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Abstract

In most modern macroeconomic models, the steady state (or balanced growth path) of the
system is a local attractor, in the sense that, in the absence of shocks, the economy would
converge to the steady state. In this paper, we examine whether the time series behavior of
macroeconomic aggregates (especially labor market aggregates) is in fact supportive of this
local-stability view of macroeconomic dynamics, or if it instead favors an alternative inter-
pretation in which the macroeconomy may be better characterized as being locally unstable,
with nonlinear deterministic forces capable of producing endogenous cyclical behavior. To do
this, we extend a standard AR representation of the data to allow for smooth nonlinearities.
Our main finding is that, even using a procedure that may have low power to detect local
instability, the data provide intriguing support for the view that the macroeconomy may be
locally unstable and involve limit-cycle forces. An interesting finding is that the degree of
nonlinearity we detect in the data is small, but nevertheless enough to alter the description
of macroeconomic behavior. We complete the paper with a discussion of the extent to which
these two different views about the inherent dynamics of the macroeconomy may matter for
policy.
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1 Introduction

There are two polar views about the functioning of a market economy. On the one hand, there is

the view that such a system is inherently stable, with market forces tending to direct the economy

towards a smooth growth path. According to this belief, most of the fluctuations in the macroe-

conomy result either from individually optimal adjustments to changes in the environment or from

improper government interventions, with market forces acting to prevent the economy from being

unstable. On the other hand, there is the view that the market economy is inherently unstable, and

that left to itself it will repeatedly go through periods of socially costly booms and busts. According

to this view, macroeconomic policy is needed to help stabilize an unruly system.

Most modern macroeconomic models, such as those used by large central banks and governments,

are somewhere in between these two extremes. However, they are by design generally much closer

to the first view than the second. In fact, most commonly used macroeconomic models have the

feature that, in the absence of outside disturbances, the economy is expected to converge to a stable

path. In this sense, these models are based on the premise that a decentralized economy is both

a globally and locally stable system, and that market forces, in and of themselves, do not tend

to produce booms and busts. The only reason why we see economic cycles in most mainstream

macroeconomic models is due to outside forces that perturb an otherwise stable system. While such

a framework is very tractable and flexible, the ubiquitous and recurrent feature of cycles in most

market economies requires one to question whether the market economy may, by its very nature,

be inherently unstable and feature recurrent booms and busts, with a bust sowing the seeds of the

next boom.1

There are at least two reasons why much of the macroeconomic profession adheres to the idea

that the market economy is best described as a system with a unique stable steady state, where

fluctuations are generated only by exogenous shocks. First, the majority of modern macroeconomic

models based on optimizing behavior support the view of such a stable economic system. Second,

when looking at the time series behavior of many labor market variables (such as the employment

rate, the unemployment rate, or the job finding rate), the estimated impulse response functions

1 Although the idea of endogenous boom and bust cycles has a long tradition in the economics literature (Kalecki
[1937], Kaldor [1940], Hicks [1950], Goodwin [1951]), it is not present in most modern macro-models. Recent
exceptions are Myerson [2012], Matsuyama [2013], Gu, Mattesini, Monnet, and Wright [2013] and Beaudry, Galizia,
and Portier [2015b].
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indicate that these variables respond to shocks in a manner suggestive of a stable system. For

example, if one estimates a simple AR model for labor market variables, the roots of the system

are generally well below one, which is consistent with the view that the system is stable.2

In this paper, we question this consensus. We begin by arguing that the local stability of the

macroeconomic system should not be evaluated using linear time series methods, even if nonlinear-

ities are thought to be very minor and only relevant rather far away from the steady state. Instead,

we show why it is essential to allow for the possibility of nonlinearities (even if these may be very

small) when exploring whether a dynamic system is locally stable. We then derive a simple class

of time series models which we use to explore the stability properties of a number of macroeco-

nomic aggregates. Using the results, we discuss why local instability should be treated as a relevant

theoretical possibility when thinking about macroeconomic dynamics.3 The main body of the text

focuses on estimating the inherent dynamics of labor market variables and other macroeconomic

aggregates. As we show, when we allow for simple nonlinearities in estimation, we generally find

that this significantly changes the local properties of the system; in particular, it often switches

from being locally stable when the nonlinear terms are excluded to being locally unstable when

they are included.

After establishing that the macroeconomic system may be locally unstable, we then turn to

examining the nature of the implied dynamics. This can be done by looking at how the system,

with its stochastic elements turned off, evolves when it starts away from the steady state. If the

steady state is unique and locally unstable, the system will not converge to a point.4 Instead, in such

a case there are three possible outcomes. One is that the system is globally unstable; that is, that

the system will explode outward until it hits the economy’s underlying capacity or non-negativity

constraints. This is very unlikely to be the case for labor market variables, since it would imply for

example that we should see the unemployment rate approaching either 100% or 0%. This leaves two

remaining possibilities, both involving endogenous fluctuations. The first of these is that the system

2 In the 1980s, following Blanchard and Summers [1986], a branch of the literature explored the case of an exact
unit root in unemployment series as an indication of hysteresis. However, in practice, estimations gave persistent but
stable dynamics, as pointed out by Blanchard and Summers [1986]: “We shall instead use ‘hysteresis’ more loosely
to refer to the case where the degree of dependence on the past is very high, where the sum of coefficients is close but
not necessarily equal to 1.” (footnote 1, page 17).

3 A reader mainly interested in the theoretical rationale for local instability in macroeconomic models may want
to consult Beaudry, Galizia, and Portier [2015b].

4 We discuss in section 2.4 the possibility of multiple steady states and its implications.
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may converge to a limit cycle; that is, the system settles into a recurrent pattern of booms and busts.

The second possibility is that the system exhibits chaotic dynamics; that is, the system exhibits

seemingly random non-recurrent fluctuations (despite being fully deterministic) and is sensitive to

initial conditions.5 As we shall show, when we find that the system exhibits local instability, we

generally find that there is a unique steady state and that the (non-stochastic) dynamics converge to

a limit cycle. In this sense, our results suggest that a significant part of macroeconomic fluctuations

may reflect forces that create endogenous boom-and-bust phenomena. Further, we find no evidence

of chaotic behavior; that is, we do not find evidence that the deterministic part of the system exhibits

sensitivity to initial conditions, a property that would render forecasting particularly difficult.

In the last section of the paper we discuss why our findings may be relevant for policy. In

particular, we explore how the effects of stabilization policy may change in the presence of local

instability and limit cycles. For example, we show that reducing the impact of shocks on the

economy may not always help stabilize the system in such cases, and in particular it may only

change the frequency of fluctuations, without necessarily decreasing their overall amplitude.

2 A Framework for Exploring Local Stability and Endoge-

nous Cycles

In order to discuss the issue of local stability, it is helpful to focus on a variable that reflects cyclical

fluctuations but that does not exhibit secular growth. Simple examples in macroeconomics are some

labor market variables, such as the unemployment rate. Let us denote such a variable, in deviation

from its mean, by xt. One generally views xt as being locally stable if there are endogenous forces

present that tend to push it back towards its steady state when slightly perturbed. Suppose we

believe that the process for xt is approximately linear near its steady state. Then one may explore

the local stability properties for x by first estimating an ARMA model for x, as given by

xt = Ã(L)xt−1 +B(L)εt, (1)

5 A deterministic dynamic system is considered sensitive to initial conditions when arbitrarily small differences
in initial conditions can lead to significant differences in outcomes over time. In such a case, forecasting long-run
outcomes is considered problematic.
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where Ã(L) and B(L) are polynomials in the lag operator and where εt is an i.i.d. process.6 Let us

denote by A the companion matrix associated with Ã(L).7 If we find that the largest eigenvalue of

A is less than 1,8 then the steady state is stable. However, even if we believe that this system may

be close to linear near the steady state, and that the variance of ε may be small, such an approach

can provide a misleading answer regarding whether the steady state is locally stable or unstable.

This can be shown with the following example.

Suppose the data-generating process (DGP) is actually

xt = Ã(L)xt−1 + F (xt−1) + εt, (2)

where F (·) is a nonlinear function with F (0) = F ′(0) = 0, which would be the case for example if

F (·) is a polynomial function with no constant or linear terms. In this case, whether the system

is locally stable at the zero steady state depends only on the eigenvalues of the companion matrix

A, and not on the function F (·). However, this does not necessarily mean that one can disregard

F (xt−1) in the estimation of (2). If the eigenvalues of A are all less than 1, and if the variance of ε

is small, then omitting F (xt−1) in the estimation of (2) is unlikely to alter any conclusions drawn

about the local stability of the system. However, if the largest eigenvalue of A is greater than 1,

then omitting F (xt−1) can easily lead one to conclude that the system is locally stable when it is

in fact locally unstable.9 To see this most clearly, consider the situation where Ã(L) = −α and

F (xt−1) = βx3t−1, with α, β > 0. Since the covariance between xt−1 and x3t−1 is positive but these

terms enter (2) with opposite signs, omitting x3t−1 from the econometric specification will tend to

bias the estimate of α towards zero. If the system is locally unstable (α > 1), but β is large enough

relative to α− 1,10 then one would nonetheless incorrectly infer that the system was locally stable.

6 For ease of exposition, we consider here processes without a constant term, which amounts to assuming that
the steady state of the process is at zero. In our empirical exercise below, we relax this assumption.

7 If Ã(L) = a1 + a2L+ · · ·+ anL
n−1, then we define the associated n× n companion matrix as follows: the first

row is given by [a1, a2, . . . , an], the lower-left (n− 1)× (n− 1) block is given by In−1, and the remaining entries are
zero.

8 Throughout this paper, for the sake of brevity the term “largest eigenvalue” will be used to refer to the eigenvalue
that has the largest modulus, and when we say that an eigenvalue is greater (less) than 1, unless otherwise indicated
we mean that its modulus is greater (less) than 1.

9 Fundamentally, if the largest eigenvalue of A is greater than 1, then the system will tend to move away from
the steady state (even if the variance of ε is very small), which causes higher-order terms to become more relevant
in the DGP. It is for precisely this reason that using an econometric specification containing only first-order terms is
more likely to yield misleading results in such a case than in the case where the largest eigenvalue of A is less than 1.

10 In particular, if β >
E[x2

t−1]
E[x4

t−1]
(α− 1).
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Note also in this case that the closer α is to 1, the more likely it is that even a small value of β will

be enough to arrive at the wrong conclusion about the stability of the system.

We have explored the behavior of such biases in various model specifications using Monte Carlo

methods. A typical example is the following. We simulated 5,000 1,000-period samples of the DGP

xt = αxt−1 − 0.6xt−2 − 0.3xt−3 − 0.01x3t−1 + .25εt, (3)

where εt is i.i.d. N (0, 1), and where α takes values in [0.5, 1.5]. For this DGP, local stability

depends on whether |λ|max is greater or smaller than 1, where |λ|max is the maximum modulus of

the eigenvalues of the companion matrix to Ã(L) = α − 0.6L − 0.3L2. When α ∈ [0.5, 1.5], this

process implies that |λ|max ∈ [0.94, 1.4]. When |λ|max ∈ [0.94, 1), the steady state x = 0 is locally

(and globally) stable, while when |λ|max > 1 it is locally unstable. In this latter case, the DGP

is such that, in the absence of any shocks, xt would be attracted towards a limit cycle (as long

as x0 6= 0). Figure 1 plots, as a function of the DGP |λ|max (which is in turn a function of α),

the average estimated |λ|max for both the well-specified model and a mis-specified model in which

the nonlinear term is dropped. The first thing to notice is that the estimate of |λ|max for the well-

specified model is unbiased, as indicated by the fact that it lies directly on the 45◦ line. Next, note

that the difference between the estimated values of |λ|max for the well-specified and mis-specified

models provides an indication of the importance of including the nonlinear term. As one can see

in the Figure, the bias in estimating the mis-specified model is very small when |λ|max < 1 in the

DGP. Thus, in this case, whether or not one includes the nonlinear term is virtually irrelevant for

determining whether the steady state is locally stable. However, the same degree of nonlinearity

becomes much more important when the |λ|max in the DGP becomes greater than 1, as evidenced by

the fact that the mis-specified model continues to indicate that the zero steady state is stable (i.e.,

|λ|max < 1 for this model) when it is in fact locally unstable in the DGP. One inference that can be

drawn from this exercise is that, when estimates from a linear model yield a maximum eigenvalue

that is close to 1 in modulus, this may be an indication that omitting nonlinear terms has made the

steady state appear to be locally stable when in fact it is not. Moreover, the degree of nonlinearity

in the DGP may be very modest, but may nevertheless be important for assessing local stability.

We return to this issue below in the context of our empirical results.

The above discussion suggests a simple protocol for exploring local stability. One can start by
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Figure 1: Potential Pitfall in Assessing Local Stability When The DGP is Nonlinear
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Notes: For each of 100 values of α evenly distributed in the interval [0.5, 1.5], we simulated 5,000
times a 1,000-period sample of the DGP (3). From the resulting simulated data, we estimated
by OLS either the well-specified equation (3) or a mis-specified equation that omits the cubic
term in (3). For each model and each α, we then computed the average maximum modulus of
the eigenvalues of the companion matrix to Ã(L) = α − 0.6L − 0.3L2, which we denote |λ|max.
Figure plots, as a function of the DGP |λ|max, the average estimated |λ|max for the well- and
mis-specified models.
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estimating a linear model for the variable of interest and examine its local stability properties. Then

one can add nonlinear terms (e.g., higher-order polynomial terms) to the specification, estimate it,

and check the local stability properties of the resulting nonlinear model. If the addition of the

nonlinear terms causes the largest eigenvalue of the linear approximation of the system to go from

below 1 to above 1, this is an indication that the system may in fact be locally unstable. This is

the procedure we will follow. In following such a procedure, it is generally important to include in

the nonlinear specification terms that are at least of order three, since such terms are more likely

to capture distant forces that may favor stability and whose omission would be more likely to bias

in favor of inferring local stability.

2.1 How to Interpret Local Instability

A common property of most modern macro models is that fluctuations reflect the effects of ex-

ogenous shocks around a stable steady state. Macroeconomic models with unstable steady states

are more of a rarity. While it is true that a Walrasian equilibrium model is unlikely to have an

unstable steady state, models with strategic complementarities across agents can easily give rise

to such configurations, even when the complementarities are not large enough to generate multiple

equilibria. To see this, consider the following extremely simple environment describing the determi-

nation of an aggregate outcome. We have a collection of n agents indexed by i who make a decision

xit at each date t, with the average outcome being xt = n−1
∑

i xit. Suppose that in the absence

of any interactions across agents, their actions could be described by a stable decision rule of the

form xit = Ã(L)xit−1 + εt, where the largest eigenvalue of A (where A is the companion matrix to

Ã(L) as defined above) is less than one. In this case, the dynamics for xt are given by the stable

system xt = Ã(L)xt−1 + εt. Now suppose we modify this environment slightly to allow for strategic

complements across agents, such that the decision rule of agent i now includes a term that reflects

their beliefs about the average behavior of others. In particular, suppose

xit = Ã(L)xit−1 + γEit (xt) + εt, 0 < γ < 1

where Eit (xt) reflects agent i’s expectation of others’ behavior,11 and the parameter γ governs the

degree of strategic complementarity. The dynamics of xit now reflect the effects of both the stable

11 We assume for simplicity that n is large enough that agents ignore the effect of their own choice xi on x.
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individual-level behavior, captured by Ã(L), and the strategic complementarities across agents,

captured by having 0 < γ < 1. Assuming a rational expectations, symmetric Nash equilibrium

outcome, the dynamics for xt are then given by

xt =
Ã(L)

1− γ
xt−1 + εt.

What are the stability properties of xt in this case? If γ is sufficient small, then xt will remain

stable. However, if γ is sufficiently large (while remaining below 1), then one may verify that the

largest eigenvalue of the companion matrix for Ã(L)/(1 − γ) will be greater than 1, in which case

the system will be unstable. Note also that if the largest eigenvalue of A is below but close to 1,

then only a very small degree of strategic complementarity will be enough to produce instability in

the system.

The above example illustrates that in environments where agents interact, and where these

interactions take the form of strategic complementarities, then the appearance of a non-stable

steady state can arise quite easily. This gives rise to three possibilities: (i) the economy has more

than one steady state and one or more of these other steady states is an attractor, (ii) the economy

has more than one steady state and all are unstable, or (iii) the economy has only one steady

state and therefore the economy cannot converge to a steady state. While we explore all three

possibilities in our empirical work, we show that the data favor the third one, so let us focus on this

possibility here. If the economy has only one steady state and it is unstable, what will the dynamics

of the system look like? If the system is globally linear, then the economy must necessarily explode.

However, it is unlikely that the assumption of linearity, which may be appropriate near the steady

state, remains so as one moves far away from the steady state. For example, complementarity

between individuals’ actions, which may be present near the steady state, is likely to give way

to forces of strategic substitutability when one moves far away from the steady state. This is

likely to arise since, if the economy is on an exploding path, eventually resource or non-negativity

constraints will become binding. Hence, when one considers global behavior in such environments,

it is necessary to recognize that some countervailing forces are likely to appear and stop the system

from exploding. Such alternative forces will be manifested as some sort of nonlinearity. If this is

the case, then the local instability of the steady state will create dynamics that endogenously favor

economic fluctuations, as the system will neither explode nor converge to its only steady state. This
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outcome can take the form of a limit cycle, wherein in the absence of shocks the economy would

undergo a regular and predictable boom-and-bust pattern. Alternatively, it can produce chaotic

behavior, in which the economy will fluctuate in an irregular and seemingly unpredictable fashion

even in the absence of shocks, and in which the deterministic dynamics would exhibit sensitivity

to initial conditions, making forecasting very difficult. Note that, while chaos is an interesting

theoretical possibility, as documented below and in contrast to the limit-cycle case we do not find

any evidence to suggest that it may be empirically relevant.

Our goal in this paper will be to examine the time series behavior of several cyclical indicators

of macroeconomic activity while allowing for nonlinearities. We will examine (i) whether these

systems exhibit unique or multiple steady states, (ii) whether the implied steady states are locally

stable, and (iii) if the dynamics exhibit limit cycles or chaotic behavior. In principle, the empirical

exercise we perform is straightforward. We begin by estimating univariate processes allowing for

nonlinear forces. We then examine whether the implied dynamics are stable or explosive near the

steady state(s) by looking at the root structure of the local linear approximation. Finally, we

examine the behavior of the variable if we start it away from the steady state, while shutting down

the effects of any stochastic terms. In particular, if we find that a variable exhibits a unique steady

state and local instability, we want to examine whether it then converges to cyclical behavior. The

main difficulty with this procedure is determining the class of nonlinear models to consider, as

nonlinearities can take on many forms.12

2.2 Baseline Univariate Model

Our approach to exploring local stability and possible endogenous cyclical behavior will be to

estimate univariate models of the form

xt = a0 + Ã(L)xt−1 + F (xt−1, xt−2, . . .) + εt, (4)

12 Since we will be examining behavior within a limited class of nonlinear models, one must be careful about which
inferences can be made. For example, if we do not find evidence of local instability in this class, this does not imply
that the macroeconomic environment is necessarily stable. However, if we do find that local instability and limit
cycles appear in this limited class, it will provide some reason to question the consensus view that macroeconomic
fluctuations reflect mainly the effects of shocks within an otherwise stable system.
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where xt is a cyclical variable of interest, and F (·) is a multivariate polynomial function with no

constant or linear terms.13 In general we would like to allow all the lags of x that appear in

Ã(L)xt−1 to potentially enter nonlinearly through F (·). As we have discussed, we also wish to allow

F to be of at least order three in order to avoid potentially important biases in the estimation

of Ã(L). When F (·) is of minimum order three, however, the number of terms it contains grows

very fast with the number of lags of x. For example, if F is a third-order polynomial in three

lags of x, then with no further restrictions the resulting regression will feature sixteen nonlinear

terms, while adding a fourth lag would add another fifteen terms on top of this, and so on. Since

we would like to allow more distant lags to enter the regression without simultaneously having an

explosion of coefficients to estimate, we impose the following two restrictions: (a) F is a polynomial

of order three, and (b) lags of x beyond the second enter (4) only through an accumulation term

Xt−1 ≡ δ
∑∞

j=0(1− δ)jxt−1−j. Under these restrictions, we can equivalently write (4) as

xt = a0 + a1xt−1 + a2xt−2 + a3Xt + F (xt−1, xt−2, Xt−1) + εt (5)

where F (·) is a multivariate polynomial containing second- and third-order terms in its arguments.14

There are two important things to note about the econometric specification (5). First, it embeds

the standard AR(2) process, which is known to be able to capture well many of the dynamics of

macroeconomic variables. Second, it allows for more distant lags to play a role (through Xt−1)

without requiring the estimation of too many extra parameters. We should emphasize that our

inclusion of an accumulation term of this form is motivated by the class of models presented in

Beaudry, Galizia, and Portier [2015b] where the emergence of limit cycles is shown to be a possibility.

See Appendix A for more details.

2.2.1 Handling Low-Frequency Movements

The specification we laid out in (5) is hopefully a sufficiently flexible way to allow us to offer new

insight regarding the stability and cyclical properties of major macro aggregates. One remaining

question is how to treat very low-frequency movements in the variable xt. It is well known that

most macroeconomic aggregates (even labor market variables) exhibit important low-frequency

13 Even if the cyclical variables we consider generally have a zero mean, we nevertheless allow for a non-zero
intercept in our baseline specifications. Results are robust to omitting the intercept.

14 Note that the F in (4) and the F in (5) are not technically the same functions.

10



movements that are not generally thought to be related to the business cycle. For example, a

variable such as total hours worked per capita, which according to many macro models should be

stationary, often exhibits important low-frequency movements that are most often attributed to

demographics and social change. We would like to remove such movements from our data, as they

are likely to confound the cyclical properties we are interested in. In particular, in what follows we

will interpret the framework we laid out above as modeling the cyclical element of a cyclical-trend

unobserved component model. That is, we want to interpret the observed data as having been

generated by a process of the form

xOt = xt + xTt ,

where xOt is the observed variable, xt is the unobserved cyclical component of interest, xTt is a latent

low-frequency trend, xt and xTt are orthogonal series, and the process for xTt can be written

xTt =

∫ ω

−ω

[
a (ω) cos (ωt) + b (ω) sin (ωt)

]
dω, ω ≤ π. (6)

Here, a (ω) and b (ω) together determine the phase and amplitude associated with trend fluctuations

of frequency ω, and ω is the maximum frequency associated with trend fluctuations.

Within this framework, in order to implement our estimation of an equation such as (5) on the

cyclical component of an observed macroeconomic aggregate xOt , it is necessary for us to take a

stance on how to remove any low-frequency movements in the data that we believe are unrelated

to business cycle behavior; i.e., on how to remove xTt . In most of our exploration, we will do this

simply using a high-pass filter that removes fluctuations with periods longer than 20 years. With

quarterly data, this corresponds to setting ω = 2π/80 in equation (6), and making the additional

identifying assumption that, not only are trend fluctuations made up entirely of frequencies below

ω (as imposed by (6)), but these low frequencies are only associated with the trend component;

that is, we also assume that the cyclical component xt is associated only with frequencies above ω.15

We will include in our analysis a Monte Carlo evaluation of the potential biases in this approach

to detect local instability and limit cycles in the extracted cyclical component. For robustness, we

will also report results obtained using other detrending methods.

15 This identification assumption is quite strong, but allows for a simple two-step approach to the data: first
detrend, then estimate. We leave for future research the exploration of decomposition methods that do not require
this assumption.
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2.3 Three Embedded Models

Expanding (5), we get the following expression for the evolution of xt, which we refer to as the

“Full” model:

xt = β0 + βx xt−1 + βx′ xt−2 + βX Xt−1

+ βx2 x
2
t−1 + βx′2 x

2
t−2 + βX2 X2

t−1

+ βxx′ xt−1xt−2 + βxX xt−1Xt−1 + βx′X xt−2Xt−1

+ βx3 x
3
t−1 + βx′3 x

3
t−2 + βX3 X3

t−1

+ βx2x′ x
2
t−1xt−2 + βx2X x2t−1Xt−1

+ βx′2X x2t−2Xt−1 + βxx′2 xt−1x
2
t−2 + βxX2 xt−1X

2
t−1 + βx′X2 xt−2X

2
t−1

+ βxx′X xt−1xt−2Xt−1 + εt.

(7)

This Full model (7) allows for a rich nonlinear departure from the linear model. However, the

drawback of such a specification is that it involves twenty parameters, making some properties hard

to illustrate. For this reason, we will consider at the other extreme a very parsimonious version of

(5) which consists of the inclusion of only one nonlinear term. We choose this one non-linear term

to be a cubic term in xt−1. This choice, while somewhat arbitrary, is made for two reasons. First,

from an intuitive standpoint, including odd-order nonlinear terms—of which the third is the lowest

order—allows for a symmetric treatment of large positive and negative deviations from the steady

state. Second, if there is only to be a single non-linear term, having that term be solely in xt−1

seems to us to be the simplest choice. Our “Minimal” model is therefore given by

xt = β0 + βx xt−1 + βx′ xt−2 + βX Xt−1 + βx3x
3
t−1 + εt. (8)

As we shall see, we get very similar results based on either the minimal model or the full model,

but the minimal model allows for simpler illustrations.

Finally, we will also consider an “Intermediate” model that lies between these two extremes.

One possibility in order to find the best intermediate specification is, for each variable under study,

to start from the Full model and sequentially remove insignificant variables. As this procedure is

somewhat arbitrary, we instead choose as our intermediate model the case where we keep most

third-order terms from the full model, while eliminating all second-order terms. This has the

feature of significantly reducing the number of parameters, while still allowing for relatively rich
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nonlinearities. In particular, of the seven third-order terms in (7), we keep the three cubic terms

and the two cross-terms involving xt−1 and Xt−1, so that our Intermediate model model becomes

xt = β0 + βx xt−1 + βx′ xt−2 + βX Xt−1

+ βx3 x
3
t−1 + βx′3 x

3
t−2 + βX3 X3

t−1

+ βx2X x2t−1Xt−1 + βxX2 xt−1X
2
t−1 + εt.

(9)

Our three models—Full, Intermediate, and Minimal—together offer a tractable nonlinear framework

for examining whether certain macroeconomic variables may exhibit local instability and limit

cycles. We will also compare the behavior of these nonlinear models with two specifications that

do not feature any nonlinear terms: the “Linear” model, given by

xt = β0 + βx xt−1 + βx′ xt−2 + βX Xt−1 + εt, (10)

and a simple AR(2) model,

xt = β0 + βx xt−1 + βx′ xt−2 + εt. (11)

2.4 Estimation with Total Hours

Data Treatment and Estimation Results

The motivation we used to derive our reduced-form model is one based on a cyclical indicator, such

as hours worked per capita. Accordingly, the first measure we examine is the (log of) BLS total

hours worked, deflated by total population. The mechanisms behind our motivating model were not

meant to explain low-frequency fluctuations such as those related to demographic and sociological

change (e.g. aging, female labor market participation, etc.). As can be seen in panel (a) of Figure

2, total hours (grey line) has exhibited important low-frequency movements over the last 50 years.

For this reason, we begin by filtering the data in order to remove these movements. We do this

by using a (linear) high-pass filter that retains only fluctuations associated with periods less than

20 years.16 The trend (black line) and its filtered component are displayed in panels (a) and (b),

respectively, of Figure 2.

Once we have a series for x = h (filtered hours), we then need to construct the accumulated hours

series analogous to Xt to above, denoted Ht. To construct this series, we truncate the accumulation

16 We discuss the robustness of our result to the filter below. The quarterly series is filtered (80-quarter high-pass
filter) over the sample 1948Q1-2015Q2.
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at N quarters, so that Ht = δ
∑N−1

j=0 (1− δ)jht−j. We set N = 40 so that, for example, observations

of h from 1950Q2 to 1960Q1 are used to compute H1960Q1. We assume for now that δ = 0.05. Later

we show that our results are robust to different values of δ.

Figure 2: Trend and Cycle (High-pass filter, 80 quarters), Total Hours
(a) Level and Trend (b) Cyclical Component
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Notes: Total hours are measured as the log of BLS total economy hours worked, deflated by total
population. The trend of that series is obtained by removing from the level series its filtered
component, where the filter is an 80-quarter high-pass filter, over the sample 1948Q1-2015Q2.
The cyclical component is expressed in percentage deviation from the level series.

For each of our two linear and three nonlinear models, OLS parameter estimates obtained using

our total hours series are displayed in Table 1, with t-statistics in parentheses. One can verify that

in the nonlinear models there is always at least one significant nonlinear term. More informative are

the Wald tests (see Table 2) that compare the fit of the different models. For example, when testing

the AR(2) model against the Full model, we test the joint nullity of all the coefficients except βh

and βh′ (the coefficients on ht−1 and ht−2, respectively) in the Full model. The first row of Table 2

shows that we reject the simple linear AR(2) model against all alternatives. The second row reaches

the same conclusion for the Linear model. The third row shows that, at a 1% level of confidence,

the Minimal model is not rejected against any of the nonlinear alternatives. We first discuss the

results obtained with this Minimal model, since it is easiest to understand and illustrate. We will

show later that results are mostly the same with the Intermediate and Full models.
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Table 1: Estimates of Various Models, Total Hours

Variable Value
AR(2) Linear Minimal Intermediate Full

Constant -0.00 -0.01 -0.02 -0.01 -0.07
(-0.02) (-0.24) (-0.53) (-0.29) (-0.85)

ht−1 1.42 1.31 1.39 1.28 1.49
(23.75) (20.80) (19.73) (12.70) (10.02)

h2t−1 - - - - -0.10
(-) (-) (-) (-) (-1.51)

h3t−1 - - -0.01 -3e-03 -0.09
(-) (-) (-2.39) (-0.76) (-1.85)

ht−2 -0.48 -0.34 -0.34 -0.24 -0.44
(-8.05) (-4.98) (-2.43) (-5.12) (-2.75)

h2t−2 - - - - -0.06
(-) (-) (-) (-) (-0.76)

h3t−2 - - - -4e-03 0.11
(-) (-) (-) (-0.83) (1.38)

Ht−1 - -0.25 -0.27 -0.03 0.23
(-) (-4.11) (-4.38) (-0.20) (1.09)

H2
t−1 - - - - 0.25

(-) (-) (-) (-) (2.03)

H3
t−1 - - - -0.27 -0.40

(-) (-) (-) (-2.45) (-2.10)

ht−1ht−2 - - - - 0.17
(-) (-) (-) (-) (1.15)

ht−1Ht−1 - - - - 0.25
(-) (-) (-) (-) (1.89)

ht−2Ht−1 - - - - -0.28
(-) (-) (-) (-) (-1.88)

h2t−1ht−2 - - - - 0.27
(-) (-) (-) (-) (1.57)

h2t−1Ht−1 - - - 6e-03 -0.32
(-) (-) (-) (0.42) (-2.08)

h2t−2Ht−1 - - - - -0.30
(-) (-) (-) (-) (-1.46)

ht−1h
2
t−2 - - - - -0.48

(-) (-) (-) (-) (-2.40)

ht−1H
2
t−1 - - - 0.04 -0.37

(-) (-) (-) (0.87) (-1.64)

ht−2H
2
t−1 - - - - 0.47

(-) (-) (-) (-) (1.79)

ht−1ht−2Ht−1 - - - - 0.77
(-) (-) (-) (-) (2.25)

Notes: The total hours series has been filtered with an 80-quarter high-pass filter over the sample
1948Q1-2015Q2. Estimation is then done over the sample 1960Q1:2014Q4.
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Table 2: Wald Test for the Different Models, Total Hours

H1

Linear Minimal Intermediate Full
H0

AR(2) 0.006 % 0.002 % 0.004 % 0.003%
Linear - 1.788 % 1.544 % 0.343%
Minimal - - 7.63 % 1.20%
Intermediate - - - 2.81%

Notes: The four models correspond to equations (11), (10), (8), (9) and (7). Wald test corre-
sponds to the test of joint nullity of the coefficients of those variables that are in H1 and not in
H0.

Model Selection Using LASSO

An alternative way of selecting the model specification is to use statistical methods developed in

the data-mining literature. One particular method, the LASSO (Least Absolute Shrinkage and

Selection Operator), allows for both model selection and shrinkage. The method, proposed by

Tibshirani [1996], consists of minimizing the residual sum of squares of the Full model subject

to the restriction that the sum of the absolute values of the coefficients be less than a constant.

Because of the nature of this constraint, it tends to produce some coefficients that are exactly zero,

and hence act as a model-selection device. The value of the constant in the constraint is chosen to

minimize the Akaike Information Criterion. The estimated equation is given by

xt = − 0.07 + 1.3 xt−1 − 0.23 xt−2 − 0.03 x2t−1 + 0.21 X2
t−1

+ 0.04 xt−1xt−2 + 0.29 xt−1Xt−1 − 0.30 xt−2Xt−1

− 0.01 x3t−1 − 0.21 X3
t−1 − 0.06 x2t−2Xt−1 + 0.03 xt−1X

2
t−1

+ 0.05 xt−1xt−2Xt−1 + εt.

(12)

One can check that only 12 of the 18 variables of the Full model are present in (12), the others being

assigned a coefficient of zero. We will explore the robustness of the results by comparing results

obtained with Minimal, Intermediate, Full and LASSO models.
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Table 3: Some Statistics for the Different Models, Total Hours

AR(2) Linear Minimal Intermediate Full

R2 0.94 0.94 0.94 0.94 0.95
Adj. R2 0.94 0.94 0.94 0.94 0.95
DW 2.22 2.09 2.12 2.09 2.09
Max eig. modulus 0.86 0.96 1.01 1.01 {1.02,1.2,1.03}

Notes: The five models correspond to equations (11), (10), (8), (9) and (7). Adj. R2 is the
adjusted R2. DW stands for the Durbin-Watson statistics for the test of autocorrelation of the
residuals. DW = 2 corresponds to no autocorrelation. The last line gives the value of the
maximum eigenvalue for the local dynamics of each model in the neighborhood of the existing
steady states.

Local Instability and Limit Cycles

For the sake of clarity, let us write down the estimated AR(2), Linear, and Minimal models after

shutting down the stochastic component:
ht = −0.00 + 1.42 ht−1 − 0.48 ht−2,
ht = −0.01 + 1.31 ht−1 − 0.34 ht−2 − 0.25 Ht−1,
ht = −0.02 + 1.39 ht−1 − 0.34 ht−2 − 0.27 Ht−1 − 0.01 h3t−1.

Note that, even though our Minimal model is nonlinear, it is easy to check that it has only one

steady state at h = −0.09. In order to examine the local stability of each of these three equations,

we compute the largest eigenvalue of each system when linearized around its steady state. For the

Minimal model, this linear approximation is simply17

ht = 1.39 ht−1 − 0.34 ht−2 − 0.27 Ht−1.

Maximum eigenvalues are displayed in Table 3.

For the AR(2) model, the maximum eigenvalue is 0.86.18 For the Linear model, it is higher

(0.96), but still less than 1. The steady states implied by the point estimates of the AR(2) and

Linear models therefore indicate local stability, which is not surprising. For the nonlinear Minimal

model, on the other hand, the maximum eigenvalue is 1.01, so that the steady state is locally

17 Note that the coefficient on ht−1 in this approximation is in fact different from the one reported above, though
the two are equal to two decimal places.

18 Note that the maximum eigenvalue is not the auto-correlation coefficient because the process is an AR(2) not
an AR(1).
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unstable. This may seem to conflict with the visual impression given by the data (Figure 2, panel

(b)) that the economy does not explode. In fact, it is precisely the third-order term h3t−1 that

prevents explosion, since it enters negatively in the estimated equation. The steady state is thus

locally unstable, but as h moves aways from the steady state, the term h3 acts as a centripetal force

that pushes the economy back towards the steady state if it strays too far. As a result, the economy

will oscillate without explosion and without convergence to a fixed point. This can be seen by using

the Minimal model to construct a deterministic forecasted path for h, conditional on information

at date T0. Formally, this deterministic forecast is computed as:

h̃T0 = hT0 ,

h̃T0−1 = hT0−1,

H̃T0−1 = HT0−1,

h̃t = β̂0 + β̂h h̃t−1 + β̂h′ h̃t−2 + β̂H H̃t−1 + β̂h3 h̃
3
t−1 ∀ t > T0,

H̃t = (1− δ)H̃t−1 + δh̃t ∀ t ≥ T0.

We forecast h over 1000 periods with the estimated model. We start (arbitrarily) from the first

trough of the sample (i.e., 1961Q3) and plot the forecasted path in the model state space (ht, ht−1, Ht).

As we can see in panel (a) of Figure 3, the trajectory is quickly attracted to a limit cycle. Figure 4

shows that this convergence holds more generally: starting from two initial conditions—one inside

the limit cycle and one outside—the system converges to the limit cycle, suggesting that it is indeed

attractive. Note that, as h is highly autocorrelated, there is little loss of information if one projects

the limit cycle onto the (ht, Ht) plane (panel (b) of Figure 3) instead, and we will often use that

representation of the limit cycle in what follows.

It is quite interesting that such a simple specification, which was motivated from our previous

theoretical analysis (see Beaudry, Galizia, and Portier [2015b]), displays a limit cycle. We will

document later using Monte Carlo methods that this result is unlikely to be an artifact of our data

treatment. Before exploring further the properties of the Minimal model, it is useful to show that

we obtain similar results with the other nonlinear models. Table 3 shows that the largest eigenvalue

is also greater than 1 for the Intermediate and Full models. As shown in Figure 5, these two models

(as well as the LASSO model) also generate limit cycles, with all specifications producing cycles of

similar amplitudes for total hours.19

19 Note that, except under very special circumstances that are unlikely to be encountered in our case, existence
of and convergence to a limit cycle cannot be proven mathematically. As a result, throughout this paper we rely on
numerical simulations to check for these properties.
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Figure 3: The Limit Cycle in the Minimal Model, Total Hours

(a) Full state space (b) Projection onto (ht, Ht)
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Notes: This corresponds to the deterministic simulation of the Minimal model (8), starting in
1961Q3. The model has been estimated over 1960-2014 using 80-quarter high-pass-filtered total
hours.

Let us now focus on the Minimal model and look at the size and frequency of the limit cycle.

As illustrated in Figure 6, the deterministic forecast for the Minimal model displays a cycle whose

frequency and amplitude is close to the ones observed in the data. Figure 6 also displays 95%

confidence bands around the deterministic forecast, and shows that after 60 quarters, the confidence

bands have the same amplitude as the deterministic cycle. Panel (a) of Figure 7 compares the

deterministic forecast of the Minimal model to the AR(2) and linear model, while panel (b) compares

the deterministic forecast of the Intermediate, Full and LASSO models.

Other Labor Market Variables

We now explore the robustness of the results we obtained using total hours to using other la-

bor market variables instead. In particular, we examine the behavior implied by estimating our

Minimal model using, sequentially, non-farm business hours, the job finding rate and the rate of

unemployment. For each of these variables, we report in Figure 8 the deterministic forecast path in

(xt, Xt)-space, as well as xt over time, where x is the variable under consideration and X its accumu-

lated level (defined as before by Xt ≡ δ
∑∞

i=0(1−δ)ixt−i). Panels (a) and (b) of Figure 8 correspond

to the forecasted paths for non-farm business hours, panels (c) and (d) are those associated with
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Figure 4: Convergence to the Limit Cycle in the Minimal Model, Total Hours
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Notes: This corresponds to the deterministic simulation of the Minimal model (8), starting
from two points arbitrarily chosen inside and outside the limit cycle. Those two points are,
respectively, (h0, h−1, H−1) = (0.1, 0.1, 0.1) and (h0, h−1, H−1) = (6, 4, 10). The models have
been estimated over 1960-2014 using 80-quarter high-pass-filtered total hours. For graphical
reasons, the first 13 points of each path are not shown.
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Figure 5: The Limit Cycle in the Four Models In (ht, Ht)-space, Total Hours
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Notes: This corresponds to the deterministic simulation of the Minimal (8), Intermediate (9),
LASSO (12) and Full (7) models, starting (arbitrarily) in 1961Q3. The model has been estimated
over 1960-2014 using 80-quarter high-pass-filtered total hours.
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Figure 6: Forecasted Path as of 1961Q3 with the Minimal Model, Total Hours
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Notes: The dark grey line labeled “Forecasted” is the deterministic simulation of the Minimal (8)
model, starting (arbitrarily) in 1961Q3, and the light grey line represents observed filtered hours.
The grey area represents the 95% confidence band for the deterministic forecast, as obtained
from 10,000 Monte Carlo simulations using draws from the posterior distribution over the model
parameters.
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Figure 7: The Limit Cycle in the Four Models, Time series of ht, Total Hours
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Notes: This corresponds to the deterministic simulation of the Minimal (8), Intermediate (9),
LASSO (12) and Full (7) models, starting (arbitrarily) in 1961Q3. The model has been estimated
over 1960-2014 using 80-quarter high-pass-filtered total hours.

the job finding rate, and finally panels (e) and (f) correspond to the rate of unemployment. In all

three cases, we start the forecast from 1961Q3. As is clear from these figures, a limit cycle appears

in all three cases, and these cycles have durations close to 9 years, with amplitudes similar to the

actual data.

How Significant Are Limit Cycles?

Up to now, we have checked for the existence of limit cycles using only the models’ point estimates.

Beyond the either/or results implied by these point estimates, it is of interest to use the sampling

variability to quantify how strongly the data support the presence of instability and limit cycles. To

do so, we derive estimated parameter distributions for the Minimal, Intermediate and Full models

using a bootstrap procedure. For each bootstrapped data set, we check for the existence of a

limit cycle, which we define as meeting the following conditions: (i) starting in the simulation

period corresponding to 1961Q3,20 the deterministic simulation of the nonlinear model estimated

on this data set converges to a limit cycle; and (ii) the Wald test rejects the linear model against

20 One could repeat the deterministic simulation starting from all dates of the sample. This would make the
convergence to a limit cycle unchanged or more frequent.
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Figure 8: The Limit Cycle in the Minimal Model, Other Labor Market Variables
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Notes: Figure plots deterministic simulation of Minimal model (8) starting in 1961Q3. Model
was estimated over 1960-2014 (-2007 for job finding rate) using 80-quarter high-pass-filtered
series of non-farm business hours, job finding rate (from [Shimer 2012]), and unemployment
rate. P and U stand for “cumulated” rates, constructed in same way as Xt above.
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Table 4: Frequency of Limit Cycles for Labor Market Variables

Minimal Intermediate Full
Total Hours 74% 73% 78%
Non Farm Bus. Hours 70% 55% 70%
Job Finding Rate 76% 69% 59%
Unemployment Rate 60% 32% 50%?

Notes: Bootstrap method used to generate 1,000 replications of the Minimal, Intermediate, and
Full model estimates for each labor market variable. For example, first cell indicates that a
limit cycle was found in 74% of replications of Minimal model. Data are always detrended with
80-quarter high-pass filter before estimation. See Appendix B for details of samples and variable
definitions. A ? indicates that in more than half of replications, simulation was explosive. In
such cases, we re-drew bootstrap innovations until we obtained 1,000 non-explosive replications.

the nonlinear one at 5%. Results are displayed in Table 4. As can be seen from the table, the

detection of limit cycles ranges mainly between 50 and 78%. This indicates that the null hypothesis

of the absence of limit cycles in the data cannot be rejected at conventional levels of significance.

Nonetheless, a person with a diffuse prior would in most cases infer that limit cycles are more likely

than not.

Next, rather than focusing on our holistic definition of a limit cycle, we consider how strong

the results are with regard specifically to the local instability that we have identified. To this end,

we have computed—for the Linear and Minimal models estimated on Total Hours—the bootstrap

distribution of the maximum eigenvalue. For the Minimal model, this eigenvalue is computed for the

linear approximation at the steady state.21 Figure 9 plots the PDF for the bootstrap distributions.

As can be seen, the distribution is almost entirely below one for the linear model. In contrast,

allowing for a single cubic term in the estimation shifts this distribution significantly to the right,

with 79% of the mass now being concentrated above 1. Again, this pattern is insufficient to reject

the null hypothesis of stability at conventional levels of significance. Nonetheless, the results do

clearly suggest that local instability is a relevant possibility.

Finally, as one further check on the strength of our results, we attempt to answer the following

question. Suppose the DGP is indeed stable and linear. Accounting for parameter uncertainty, how

likely are we to erroneously conclude that the steady state is unstable simply by allowing for nonlin-

earities in the estimation? To answer this question, for total hours we have computed a bootstrap

21 We checked that this steady state was unique in each of our bootstrap replications.
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Figure 9: Maximum Eigenvalue in the Linear and Minimal Model, Total Hours
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Notes: Figure plots the estimated distribution of maximum eigenvalue for the Linear and Min-
imal model estimated on total hours. The densities are estimated using 1,000 bootstrap repli-
cations of each model. The models have been estimated over 1960-2014 using 80-quarter high-
pass-filtered series of total hours.

distribution for the maximum eigenvalue of each nonlinear model estimated on data generated by

either the AR(2) or Linear model, where we account for uncertainty in the parameters of the latter

models. Table 5 reports instability p-values from these bootstrap distributions associated with the

actual observed maximum eigenvalues (i.e., those reported in Table 3). The results suggest that,

accounting for sampling variability, we are unlikely to see the magnitude of instability we have

observed in the data for the nonlinear models if the true DGP is one of the linear models. For

example, if the true DGP were the Linear model, we would obtain maximum eigenvalues for the

Intermediate and Full models at least as great the ones we observed in the data less than 15% of

the time, and less than 2% of the time for the Minimal model.

Multiplicity of Steady States

Since we are examining dynamics in a nonlinear framework, we need to recognize the potential for

a multiplicity of attractors in the system. First, let us note that all the estimated equations are

backward-looking, so that there is (trivially) never indeterminacy in the solution to our equations.22

22 This does not mean that micro-founded models capable of generating limit cycles never feature indeterminacy.
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Table 5: p-values for Maximum Eigenvalues When DGP Is Linear/Stable, Total Hours

Estimated model:
Minimal Intermediate Full

DGP:
AR(2) 0.08% 4.63% 9.06%
Linear 1.91% 14.13% 13.91%

Notes: In this table, the DGP is either the (stable) AR(2) or Linear model, with parameters
drawn from a bootstrapped distribution. For each of 10,000 parameter draws, a new data set was
generated (again via bootstrap), and the nonlinear models were estimated on this data, yielding
a distribution for the maximum eigenvalue for each nonlinear model when the DGP is linear
and stable. Table reports instability p-values – i.e. the probability for maximum eigenvalues of
nonlinear models estimated on actual data (see Table 3) to be larger than one in modulus .

In contrast, we do need to check for the existence of multiple steady states or multiple limit cycles

for our estimated models. Consider first the case of multiple steady states, and focus on the Minimal

model when shocks are turned off:

ht = β0 + βh ht−1 + βh′ ht−2 + βH Ht−1 + βh3h
3
t−1,

Ht = (1− δ)Ht−1 + δht.

Estimation typically gives β0 very close to zero, βh larger than one, βh′ and βH negative, and βh3

negative and small. Assume for simplicity that β0 is exactly zero, such that h = 0 is a steady state.

Non-zero steady states of the Minimal model, if they exist, are the two opposite real numbers h

and −h, with23

h =

√
1− βh − βh′ − βH

βh3
,

Restricting to the case where βh3 < 0, we have multiplicity of steady states if and only if

βh + βh′ + βH > 1. (13)

Therefore, although the model is nonlinear, it can generically be in a parameter configuration with

a unique steady state.

23 This analysis can be extended to the Intermediate model when β0 = 0. Non-zero steady states, if they exist,
are the two opposite real numbers ±h with

h =

√
1− βh − βh′ − βH

βh3 + βh′3 + βH3 + βh2H + βhH2

.
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Note that, as βH approaches zero, the condition for local instability of the zero steady state is,

βh + βh′ > 1. (14)

Thus, for βH close to zero, (13) and (14) coincide: the occurrence of limit cycles, which requires

local instability, necessarily implies multiplicity of steady states. However, when the economy has a

longer memory (i.e., βH is negative but not arbitrarily close to zero), the two conditions no longer

coincide, and in particular it is possible for the steady state to be both unique and locally unstable.

This is typically what the data will suggest in the Minimal model.

In the case of multiplicity, the question is whether the non-zero steady states are stable or

unstable when the zero steady state is unstable. Taking a first-order Taylor expansion of (8)

around h, we have the following dynamics (omitting constant terms):

ht = (βh + 3h
2
βh3︸ ︷︷ ︸

βh

) ht−1 + βh′ ht−2 + βH Ht−1. (15)

Note that the same equation holds for the local dynamics around −h. As we are looking at situations

where βh3 < 0, we will have βh < βh, such that it is possible that the two non-zero steady states

are stable when the zero steady state is unstable. In such a case, although there exists a limit cycle

in the neighborhood of zero, it would be possible to have trajectories that would start close (but

not arbitrarily close) to zero and converge to h or −h. The same argument can also be made for

the Intermediate and Full models. The occurrence of additional, attractive steady states depends

ultimately on the parameters of the model. Our findings suggest, however, that such a situation is

unlikely to be relevant. In particular, given the coefficients as estimated on total hours, the Minimal

and Intermediate models both feature unique steady states. Moreover, while there are three steady

states for the Full model (located at h = −0.77, 0.22, and 1.23), all three of these steady states

are locally unstable, which implies that the system cannot converge to a steady state in any of our

models estimated on total hours.

Note that, for the Full model, it is in principle possible that two or even all three of the steady

states could be surrounded by distinct attractive limit cycles. It is not possible to prove analytically

that this is not the case, but it can be checked numerically. Figure 10 displays (in (ht, Ht)-space)

four deterministic forecasts from the Full model: two starting near the intermediate (h = 0.22)

steady state, and one each starting near the high and low steady states. Steady states are indicated
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by stars in the figure. One observes that all trajectories apparently converge to the same closed

orbit, suggesting that the existence of multiple attractive limit cycles is unlikely.

Figure 10: Convergence to the Limit Cycle From the Neighborhood of Each of the Three Steady
States, Full Model, Total Hours
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Notes: Figure shows deterministic forecasts starting from the neighborhoods of each of the three
steady states (represented by stars). All four trajectories converge to the same limit cycle. The
models have been estimated over 1960-2014 using 80-quarter high-pass-filtered total hours.

The Power of Our Limit Cycle Detection Procedure

One may worry that our procedure, especially our detrending procedure, might generate spurious

limit cycles even if the DGP is actually locally stable, or alternatively that it may fail to detect a

limit cycle when there is indeed one. We investigate these issues here using Monte Carlo analysis.

First, we check that we do not spuriously find limit cycles when there are none present. To do so,

we first filter (logs of) total hours with an 80-quarter high-pass filter, so that

hLt = hTt + ht

where hLt stands for levels, hTt for the trend and where ht is the cyclical component. We then

estimate an AR(2) on the filtered data. This AR(2), which is the one displayed in Table 1, will
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serve as the DGP. We then simulate the estimated (stable) AR(2) to obtain an artificial cyclical

series ĥt, then add it to the actual trend series hTt to generate an artificial level series

ĥLt = hTt + ĥt

By construction, these simulated level series do not feature limit cycles. We may then apply our

limit-cycle-detection procedure to these simulated series in order to verify that it does not spuriously

detect limit cycles where there are none. That is, we treat each simulated level series in the same

way we have treated the actual level series: first filter, then estimate the Minimal, Intermediate and

Full models, then check for the existence of a limit cycle. For each model and simulation, we check

for the existence of a significant limit cycle, which we define as meeting the following conditions: (i)

starting in 1961Q3,24 the deterministic simulation of the model converges to a limit cycle; (ii) the

Wald test rejects the linear model against the nonlinear one at 5%. We perform 10,000 simulations,

and report the results in the first row of Table 6. The three models spuriously detect limit cycles

less than 5% of the time, suggesting that our procedure is highly unlikely to detect a limit cycle if

one does not exist in the DGP. The second row of Table 6 shows similar results for the case where

the DGP is the estimated Linear model instead of the AR(2).25

Next, we test for the possibility of missing a limit cycle with our procedure when it does exist

in the data. In order to do so, we take the estimated Minimal, Intermediate or Full model as the

DGP and follow the same procedure as above. The results are displayed in the bottom three rows

of Table 6, and show that limit cycles are relatively hard to detect using our procedure. Typically,

when the estimated model is well specified (meaning that it has the same form as the DGP), our

procedure detects limit cycles about half of the time.

From theses Monte Carlo simulations, we conclude that it is unlikely that we will spuriously

detect limit cycles, and that correctly detecting a limit cycle when one is present occurs at best

58% of the time.

24 One could repeat the deterministic simulation starting from all dates of the sample. This would make the
convergence to a limit cycle unchanged or more frequent.

25 When we set the threshold level to 1% in the Wald tests (instead of the estimated p-value), the test fails to
reject the (spurious) existence of a limit cycle 0.9% (resp. 1.5%) of the time for the Minimal model when the DGP
is the AR(2) model (resp. the Linear model), and 0.7% (resp. 1.3%) and 0.6% (reps. .8%) for the Intermediate and
Full models.
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Table 6: Percentage of Limit Cycle Detection in Monte-Carlo Simulations Simulated Hours

Estimated model:
Minimal Intermediate Full

DGP:
AR(2) 1.9% 2.5% 2.3%
Linear 5.8% 4.5% 3.3%
Minimal 54% 34% 20%
Intermediate 43% 51% 40%
Full 57% 43% 58%

Notes: In this table, the DGP is alternatively the estimated AR(2), Linear, Minimal, Intermedi-
ate, or Full model. The models have been estimated over 1960-2014 using 80-quarter high-pass-
filtered total hours, and are then simulated 10,000 times.

Table 7: Robustness to δ, Total Hours

Minimal Intermediate Full
δ = .001 LC (58%) - (31%) LC (89%)

δ = .01 LC (59%) - (40%) LC (85%)

δ = .1 LC (76%) LC (67%) LC (66%)

δ = .2 LC (40%) - (40%) - (40%)

Notes: In this table, we estimate the Minimal, Intermediate and Full models under various values
of δ. “LC” means that the estimated model displays a limit cycle. The number in parenthesis
indicates the fraction of the 1,000 bootstrap replications for which we found a limit cycle with the
Linear model being rejected at 5% against the nonlinear one. All the models have been estimated
over 1960-2014 using 80-quarter high-pass-filtered total hours.

Robustness

Here we briefly discuss the robustness of our main results. We maintain focus on the case where

our measure of activity is total hours per capita. We begin by examining the robustness of our

results with respect to our choice of δ in the computation of H and to our detrending procedure.

Recall that, in order to construct the cumulated series H, we need to make a choice for the value

of δ. Table 7 shows that a limit cycle is detected generically for the Minimal model, as long as δ

is not too large for the Intermediate and Full models, and as long as δ is also not too small in the

Intermediate model.

Next, Table 8 considers filters other than the 80-quarter high-pass one used so far, and also

consider the model estimated with the LASSO method. Let us first note that the high-pass filter is
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a linear filter and therefore should not spuriously introducing nonlinearities, so that in general we

should not expect to find cycles where there are none simply by choosing a particular parameter

for the filter. On the other hand, if there exists a limit cycle in the data but the filter parameter

we choose removes the frequencies associated with that cycle, our procedure would in general fail

to identify this cycle. Further, given the strong implicit restrictions imposed on the data when

estimating our three models—which are strongest in the Minimal model, and weakest in the Full

model—we should in general expect to find that our choice of filter affects our ability to identify

limit cycles even if they exist in the data, and that this sensitivity to the filter should be strongest in

the Minimal model and weakest in the Full model. The results presented in Table 8 largely support

these predictions. In particular, we report results using different high-pass filters from 100 to 50

quarters, as well as for commonly-used band-pass (6,32) and Hodrick-Prescott (λ = 1600) filters.

We also report results for when we detrend using polynomial time trends of order three, four and

five.

Three conclusions emerge from the table. First, the detrending procedures that remove only the

lowest frequencies (i.e., the 60 quarters or more high-pass filters and the polynomial time trends)

are generally associated with limit cycles, while the procedures that also remove the middle range of

frequencies (i.e., the band-pass (6,32) and Hodrick-Prescott (λ = 1600) filters) are not. Given the

considerations discussed above, this is consistent with the view that the data features a medium-

frequency limit cycle, and that two of the most commonly-used filters in the business cycle literature

remove those frequencies by design. This in turn suggests the need to focus on fluctuations that

are longer than traditionally thought to be associated with business cycles.

Second, the Minimal model is quite sensitive to the choice of filter, with no clear pattern to

this sensitivity, while the Intermediate and Full models are relatively insensitive. This is consistent

with the view that it may be the strong model restrictions underlying the Minimal model that drive

much of its observed sensitivity to the filter (as opposed to spurious patterns generated by the filter

itself). In particular, the fact that the more flexible specifications typically support the existence of

a medium-frequency limit cycle, while the very restrictive specification may or may not depending

on the filter used, is supportive of the hypothesis that a medium-frequency limit cycle is present in

the data but the Minimal model is too restrictive to detect it consistently. Finally, note that limit

cycles are at best only found 40% of the time when we do not filter the data.
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Table 8: Robustness to Detrending, Total Hours

Minimal Intermediate Full
High-pass 100 LC (58%) LC (35%) LC (72%)

High-pass 90 LC (78%) LC (72%) LC (68%)

High-pass 70 LC (80%) LC (80%) LC (80%)

High-pass 60 LC (57%) LC (51%) LC (82%)

High-pass 50 - (41%) LC (38%) - (67%)

Band-pass(6,32) - (12%) - (41%) - (37%)

Hodrick-Prescott (λ = 1600) - (28%) - (30%) - (20%)

Polynomial trend (3rd-order) - (18%) LC (29%) LC (75%)

Polynomial trend (4th-order) - (19%) LC (30%) LC (76%)

Polynomial trend (5th-order) - (53%) LC (49%) LC (76%)

No detrending - (.1%) - (21%) - (40%)

Notes: In this table, we estimate the Minimal (8), Intermediate (9) and Full (7) models using
various detrending methods. “LC” means that the estimated model displays a limit cycle. The
number in parenthesis indicates the fraction of the 1,000 bootstrap replications for which we
found a limit cycle with the Linear model being rejected at 5% against the nonlinear one. All
the models have been estimated over 1960-2014 using Total Hours.

2.5 Behavior in Other Countries

Here we extend our exploration of macroeconomic dynamics using data on the unemployment rate

in other countries.26 These results are presented in Table 9. We estimate our three models for 11

countries. As can be seen in the table, we find some evidence of limit cycles in about half of the

countries. Although this is somewhat low, interestingly this ratio is similar to the detection rate

we have found in our Monte Carlo exercise. Looking closely at each country makes it clear why we

do find limit cycles in some and not in others. As an example, let us consider Switzerland and the

Netherlands. Data and deterministic forecasts for these two countries are displayed in Figure 11.

Switzerland and the Netherlands both have marked low-frequency dynamics. In the case of

Switzerland, (Figure 11, panels (a) and (c)), there appears to have been a change of regime around

1990, there was almost zero unemployment in the 70’s and 80’s, but a 3.5% average since 1990.

Besides this low-frequency variation, what emerges from Figure 11(c) is the big recession of 1991-

1993, and the progressive recovery from 1993 to 2000. Instead of a relatively regular cycle, as we

have observed in the U.S., we see one big cycle and four smaller ones, which is a pattern that

26 See Appendix B for details about the source and time span of each of the series.
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Table 9: Limit Cycles in Other Countries

Minimal Intermediate Full
Unemployment rate :
Australia - (.7%) - (2%) - (11%)?

Austria LC (98%) - (38%) LC (76%)

Canada - (11%) - (22%) - (11%)

Denmark - (12%) LC (45%) LC (88%)

France - (3%) - (26%) LC (52%)?

Germany LC (79%) - (49%) LC (88%)

Japan - (7%) - (33%) - (50%)

Netherlands LC (62%) LC (78%) - (94)

Sweden LC (65%) - (64%) LC (66%)

Switzerland - (16%)? - (52%) - (27%)

United Kingdom - (4%) - (3%) LC (78%)

Notes: In this table, we estimate the Minimal (8), Intermediate (9) and Full (7) models, con-
sidering various labor market variables. “LC” means that the estimated model displays a limit
cycle. The number in parenthesis indicates the fraction of the 1,000 bootstrap replications for
which we found a limit cycle with the Linear model being rejected at 5% against the nonlin-
ear one. Data are always detrended with an 80-quarter high-pass filter before estimation. See
Appendix B for details of samples and variable definitions. A star (?) means indicates that in
more than half of the replications, the simulation with bootstrap innovations was explosive, so
that the pseudo-data sample could not be used for estimation. In this case, we have drawn again
bootstrap innovations until we obtained 1,000 non-explosive replications.
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Figure 11: Unemployment Dynamics in Switzerland and the Netherlands

(a) Data and Trend, Switzerland (b) Data and Trend, the Netherlands
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(c) Deterministic Forecast, Switzerland (d) Deterministic Forecast, the Netherlands
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Notes: Unemployment rate is observed over the sample 1970:Q1-2014:Q4. Unemployment rate is
measured as “Registered Unemployment Rate” for Switzerland and as “Harmonized Unemploy-
ment Rate: All Persons” for the Netherlands. The H series is constructed assuming N = 20,
so that estimation starts in 1975Q2. The trend of these series is obtained by removing from the
level series its filtered component, where the filter is an 80-quarter high-pass filter. The cyclical
component is expressed in percentage deviation from the level series. Deterministic forecasts are
done starting from 1975Q1, with the estimated AR(2) (11) and Minimal (8) models.
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cannot be easily captured by our reduced-form models. Hence, the Minimal model estimated on

this data does not exhibit a limit cycle, and the dynamics of forecasted unemployment as of 1975

are not very different from the ones obtained with an AR(2) model.27 Things are very different

for the Netherlands (Figure 11, panels (b) and (d)). The low-frequency dynamics feature a marked

increase from the early 70’s to the late 80’s, followed by a prolonged decline through to the early

2000’s. The key determinants of those trend movements are the first and second oil shocks, followed

by important labor market reforms in the 90’s. Fluctuations around this trend, however, have been

very regular—and in particular we do not observe one big cycle dwarfing the others, as was the case

for Switzerland—and thus the estimated Minimal model features a limit cycle.

2.6 Quantity Variables

Difficulties

We now turn to the estimation of our nonlinear reduced-form equation using quantity variables.

Before performing this exercise, we want to highlight the added difficulties associated with quantity

variables. To this end, consider the simple case in which output is given by yt = θt + ht, where θ is

TFP, and in which hours follows as before a process of the type

ht = a0 + a1ht−1 + a2ht−2 + a3Ht + F (ht−1, ht−2, Ht−1) + εt (16)

In such a case, the dynamic equation for output y is given by

yt = a0 + a1yt−1 + a2yt−1 + a3

∞∑
j=1

(1− δ)j−1(yt−j − θt−j) + εt

+ F

(
yt−1 − θt−1, yt−2 − θt−2,

∞∑
j=1

(1− δ)j−1(yt−j − θt−j)

)
+ θt − a1θt−1 − a2θt−2 − a3 + εt

(17)

If we had a good measure of θt, then the estimation of (17) would not be any more difficult than

our estimation of (16) using hours worked. However, in the absence of a good measure of θ, the

estimation of (17) becomes difficult. Simply using a filtered measure of yt as a representation of

yt−θt is unlikely to perform well. This can be seen in practice by running a Monte Carlo experiment

as follows. We take our estimates of the Minimal, Intermediate or Full model obtained when run on

27 A similar pattern is found using the Intermediate and Full models (not shown in the Figure).
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Table 10: Percentage of Limit Cycle Detection in Monte-Carlo Simulations, Simulated Output

Estimated model:
Minimal Intermediate Full

DGP:
Minimal 14% 13% 5%
Intermediate 12% 15% 6%
Full 12% 11% 11%

Notes: In this table, the DGP is alternatively the estimated Minimal, Intermediate, and Full
models. The models have been estimated over 1960-2014 using 80-quarter high-pass-filtered total
hours, and are then simulated 10,000 times.

the 80-quarter high-pass filtered total hours series. As shown previously, all three of these estimated

models feature a limit cycle. We then use this estimated model to create an artificial cyclical series

of hours, to which we add the log of labor productivity taken from the data. This gives us a log-level

series for artificial output. We then treat this level series in the same way we will treat the actual

level series of output: filter, estimate the Minimal, Intermediate, and Full models, then check for

the occurrence of a significant limit cycle. We perform 10,000 simulations, and report in Table

10 the percentage of simulations for which a limit cycle is (correctly) detected. The three models

hardly detect limit cycles in these simulated output series, even if by construction they contain

limit cycle forces. Detection rates are around 15% when the estimated model embeds these DGP

specifications. Despite this low detection rate, we nonetheless proceed and examine whether our

procedure detects limit cycle in the actual quantity data. As we will see, the detection rate is much

lower when using quantity variables than when using labor market variables—as could be expected

given the Monte Carlo exercise.

Estimation Results

We estimate the three models (7), (8) and (9) on output, total consumption, durable goods expen-

ditures, fixed investment, various components of investment, and the capacity utilization rate. Each

of these variables is again first detrended using an 80-quarter high-pass filter. Estimation results

are summarized in Table 11. While we do not find much evidence of limit cycles using the minimal

model, interestingly, we find a limit cycles detected at a frequency of over 50% using all variables

except Equipment Investment.
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Table 11: Existence of a Limit Cycle for Quantity Variables

Minimal Intermediate Full
Output - (11%) LC (60%) - (53%)

Non Farm Bus. Output - (20%) LC (64%) - (54%)

Consumption - (3%) LC (84%) LC (85%)

Fixed Investment - (28%) - (12%) LC (54%)?

Structures LC (80%) LC (84%) LC (75%)

Durables - (32%) LC (75%) LC (85%)

Residential - (15%) LC (34%) - (62%)?

Equipment - (19%) - (14%) - (27%)

Utilization LC (86%) LC (80%) LC (53%)?

Notes: In this table, we estimate the Minimal, Intermediate, and Full models, considering various
goods market variables. “LC” means that the estimated model displays a limit cycle. The number
in parenthesis indicates the fraction of the 1,000 bootstrap replications for which we found a limit
cycle with the Linear model being rejected at 5% against the nonlinear one. Data are always
detrended with an 80-quarter high-pass filter before estimation. See Appendix B for details of
samples and variable definitions. A star (?) means indicates that in more than half of the
replications, the simulation with bootstrap innovations was explosive, so that the pseudo-data
sample could not be used for estimation. In this case, we have drawn again bootstrap innovations
until we obtained 1,000 non-explosive replications.

3 Should we care?

The previous section explored whether cyclical movements in macroeconomic variables exhibited

characteristics suggestive of local instability and limit cycles. In this section we examine whether

one should care about identifying/differentiating such a possibility. There are at least two poten-

tial reasons why one might care. First, it is possible that it could lead to improved forecasting

ability. Second, it is possible that policy changes could have differing effects on stable and locally

unstable/limit cycle models. Our explorations suggest that, for forecasting purposes, differentiat-

ing between the two cases is likely of second-order importance. This is most easily observed by

recognizing that the variance of the one-step-ahead forecast error for the Linear model is almost

identical to that for any of the nonlinear models. However, as we argue in this section, we believe

that, for policy purposes, identifying whether macroeconomic dynamics may contain limit cycles

forces can be of first-order importance. In particular, we discuss how a policy aimed at countering

the effects of shocks can lead to very different outcomes depending on whether the model exhibits

limit cycles, even though the two models are similar in terms of standard forecast performance.
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3.1 Theoretical Results

The goal of stabilization policy is to reduce inefficient macroeconomic volatility. In practice, this

is often equated to the goal of reducing the cyclical volatility of output and employment. One

stabilization approach is to direct policy towards countering or nullifying the impact of certain

exogenous forces hitting the economy. In linear models, such a strategy will generally be effective,

as a reduction in the variance of exogenous shocks translates directly in to a reduction in the

variance of endogenous variables. However, in an environment where limit cycle forces may be

present, this strategy may no longer be effective. In particular, in this section we will show that

when limit cycle forces are present, (i) a reduction in the variance of shocks may actually increase

the variance of endogenous variables; (ii) even if reducing the variance of shocks reduces the variance

of the outcomes, the relationship between the shock variance and outcome variance is likely to be

quite weak; and (iii) the principal effect of reducing the shock variance is likely to dampen higher-

frequency movements while accentuating longer cyclical movements (whereas such a change in the

shape of the spectrum would not arise in a linear model).

In order to look at these issues, we will focus again on a univariate setup.28 For example, consider

an environment where the dynamics of a state variable of interest xt may we written as

xt = F (xt−1, xt−2, . . . ) + εt

where εt is an exogenous shock with variance σ2
ε . If the function F (·) is linear and is such that

x is stationary,29 then the variance of x will be strictly increasing in the variance of ε. However,

if the function F (·) is nonlinear, then the link between the variance of x,30 denoted σ2
x, and the

variance of ε may be much more complicated. In particular, even in the case where F (·) is such that

σ2
x exists and is finite, σ2

x will not necessarily be an increasing function of σ2
ε . More to the point,

when F (·) is such that the deterministic system xt = F (xt−1, xt−2, . . . ) admits a limit cycle, then

σ2
x will often be decreasing in σ2

ε over some range. To illustrate this point, consider an order-three

28 In this section we will be discussing the effects of changes in shock variances on the variances of endogenous
variables. Accordingly, results from this section needs to be interpreted cautiously given the potential for the Lucas
Critique to apply.

29 That is, the roots of the polynomial 1− F (λ, λ2, . . . ) lie outside the unit circle.
30 With some abuse of terminology, we define the mean and variance of x by time averages rather than ensemble

averages, i.e., by µx ≡ plimT→∞
1
T

∑T
t=1 xt and σ2

x ≡ plimT→∞
1
T

∑T
t=1 (xt − µx)

2
, respectively, assuming these

probability limits exist and are independent of the initial state x0. Thus, according to our definition, we will have
σ2
x > 0 even in a non-stochastic environment as long as the system does not converge to a single point.
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data-generating process similar to those we have estimated in section 2, but in which we remove

both the accumulation and the second autoregressive terms for analytical tractability:

xt = −βxxt−1 + βx3x
3
t−1 + εt, (18)

Under the restrictions

1 < βx < 2, (R1)

and

βx3 = 1 + βx, (R2)

one may verify that when σ2
ε = 0 the system (18) possesses a limit cycle of period two31 in which x

alternates between x̄ and −x̄, where x̄ ≡
√

βx−1
βx3

. Moreover, this 2-cycle attracts all orbits for which

0 < |x0| < 1. Now consider an increase in σ2
ε . How does this affect the variance of x? Proposition

1 indicates that an increase in σ2
ε can lead to a decrease in σ2

x.

Proposition 1. If the random variable xt evolves according to equation (18) with restrictions R1

and R2, then the variance of xt will be decreasing in σ2
ε when σ2

ε is sufficiently small.

Proof. See Appendix C.

The intuition for Proposition 1 reflects the nature of the nonlinear forces generating the limit

cycle. Near the limit cycle, a shock that moves x outside of the cycle (i.e., so that |xt| > x̄) is

countered by stronger forces pushing it back towards the cycle than is a shock that moves x inside

the cycle (i.e., so that |xt| < x̄). Hence, shocks that move x inwards are more persistent, and

therefore, on average, for σ2
ε sufficiently small the system spends more time inside the cycle than

outside of it. This effect causes the overall variance of x to be decreasing in σ2
ε . Although the scope

of Proposition 1 is quite limited, since it covers only a small class of data-generating processes that

support limit cycles, it nevertheless makes clear that the relationship between shock variance and

output variance can be negative when the underlying data-generating process admits a limit cycle.

3.2 Illustrating the effects of changes in shock variance

Proposition 1 suggests that, in models featuring limit cycles, there may be a more complicated

relationship between shock variance and outcome variance than the simple positive one usually

31 See May [1979].
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encountered in stable models. To follow up on this, we have explored numerically whether this

feature may arise in the richer environments of the previous section. In all cases we found that,

for small values of σ2
ε , an increase in the shock variance has either a small but noticeable negative

effect or no discernible effect at all on output variance, while for larger values the effect is positive

but substantially weaker than in a linear environment. In this sense, a robust take-away appears to

be that, in environments that support limit cycles of the size we believe may be in macroeconomic

data, the link between shock variance and outcome variance is likely to be very muted relative to its

linear counterpart. To illustrate this, in panel (a) of Figure 12 we plot the relationship between σε

and σx for the Intermediate and the Linear models as estimated on total hours worked per capita.32

As was shown in the previous section, in the absence of shocks the Intermediate model exhibits

limit cycles. On the contrary, the estimated linear model has a stable steady state, so that when

σε = 0 we have σx = 0.

The are two notable features that emerge from panel (a) of Figure 12. The first is that, as in

the simple example of Proposition 1, the relationship between σε and σx is actually negative for low

values of σε. Let us stress again, however, that this is not the pattern we think is most relevant.

The second—and, we believe, more important—feature that emerges from the figure is the extent

to which the relationship between σε and σx is much weaker in the case of the nonlinear model as

compared to the Linear model. For example, increasing σε from 0.1 to 0.5 causes σx to increase

by 400% in the Linear model, while it increases by only 62% in the Intermediate model. The fact

that the plotted relationship has a non-zero intercept for the limit cycle model is not surprising,

but the fact that the slope of this relationship is so much weaker on average is telling. This result

is further documented in panel (b) of the same Figure. Taking into account sample uncertainty,

we plot the bootstrap distribution of the slope of σh(σε), evaluated for the observed level σε ≈ 0.6,

together with the slope point estimate for the Linear model. This panel shows that the slope is

lower in the intermediate model at any level of significance. This pattern suggests that stabilization

policy aimed at mitigating the effects of shocks may be of more limited value than suggested by

estimation of the Linear model. The goal of stabilization policy in such a case may instead be to

focus on identifying and mitigating the underlying forces that generate and sustain limit cycles.33

32 Estimated parameters are given in Table 1.
33 In our previous work (Beaudry, Galizia, and Portier [2015b]) we presented a structural model where limit

cycles arose as the result of a complementarity in consumption decisions generated by imperfect unemployment

41



Figure 12: Relationship between σx and σε

(a) Numerical function σh(σε) (b) Slope of σh(σε) around σε = 0.6
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Notes: For each model, we derive parameter distributions by bootstrapping with 1,000 replica-
tions. Then, for each value of σε, we simulate Ttot = Tbrn +T periods of data, with Tbrn = 1,000
and T = 100,000. After discarding the first Tbrn periods of data, we compute σ2h as the time
average T−1

∑
(ht − µh)2, where µh = T−1

∑
ht. For the sake of clarity, we report only the

point estimates in panel (a). In panel (b), we report the bootstrap distribution of the slope of
σh(σε), evaluated for the observed level σε ≈ 0.6, for the Intermediate model. For the Linear
one, we report the slope at the point estimates for the parameters. For both models, the slope is
computed as [σh(0.7)− σh(0.5)] /0.2.

To further emphasize how changes in input volatility affect outcome behavior in models with

or without limit cycles, in Figure 13 we plot the spectrum of the outcome variable x for several

different values of σε. Panel (a) shows spectra for the Intermediate nonlinear specification, while

panel (b) shows spectra for the Linear one. For the Linear model, panel (b) illustrates that the effect

of changing the volatility of ε is very simple: a fall (rise) in σε decreases (increases) the spectrum

substantially and uniformly. In contrast, as shown in panel (a), the effect of changing σε in the

model that features a limit cycle is primarily to change the shape of the spectrum. In particular,

a fall in σε decreases the importance of higher frequencies and accentuates the importance of lower

frequencies, while a rise in σε does the reverse. For example, as we can see in the Figure, when

we reduce σε by a third, from 0.84 (dotted line) to 0.56 (solid line)—where the latter is the value

insurance. In that framework, the policy prescription to help stabilize the economy would therefore be to reduce
the complementarity in agents’ decisions by improving consumption insurance through, for example, automatic
stabilizers.
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Figure 13: Spectrum of x

(a) Intermediate nonlinear (b) Linear
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Notes: For each model and each value of σε, we simulate 100,000 data sets, each of length
Ttot = Tbrn + T quarters, with Tbrn = 50, 000 and T = 1, 000. For each simulated data set, we
obtain the spectrum of h after discarding the first Tbrn periods, then average the result across all
data sets.

estimated for the data—the spectrum at periodicities below 40 quarters decreases substantially,

while the importance of periodicities above 40 quarters increases substantially. Such observations

are interesting, as they provide a potentially different perspective on how a reduction in shock

volatility—such as is often thought to have arisen during the period of the great moderation—can

affect the economy. If the underlying system exhibits limit cycles, a great moderation in input

volatility would result in a less volatile economy in the short term, but would tend to increase the

importance of the lower-frequency movements associated with cycles lasting around 10 years.

In summary, much of the focus of traditional macroeconomic stabilization policy is based on

the view that fluctuations are primarily driven by shocks. If instead limit cycle forces play an

important part in generating fluctuations, this warrants a rethinking of how best to conduct policy.

In particular, in this section we have emphasized that aiming to counter or to nullify shocks to

the macroeconomy is likely to be much less effective at reducing economic volatility if limit cycles

are present.34 Such policies may somewhat reduce volatility, but the main effect may be to simply

34 More precisely, a reduction in input volatility may have very little impact on the the overall volatility of the
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change the frequency at which fluctuations arise, with higher-frequency movements being dampened

by the policy at the cost of amplifying lower-frequency movements. As a consequence, in such a

case it could be best to de-emphasize a framework focused on countering shocks and move towards

a stabilization framework that aims to reduce the forces that may be causing the limit cycles.

For example, in our previous work (Beaudry, Galizia, and Portier [2015b]), we have emphasized

the role of strategic complements in producing limit cycles. An effective stabilization policy in

such a situation is one that reduces these complementarities. If the complementarity is related

to precautionary saving associated with unemployment risk as in Beaudry, Galizia, and Portier

[2015a] and [2015b], then policy should focus on mitigating the effect of unemployment risk on

individuals by offering better unemployment insurance. Policies aimed at countering shocks in such

an environment will not in general be hitting the important margins.

4 Conclusion

The first aim of this paper has been to examine whether fluctuations in macroeconomic aggre-

gates may be best described as reflecting the effects of shocks to an otherwise stable system, or

whether such fluctuations may instead—to a large extent—reflect an underlying instability in the

macroeconomy which repeatedly gives rise to sustained boom and bust phenomena. To examine

this question we have proposed a simple nonlinear time series framework that has the potential to

capture instability and limit cycle behavior if it is present in the data. The framework we adopted

was motivated by previous work that emphasized the role of strategic complementarities in creating

local instability in environments with accumulated goods. We first focused on the behavior of labor

market variables, and especially the behavior of total hours worked per capita, and found intriguing

evidence in favor of the view that the macroeconomy may be locally unstable and produce limit cy-

cle forces. For example, we found that aggregate labor market variables often indicate the presence

of forces that favor recurrent business cycles with a duration of close to 9 years and an amplitude

of 4-5%. When looking at aggregate output measures, we found less robust evidence.

One of the main challenges in this endeavor was to find a powerful tool for identifying local

instability if it is present. As we showed using Monte Carlo methods, the approach we adopted

is not very powerful, and this is especially true when looking at output measures. This suggests

system when the deterministic version of the system exhibits limit cycles.
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that it would be fruitful in future work to develop a more powerful method. Given this difficulty,

it is interesting that we have been able to find as much evidence supporting the notion of local

instability and limit cycles as we have. Moreover, even when we have not found local instability,

we have almost always found that the system is very close to being unstable.35 This suggests to us

that the macroeconomy should be viewed as either locally unstable or very close to being locally

unstable.

In the second section of the paper, we have briefly examined what the presence of local instability

and limit cycle forces could imply in terms of stabilization policy. Our main observation on this

front is that stabilization policy aimed at countering the shocks hitting the economy may turn out

to be very ineffective at stabilizing the economy. In particular, we have shown that a reduction in

shock variances may have little effect on overall macroeconomic volatility if the economy is locally

unstable. Since this analysis was performed using a reduced-form model, more structural analysis is

necessary before coming to clear policy implications, but we nevertheless believe that these insights

are highly suggestive of why the presence of locally instability may matter for policy.

35 For most cases we found the modulus of the largest eigenvalue of the estimated system to be very close to 1.
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Appendix

A Motivation for Baseline Specification

Consider the following demand-driven macroeconomic environment with two aggregate variables: per capita
output denoted yt, and per capita capital denoted kt. These variables are the result of individual-level
decisions by agents i = 1 to n, with n large. The capital stock of each agent i accumulates according to
a standard accumulation equation, with depreciation rate δ, where we assume that a fixed fraction γ of
agent i’s purchases today, denoted yit, contributes to his capital stock tomorrow as follows:

kit+1 = (1− δ)kit + γyit, 0 < γ < 1− δ.

For ease of discussion, we want to think of agent i’s capital stock as his holding of durable goods (including
possibly housing) for which he receives utility directly. Output in this economy is assumed to be demand-
determined, so that per capita output is simply the average of the individual-level purchases, i.e., yt =
n−1

∑
i yit. This implies that the per capita capital stock, kt ≡ n−1

∑
i kit, accumulates according to

kt+1 = (1− δ)kt + γyt. (A.1)

To begin, consider the case where individual output demands are allowed to be affected by only three
forces as follows:

yit = α0 − α1kit + α2yit−1 + εit. (A.2)

In equation (A.2), output demand is allowed to be affected by the agent’s holding of consumer capital.
In particular, let us focus on the case where α1 > 0, which implies that more consumer capital leads to
less desire for new purchases, as would be the case, for example, in the presence of diminishing marginal
utility. Output demand is also allowed to exhibit inertia through α2 ≥ 0, where this force may reflect
for example habit or adjustment costs. Finally, we allow a random idiosyncratic term εit, which may be
correlated across agents but is i.i.d. across time. A decision rule of the form given in (A.2) can be derived
from individual-level optimization, in which case the coefficients α1 and α2 will typically be smaller than
1. Aggregating equation (A.2), we may obtain

yt = α0 − α1kt + α2yt−1 + εt, (A.3)

where εt ≡ n−1
∑

i εit. Under the assumption that α1 and α2 are smaller than 1, equations (A.1) and (A.3)
form a simple stable linear dynamic system. It is interesting to recognize that in this case if α2 and 1−δ are
close to 1, then the roots of this system can be very close to 1, while nonetheless staying stable. We take
equations (A.1) and (A.3) as a simple representation of basic forces that could be driving macroeconomic
fluctuations.

Now let us slightly extend the above system by introducing an additional term in the determination
of individual-level demand. Here we want to add the possibility that agents’ expectations about other
agents’ decisions may affect their own behavior. Such interaction effects can arise for many reasons. It
is not our goal to take a stand on one particular reason here, but instead to argue that such interactions
can drastically change the dynamics of the system, even if the effects remain small and close to linear. To
capture such an effect, let us generalize the individual decision rule as follows

yit = α0 − α1kit + α2yit−1 +G (yeit) + εit, (A.4)

where yeit is agent i’s expectation about aggregate economic activity, and the function G(·) captures how
this expectation affects his behavior. If G′ is positive, agents’ individual-level demands play the role of
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strategic complements, while if it is negative they play the role of strategic substitutes. Let us start with
the extreme case where all agents base their expectations only on the past realization of yt, and that this
expectation is simply backward-looking with yeit = yt−1. In this case, the aggregate determination of output
is given by

yt = α0 − α1kt + α2yt−1 +G (yt−1) + εt. (A.5)

How does the introduction of the strategic interaction term G (yt−1) affect the dynamic system? This
depends on whether, near the steady state of the system, actions are strategic substitutes or complements. If
they are strategic substitutes, then the system will tend to maintain stability and nothing very interesting is
likely to happen. However, if they are strategic complements, then the dynamics may change considerably.
In particular, consider the case where α2 and 1 − δ are close to 1. Then one may show that even a small
degree of strategic complementarity near the steady state can render the system locally unstable.36 In such
a case, the global properties will depend on the nature of the nonlinearities in G(·). If the complementarities
grow as the system moves away from its steady state, then it will tend to exhibit global instability, in which
case the system will explode. In contrast, if the complementarities die out as the system moves away from
the steady state, then the system will tend to produce either a limit cycle or chaotic behavior. Again,
all this can arise even if the system remains close to linear and complementarities are rather weak. For
example, suppose that G takes the form G(y) = µ0+µ1y+µ2y

3. Then (A.5) can be re-written in univariate
form using (A.1) to eliminate kt. Moreover, if we close the model by assuming that yt = ht, where ht is
hours worked per capita, then we can write the determination of hours as a univariate process in ht as

ht = a0 + µ0 − a1γ
∞∑
j=1

(1− δ)j−1 ht−j + (a2 + µ1)ht−1 + µ2h
3
t−1 + εt. (A.6)

Equation (A.6) is a special case of the type of univariate time series model we estimate in section 2. We
emphasize here the possibility interpreting this model as one determining hours worked, as opposed to
determining output, as the formulation in terms of hours work can be shown to being more robust to
allowing for fluctuations in productivity (see section 2.6). Note also that (A.6) features the presence of an
accumulation term, which motivates our inclusion of such a term in our econometric specification.

B Data

− U.S. Population: Total Population: All Ages including Armed Forces Overseas, obtained from the
FRED database (POP) from 1952Q1 to 2015Q2. Quarters from 1947Q1 to 1952Q1 are obtained from
linear interpolation of the annual series of National Population obtained from U.S. Census, where the
levels have been adjusted so that the two series match in 1952Q1.

− U.S. Total Output, consumption and the various investment types are obtained from the Bureau of
Economic Analysis National Income and Product Accounts. Real quantities are computed as nominal
quantities (Table 1.1.5) over prices (Table 1.1.4.). Sample is 1947Q1-2015Q2, and we do not use the
observations of 2015.

− U.S. Non-Farm Business Output, Non-Farm Business Hours, Total Hours and unemployment rate
(16 years and over) are obtained from the Bureau of Labor Statistics. Sample is 1947Q1-2015Q2
(1948Q1-2015Q2 for total hours), and we do not use the observations of 2015.

36 See Beaudry, Galizia, and Portier [2015b] for details. One of the insights from this example is to show that the
presence of strategic complementarities in demand is likely to create local instability.
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− Capacity Utilization: Manufacturing (SIC), Percent of Capacity, Quarterly, Seasonally Adjusted,
obtained from the FRED database, (CUMFNS). Sample is 1948Q1-2015Q3 and we do not use the
observations of 2015.

− The series of Job Finding Rate was constructed by Robert Shimer. For additional details, please see
Shimer [2012]. The data from June 1967 and December 1975 were tabulated by Joe Ritter and made
available by Hoyt Bleakley. Sample is 1948Q1-2007Q4.

− The various unemployment rates are obtained from the FRED database, except for France:

– Australia: Unemployment Rate: Aged 15 and Over: All Persons for Australia (LRUNTTTTAUQ156S),
1966Q3-2014:Q4

– Austria: Registered Unemployment Rate for Austria (LMUNRRTTATQ156S), 1955Q1-2014Q4

– Canada: Harmonized Unemployment Rate: All Persons for Canada (CANURHARMQDSMEI), 1956Q1-
2012Q1

– Denmark: Registered Unemployment Rate for Denmark (LMUNRRTTDKQ156S), 1970Q1-2014Q4

– France: ILO unemployment rate, Total, Metropolitan France and overseas departments (001688527),
Inséé Macro-economic database (BDM), 1975Q1:2015Q1

– Germany: Registered Unemployment Rate for Germany (LMUNRRTTDEQ156S), 1969Q1-2014Q1

– Japan: Harmonized Unemployment Rate: All Persons for Japan (JPNURHARMQDSMEI), 1955Q1-
2012Q1

– Netherlands: Harmonized Unemployment Rate: All Persons for Netherlands
(NLDURHARMQDSMEI until 2012Q1 and Harmonized Unemployment: Total: All Persons for the
Netherlands LRHUTTTTNLQ156S) after 2012Q1 (the second series level has been adjusted to match
the first one in 2012Q1), 1970Q1-2014Q4

– Sweden: Harmonized Unemployment Rate: All Persons for Sweden (SWEURHARMQDSMEI), 1970Q1-
2012Q1

– Switzerland: Registered Unemployment Rate for Switzerland (LMUNRRTTCHQ156S), 1970Q1-2014Q4

– United Kingdom: Registered Unemployment Rate for the United Kingdom
(LMUNRRTTGBQ156S), 1956Q1:2012Q1

C Proof of Proposition 1

Assume that σ2ε is small, so that |x0| is close to x̄. Without loss of generality, take x0 close to x̄,37

and define
yt ≡ (−1)t xt − x̄

To understand yt, note that, since x0 is close to x̄ and σ2ε is small, we should have xt > 0 for t even
and xt < 0 for t odd, i.e., the sign of xt should switch every period.38 Thus, |yt| captures the absolute
deviation of xt from the non-stochastic sequence x̄t ≡ (−1)t x̄ (the 2-cycle), while sgn (yt) captures
the direction of that deviation relative to zero: if yt < 0 then xt is “inside” the 2-cycle (i.e., |xt| < x̄),
while if yt > 0 then xt is “outside” the 2-cycle (i.e., |xt| > x̄).

Next, it is straightforward to verify that

yt = (3− 2βx) yt−1 − 3
√

(βx + 1) (βx − 1)y2t−1 − (βx + 1)Y 3
t−1 + νt

37 It is straightforward to extend the following reasoning to the case where x0 is close to −x̄.
38 This stems from the fact that, with x0 close to x̄ and σ2

ε small, the dynamic behavior of xt is dominated by the
same forces that generate the 2-cycle.
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where νt ≡ (−1)t εt ∼ i.i.d. N
(
0, σ2ε

)
. Since (3− 2βx) ∈ (−1, 1), the fixed point of this system at

yt = 0 is stable, and thus for σ2ε small we may restrict attention to the second-order approximation
to this system,

yt ≈ (3− 2βx) yt−1 − 3
√

(βx + 1) (βx − 1)y2t−1 + νt (C.1)

yt is clearly stationary, so that we have

E [yt] ≈ (3− 2βx)E [yt]− 3
√

(βx + 1) (βx − 1)E
[
y2t
]

= − 3

2x̄
E
[
y2t
]

For σ2ε > 0, we will have E
[
y2t
]
> 0, and thus E [yt] < 0. Since xt = (−1)t (yt + x̄), we may obtain

σ2x = E
[
y2t
]

+ 2x̄E [yt] + x̄2

≈ x̄2 − 2E
[
y2t
]

where we have used the approximation from above to replace E [yt]. Thus, as σ2ε increases from zero,
xt becomes less volatile, which completes the proof.
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