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1 Introduction

Advances in available data, econometric methods, and computing power have created a rev-

olution in demand modeling over the past two decades. Highly granular data on household

choices means that we can model very speci�c decisions regarding purchase choices for dif-

ferentiated products at the retail level. In this chapter, we review the recent methods in

modeling consumer demand that have proven useful for problems in industrial organization

and strategic marketing.

Analyzing problems in the agricultural and food industries requires demand models that

are able to address heterogeneity in consumer choice in di¤erentiated-product markets. Dis-

crete choice models, for example, are particularly adept at handling problems that concern

potentially dozens of choices as they reduce the dimensionality of product space into the

smaller space occupied by product attributes. Discrete choice models, however, su¤er from

the independence of irrelevant alternatives (IIA) problem, so improvements on the basic

logit model �the nested logit, mixed logit, and Bayesian versions of each �have been de-

veloped that are more relevant for consumer demand analysis, and a wide range of applied

problems. Yet, the fundamental assumption that consumers make discrete choices among

products remained unsatisfying for a large class of problems.

Beyond the well-understood problems with the logit model, there are many settings in

which choices are not exactly discrete. Families that purchase several brands of soda, for

example, make multiple discrete choices, as do consumers who purchase Sugar Pops for their

children, and granola for themselves. Consumers who purchase a certain cut of beef make

a discrete choice among the several they face, but then make a continuous choice as to

how much to purchase (Dubin and McFadden 1984). Often, our interest lies more in the

structure of the continuous part than the discrete part. Consumers also reveal a demand

for variety when their purchase cycle is a week, anticipating 3 meals per day for the next 7

days, when purchasing food. This demand for variety is often manifest in multiple discrete-

continuous decisions, each with a continuous quantity (Bhat 2005, 2008). In this chapter,
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we will describe the evolution of demand model to describe more types of purchases, and

more accurately describe the purchases observed in "the real world."

Developments in the spatial econometrics literature opened up an entirely new way of

thinking of demand models (Pinkse, Slade and Brett 2002; Slade 2004). When we think about

the demand for di¤erentiated products, our notion of di¤erentiation is all about distance,

whether in geographic, attribute, demographic, or even temporal space. The di¤erences be-

tween products can be expressed in terms of each de�nition of space. Most importantly for

applied problems, writing demand models in terms of the spatial distance between products

can potentially reduce a high-dimension problem to one that is more simple, and empiri-

cally tractable. We will brie�y review the spatial econometrics literature, and the "distance

metric" approach to demand estimation.

Finally, we address the frontier of demand analysis. Researchers working in "big data"

have realized the power of machine learning methods to understand data patterns in largely

atheoretic, but incredibly powerful ways (Varian 2014; Belloni et al. 2014; Bajari et al.

2014). Once limited to only forecasting and prediction, machine learning models have become

increasingly important in econometric inference, again driven by the availability of massive

data sets, both in terms of their depth (number of observations) and breadth (number of

predictors).

We complete the chapter by suggesting some useful applications for new consumer de-

mand models, such as empirical industrial organization, behavioral inference, and determin-

ing causality in natural experiments.

2 Models of Discrete Choice

When products are highly di¤erentiated, the fundamental assumption of representative con-

sumer models, namely that consumers buy a small proportion of each item in the data set,

falls apart. Rather, with access to data on a highly disaggregate set of products, say at the

UPC-level among ready-to-eat cereals or yogurt, it is more accurate to describe the decision
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process as choosing only one brand from potentially dozens on o¤er. Building on the con-

ceptual framework for discrete choices of items from Luce (1959), researchers in economics

(McFadden 1974) and marketing (Guadagni and Little 1983) began to build a family of de-

mand models that could describe purchases as discrete choices among di¤erentiated items.

Based on the assumption that preferences are randomly distributed among individuals, dis-

crete choice models grew to become a standard approach to demand analysis due to their

tractability, and their ability to reduce high-dimension problems to relatively simple estima-

tion routines. In this section, we will describe the general model, the mixed logit, and other

speci�c cases.

2.1 Models of Demand

Variation in choice among consumers is driven by the assumption that tastes are randomly

distributed over individuals. Consider a consumer h who faces a set of J alternatives. For

each alternative j 2 J , he obtains a certain level of utility Uhj. The consumer i chooses the

alternative j that gives him the highest utility: 8k 6= j; Uhj > Uhk. Some attributes of the

alternative j and some characteristics of the consumer h are observed and some others are

not. Therefore, the indirect utility of the consumer i for the alternative j can be decomposed

into two components: Uhj = Vhj + �ij where Vhj is a function of observed characteristics and

�hj is a random term that captures unobserved factors. Di¤erent models are derived from

the speci�cation of the distribution of this error term.

The general model, namely the mixed logit model or the random coe¢ cient logit model,

that approximates any random utility model representing discrete choices (McFadden and

Train 2000), can be speci�ed as follows:

Uhj = �hpj +
X
k

hkbkj + �j + �hj (1)

where pj is the price of the alternative j, �h is the marginal utility of income for the consumer

h, bkj are the kth observed attribute of the alternative j and hk is the parameter associated

with each observed variable that captures a consumer�s tastes, �j represents the unobserved
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time invariant characteristics of the alternative j and �hj is the error term, which is assumed

to follow a Type I Extreme Value distribution. The coe¢ cients �h and h = (h1; h2; :::; hk)

vary over consumers with density f(�h; h);which, in most applications, is speci�ed as normal

or log-normal. The analyst then estimates the mean vector and covariance matrix of the

random distribution.1 The distribution f(�h; h) can also depend on observed characteristics

of consumers (Bhat 2000), in which case the random coe¢ cients are then speci�ed as�
�h
h

�
=

�
�


�
+�Dh + ��h; (2)

where � and  are the mean marginal utility of income and the mean taste for characteristics

respectively, � is a matrix of coe¢ cients that measure the taste for consumer according to

their observed characteristics Dh, � is a matrix of coe¢ cients that represent the variance of

each additional unobserved characteristic �h and possible correlations between them.

Consumers choose the alternative that maximizes their utility. The individual probability

of choosing the alternative j for the consumer h is given by:

shj = P
�
Uhj > Uhi;8i = 1; :::; J; i 6= jjbj; pj; �j; Dh; �h

�
=

exp(�pj + bjh + �j + [pj; bj](�Dh + ��h))
JX
l=1

exp(�pl + blh + �l + [pl; bl](�Dh + ��h))

and the aggregated probability, that is the market share of the alternative j, is

sj =

Z
shjf(�h)d�h;

assuming the alternatives cover the entire market of interest. Below, we discuss alternatives

for introducing an "outside option" to expand the de�nition of market share. Estimating

market shares, however, are typically only relevant when used to estimate price elasticities.

2.2 Demand Elasticities

Price elasticities for the mixed logit re�ect very general and �exible patterns of substitution

among products (McFadden and Train 2000), and take the following form for the demand
1Triangular, uniform Rayleigh or truncated normal distributions are also used in the literature (Revelt

and Train 2000, Hensher and Greene 2003, Siikamaki 2001, Revelt 1999).
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of the alternative j with respect to the alternative k :

�jk =
@sj
@pk

pk
sj
=

(
pj
sj

R
�hshj(1� shj)f(�h)d�h if j = k

�pk
sj

R
�hshjshkf(�h)d�h if j 6= k

(3)

When the price of the alternative j varies, the probability of choosing the other alter-

natives varies according to their attributes and the ones of the alternative j. Introducing

consumer characteristics and unobserved individual components takes into account hetero-

geneity of consumers�preferences which, in turn, creates the �exibility we desire. However,

one drawback of this method is that it lacks a closed form, so simulation methods are re-

quired to estimate all parameters, and obtain price elasticities. Although the mixed logit is

the most general form, McFadden and Train (2000) show that all other forms of the logit

model are, in fact, special cases of the mixed logit.

2.3 Particular cases

Two common discrete choice models can be derived from the mixed logit by imposing re-

strictions on the random variables describing consumer preferences: the simple logit and

the nested logit. Constraining the random variables that describe unobserved heterogeneity

permit closed form expressions for choice probabilities, and for price elasticities.

The simple logit model di¤ers from the mixed logit in that the parameters are assumed

to be �xed: �h = � and h = �. With this assumption, the aggregated choice probabilities

are then written as the logit expression:

sj =

exp(�pj +
X
l

lblj + �j)

JX
l=1

exp(�pl +
X
l

lblj + �k)

(4)

and the price elasticities become more tractable:

�jl =

�
�pj(1� sj) if j = l
��plsl if j 6= l

(5)
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The cross-price elasticities of the alternative j with respect to the alternative l only

depends on the alternative l whatever the alternative j considered. Therefore, when the

price of an alternative changes, the share of each other alternative is a¤ected in exactly the

same way. Moreover, this simple model exhibits the IIA property referred to above as the

ratio of probabilities of two alternatives j and l is independent from changes in the price of

other alternatives. Although restrictive, the IIA property provides a very convenient form

for the choice probabilities, which also explains its popularity.

Some additional assumptions on the distribution of the error term generate another

closed-form expression for choice probabilities, and o¤er more �exibility in substitution pat-

terns than the simple logit. In particular, when the set of alternatives can be decomposed

into several subsets, and alternatives within each subset are correlated in demand, the nested

logit results. In the nested logit, the IIA property holds for alternatives belonging to the

same group, but does not hold for alternatives in di¤erent subsets. Assuming each alter-

native belongs to a group g 2 f1; :::; Gg, the number of alternatives within each group g is

Jg and the error term can be written as �ij = � ig + (1 � �g)�ij where �ij follows a Type I

Extreme Value distribution, � ig is common to all alternatives of the group g and has a cumu-

lative distribution function that depends on �g, with �g 2 [0; 1]: Importantly, the parameter

�g measures the degree of correlation between alternatives within the group g. When �g

tends toward 1, preferences for alternatives of the group g are perfectly correlated, meaning

that the alternatives are perceived as perfect substitutes. When �g tends toward 0 for all

g = 1; :::G; the nested logit model is equivalent to the simple logit model.

In the nested logit model, the analytical expression for the choice probabilities is:

sj = sj=gsg where sj=g =
exp(

�pj+

X
l

lblj+�j

1��g )

exp(Ig)

1��g

and sg =
exp(Ig)

exp(I)
(6)

with Ig = (1� �g) ln

0BB@X
j2Jg

exp(

�pj +
X
l

lblj + �j

1� �g
)

1CCA and I = ln GX
g=1

exp(Ig).
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The nested logit model is more general and substitution patterns are more �exible than

the multinomial logit model. When the price of the alternative k belonging to the group g

varies, the cross-price elasticities �jk are not identical whether j belongs to the same group or

not. The price elasticities of the demand of the alternative j with respect to the alternative

k is:

�jk =

8<:
��
1��g pj(1� (1� �g)sj � �gsj=g) if j = k and j; k 2 g

�
1��g pj((1� �g)sj + �gsj=g) if j 6= k and j; k 2 g

��pksk if j 6= k and j 2 g; k 2 h
: (7)

In this discussion, we considered the simple case of the nested logit models with two

nests. In some situations, three or more nests may be appropriate, where the probability

expression is a relatively straightforward generalization of the two-nest case. Goldberg (1995)

considers a �ve-nest case, while Brenkers and Verboven (2006) use three levels. In general,

the parameters of the multinomial and nested logit models can be estimated by maximum

likelihood, whereas mixed logit models require the use of the simulated maximum likelihood

(Train 2003). Most econometric software (Stata, Nlogit, R) contain algorithms that allow for

relatively simple, e¢ cient estimation of any logit variant, whether with random coe¢ cients

or not.

3 Models of Discrete-Continuous Choice

For many products �consumer non-durables such as food and beverages or environmental

amenities such as parks or �sheries �the choice process is more appropriately described as

discrete-continuous than either purely discrete or entirely continuous. There are many classes

of goods for which people do not purchase a single-item, but rather a variable amount or

variable weight of a speci�c product. For example, meat, fresh produce, or even bottled water

can all be described as discrete-continuous. In this section, we will consider two modeling

approaches, and develop one in more detail.
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3.1 Discrete-Continuous Choice Models

Why might choices be made in a discrete-continuous way, and what does this imply about

the nature of the underlying utility functions? Discrete-continuous choices are typically

characteristic of the product-class. Durable goods with either variable amounts of usage or

inputs, non-durable goods that are purchased in varying quantities or many services are good

examples. The consumer may purchase one alternative out of many in the consideration set,

but then purchase an amount that varies continuously, and in a way that di¤ers from other

consumers in the data set.

Many choices involve a discrete and then a continuous choice in the same purchase that

invalidates the underlying econometric assumptions of our traditional demand model: The

choice of a brand or variety and the volume to buy is the most obvious in a food-demand

context (Chintagunta 1993). In each case, the relevant data contains a large number of zeros

for the alternatives that were not purchased, and continuous purchase amounts for those that

were. There are two ways of dealing with this issue econometrically: (1) creating an ad hoc

econometric model that accounts for the selection bias created by the discrete choice process

within a continuous modeling framework, or (2) estimating a model of discrete-continuous

choice that is grounded in a single, unifying utility-maximization framework (Wales and

Woodland 1983).

The early models of Heckman (1979) and Lee, Maddala and Trost (1980) are of the �rst

form, based indirectly in the theory of utility-maximization theory, but dealing with the

econometric issues associated with a censored dependent variable in a statistically-correct

way. That is, if the dependent variable is inherently �zero-positive� then there are clear

statistical problems with applying standard ordinary least squares estimation methods. The

most common method of estimating these models relies on the Heckman two-stage approach

in which a probit model is applied to the buy / no-buy problem in the �rst stage and then the

inverse Mill�s Ratio is used as a regressor in the second stage OLS regression to correct for

the sample selection bias. If there is a way to describe the data generating process directly,
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however, it will nearly always be preferred.

Corner solutions to utility-maximization problems can be modeled in an empirically-

tractable way. Hanemann (1984) describes an approach based on the Kuhn-Tucker conditions

for utility maximization that formally introduces the empirical restrictions on a model of

discrete-continuous choice implied by the theory. His approach is similar to that of Wales

and Woodland (1983), who describe a method of estimating demand systems in the presence

of corner solutions, or zeros in the dependent variable. Hanemann�s (1984) model describes

a particular setting in which only one choice is made and a continuous amount is purchased.

Although this may be a simpli�cation of many choice environments, his approach represented

a substantial advance in structural demand modeling.

The intuition behind the approach is as follows: Assume a perfect-substitutes world in

which the good with the lowest price-per-unit of quality is purchased (Deaton and Muell-

bauer 1980). The choice of a particular good is determined in a random utility framework,

so is governed by the distribution of the unobserved heterogeneity that drives the speci�-

cation for perceived quality. Conditional on this choice, therefore, the expected purchase

quantity is found by solving for the implied demand from a known indirect utility function,

and applying a change of variables from the random unobserved heterogeneity term to the

quantity-demand term. The result is an expected expenditure amount that is a parametric

function of the arguments of the implicit quality function of the good in question.

Formally, the model consists of two stages, the �rst describing the discrete choice of

goods, and the second the distribution of the continuous volume purchased. The direct

utility function for the perfect substitutes model is given by the general class of utility

function written as:

u(x1; x2;  1;  2; z) = u(x1 1; x2 2; z); (8)

for two goods, where xj is the quantity of good j,  j is the quality of good j; and z is all

other goods such that income, y, is exhausted. This is a perfect substitutes model because

maximizing utility subject to an income constraint implies that only one good is purchased,
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the one with the lowest ratio of price-to-quality, or pj= j. Clearly, the speci�cation for

perceived, or expected, quality is key to the model, because it determines which good is

purchased. Hanemann (1984) describes both a linear and multiplicative quality function,

but we will focus on the multiplicative function with attributes for good j given by bj so

that the quality function is written:  j(bj; "j) = exp(�j +
P
k

kbjk + "j);where "j is the

random component of quality that is assumed to be iid extreme-value distributed in the

model development to follow. By parameterizing the quality function this way, the choice

probabilities are given by:

�j = Pr["j + �j +
X
k

kbjk � ln pj 1 "i + �i +
X
k

kbik � ln pi; 8i; (9)

so with the extreme-value assumption the probability of choosing item j becomes:

�j =

exp(�j +
P
k

kbjk � 1=� ln pj)P
i

exp(�i +
P
k

kbik � 1=� ln pi)
; (10)

where � is the logit scale parameter.

From the logit choice probability, we then �nd the distribution of demand for the com-

modity by applying a change of variable technique based on the conditional demand func-

tion for xj. Assuming an indirect utility function from a simple bivariate utility model:

v(pj; y) = (�=(� � 1))p1��j � exp(��y)=�; � > 0, then the conditional demand function

is found by applying Roy�s theorem to �nd: xj(pj;  j; y) = �p��j  ��1j exp(�y); and, after

substituting the expression for quality:

xj(pj;  j; y) = �p��j exp(�y) exp((�� 1)�j) exp((�� 1)"j); (11)

where �j = �j +
P
k

kbjk � ln pj; or the mean quality function less prices. We then apply a

change of variables from "j to xj and take the mean of the resulting conditional distribution

to �nd:

E[ln pjxjj"j + �j > "i + �i] = ln � + �y + (�� 1)[� ln(
X

exp(�i=�)) + 0:5772�]; (12)

where 0.5572 comes from the expectation of an EV random variable.
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The expected demand function can then be estimated using maximum likelihood, or

the two-stage estimator described in Hanemann (1984). The two-stage estimator involves

estimating the values of �j=� from a logit maximum likelihood routine, and then using

the estimated values in the demand equation to estimate the remaining parameters with

OLS. Although this was the recommended approach in 1984, it is more e¢ cient to estimate

everything together with MLE. Because this discrete-continuous speci�cation is derived from

a single utility maximization problem, the choice to purchase and how much to purchase are

internally consistent, but the primary drawback is that price elasticities are restricted to -1.

Despite this fact, the model is relatively �exible as Hanemann (1984) describes several other

utility speci�cations that will work in this framework. Applications of the multiple-discrete

model to estimating food demand include Chintagunta (1993) and Richards (2000).

4 Models of Multiple-Discrete and Multiple-Discrete
Continuous Choice

In the last two decades, researchers in transportation (Bhat 2005, 2008), marketing (Hen-

del 1999; Dube 2004) and environmental economics (Phaneuf et al. 2000) recognized that

individuals in many settings not only make discrete-continuous choices, but often make mul-

tiple discrete choices, such as choosing several brands of soda on each trip to the store, or

more than one variety of apple. In this section, we describe three models that are able to

address the: (a) multiple-discrete, (b) multiple-discrete continuous, and (c) multiple-discrete

continuous with complementarity issues in �exible, tractable ways. We introduce the intu-

ition underlying the �rst two speci�cations and develop the latter, most general model, more

formally.
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4.1 Models of Multiple-Discrete Choice

Like the models of discrete-continuous choice developed above, models of multiple-discrete-

continuous (MDC) choice are also grounded in the theory of utility-maximization. However,

they tend to be comprised of sub-problems, each describing a di¤erent part of the deci-

sion process, that are solved together in one utility-maximization framework. MDC models

written this way explain an important observation in quantitative marketing, namely if con-

sumers make multiple, discrete purchases on each trip to the store, then there is a revealed

demand for variety. For example, if a consumer buys both Diet Coke and Coke on a trip

to the store, they are clearly either anticipating a change in tastes from consumption occa-

sion to consumption occasion (between purchase occasions), or are buying for others in the

family. The structure of the model that accounts for this demand for variety is based on

the general theme of identifying corner solutions from a single utility-maximization problem

(Dube 2004).

The utility maximization process assumes consumers have a number of consumption occa-

sions between purchases. The total utility from a purchase occasion, therefore, sums over the

sub-utility functions that describe the utility from each consumption occasion. Consumers

maximize the utility from a purchase occasion and not a consumption occasion. Therefore,

the expected quantity purchased at each visit to the store is composed of the distribution

of demands for each consumption occasion and the distribution that governs the number of

consumption occasions (a count-distribution). The three components to the demand model

are, therefore, (1) the count-data model that governs the number of consumption occasions,

(2) the sub-utility function that determines what is consumed on each consumption occasion,

and (3) the total utility maximization process at each purchase occasion. Consumers are

assumed to maximize utility subject to a budget constraint, and the Kuhn-Tucker conditions

are used to derive estimable demand models for each purchase occasion. MDC models are

able to produce elasticities that appear reasonable, and have proven useful in applied indus-

trial organization models, where accurately conditioning for consumer demand is critical.

12



4.2 Models of Multiple-Discrete Continuous Choice

The MDC model described above, however, assumes that each of the purchases is still only

discrete, and that consumers either purchase a constant amount, or the discrete purchases

themselves are for di¤erent quantities. In this section, we describe a model that synthesizes

the corner-solution approach developed in Section 2, with the multiple discrete logic outlined

above. Originally applied to problems in transportation (Bhat 2005, 2008), where individuals

often choose multiple modes of transportation, and use each for varying distances or amounts

of time, the application to food demand is fairly obvious. Namely, for many categories of

products, consumers purchase many di¤erent brands, or varieties, in the same category, and

purchase a continuous amount of each. For example, Richards, Gomez, and Pofahl (2011)

describe a problem in the demand for fresh produce. Items within each sub-category, apples

for example, are purchased by the variety, but the amounts are typically measured in pounds.

A substantial proportion of the consumers in that data reported purchasing multiple varieties

on each purchase occasion, whether due to varying tastes within the household, or a desire

to not have to eat the same kind of apple time after time.

As in the MDC case, the underlying model is consistent with utility maximization, and

the Kuhn-Tucker conditions for constrained utility maximization are used to derive the

demand model. Unlike the MDC model, however, the multiple-discrete continuous model

of Kim, Allenby, and Rossi (2002) and Bhat (2005, 2008) generates demand equations that

describe the joint probability distribution for continuous quantities of a discrete set of items

chosen from a larger consideration set. By including the utility from a numeraire good that

is always consumed, demands for each of the other "inside goods" are derived using an

equilibrium argument: The utility from a good that is purchased must be at least as great as

the utility from the always-consumed numeraire good. Assuming consumers make random

errors in utility maximization, and that these errors are Type I Extreme Value distributed,

the resulting system of purchase probabilities is derived. Remarkably, the demand equations

nest a simple logit model when only one item is purchased. Bhat (2005, 2008) shows how

13



unobserved heterogeneity can be accommodated by allowing for random parameters in the

usual way. Typically, the resulting multiple-discrete continuous extreme value (MDCEV)

model is estimated using simulated maximum likelihood.

4.3 Generalized Model of Multiple-Discrete Continuous Choice

The MDCEV model described above has become a common method of estimating multiple-

discrete continuous demand models. However, this class of model still retains a critical

weakness that all products are restricted to be substitutes. When the problem involves

items in multiple categories �milk, bread, and cereal, for example �then any reasonable

model would need to accommodate the possibility that some items may be complements.

Pinjari, Castro and Bhat (2012) and Vasquez-Lavin and Hanemann (2008) derive general-

ized versions of the multiple-discrete continuous model described above that does just that.

Pairs of items can be complements, depending on the sign of an interaction parameter. For-

mally, the utility function for this Generalized Multiple Discrete Continuous Extreme Value

(GMDCEV) model is written as:

uhj (q
h
ij;
) =

1

�1
(qh1j)

�1�h1j + (13)

IX
i=2

"
i
�i

  
qhij
i
+ 1

!�i
� 1
! 

�hij + 1=2
KX

i6=k;i6=1

�ik
k
�k

  
qhkj
k
+ 1

!�k
� 1
!!#

;

j = 1; 2:::J; h = 1; 2; :::H;where qhij is the amount of good i purchased by household h on

occasion j, 
 is a vector of parameters to be estimated,

�hij = �hij + 1=2

KX
i6=k;i6=1

�ik
k
�k

  
qhkj
k
+ 1

!�k
� 1
!

(14)

is the baseline marginal utility, for good i on occasion j by household h (�hij > 0), �i are

parameters that re�ect the curvature of the utility function (�1 < �i � 1) and i is

the product-speci�c utility translation parameter (i > 0). Note that, because 1 = 0 by

assumption, the numeraire good is not subject to satiation e¤ects.

The parameters �i and i are largely what separate the MDCEV (GMDCEV in our case)

model from others in the class of discrete, multiple-discrete, or discrete-continuous models
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(Richards, Gomez, and Pofahl, 2012). In mathematical terms, i is a translation parameter

that determines where the indi¤erence curve between q1j and q2j becomes asymptotic to the

q1j or q2j axis, and thereby where the indi¤erence curve intersects the axes. The parameter

�i, on the other hand, determines how the marginal utility of good i changes as qij rises.

If �i = 1, then the marginal utility of i is constant, indi¤erence curves are linear, and the

consumer allocates all income to the good with the lowest quality-adjusted price (Deaton

and Muellbauer, 1980). As the value of �i falls, satiation rises, the utility function in good i

becomes more concave, and satiation occurs at a lower value of qij: Importantly, if the values

of �hij are approximately equal across all varieties, and if the individual has relatively low

values of �i; then he or she can be described as "variety seeking" and purchase some of all

choices, while the opposite will be the case if �i are relatively high (close to 1.0) and the

perceived qualities di¤er (Bhat 2005).

The GMDCEV incorporates additive separability in a form suggested by Vasquez-Lavin

and Hanemann (2008) in that utility is quadratic in quantities. Both complementary (�ik >

0) and substitute (�ik < 0) relationships are permitted between pairs of products, so the

GMDCEV represents a very general corner-solution model. Bhat, Castro and Pinjari (2012)

show that allowing unrestricted own-quadratic e¤ects can lead to negative values for baseline

utility, so restrict �ii = 0: This restriction makes sense as the data are not likely to identify

additional non-linearities with respect to own-price e¤ects, but should re�ect interactions

between products that are not part of any additively-separable demand system. Each of the

constant terms, or �hij parameters can also be written as functions of demographic or mar-

keting mix variables to address concerns regarding the importance of observed heterogeneity.

As with the MDC and MDCEV models, the Kuhn-Tucker approach is used to solve for

discrete / continuous demand system implied by the utility function described above. By

solving the Kuhn-Tucker conditions for the constrained utility maximization problem, the

GMDCEV demand functions consist of a mixture of corner and interior solutions that are a

product of the underlying utility structure, and are not simply imposed during econometric
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estimation. The details of the solution procedure are in Pinjari, Castro, and Bhat (2012), so

we will only summarize the resulting demand system here.

Assuming the optimization procedure is solved only up to a random error "hij; and as-

suming the errors are distributed Type I Extreme Value, the econometric model assumes a

particularly straightforward form as the utility-maximizing solution collapses to:

P (qh1j; q
h
2j; :::; q

h
Mj; 0; 0:::0) =

1

�M�1 jJ j(
MQ
k=1

eV
h
kj=�)(

IP
i=1

eV
h
ij=�)�M(M � 1)!; (15)

where jJ j is the Jacobian of the transformation from the errors to the demand quantities,

V h
kj(p1;p2; :::; pI;y

h) is the indirect utility function implied by the choice model above, and

M varieties are chosen out of I available choices. In this estimating equation, � is the logit

scale parameter. In fact, when M = 1, or only one alternative is purchased, and there is

no cross-category e¤ects, the GMDCEV model becomes a simple logit. Although appearing

complicated, the GMDCEV model is estimated in a straightforward way using MLE, or in

a random-coe¢ cient variant using the SML approach described in the �nal section below.

5 Shopping-Basket Models

Consumers typically purchase many items together, from dozens of categories, and many

brands. Typically, empirical models of consumer demand focus only on one category at a

time, ignoring potentially-important interactions with items in other categories. If consumers

purchase groceries by the shopping basket, and not just one item at a time, then it is reason-

able to estimate models that take into account the demand for many categories, and potential

for complementarity, on each shopping occasion (Ainslie and Rossi 1998; Manchanda, Ansari,

and Gupta 1999; Russell and Petersen 2000; Chib, Seetharaman, and Strijnev 2002; Kwak,

Duvvuri, and Russell 2015). Complementarity matters, because retailers set prices as if con-

sumers purchase items together, in the same shopping basket (Smith 2004). In this section

we present an alternative way of modeling consumers�shopping-basket choice process: The

multivariate logit (MVL) model.
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5.1 Model of Retail Demand

Like the GMDCEV model, the MVL model is derived from a single utility-maximization

process. Unlike the GMDCEV, however, the choice process is based on the random-utility

assumption. We begin by describing the nature of the MVL utility function, and how it is

used to describe consumers�choices among several items that may appear together in their

shopping basket. Consumers h = 1; 2; 3; :::; H in the MVLmodel select items from among i =

1; 2; 3; :::; N categories, ciht; in assembling a shopping basket, bht = (c1ht; c2ht; c3ht; :::; cNht)

on each trip, t, conditional on their choice of store, r. De�ne the set of all possible baskets

in r as brht 2 Br. Our focus is on purchase incidence, which is the probability of choosing

an item from a particular category on a given shopping occasion, and we model demand at

the category level by assuming consumers purchase one item per category across multiple

categories.

Consumers choose among categories to maximize utility, U rht, and we follow Song and

Chintagunta (2006) in writing utility in terms of a discrete, second-order Taylor series ap-

proximation:

U rht(b
r
htjr) = V r

ht(b
r
htjr) + "rht (16)

=
NX
i=1

�rihtc
r
iht +

NX
i=1

NX
j 6=i

�rijhc
r
ihtc

r
jht + "rht;

where �riht is the baseline utility for category i earned by household h on shopping trip t

in store r, criht is a discrete indicator that equals 1 when category i is purchased in store

r, and 0 otherwise, "rht is a Gumbel-distributed error term that is iid across households

and shopping trips, and �rijh is a household-speci�c parameter that captures the degree of

interdependence in demand between categories i and j in store r: Speci�cally, �rijh < 0 if the

categories are substitutes, �rijh > 0 if the categories are complements, and �rijh = 0 if the

categories are independent in demand. To ensure identi�cation, we restrict all �rii = 0 and

impose symmetry on the matrix of cross-purchase e¤ects, �rijh = �rjih;8i; j 2 r (Besag 1974,

Cressie 1993, Russell and Petersen 2000).
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The probability that a household purchases a product from a given category on a given

shopping occasion depends on both perceived need, and marketing activities from the brands

in the category (Bucklin and Lattin 1992, Russell and Petersen 2000). Therefore, the baseline

utility for each category depends on a set of category (Xi) and household (Zh) speci�c factors

such that: �riht = �rih + �rihX
r
i + rihZh;where perceived need, in turn, is a¤ected by the rate

at which a household consumes products in the category, the frequency that they tend to

purchase in the category, and any other household demographic measures. Category factors

include marketing mix elements, such as prices, promotion, or featuring-activities. As with

any other demand model, unobserved heterogeneity can be included by allowing any of these

parameters to be randomly distributed over households.

With the error assumption in equation (16), the conditional probability of purchasing in

each category assumes a relatively simple logit form. Following Kwak, Duvvuri, and Russell

(2015), we simplify the expression for the conditional incidence probability by writing the

cross-category purchase e¤ect in matrix form, suppressing the store index on the individual

elements, where: �rh = [�1h;�2h; :::;�Nh] and each �ih represents a column vector of a

N �N cross-e¤ect �rh matrix with elements �
r
ijh:. With this matrix, the conditional utility

of purchasing in category i is written as:

U rht(c
r
ihtjcrjht) = �r0htb

r
ht +�

r0
ihb

r
ht + "ht; (17)

for the items in the basket vector brht: Conditional utility functions of this type potentially

convey important information, and are more empirically tractable that the full probability

distribution of all potential assortments (Moon and Russell 2008), but are limited in that

they cannot describe the entire matrix of substitute relationships in a consistent way, and

are not econometrically e¢ cient in that they fail to exploit the cross-equation relationships

implied by the utility maximization problem. Estimating all N of these equations together

in a system is one option, but Besag (1974) describes how the full distribution of brht choices

are estimated together.

Assuming the �rh matrix is fully symmetric, and the main diagonal consists entirely of
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zeros, then Besag (1974) shows that the probability of choosing the entire vector brht is

written as:

Pr(brhtjr) =
exp(�r0htb

r
ht +

1
2
br0nt�

r
hb

r
ht)X

brht2Br
[exp(�r0htb

r
ht +

1
2
br0ht�

r
hb

r
ht)]

; (18)

where Pr(brht) is interpreted as the joint probability of choosing the observed combination

of categories from among the 2N potentially available from N categories, still conditional

on the choice of store r. Assuming the elements of the main diagonal of �r is necessary for

identi�cation, while the symmetry assumption is required to ensure that (18) truly represents

a joint distribution, a multi-variate logistic (MVL, Cox 1972) distribution, of the category-

purchase events. Essentially, the model in (18) represents the probability of observing the

simultaneous occurrence of N discrete events �a shopping basket �at one point in time.

Given the similarity of the choice probabilities to logit-choice probabilities, the elasticities

are similar to the those shown above for the logit model, but recognizing the fact that cross-

price elasticities for items within the same basket will di¤er from those in di¤erent baskets

(Kwak, Duvvuri, and Russell 2015). In the absence of unobserved heterogeneity, the MVL

model is estimated using maximum likelihood in a relatively standard way, but when random

parameters are used, the model is estimated using the SML method described below.

The MVL is powerful in its ability to estimate both substitute and complementary re-

lationships in a relatively parsimonious way, but su¤ers from the curse of dimensionality.

That is, with N products, the number of baskets is N2� 1, so the problem quickly becomes

intractable for anything more then a highly stylized description of the typical shopping bas-

ket.

6 Spatial Econometrics and the DistanceMetric Model

There is a rich history of modeling the demand for di¤erentiated products solely in terms

of their attributes (Lancaster 1966). In fact, the mixed logit model relies on attribute

variation among items in a category of products to identify di¤erences in price elasticities,
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and to project the demand for di¤erentiated products from a high-dimensional product

space, to a lower-dimensional attribute space. It is both convenient and intuitive to think

of products not necessarily in terms of their brand or variety, but in terms of the attributes

that comprise them. Slade (2004) exploits attribute variation among a large number of beer

brands in developing the "distance metric" (DM) demand model as an alternative means

of overcoming the curse of dimensionality in di¤erentiated-products demand analysis, and

avoiding the IIA problem associated with logit models. In this section, we brie�y review

the power of spatial econometrics more generally, and show how the DM model represents a

fundamentally-di¤erent way of estimating demand.

6.1 Spatial Econometrics and Demand Estimation

In this model, attribute-variation is another way of circumventing the IIA characteristic of

logit-based demand systems. Because the distance between products in attribute space as a

primitive of the consumer choice process, the matrix of substitution elasticities is completely

�exible, unlike a simple logit. Slade (2004) applies a similar notion of product di¤eren-

tiation to the discrete choice model by assuming the price-coe¢ cient to be a function of

attributes; however, a disadvantage of this approach is that a consumer�s price-response in

a discrete-choice model of demand is determined by the marginal utility of income, which

is a characteristic of the individual that cannot logically vary over choices. Rather, the DM

model described here includes attribute-distance as a direct argument of the utility function.

The DM approach to demand estimation is similar to the address model of Anderson, de

Palma, and Thisse (1992) and Feenstra and Levinsohn (1995) in that the utility from each

choice depends upon the distance between the attributes contained in that choice and the

consumer�s �ideal�set of product attributes, where the ideal product reduces to the product

chosen by a representative consumer. The DMmodels accounts for the utility-loss associated

with distance in by introducing a spatial autoregression parameter to measure the extent to

which di¤erentiation from other products raises (or lowers) the utility from choosing product
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j according to the relative distances between products and the ideal attribute mix of a given

consumer.

The distance metric - multinomial logit (DM-MNL) uses a non-linear utility-loss function,

where mean utility from product j falls (or rises) in the distance from all other products,

measured by the distance matrixW. Each element of W measures the Euclidean distance

between each pair of product, so the element wjl measures the distance between product

j and product l in a multi-attribute space. The importance of di¤erentiation is estimated

through a spatial-autoregressive parameter. Formally, mean utility for product j = 1; 2; :::; J

in week t = 1; 2; :::; T is written in vector notation (with bold notation indicating a vector)

as:

� = �0x+ �W� � �p+ �; (19)

where � is a JT � 1 vector of mean utility, x is a JT � K matrix of demand shifters, p

is a JT � 1 vector of prices, and � is a random error unobserved by the econometrician.

The vector � and scalar parameters � and � are all estimated from the data. The matrix

W� measures the e¤ect of product di¤erentiation on utility according to attribute distance,

which de�nes � as a spatial autoregression parameter (Anselin, 2002).

As a spatial autoregression parameter, � is interpreted as the extent to which utility is

a¤ected, positively or negatively, by the distance between the chosen product, and all other

products in the choice set. Autoregression re�ects the notion that consumers evaluate the

utility attainable from each product relative to the utility that can be attained from consum-

ing other available products in the choice set. By convention,W is de�ned as a measure of

inverse-distance, or proximity, so that greater product di¤erentiation in the product category

reduces utility when � > 0 (i.e., utility rises with attribute proximity) and increases utility

when � < 0.

Solving equation (19) for mean utility gives: � = (I� �W)�1(�0x� �p+ �);where (I�

�W)�1 is the Leontief inverse, or spatial multiplier matrix (Anselin, 2002). In spatial models,

the concept of the multiplier is critical, and powerful, because it measures how changes to
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one observation ripple throughout the entire system. For example, if one price changes

exogenously, the demand for all other products changes according to the spatial multiplier

matrix. In a context where W measures the distance between individuals consuming the

product in a social network, the multiplier measures how strong the peer- or bandwagon-

e¤ects for the product are.

Assuming utility varies among consumers in a random way, utility is written as: ui =

�+ "i;where "i is an iid random error that accounts for unobserved consumer heterogeneity.

Further assuming "ij is Type I Extreme Value distributed, and aggregating over consumers,

the DM-MNL model yields a market share expression for item j given by: Sj = exp(�j)=(1+
JX
l=1

exp(�l));where Sj is the volume-share of product j; which can be linearized using the

approach in Berry (1994) and Cardell (1997) and estimated using MLE. However, because the

W matrix must be inverted during estimation, a MLE routine may encounter computational

issues. Kelejian and Prucha (1999) describe a generalized method of moments (GMM)

routine that avoids these issues, and accounts for the likely endogeneity of prices, or any

other marketing mix elements for that matter.

There are many other ways of applying the DM concept to demand modeling. The MNL

model above is similar to Slade (2004) and Pinkse and Slade (2004) in that we explicitly

incorporate a distance-metric component in the demand model; however, attribute distance

enters in a structural way in equation (19) through the utility function. Rojas and Peterson

(2008) and Pofahl and Richards (2009) describe two other approaches using more tradi-

tional demand systems. The point is that including attribute space through the DM logic

is very general �projecting demand into attribute space, or even social space (Richards and

Hamilton 2014) not only reduces the dimensionality problem associated with di¤erentiated-

products analysis, but adds �exibility and the ability to study a wider range of applied

problems.
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7 Machine Learning

Advances in computing power, and in the creation of huge data sets generated by virtually

any web-based activity, have renewed interest in "big data" methods for analyzing consumer-

demand problems (Varian 2014; Bajari et al. 2014). While the de�nition of what exactly

constitutes big data remains elusive, it has come to be associated instead with a set of

analytical methods rather than attributes of the data itself. When presented with virtu-

ally unlimited numbers of observations, and possibly thousands of explanatory variables,

researchers have turned to machine learning (ML) methods rather than traditional econo-

metric techniques. Using ML methods to analyze demand data, however, is fundamentally

di¤erent from any of the frameworks discussed above in that the outputs are di¤erent, and

the objectives of the analysis di¤er accordingly.

7.1 Studying Demand Data with ML Methods

ML, or statistical learning more generally, is typically used as a prediction tool. In fact,

models are evaluated on the basis of their ability to �t out-of-sample, instead of on some

sort of in-sample metric as is usually the case in econometrics. The model that is able to

produce the lowest root mean squared error (RMSE) on a cross-validation sample of the data

is the winner. That said, recent advances in the literature on machine learning investigate

how big data models can be used to study causal inference (Athey and Imbens 2015) or

to generate marginal e¤ects similar to econometric models of demand (Bajari et al. 2014;

Varian 2014). In this section, we will review 6 machine learning techniques, and how they

can be applied to demand data. Our discussion draws heavily on James et al. (2014), which

is a valuable and standard reference in this area.

Many of the methods are actually variants on standard econometric approaches, using

the concept of least squares in di¤erent ways to estimate large models. At the risk of

over-simpli�cation, these methods can be classi�ed into either regularization approaches, or

tree-based methods. Regularization involves reducing a regression problem to a smaller one
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by restricting some coe¢ cients that are close to zero, exactly to zero, focusing on the non-

zero estimates. Tree-based methods, on the other hand, seek to order predictor variables

according to their importance, and determine critical breaks in regions of statistical support.

In this section, we consider three of the former (forward stepwise regression, lasso, and

support vector machines) and three of the latter (bagging, random forests, and boosting).

We also provide a brief discussion of cross-validation as a method for model selection.

7.2 Regularization and Penalized Regression

Analysts in the ML literature generally have no qualms with using forward stepwise regression

as a method for selecting the best linear model. Forward stepwise regression begins by

estimating a null model, and then adding variables in succession and choosing the predictor

at each step that produces the lowest cross-validated prediction error, AIC, BIC, or adjusted

R2:While econometricians may have conceptual issues with the data mining aspect of forward

stepwise regression, that is the point of machine learning. With large data sets, of very high

dimension, forward stepwise regression is often a very pragmatic, and e¤ective, tool for

model selection, particularly given the power of cross-validation when the size of the data

set permits holding out a large number of observations for training purposes.

A second class of models is known as shrinkage, penalized regression, or regularization

methods. Regularization means that the coe¢ cients on some predictors are reduced to zero

in estimation if their statistical e¤ect is, for all practical purposes, zero. They are referred to

as shrinkage methods because they e¤ectively shrink the size of the predictor set according

to the number of zero coe¢ cients that are assigned. Principal among these methods is

the lasso, which minimizes an objective function that includes a penalty for many, large

regression coe¢ cients:

LASSO = min
�

nX
i=1

 
yi � �0 �

pX
j=1

�jxij

!2
+ �

pX
j=1

j�jj; (20)

where � is referred to as a "tuning parameter" that controls the extent to which the choice of

parameters is constrained by the penalty. When � = 0, lasso estimates are clearly equal to
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the least squares estimates, and when � is su¢ ciently large, all parameter estimates will be

reduced to zero. Lasso estimates are particularly valuable in settings where p is large relative

to n �that is, in high-dimensional data sets with relatively few observations. In this case, the

approach has the e¤ect of shrinking parameter estimates for non-important variables to zero,

e¤ectively becoming a means of selecting variables based on their values as predictors. With

su¢ cient data, cross-validation methods over a grid that includes a wide range of possible

parameter values is used to determine the value of � that minimizes out-of-sample forecast

error. As a shrinkage model, lasso is similar to ridge regression, but the latter, which uses a

quadratic rather than absolute-value penalty, never reduces any coe¢ cient estimates exactly

to zero, but only shrinks them toward zero. If the problem is dimensionality, ruling some

variables out is important.

Support vector machines (SVM) are designed for classi�cation, that is, assigning obser-

vations in the data set to binary classes. They are unique in that they rely on the notion of

a maximal margin classi�er (MMC) which is an algorithm that chooses the parameters of

a separating hyperplane �familiar to economists as the core construct in duality theory �

in order to maximize the minimum distance between the hyperplane and data observations.

However, the base MMC method su¤ers from the fact that the data are often not su¢ ciently

well behaved to identify a unique hyperplane that cleanly separates all the observations into

one class or another. That is, the MMC solution does not exist.

Consequently, the SVM approach is based on a support vector classi�er (SVC) method

that allows for some observations to lie on the wrong side of the margin, or even on the wrong

side of the hyperplane. In the SVC optimization routine, however, only observations that

either lie on or on the wrong side of the margin enter into the calculation, as the objective

function values for the others are very small. Therefore, these vectors are known as support

vectors as they determine the location of the margin alone. Despite the fact that the SVC

method is more �exible than the MMC in the sense that it admits violations of the strict

MMC principle, it still constrains the margin to be linear. In many, if not most, data sets, the
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classi�cation margin is not linear. SVM were developed speci�cally to allow for non-linear

classi�cation margins.

Support vector machines (SVM) are a special class of SVC that introduce a larger feature

space created from polynomials of the original features. Although a margin de�ned with a

SVM is still linear in the expanded set of features, it can be highly non-linear in the original,

un-transformed features. The SVM algorithm is the same as that developed for the SVC, but

relies on the recognition that only the support vectors matter. That is, the others that do

not enter the solution are formally excluded. And, the calculation used to �nd the location

of the margin depends only on the inner product of all the vectors that matter, or the kernel

of the data. When the kernel is linear, the inner product is simply the correlation between

each pair of vectors. But, di¤erent kernels can be used to allow for support vectors that

describe highly non-linear class boundaries. For example, a polynomial kernel of degree d

can produce non-linear boundaries, and a radial kernel even describes a circular region of

support, separating observations into highly �exible patterns of association within the data.

In essence, a SVM is a SVC with a non-linear kernel.

7.3 Tree-Based Methods

Regression trees, on the other hand, are a means of determining the relative importance of a

predictor variable in in�uencing an output variable. If the data are continuous, a regression

tree algorithm searches for a split value of the most important predictor, and then calculates

predicted values for the output variable for values above and below the split value. Once all

observations are assigned in one branch, the algorithm then seeks the predictor variable that

best explains the next split for each of the new branches, and so on. Because this recursive

binary splitting algorithm begins at the top and makes the error-minimizing decision for that

split only, it is referred to as a greedy algorithm (James et al. 2014).

Predictive accuracy is evaluated out-of-sample through a k-fold cross validation method:

Divide the training data into k = 1; 2; :::; K subsets, or folds (of equal size), train the model
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on the data in k � 1 folds, and calculate the mean-square-error (MSE) on the kth fold.

Repeat for each of the other k-folds, estimating on each of the other k and �nding MSE

on the k � 1 fold so that there are k estimates of the MSE, and average the MSE that

results. The result is a measure of the k-fold cross-validated MSE. A simpler alternative is

leave-one-out cross-validation (LOOCV), which excludes one observation from training, and

then �ts the model on the left-out data. However, the LOOCV measure has high variance

as the �tted value is averaged over only one observation per run.

Formally, the objective function for a standard, regression tree approach minimizes the

residual sum of squares (RSS) given by: RT =
JX
j=1

X
i2Rj

(yi �
^
yRj)

2;where yi is the observed

value of the variable of interest, and
^
yRj is the mean value of the variable in the region Rj:

In words, the tree structure divides the data into regions based on values of the predictor

spaceX1; X2; :::; Xp and then calculates mean values of the response variable for each realized

value of the predictor variables, and chooses the regions in order to minimize the residual

sum of squares. James, et al. (2014), however, argue that the base regression tree approach

may not produce the best result. Other approaches that average predictions over many trees

�a forest of them, in fact �can typically outperform classical methods of classi�cation or

prediction.

The three most common methods are bagging, random forests, and boosting. Bagging,

or bootstrap aggregation (Breiman 1996), draws a large number of random samples from

the data (bootstrap samples), and �ts regression trees using cross-validation to determine

the optimal structure of each tree. By averaging the predictions from all the bagged pre-

dictions, a sum-of-squares minimizing prediction set is derived. Bagging typically represents

a substantial improvement in predictive ability relative to a basic regression tree because

averaging over a large number of samples provides much more information than a simple,

single sample. Intuitively, when the metric for re�ning the �t of the tree is cross-validation,

averaging across di¤erent slices of the same data set is far more likely to produce results that

are representative of the data generating process as a whole. Bagging su¤ers, however, when
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one or two predictors dominate so that each random sample produces a tree that looks like

all the others.

Random Forests represents a variant on the bagging approach in which a random sample

ofm predictors out of the total set of p predictors is considered at each split in the tree. Only

one of them predictors can be used at each split, and a new sample is drawn each time a split

decision is to be made. In this way, some models will contain entirely di¤erent predictors

than others as not every model can simply draw on the most important predictor every

time. When bagged regression-tree models are not constrained in this way, their predictions

will be highly correlated, so averaging the predictions does not produce much bene�t as

each separate run does not add much new information. In fact, bagging is a special case of

the random forests method as bagging and random forests are exactly equivalent when the

number of predictors in the random forest algorithm (m) is set equal to the total number

of predictors (p). By "de-correlating" the predictions from the models, and then averaging,

the result typically produces more accurate predictions because each new sub-sample brings

independent information to �nding which variable is most important in predicting values

of the variable of interest (James et al. 2014). In general, the number of predictors in

each sample is set at fraction (1/3) of the total number of predictors. Comparing a number

of alternative regression tree methods, Bajari, et al. (2014) and Varian (2014) �nd that

the random forests approach is the most e¤ective in minimizing MSE in out-of-bag (OOB)

samples.

In a regression tree context, boosting uses the notion of �tting several trees to the same

data in a fundamentally di¤erent way. Boosting uses a process of "slow learning" in which the

tree is not built on many independent bootstrapped samples as in bagging, but in sequence,

building on the tree �t before it. Each tree is relatively small, with potentially only a

few terminal nodes. Once the initial tree is �t to the training data set, the residuals are

saved and a new tree is �t to the residuals. In this way, the boosting algorithm proceeds

in a manner that is similar to stepwise regression, considering new predictors in sequence
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until the remaining residuals are minimized. At each iteration, or new tree, the updated

predictions are only allowed to be in�uenced by the new predictions up to a "shrinkage

parameter," �; that causes the evolution of the tree to move more slowly. Typically, the �

parameter is set at 0.01 or 0.001. Boosted regression trees that evolve slowly are typically

the best performing.

8 Practical Considerations

8.1 Data Sources

Historically, econometricians began studying markets for di¤erentiated products using ag-

gregate datasets. The data consisted of markets shares or volume sold, average prices, and

primary product attributes for each product over several time periods and/or geographi-

cal areas (Berry, Levinsohn and Pakes 1995). Econometricians interested in food demand

are relatively lucky as �rms such as Nielsen and IRI Marketing Research began collecting

"syndicated" scanner data on a highly disaggregated basis in the late 1990s.2 Scanner data

provides price and movement data on individual items, called Stock Keeping Units (SKU)s,

or Universal Product Codes (UPCs). IRI, Nielsen, and Kantar in Europe also maintain

consumer panel data sets. Consumer panel data are collected by individual households with

hand-held scanning devices. They also contain detailed information on the product, the

place of the purchase, and, importantly, attributes of the household. However, household

panel data sets do not provide any information about the alternatives that the consumer

faces on each shopping occasion.

8.2 Choice Sets

When the set of the alternatives that the consumer faces is not known by the researcher, ad-

ditional assumptions are needed. Most traditional demand models are estimated under the

2Syndication means that cooperating stores send their data to IRI or Nielsen, who then combine the
chain-speci�c data to produce standardized data sets of the entire market, and then share the data with
retailers and manufacturers.
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assumption that consumers are aware of all available alternatives or use information at the

aggregate-level data to infer the set of available alternatives for consumers as Berry, Levin-

shon and Pakes (1995) or Nevo (2001). However, in markets with rapidly changing product

lines or stock-outs, it seems unlikely that consumers have full information on all alternatives.

Researchers in marketing and economics highlight how the limited cognitive abilities of con-

sumers restrict their attention to some alternatives (Mehta, Rajiv, and Srinivasan 2003).

Hence, the choice set is reasonably assumed to be heterogeneous across consumers, limited

in size, and endogenously determined. For example, Bruno and Vilcassim (2008) extend

traditional discrete choice models using a random distribution of choice sets and �nd that

not accounting for varying product availability on the UK chocolate confectionery market

leads to biased demand estimates. Further, Goeree (2008) estimates a discrete choice model

with limited consumer information using advertising data and consumer characteristics and

�nds that full information models predict upward biased price elasticities that imply greater

competition among �rms than is realistically the case.

8.3 Outside Good

In order to predict changes in total demand in response to a price change, researchers need to

include a measure of howmuch demand can change, regardless of the set of goods in the choice

set. This is accomplished through the outside option. The outside option represents either an

aggregate of other alternatives that are considered as further substitutes, or non-purchasing

behavior. If the outside option is not included, then the model can be used to predict

changes in market shares among consumers who already chose the alternatives, or conditional

demand, but not in total demand because the model essentially does not contain any room to

expand. In general, for discrete, discrete-continuous or multiple discrete-continuous models,

the mean baseline utility for one option is typically set to zero. This de�nition of the outside

option, which amounts to delimiting the relevant market when competitive analysis is the

goal, is a key issue as it could a¤ect the level of utility, and subsequent price-elasticity
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estimates (Foncel and Ivaldi 2005). In the literature, di¤erent approaches have been taken

depending on the dataset used. For example, Besanko et al. (1998) use the number of all

household shopping trips to compute the share of non-purchase behavior. Berto Villas Boas

(2007) restricts her analysis to primary brands and retailers, and then de�nes the other

small brands and retailers as the outside option. Bonnet and Réquillart (2013) use observed

purchases of other product categories that are more or less substitutes for their focal soft

drink categories to de�ne the outside option. More formally, the relevant market and the

outside option could be deduced from a test based on household budget allocation decisions

akin to a test of separability in a traditional demand system setting (Allais et al 2015).

8.4 Estimation Methods

When the choice probabilities have a closed form expression, we can easily use the maximum

likelihood method to estimate the parameters �. De�ne Pht(�) as the probability that the

consumer h chooses any alternative or a bundle of alternatives on purchase occasion t. The

probability of the sequence of observed choices of consumer h is then Sh(�) =
TY
t=1

Pht(�) and

assuming that each consumer�s choice is independent of that of other consumers, the log

likelihood function could be written as LL(�) =
HP
h=1

lnSh(�).

When unobserved heterogeneity in consumer preferences are introduced via random pa-

rameters, the choice probabilities no longer have a closed-form expression. The log likelihood

function is then a multiple integral that we cannot be solved analytically. In this case, SML

is necessary (Train 2003). SML approximates choice probabilities for any given value of �

using the following algorithm: First, we take R random draws from the chosen distribu-

tions and compute the simulated probability SPht(�) = 1
R

RP
r=1

Pht(�
r). Second, the simulated

likelihood function is then calculated as: SLL(�) =
HP
h=1

ln

 
TY
t=1

SPht(�)

!
and can be opti-

mized in a third step. If R rises faster than
p
HT , the maximum likelihood estimator is
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consistent, asymptotically normal and e¢ cient, and equivalent to maximum likelihood. In

practice, a large number of random draws are needed, and a large number of simulations is

typically very computationally expensive. To reduce the number of simulations, randomized

and scrambled Halton sequences are often used (Bhat, 2003), where the simulation error falls

with the number of Halton draws.

Random utility models such as those presented in this chapter are consistently estimated

if the observed characteristics of alternatives bj are independent from the error term "hj in

each baseline utility function. If we assume "hj = �j + ehj ;where �j is the unobserved term

that captures all unobserved product characteristics and ehjt is an individual-speci�c error

term, the independence assumption cannot hold if unobserved factors included in �j (and

then included in the error term "hj) are correlated with observed factors (included in bj ). In

this case, the estimated impact of the observed factor captures not only that factor�s e¤ect,

but also the e¤ect of the correlated, unobserved factor. Unobserved product characteristics

could include attributes that are not measured, or marketing e¤orts such as advertising, sales

promotions, shelf position that are observed by the retailer, but not the econometrician. The

resulting endogeneity means that all parameter estimates will be biased and inconsistent. For

example, if the unobserved factor is advertising, we know that �rms maximize pro�ts with

respect to both price and advertising so, in general, these decisions cannot be independent.

Firms might raise the price of their products when they advertise if they believe that doing

so stimulates demand. Alternatively, �rms may lower price when they advertise (e.g., as a

part of a sale), so the possibility of either case makes the sign of the bias ambiguous.

Endogeneity in discrete choice models is typically addressed through the control function

approach (Petrin and Train 2010). De�ne the vector of observed product attributes as:

bj = (b
0
j ; yjh ) where b

0
j is the vector of exogenous product attributes and yjh the endogenous

variable. The control function method is a two-step approach in which the endogenous

variable yjh is regressed on the exogenous product attributes xjht and instrumental variables

Zj in the �rst-stage. If the �rst-stage model is written as: yj = Zj + b
0
j � +$j, then $jh is
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the error term. Assuming a joint normal distribution between $ and �j, we can re-write the

indirect utility function as: Ujh = V (bj ; �) + �b$j + ��j + #jh where �j is a standard normal

distributed variable and � is the associated standard deviation. The estimated error term b$j

includes some omitted variables that are correlated with the endogeneous variable yj and not

captured by the other exogenous variables of the demand equation b0j or by the instrumental

variables Zj. Introducing this term in the indirect utility function captures unobserved

product characteristics that vary across time, and essentially purge the equation of bias as

the endogenous variable yj is now uncorrelated with the new error term #jh = �j+ehj ��b$j.

However, because the demand model contains variables that are themselves estimated, the

standard errors of the estimated demand parameters must be adjusted accordingly (Karaca-

Mandic and Train 2003).

The choice of instrumental variables Zj is crucial. Good instruments must be independent

of the error term �j, make economic sense, be su¢ ciently correlated with the endogenous

regressors, but must not be correlated between themselves. In order to control for price

endogeneity, three kinds of instruments are generally used. First, input prices are generally

uncorrelated with customer choices, but are correlated with prices from the theory of the

�rm (Bonnet and Dubois 2010). Assuming no spatial correlation between markets, prices in

other markets can also be valid proxies for the cost of production (Hausman, Leonard, and

Zona 1994; Nevo 2000). Finally, attributes of other products are not correlated with the

demand for the product in question, but are likely to be correlated with its price (Berry et

al. 1995). If other variables are thought to be endogenous, then similar instruments must

be found. For example, Richards and Hamilton (2015) instrument for endogenous variety,

while Allais et al. (2015) instrument for label choices.

9 Conclusions and Implications

In this chapter, we review a broad selection of methods that have been used to study problems

in consumer demand over the last 20 years, and provide a hint as to the types of models
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likely to be used in the near future. In each case, the form of the model is driven by both the

type of data that are available, and the question at hand. While most practical applications

of these models involve demand elasticities, they are equally adept at producing demand

forecasts, or for inference and drawing conclusions regarding the causal e¤ect of a policy

treatment. As computing power and data gathering capabilities advance, our methods will

surely keep pace.
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