731 .75 .834
1987 .804 .714 .704 .718 .737 .804
1988 .765 .675 .668 .694 .690 .691 .765
1989 .777 .689 .677 .701 .694 .691 .689 .777
1991 .743 .658 .65 .67 .663 .655 .649 .678 .743
1992 .736 .653 .647 .663 .655 .649 .642 .662 .679 .736
1993 .749 .665 .653 .657 .666 .654 .631 .652 .659 .673 .749
1994 .581 .515 .506 .508 .518 .511 .492 .506 .513 .517 .544 .581
1995 .725 .643 .634 .636 .644 .632 .609 .628 .63 .635 .661 .535 .725
1996 .721 .641 .631 .631 .638 .627 .603 .622 .622 .627 .652 .521 .671 .721
1997 .71 .629 .621 .622 .63 .619 .596 .613 .612 .618 .642 .511 .649 .661 .71
1998 .708 .628 .619 .618 .625 .615 .591 .61 .609 .614 .636 .506 .642 .649 .667 .708
1999 .708 .628 .617 .617 .623 .614 .59 .61 .605 .609 .63 .502 .635 .639 .652 .665 .708
2000 .701 .622 .611 .612 .62 .61 .583 .6 .595 .601 .623 .497 .625 .629 .637 .649 .662 .701
2001 .687 .61 .598 .599 .605 .595 .573 .589 .584 .587 .605 .479 .608 .612 .62 .629 .639 .65 .687
2002 .67 .595 .586 .588 .591 .581 .559 .575 .568 .573 .592 .471 .59 .594 .597 .606 .613 .617 .621 .67
2003 .616 .547 .539 .544 .542 .532 .516 .533 .526 .53 .539 .425 .538 .541 .546 .553 .561 .564 .563 .577 .616
2004 .63 .559 .551 .552 .556 .545 .523 .541 .534 .539 .555 .441 .555 .557 .559 .567 .573 .574 .574 .584 .565 .63
2005 .634 .560 .552 .554 .558 .548 .526 .544 .536 .541 .558 .446 .557 .558 .559 .566 .570 .574 .571 .574 .543 .574 .634
2006 .634 .561 .553 .556 .557 .549 .525 .544 .535 .541 .556 .444 .553 .556 .557 .563 .568 .570 .567 .574 .538 .566 .586 .634
2007 .627 .557 .547 .55 .552 .542 .521 .538 .531 .535 .548 .436 .547 .549 .551 .556 .560 .562 .557 .561 .525 .552 .570 .591
Notes: Frequencies of observations present in the sample at years described by row and column, relative to the full sample



Table 3: Autocorrelation matrix of earnings residuals
1978 1979 1980 1982 1984 1985 1986 1987 1988 1989 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

1977 .438
1978 .280 .424
1979 .241 .367 .563
1980 .211 .343 .478 .539
1982 .223 .326 .439 .499 .733
1984 .221 .306 .401 .411 .665 .814
1985 .216 .301 .368 .430 .643 .785 .807
1986 .161 .266 .386 .441 .634 .767 .772 .853
1987 .156 .260 .401 .459 .634 .756 .744 .809 .871
1988 .134 .254 .368 .421 .617 .733 .730 .776 .830 .874
1989 .135 .239 .321 .383 .557 .682 .681 .726 .790 .824 .857
1991 .145 .221 .334 .370 .577 .685 .679 .721 .765 .798 .821 .887
1992 .134 .193 .306 .333 .515 .619 .619 .667 .724 .738 .762 .831 .854
1993 .111 .179 .274 .314 .482 .607 .606 .644 .695 .709 .723 .810 .803 .823
1994 .102 .183 .280 .330 .480 .590 .580 .632 .696 .711 .735 .809 .815 .810 .792
1995 .109 .197 .289 .319 .491 .589 .582 .624 .686 .711 .746 .802 .815 .804 .795 .836
1996 .128 .192 .305 .315 .497 .623 .623 .653 .720 .741 .764 .826 .839 .827 .816 .854 .878
1997 .129 .198 .308 .336 .507 .625 .614 .656 .716 .737 .761 .828 .842 .833 .816 .862 .883 .932
1998 .108 .194 .294 .316 .496 .618 .610 .651 .707 .735 .756 .819 .835 .813 .797 .838 .859 .904 .939
1999 .117 .160 .294 .291 .478 .600 .594 .638 .689 .714 .730 .791 .815 .799 .784 .812 .837 .881 .908 .904
2000 .124 .179 .293 .310 .501 .619 .613 .635 .696 .715 .741 .808 .822 .802 .795 .820 .830 .885 .919 .913 .908
2001 .122 .180 .294 .296 .463 .588 .591 .616 .656 .685 .707 .776 .787 .767 .751 .779 .798 .855 .884 .880 .874 .912
2002 .122 .179 .257 .261 .415 .543 .558 .568 .577 .605 .622 .695 .720 .694 .697 .716 .720 .785 .810 .811 .811 .844 .875
2003 .128 .168 .291 .299 .469 .589 .585 .616 .669 .697 .715 .780 .794 .770 .763 .787 .799 .858 .887 .883 .877 .916 .914 .862
2004 .108 .170 .289 .296 .462 .593 .584 .610 .666 .691 .707 .773 .784 .763 .757 .781 .792 .849 .876 .877 .873 .905 .903 .854 .950
2005 .103 .155 .291 .287 .470 .595 .587 .619 .671 .698 .709 .776 .794 .771 .770 .790 .800 .853 .878 .878 .875 .903 .901 .857 .942 .957
2006 .106 .157 .286 .279 .449 .572 .558 .591 .638 .670 .677 .738 .754 .745 .732 .757 .770 .819 .840 .845 .841 .872 .874 .828 .909 .931 .952



Table 4: Autocorrelation matrix of earnings residuals in differences
1978 1979 1980 1985 1986 1987 1988 1989 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

1979 -.400
1980 -.009 -.277
1985 -.018 -.016 -.084
1986 .003 -.031 .090 -.434
1987 .043 .093 -.013 -.058 -.345
1988 .004 .035 .011 -.055 -.046 -.299
1989 .041 -.036 -.008 .028 -.054 -.020 -.323
1992 -.053 .060 -.055 -.014 -.006 -.074 -.003 -.039
1993 -.021 .015 -.019 .007 .013 .048 -.072 .000 -.351
1994 .018 -.013 .024 .000 -.021 -.013 .003 -.037 -.108 -.385
1995 .021 -.001 .017 -.027 .029 .038 .001 .032 .043 -.070 -.519
1996 .012 -.013 -.034 .008 -.020 .000 .036 .046 .029 -.021 .026 -.440
1997 -.052 .032 -.047 .026 -.046 .006 -.022 -.058 -.007 -.005 -.004 -.019 -.520
1998 .010 -.010 .052 -.047 .049 -.040 .004 .000 .009 .015 -.031 .036 -.015 -.391
1999 .056 -.017 -.017 .013 .006 -.013 .040 -.004 .014 -.067 .004 -.020 .003 -.010 -.244
2000 -.087 .085 -.059 .008 .016 -.014 -.006 -.023 .041 .023 .005 -.042 .022 -.003 -.047 -.420
2001 .024 -.051 .051 .009 -.082 .044 -.028 .052 -.046 -.018 .032 -.009 -.062 .051 .044 -.013 -.539
2002 .008 .001 -.037 .027 .010 -.090 .046 -.025 -.019 -.002 -.043 .013 .031 .024 -.028 .005 -.010 -.298
2003 .005 -.050 .001 .041 -.040 -.108 .001 -.015 .061 -.028 .062 -.025 -.049 .052 -.006 .025 .027 -.010 -.247
2004 -.036 .068 .008 -.061 .057 .144 -.005 .004 -.047 .013 -.031 .012 .025 -.043 .005 -.024 -.025 .014 -.157 -.705
2005 .073 -.011 .001 -.021 -.017 .026 -.011 -.010 -.019 .020 .005 .004 -.001 -.009 -.013 .056 .014 -.043 .002 .012 -.227
2006 -.031 .063 -.042 .009 .035 -.025 .021 -.031 .055 -.014 .034 -.023 -.002 -.031 -.013 -.015 .013 -.028 -.002 .039 -.069 -.375
2007 -.002 -.022 -.010 -.042 -.003 -.026 .026 -.036 -.016 .079 -.070 .022 .015 -.015 -.035 .035 -.015 .020 .030 -.028 -.006 .053 -.254



Table 5: AIC criterion

ARMA(p,q) q=1 q=2 q=3
p=1 -344885 -344899 -344906

(43) (45) (47)

p=2 -345301 -345447 -345733
(47) (50) (53)

p=3 -345839 -346133 -346293
(51) (54) (58)

AIC criterion computed as -2log(L)+2K, with L the like-
lihood and K the number of parameters. Number of pa-
rameters in brackets.

61



Table 6: Estimated parameters

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3
α1 .702 .729 .711 .263 .186 .220 .200 .203 .194

( .005) ( .006) ( .007) ( .011) ( .011) ( .011) (.012) ( .011) ( .011)
α2 .145 .324 .143 .191 .143 .161

( .004) ( .008) ( .009) ( .005) ( .009) (.009)
α3 .022 .087 .187

( .003) ( .004) ( .008)
ψ1 .369 .391 .373 - .091 - .172 - .135 - .164 - .166 - .189

( .005) ( .005) ( .007) ( .011) ( .011) ( .012) (.012) ( .011) ( .011)
ψ2 .020 .017 .170 - .028 - .046 - .046

( .003) ( .003) ( .006) ( .008) ( .008) (.008)
ψ3 - .012 - .080 .114

( .004) ( .004) ( .007)
ση1 .302 .302 .301 .310 .306 .304 .306 .300 .298

( .001) ( .003) ( .003) ( .003) ( .003) ( .003) (.003) ( .003) ( .004)
ση2 .038 .039 .039 .038 .039 .036 .038 .037 .037

( .005) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
ση3 .255 .259 .256 .263 .260 .248 .258 .247 .242

( .005) ( .006) ( .006) ( .004) ( .005) ( .005) (.005) ( .006) ( .007)
ρη1,η2 .473 .413 .454 .571 .486 .610 .505 .485 .365

( .016) ( .021) .021 ( .013) ( .017) ( .013) ( .017) ( .020) ( .030)
ρη1,η3 - .604 - .548 - .586 - .694 - .618 - .729 - .636 - .620 - .509

( .003) ( .020) .019 ( .011) ( .015) ( .012) ( .016) ( .019) ( .029)
ρη2,η3 - .946 - .948 - .947 - .945 - .946 - .941 - .946 - .943 - .944

( .023) ( .003) .003 ( .002) ( .002) ( .003) ( .002) ( .003) ( .004)
σy0 .491 .506 .496 .448 .479 .429 .442 .455 .494

( .000) ( .007) ( .007) ( .004) ( .005) ( .004) (.004) ( .005) ( .008)
σy−1

.381 .424 .359 .387 .386 .428
( .004) ( .005) ( .004) ( .004) ( .005) (.008)

σy−2
.264 .270 .299

( .004) ( .006) ( .008)
cov(η1, y0) - .227 - .257 - .237 - .156 - .214 - .149 -.186 - .201 - .282

( .019) ( .017) .017 ( .015) ( .016) ( .016) ( .016) ( .017) ( .019)
cov(η1, y−1) - .127 - .183 - .113 - .153 - .168 - .253

( .016) ( .017) ( .017) ( .017) ( .018) (.020)
cov(η1, y−2) - .169 - .185 - .267

( .018) ( .019) ( .022)
cov(η2, y0) .358 .402 .374 .232 .335 .155 .219 .253 .361

( .022) ( .020) .021 ( .017) ( .019) ( .021) ( .020) ( .022) ( .026)
cov(η2, y−1) .218 .331 .119 .242 .235 .352

( .019) ( .021) ( .024) ( .022) ( .025) (.029)
cov(η2, y−2) .239 .253 .351

( .024) ( .027) ( .032)
cov(η3, y0) - .290 - .333 - .305 - .179 - .270 - .107 - .163 - .195 - .291

( .018) ( .023) .023 ( .020) ( .022) ( .023) ( .023) ( .024) ( .029)
cov(η3, y−1) - .169 - .272 - .077 - .190 - .181 - .287

( .021) ( .023) ( .025) ( .023) ( .027) (.032)
cov(η3, y−2) - .181 - .194 - .282

( .026) ( .029) ( .035)
cov(y0, ζ0) .809 .036 - .024 - .823 .826 - .931 .841 - .795 .812

( .023) (8.525) 26.529 ( .269) ( .059) ( .207) (.061) ( .416) ( .096)
cov(y0, ζ−1) .779 - .012 .408 - .352 - .208 .361

( .438) 1.245 ( .102) (17.542) (152.666) (31.114)
cov(y−1, ζ−1) .798 .722 - .066 .830 .234

(.813) ( .062) ( .148) (41.955) (17.858)
cov(y0, ζ−2) - .805 - .719

(3.931) (76.705)
cov(y−1, ζ−2) - .382 - .202

(11.249) (44.061)
cov(y−2, ζ−2) .752

( .094)



Table 7: Yearly standard deviation of earnings

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3
1978 .311 .312 .312

( .001) ( .002) ( .002)
1979 .254 .257 .255 .222 .232 .219

( .001) ( .001) ( .001) ( .001) ( .001) ( .001)
1980 .223 .223 .223 .222 .227 .221 .224 .224 .230

( .005) ( .001) ( .001) ( .001) ( .001) ( .001) (.002) ( .002) ( .002)
1981 .264 .260 .263 .000 .103 .002 .004 .006 .001

( .005) ( .005) ( .005) ( .096) ( .040) ( .066) (.082) ( .076) ( .060)
1982 .152 .150 .150 .194 .193 .197 .193 .195 .198

( .005) ( .005) ( .005) ( .002) ( .002) ( .002) (.002) ( .002) ( .002)
1983 .244 .243 .247 .040 .175 .096 .023 .039 .193

( .004) ( .005) ( .005) ( .063) ( .017) ( .037) (.048) ( .049) ( .021)
1984 .154 .149 .149 .189 .184 .187 .188 .188 .182

( .001) ( .004) ( .004) ( .002) ( .001) ( .002) (.001) ( .001) ( .002)
1985 .182 .182 .182 .181 .183 .183 .181 .183 .183

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1986 .187 .187 .187 .189 .189 .190 .190 .190 .192

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1987 .181 .182 .181 .176 .176 .177 .176 .177 .177

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1988 .180 .180 .181 .181 .181 .181 .181 .182 .183

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1989 .171 .172 .172 .168 .170 .169 .169 .170 .171

( .008) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1990 .012 .021 .005 .358 .303 .375 .349 .395 .363

( .002) ( .007) ( .008) ( .012) ( .008) ( .015) (.012) ( .016) ( .013)
1991 .182 .184 .180 .153 .167 .156 .161 .157 .163

( .001) ( .002) ( .002) ( .002) ( .001) ( .002) (.001) ( .002) ( .001)
1992 .162 .162 .162 .159 .155 .159 .157 .160 .161

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1993 .207 .207 .207 .209 .209 .209 .210 .209 .211

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1994 .237 .236 .237 .250 .250 .251 .252 .253 .254

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1995 .193 .195 .194 .177 .179 .177 .177 .178 .180

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1996 .177 .177 .177 .176 .178 .177 .177 .177 .178

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1997 .167 .167 .167 .162 .162 .162 .162 .162 .164

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1998 .137 .138 .138 .134 .137 .135 .135 .136 .138

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1999 .152 .152 .152 .155 .157 .157 .156 .157 .158

( .001) ( .001) ( .001) ( .000) ( .000) ( .000) (.000) ( .000) ( .001)
2000 .159 .159 .159 .159 .159 .159 .159 .159 .160

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2001 .158 .158 .158 .159 .159 .160 .159 .160 .161

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2002 .153 .153 .153 .146 .146 .146 .146 .147 .149

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2003 .168 .167 .168 .178 .178 .179 .179 .180 .181

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2004 .147 .148 .148 .133 .133 .134 .133 .134 .135

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2005 .128 .128 .128 .130 .132 .130 .131 .131 .133

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2006 .123 .124 .123 .124 .124 .124 .125 .125 .127

( .001) ( .001) ( .001) ( .000) ( .000) ( .000) (.000) ( .000) ( .000)
2007 .117 .117 .117 .115 .116 .116 .115 .117 .118

( .003) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)



Table 8: Short term inequalities and their decomposition

Short term Decomposition
Perm. (%) Trans. (%)

Full sample
1977 .167 .033 .966
1981 .095 .336 .663
2007 .151 .886 .113
Mean .129 .648 .351

Age of entry < 20
1977 .195 .008 .991
1981 .089 .225 .774
2007 .113 .872 .127
Mean .104 .574 .425

Age of entry ≥ 20 and < 24
1977 .121 .084 .915
1981 .091 .432 .567
2007 .187 .900 .099
Mean .154 .682 .317

Age of entry ≥ 24
1977 .134 .197 .802
1981 .125 .606 .393
2007 .276 .889 .110
Mean .233 .721 .278
Inequality is measured with the variance of logs.
Short term inequality: cross sectional inequality.
Perm. stands for the share of cross sectional inequal-
ity due to the permanent heterogeneity components.
Trans. stands for the share of cross-section inequal-
ity due to the transitory component.
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Individual Sample Quantiles
effects periods 0.05 0.2 0.35 0.5 0.65 0.8 0.95

(3,15] -2.97 0.483 1.74 2.43 3.04 4.31 8.14
(2.31) (0.603) (0.194) (0.0557) (0.132) (0.488) (1.97)

(15,22] 1.52 2.11 2.32 2.51 2.7 3 3.8
η1 (0.0708) (0.023) (0.0191) (0.0221) (0.0208) (0.031) (0.0522)

(22,26] 2 2.25 2.39 2.52 2.67 2.87 3.46
(0.0226) (0.0182) (0.0161) (0.0159) (0.0175) (0.021) (0.0345)

(26,28] 2.13 2.35 2.47 2.58 2.7 2.86 3.26
(0.024) (0.0159) (0.0147) (0.0136) (0.0138) (0.0151) (0.0318)

(3,15] -0.435 -0.162 -0.0538 0.0203 0.0937 0.205 0.539
(0.17) (0.0478) (0.0182) (0.00945) (0.013) (0.0412) (0.148)

(15,22] -0.124 -0.032 0.00555 0.033 0.0601 0.0973 0.194
η2 (0.00983) (0.00439) (0.00321) (0.00313) (0.00322) (0.00415) (0.00951)

(22,26] -0.0471 -0.00103 0.0203 0.0388 0.0567 0.0834 0.141
(0.00396) (0.00264) (0.00246) (0.00216) (0.00245) (0.00267) (0.00554)

(26,28] -0.0218 0.00914 0.0254 0.0383 0.0526 0.073 0.114
(0.00333) (0.00221) (0.00214) (0.00207) (0.00216) (0.00252) (0.00415)

(3,15] -6.27 -2.14 -0.706 -0.00853 0.751 2.24 5.71
(2.11) (0.576) (0.147) (0.0858) (0.212) (0.712) (2.47)

(15,22] -1.44 -0.622 -0.324 -0.125 0.0874 0.395 1.29
η3 (0.0847) (0.033) (0.0254) (0.0221) (0.0287) (0.0315) (0.121)

(22,26] -0.907 -0.443 -0.275 -0.142 -0.024 0.131 0.445
(0.0469) (0.019) (0.0167) (0.0174) (0.0171) (0.0171) (0.0344)

(26,28] -0.632 -0.36 -0.242 -0.147 -0.0542 0.0559 0.269
(0.0232) (0.0165) (0.0138) (0.0136) (0.0147) (0.0163) (0.0267)

Notes: Sample period: Number of observed periods. Standard errors (sampling and parameter uncertainty, 1000 MC
simulations) in brackets.

Table 9: Quantiles of the distribution of individual effects: unconstrained estimates



Sample periods V ar(η1) Cov(η1, η2) Cov(η1, η3) V ar(η2) Cov(η2, η3) V ar(η3)
(3,15] 11 0.93 -12 0.093 -1.1 14

(15) (1.2) (16) (0.095) (1.3) (17)
(15,22] 0.5 0.057 -0.57 0.01 -0.09 0.83

(0.081) (0.011) (0.11) (0.0016) (0.015) (0.15)
(22,26] 0.14 0.011 -0.099 0.0038 -0.027 0.2

(0.0073) (0.0011) (0.0091) (0.00032) (0.0024) (0.018)
(26,28] 0.076 0.0043 -0.038 0.002 -0.013 0.09

(0.0039) (0.00058) (0.0041) (0.00015) (0.00097) (0.0066)
Complete sample 2.6 0.22 -2.8 0.024 -0.27 3.3

(3.2) (0.25) (3.4) (0.021) (0.28) (3.8)
Random effects 0.093 0.0059 -0.05 0.0015 -0.0093 0.066

(0.0034) (0.00049) (0.0038) (0.00011) (0.00077) (0.0058)

Notes: The first four lines are obtained using fixed effect estimates. Sample periods = number of observed
periods. Standard errors (sampling and parameter uncertainty, 1000 MC simulations) between brackets.

Table 10: Estimates of the covariance of individual effects

Sample periods V ar(η1) Cov(η1, η2) Cov(η1, η3) V ar(η2) Cov(η2, η3) V ar(η3)
(3,15] 2.5 0.2 -2.7 0.024 -0.25 3.1

(11) (0.89) (12) (0.077) (1) (13)
(15,22] 0.31 0.031 -0.31 0.005 -0.043 0.41

(0.13) (0.016) (0.16) (0.0023) (0.022) (0.22)
(22,26] 0.1 0.0076 -0.065 0.0018 -0.013 0.096

(0.014) (0.0021) (0.017) (0.00051) (0.0038) (0.029)
(26,28] 0.047 0.0021 -0.016 0.00029 -0.001 0.0043

(0.0072) (0.001) (0.0073) (0.00025) (0.0017) (0.012)
Complete sample 0.65 0.053 -0.67 0.0069 -0.068 0.78

(2.3) (0.19) (2.6) (0.017) (0.22) (2.8)
Random effects 0.093 0.0059 -0.05 0.0015 -0.0093 0.066

(0.0035) (0.00053) (0.0041) (1e-04) (0.00075) (0.0058)

Notes: See Table above

Table 11: Estimates of the covariance of individual effects: Bias-corrected
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Restrictions −→ η2 < 0 η3 < 0 η3 + πTη2 < 0
Sample periods

(3,15] 0.065 0.073 0.092
(0.014) (0.015) (0.013)

(15,22] 0.058 0.087 0.11
(0.0094) (0.013) (0.014)

(22,26] 0.023 0.037 0.079
(0.0049) (0.0066) (0.011)

(26,28] 0.0066 0.013 0.033
(0.0026) (0.0049) (0.0076)

Notes: Sample periods = number of observed periods. 5 per
cent level rejection frequency of single-dimensional tests of re-
strictions. Standard errors (sampling and parameter uncer-
tainty, 1000 MC simulations) between brackets.

Table 12: Frequencies of violations: single-dimensional restriction

Sample periods P-values <0.10 0.05 0.01
(3,15] 0.18 0.14 0.09

(0.01) (0.0093) (0.0093)
(15,22] 0.19 0.14 0.076

(0.01) (0.009) (0.0073)
(22,26] 0.13 0.093 0.06

(0.0077) (0.0068) (0.0054)
(26,28] 0.062 0.038 0.018

(0.006) (0.0047) (0.0029)
Complete sample 0.13 0.096 0.058

(0.0045) (0.0038) (0.003)

Notes: Sample periods = number of observed periods. Fre-
quency of p-values of the test of restrictions satisfying the con-
ditions. Standard errors (sampling and parameter uncertainty,
20 Monte Carlo simulations) between brackets. Statistic dis-
tribution obtained by 150 replications.

Table 13: Frequencies of violations: global restriction
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Quantiles Observed distance Simulated distance
0.175 0 0
0.225 0.0021 0.00180
0.275 0.0141 0.0132
0.325 0.0370 0.0391
0.375 0.0763 0.0761
0.425 0.126 0.125
0.475 0.194 0.194
0.525 0.276 0.282
0.575 0.401 0.395
0.625 0.568 0.531
0.675 0.763 0.714
0.725 1.04 0.945
0.775 1.48 1.21
0.825 2.14 1.57
0.875 3.17 2.10
0.925 5.32 2.93
0.975 12.7 4.74

Notes: Distances use as a metric the inverse covariance matrix
of ηs. Simulations are performed by adding to the constrained
estimates a normal noise and by reprojecting on the constrained
set.

Table 14: Distances between unconstrained and constrained estimates for observations and sim-
ulations

Summaries Mean Std error
Min. 0.0567 3.18e-05

1st Qu. 0.123 7.07e-05
Median 0.129 7.92e-05
Mean 0.14 0.000138

3rd Qu. 0.141 0.000154
Max 1.25 0.00662

Notes: 4292 observations for which the number of periods is over
22.

Table 15: Distribution of the returns to investment (lower bound)
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Figure 1: Mean log earnings by age at entry: 1977-2007
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(A) full sample (B) by age of entry

Figure 2: Cross-sectional variance of earnings: 1977-2007
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Figure 3: Autocorrelations with 1986 and 2007
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Figure 4: Autocorrelations of order 1 and of order 6
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Figure 5: Random, fixed effect and biased-corrected fixed effect predictions of earnings variances
using permanent components

71



Figure 6: Scatter plot of η2 and η3 and the area describing the structural constraint
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Figure 7: Earnings variances (permanent components): Constrained estimates and simulated
constrained estimates
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Figure 8: The density of the terminal capitalized discount rate κ
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Note: Sample of 4292 observations for which observed periods>22. Standard errors are due to sampling and
parameter uncertainty (30 Monte Carlo replications)

Figure 9: Counterfactual: Additional Years of Life Expectancy (K=2), Mean (Top panel) and
Variance (Bottom Panel) Lower bound Impact75




