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Abstract

We study the pro�t-maximizing price path of a monopolist selling
a durable good to buyers who arrive over time and whose values for
the good evolve stochastically. The setting is completely stationary
with an in�nite horizon. Contrary to the case with constant values,
optimal prices �uctuate with time. We argue that consumers�randomly
changing values o¤er an explanation for temporary price reductions that
are often observed in practice. (JEL D82, L12)

How should a �rm price its goods over time? Does it maximize pro�ts by

occasionally reducing prices, or by holding them steady? This paper provides

a new perspective on these questions by recognizing that buyers�values for

many goods change randomly with time.
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We consider the classic durable goods pricing problem. Forward-looking

buyers arrive to the market over time and must decide when to purchase a

single unit. A well-known benchmark is where buyers�values remain con-

stant (see Conlisk, Gerstner and Sobel (1984)). In this case, the monopolist

maximizes pro�ts by committing to a constant price. If low-value buyers are

excluded, they are excluded forever. The reason is simply that reducing prices

to sell to low-value buyers �cannibalizes�earlier demand, reducing the prices

the seller can charge to high-value buyers at earlier dates.

Contrary to the above benchmark, we consider buyers whose values change

over time in response to idiosyncratic shocks. We show that the seller may

then pro�t by occasionally dropping prices and selling to low-value buyers who

are yet to purchase. The reason is that high-value buyers anticipate that their

values may fall before they have the chance to buy at a discount. In this sense,

high-value buyers are less able to take advantage of low future prices, which

means they are willing to purchase at a higher price. We characterize the

monopolist�s optimal choice of prices over time, and show how to determine the

timing of price discounts. While a few papers already study the optimal (full-

commitment) price path for buyers whose values change randomly with time

(see Conlisk, 1984, Biehl, 2001, and Deb, 2014), ours is the �rst to demonstrate

that repeated discounting can be optimal in such settings.

Our theory provides a natural explanation for temporary price discounts

observed in practice (some other possible explanations are reviewed in the

related literature section below). Temporary discounts are common among

a broad range of goods, including durables (see, for example, Nakamura and

Steinsson (2008) and Klenow and Malin (2010)). Figure 1 provides a sum-

mary of weekly prices for a model of blender sold by a large US retail chain.

Prices jump frequently between the highest price ($39.99) and lower discounted

prices.1 Warner and Barsky (1995) also provide detailed evidence of tempo-

1Data are Retail Scanner Data from the Kilts-Nielsen Data Center (while durable goods
are not the strength of their data set, they do have detailed data on some household items,
such as blenders). Data are available at the weekly level. Figure 1 provides information
on prices for one of many models of blender in the data. A large number of stores owned
by the same retail chain o¤er this model for sale each week, and the �gure displays upper
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rary discounting for various household durables, including a camera and a food

processor (see Figures 1 and 2 of their paper).

Figure 1: Lower and upper quartiles of prices across stores for a blender sold
by a large US retailer. For clarity, prices are shown for the most recent three
full years (2010-2012). Source: Kilts-Nielsen Data Center at the University
of Chicago Booth School of Business.

Random changes in buyers�values should be expected for various reasons,

such as their changing circumstances and unanticipated experiences they hap-

pen to encounter over time. Consider the goods mentioned above. A buyer�s

value for a food processor or a blender may change with the time he spends

preparing healthful foods which bene�t from their use. This, in turn, may

vary with available free time (determined, say, by �uctuating pressures at

work) or enjoyment of these foods. A buyer�s value for a camera might vary

with his interest in photography, in turn re�ecting his random interactions

with friends. His value may be high if he recently met a friend who enjoys

photography, but he would also �nd it di¢ cult to predict his future values (as

he may later become more interested in alternative pursuits).

and lower quartiles of prices across all of this chain�s stores selling the good in each week.
That these quartiles are almost identical in each week suggests the chain follows a store-wide
pricing policy.
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The hypothesis of changing values might seem di¢ cult to evaluate empiri-

cally. However, quite direct evidence would be available to a researcher who

observes how individuals�purchases respond to personal experiences.2 Shocks

to values also seem a natural way to explain observed patterns in demand,

such as purchases on dates when prices are temporarily high. This is the per-

spective taken by papers that use random utility models for dynamic demand

estimation, for instance Gowrisankaran and Rysman (2012).

Our model features buyers who arrive over time and whose values then

continue to change between two levels � low and high � according to a

continuous-time Markov process. The preference changes are idiosyncratic,

and there is no aggregate uncertainty. The environment is also stationary, in

a sense we de�ne carefully below. The key implication is that, although the

values of individual buyers change, the distribution of values in the population

does not. Stationarity allows us to focus on the role of individuals�uncer-

tainty about their future values, rather than systematic variation in aggregate

demand (see Biehl, 2001, for the same rationale).

The seller commits to a dynamic price path, with the possibility of setting

a di¤erent price at every date. For a range of parameters, prices cycle. They

decline gradually up to their lowest point (a �sale�) before jumping upwards.

Buyers purchase immediately if their values are high but wait and purchase

at the next sale if their values are low. Holding occasional sales is optimal

for the reason explained above. The seller can exploit high-value buyers in

between sales dates by charging them high prices, and these buyers are willing

to purchase because they are concerned that their values may fall.

The fact that prices decline gradually up to each sale is to be expected, since

they are chosen to keep high-value buyers indi¤erent between purchasing and

waiting for the next sale. Waiting for the next sale becomes more tempting

as it approaches, due both to discounting and the reduced probability that

the value will switch from high to low. Of course, as has often been remarked

2For instance, Iyengar, Han and Gupta (2009) document the e¤ects (both positive and
negative) of recent social interactions on decisions to buy, e¤ects which seem di¢ cult to
explain absent changing values.
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(see Slade, 1998), continuous price changes are not observed in the data. This

seems to suggest some costs of price adjustment, although there are other

theories such as Kashyap�s (1995) idea that �rms can maximize revenues by

pricing at nominal thresholds or �price points�. We do not incorporate these

considerations in the model.

The logic for occasionally discounting prices rests on downward switches

in values; this is what makes high-value buyers reluctant to wait for the next

sale. The implications of upward switches in values are di¤erent. Upward

switches may mean that low-value buyers �nd it more attractive to delay their

purchases, in which case they expect a positive rent. This occurs whenever

there are future sales. If a low-value buyer delays his purchase until the

next sale, then his value may switch from low to high by this date, and this

implies an additional rent when the buyer makes his purchase. The seller

can therefore limit rents by spacing sales further apart. Relatedly, upward

switches in values make it more attractive for the seller never to sell to low-

value buyers, by committing to a constant high price. We identify parameters

for which repeated price discounting is optimal.

The literature. Our model is most closely related to Conlisk (1984),

Biehl (2001) and Deb (2014), who study optimal price paths in durable goods

models where buyers�values change randomly with time. Conlisk and Biehl

study two-period models whereas Deb considers an in�nite horizon, but per-

mits values to change at most once. In contrast, we study an in�nite-horizon

setting in which buyers arrive over time, and values continue to change in-

de�nitely. More importantly, none of the earlier papers �nd repeated price

�uctuations, and none describe our logic for delaying sales to low-value con-

sumers. Both in Biehl�s and in Deb�s work, optimal prices are found to be

non-decreasing over time. The intuition (which is also relevant in our paper)

is that committing to high prices at later dates reduces the rents that must be

left to buyers who purchase early on. Conlisk �nds that optimal prices may

fall, with the seller making sales to high-value buyers in the �rst period, and to

all remaining buyers in the second. This result is driven by the �nite horizon.

Intuitively, there is a positive option value of not selling to low-valuers at date
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1, but no such option value at date 2 (since the game ends at date 2).

The paper should be understood in light of Stokey�s (1979) observation

that, when buyers�values for a durable good are constant, the seller optimally

commits to a constant price. This observation explains the aforementioned

�nding of Conlisk, Gerstner and Sobel (1984) when buyers arrive over time.

Many other theories of time-varying durable goods prices can also be under-

stood in relation to these benchmarks. For instance, Stokey herself shows

that a seller may want to gradually reduce prices (and thus delay sales to

the lowest types) if values change deterministically with time. She empha-

sizes that falling values can make high-value buyers e¤ectively �impatient�to

consume. In particular, high-value buyers may be reluctant to wait for low

prices because their values will have fallen by the time these prices become

available. This means the seller can pro�t by charging high prices to early

purchasers. We show that a related intuition can apply when buyers�val-

ues are subject to idiosyncratic random shocks, even in an environment where

demand is stationary.

Intuition like Stokey�s is relevant in a few other settings as well. Lands-

berger and Meilijson (1985) consider a model in which buyers�values are con-

stant but where buyers have a higher discount rate than the seller. Optimal

prices may then decline over time. Low prices at later dates can be pro�table

because high-value buyers can still be charged relatively high prices early on.

The reason is that high-value buyers heavily discount the rents they would

earn by waiting for low prices. While our intuition is again related, our model

instead posits that buyers share the same discount rate as the seller (for in-

stance, they may have equal access to capital markets). Stokey�s intuition also

plays a role in Pesendorfer�s (2002) work. In his model, high-value buyers are

able to stay in the market for only one period, whereas low-value buyers can

remain inde�nitely. The seller occasionally sells the good to low-value buyers,

but charges high-value buyers a price equal to their value at other times.

A number of other papers consider departures from the standard durable-

goods environment and �nd time-varying prices. Board (2008) shows that

optimal prices �uctuate when di¤erent cohorts of newly arriving buyers have
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di¤erent demand. In constrast, demand is restricted to be stationary in our

model, so price cycles here are not a result of systematic changes in aggre-

gate demand. Board and Skrzypacz (forthcoming) and Gershkov, Moldovanu

and Strack (2014) introduce limited capacity and deadlines, showing that op-

timal prices fall as the deadline approaches, but jump upwards when a unit is

sold.3 In contrast, we study an in�nite horizon and a seller facing no capacity

constraints. Conlisk, Gerstner and Sobel (1984) and Sobel (1991) relax the as-

sumption that the seller commits, and show how this can result in �uctuating

prices (whereas the seller commits to the price path in our paper).

There is also a range of theories developed to explain sales, not speci�c

to durable goods. For instance, Varian (1980) develops a theory based on

competition and frictions in consumer search, while Maskin and Tirole (1988)

develop a theory of dynamic pricing with competition and limited commit-

ment, and show how this can generate �Edgeworth cycles�.

Structure of the paper. The rest of the paper unfolds as follows.

Section I introduces the model, Section II examines the optimal price path,

and Section III concludes. The Appendix collects omitted proofs.

I Model

Buyers in our model arrive over time. Once in the market, their values change

stochastically. They may also leave the market stochastically due to a shock.

We now specify our baseline restrictions on the relevant parameters (rates of

arrival, exit, and the evolution of values), and postpone describing their role

until after our main result (Proposition 1).

Buyers, arrivals and exits. In�nitesimal buyers can make purchases

in a continuous-time setting with an in�nite horizon. At date zero, a mass

I > 0 of buyers enters the market. Thereafter, buyers arrive at a constant rate

� > 0.4 Having arrived, buyers receive exogenous shocks at rate � > 0 causing

3See Horner and Samuelson (2011) for a related environment, but where the seller cannot
commit.

4Throughout, we take the �intuitive� approach to aggregating random variables over
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them to leave the market. These shocks are permanent and render buyers

unable to purchase the good forever after. Equivalently for the analysis, they

render the good worthless to them. Throughout, we distinguish between

buyers leaving the market, the result of an exogenous shock, and satisfying

their unit demand by making a purchase. We assume I = �
�
. This means

that the mass of buyers who have arrived to the market net of those who have

left due to an exogenous shock remains constant over time.

Payo¤s. The seller and the buyers are risk neutral and have a common

discount rate r > 0. Buyers have unit demand and the seller�s production

cost is normalized to zero. If a buyer purchases at date t, his value from the

good is �t 2 f�L; �Hg, where 0 < �L < �H . These payo¤s might re�ect the

grati�cation of instantaneous consumption (for instance, buyers may want to

experience consumption only once). Alternatively, they could re�ect expected

discounted �ow payo¤s over each buyer�s lifetime, accounting for the possibility

that these �ow payo¤s may continue to change in the future. In this case,

buyers�expected payo¤s from acquiring and holding the good would naturally

depend on whether their current �ow payo¤s are low or high.

Process for values. Upon arrival at a date � , buyers have a high value
(�H) with probability  2 (0; 1) and a low value (�L) with probability 1 � .

Values evolve according to a time-invariant continuous-time Markov process.

They switch from low to high at rate �L and from high to low at rate �H ,

where �L; �H > 0. We assume that  = S � �L
�L+�H

. Hence, the process for

buyer values is stationary: the probability a buyer has a high value is equal

to S, irrespective of the date or time since arrival. Moreover, the stock of

all buyers who have arrived and not yet left due to an exogenous shock is

comprised at any moment of IS high valuers and I
�
1� S

�
low valuers. (It

is worth emphasizing that these statements concern the primitive environment;

the mass of buyers who have arrived and not yet purchased, for example, will

in�nitesimal buyers, which is standard in such models. While the choice to consider in-
�nitesimal buyers is convenient for exposition, the optimal price path (where prices are
permitted to be a function of time alone, as de�ned below) is identical if we instead take �
to be the Poisson arrival rate of buyers to the market and I to be the expected number of
buyers in the market at date zero.

8



depend in equilibrium on the seller�s choice of price path.)

II Analysis

A Price-path mechanisms

The seller commits at date zero to a price path p : R+ ! R+. If a buyer

purchases the good at date t, he pays price p (t). Thus there is no role

for communication other than of the buyer�s purchase decision. We restrict

attention to deterministic price paths, but this does not harm pro�ts.5

A buyer�s problem of when to purchase is an optimal stopping problem.

Let � be the set of Markov stopping rules, i.e. right-continuous functions

� (�L; �) ; � (�H ; �) : R+ ! f0; 1g mapping time to a decision to purchase.
The set � is taken to be the set of feasible buyer strategies. The restric-

tion to Markov strategies is without loss of generality given that the process

for buyer values is Markov (and hence does not depend on the arrival time,

nor on the realization of past values). For any arrival date � and any

�[�;1) � f�s : s � �g, a buyer�s purchase date when using the strategy � 2 �
is ��

�
�[�;1)

�
� inf fs � � : � (�s; s) = 1g, provided he is still in the market at

that date.6 In case ��
�
�[�;1)

�
= +1, the interpretation is that the buyer

never purchases even if he remains in the market.

A �price-path mechanism�MP = hp; xi includes also the prescription
x 2 � of whether buyers are to purchase for each value at each date.7 The

interpretation is that a buyer is to purchase the good at date t paying p (t) if

and only if (a) he has arrived to the market by date t and has not left, (b) he

has not yet purchased the good, and (c) his value for the good at date t is �t,

5The reason the restriction to deterministic mechanisms is without loss of optimality
relates to the linearity of the seller�s problem of choosing an optimal allocation rule for
conditionally optimal prices. The observation follows from the same arguments as in Strausz
(2006).

6We �nd it notationally convenient to view buyers as continuing to draw values after
leaving the market, keeping in mind that purchases after such a date are ruled out.

7Given that buyers are ex-ante identical and anonymous, it is without loss to consider a
prescription x which is the same for all buyers.
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with x (�t; t) = 1.

Buyers�problem. Suppose a buyer uses the Markov strategy � 2 �, and
consider his expected payo¤ at any date t at which he has not yet purchased.

This is given, for each value �t 2 f�L; �Hg, by

uMP
t (�t;�) = E

h
e�(r+�)(~���t)

�
~�~�� � p (~��)

�
j~�t = �t

i
,

where ~�� is the stopping time determined by �. Here, the expectation is with

respect to the evolution of the buyer�s value, conditional on �t (the probability

that the buyer survives in the market until the stopping time ~�� is accounted

for by the factor e�(r+�)(~���t), which also accounts for discounting at rate r).

Incentive compatibility of the price path mechanismMP = hp; xi is then the
requirement that, for each t and �t,

uMP
t (�t;x) = �MP

t (�t) � sup
�2�

uMP
t (�t;�) .

Seller�s problem. For an incentive-compatible mechanismMP = hp; xi,
the pro�t the seller expects to earn at date � from a buyer who arrives at that

date is

�MP (�) = E
�
e�(r+�)(~�x��)p (~�x)

�
.

The expectation is now with respect to the unconditional evolution of the

buyer�s value. The present value of the seller�s total pro�t is then

�MP =

Z 1

0

�e�r��MP (�) d� .

The seller�s problem is to maximize �MP by choice of an incentive-compatible

price path mechanismMP .

B Optimal prices for a given allocation

To �nd the optimal price path, we formulate the seller�s problem in terms of

the allocation rule rather than directly in terms of prices. Analogous to the
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textbook analysis of static mechanism design for agents with two types, we

anticipate that buyers will behave e¢ ciently if their values are high (i.e., they

will purchase the good straight away), while they may not if their values are

low (because their purchases may be delayed).

The rent that must be left to buyers will depend on the interaction between

two e¤ects. First, buyers earn positive rent if their values are high on any date

at which prices are low enough that they are willing to purchase if their values

are instead low. Second, buyers anticipate such opportunities to earn rent

in advance. Because they expect their values to change, they can therefore

expect positive rent even when their values are low.

Sales policies. We begin our analysis by de�ning a �sales policy�, the

set of dates at which buyers purchase if their values are low. For an incentive-

compatible mechanism hp; xi, this is A = ft 2 R+ : x (�L; t) = 1g. MP;A =

hpA; xAi denotes a mechanism with a sales policy A. Without loss of pro�ts

for the seller, we consider sales policies which are closed sets and which are

countable unions of closed intervals (and points).8

A sales policy A can be completely described by a functionmA : R+! R+[
f+1g, such that, at any date t, the next date in A is9

(1) mA (t) � inf fs 2 A : s � tg .

Thus, mA (t) = +1 simply states that there are no �sales�at or after date t.

Optimal prices for a given sales policy. We now derive, for any sales
policy A, the price path which maximizes pro�ts while implementing A. We

�rst deduce lower bounds for the value of a buyer�s problem
�
�
MP;A

t (�)
�
t�0

in

any price path mechanism implementing A. We then provide a mechanism

in which the buyer�s payo¤s coincide with these bounds, and where the buyer

purchases immediately whenever his value is high. Subject to implementing

8The price-path mechanism we derive in this subsection provides an upper bound on
pro�ts for any sales policy. When it comes to characterizing the optimal sales policy in
Proposition 1, we maximize over all sales policies, assuming that the bound on pro�ts can
be attained. Since the solution to the maximization problem satis�es the aforementioned
restrictions, this will indeed be the case for the optimal policy.

9Note that because A is closed, it is measurable. Hence mA is a measurable function.
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A, this mechanism both maximizes e¢ ciency and minimizes expected rents,

so it maximizes the seller�s pro�ts.

We begin with the following observation.

Lemma 1 The di¤erence between expected rents for a high versus low-value
buyer at date t satis�es

(2) �
MP;A

t (�H)� �
MP;A

t (�L) � e�(r+�+�L+�H)(mA(t)�t) (�H � �L) .

Moreover, a low-value buyer�s rent satis�es

(3) �
MP;A

t (�L) �
Z 1

t

�Le
�(r+�+�L)(s�t)�MP;A

s (�H) ds.

The lower bound on the di¤erence in expected rents in (2) is determined by

the di¤erence in expected values for the good at the next sales date, mA (t),

taking into account discounting and the probability of leaving the market

by this date. It can be understood using the following thought experiment.

Consider two buyers in the market at date t, one with a high value and one with

a low value. A lower bound on the di¤erence between their expected rents can

be found as follows. Suppose the high-value buyer is not permitted to buy until

either one of the two buyers�values changes, or until date mA (t), whichever is

earlier. Clearly, this restriction weakly lowers the high-value buyer�s expected

rents, but has no e¤ect on the low-value buyer�s rents. First, note that,

conditional on at least one of the buyer�s values changing before mA (t), there

is no di¤erence in their expected rents (consider their expected continuation

payo¤s at the date of the �rst change in values). Second, conditional on

no change in values before mA (t), the high-value buyer expects an additional

(discounted) rent of at least e�(r+�)(mA(t)�t) (�H � �L) (since the high-value

buyer can choose to purchase, just as the low-value buyer does, at datemA (t)).

The probability of no change in values is equal to e�(�L+�H)(mA(t)�t).

Equation (3) simply follows because a low-value buyer can do at least as

well as to wait until his value turns high, and then follow an optimal continu-

ation strategy. The two equations jointly yield lower bounds on the expected
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rents obtained in any mechanism with sales policy A. In particular, solving

(2) and (3) with equality, lower bounds on expected rents are given by

(4) �
MP;A

t (�L) �
Z 1

t

�Le
�(r+�)(s�t)�(r+�+�L+�H)(mA(s)�s) (�H � �L) ds;

together with (2). These bounds will coincide with a buyer�s actual expected

payo¤s for an optimal price path, which we give in the next result. This

will mean, for instance, that (inspecting (4)) low-value buyers earn rents only

because their values can become high in the future (at rate �L), and because

of future sales (i.e., if mA (s) is �nite for s > t).

Lemma 2 Let A be any sales policy. De�ne, for all t,

p�A (t) = �H �
Z 1

t

�Le
�(r+�)(s�t)�(r+�+�L+�H)(mA(s)�s) (�H � �L) ds

�e�(r+�+�L+�H)(mA(t)�t) (�H � �L) .

Let x�A (�L; t) = 1 if t 2 A and x�A (�L; t) = 0 otherwise, and let x
�
A (�H ; t) =

1 for all t. Then, M�
P;A = hp�A; x�Ai maximizes the seller�s expected pro�t

conditional on implementing the sales policy A.

The optimal choice of prices for a sales policy A can be completely speci�ed

from the following observations. First, at any date t 2 A, if a buyer�s value is
low, then he is indi¤erent between a strategy of purchasing at that date and

waiting and instead purchasing if and only if his value turns high. This means

that, if there are future sales dates, the price at date t must be less than the

low value �L. Second, at any date t =2 A at which a buyer�s value is high,

he is indi¤erent between a strategy of purchasing at date t and waiting and

purchasing with certainty at the next date in the sales policy mA (t), or never

purchasing if there are no future dates (i.e., in case mA (t) = +1). Thus, at
dates t =2 A, prices fall gradually up to the next sales date if there is one, or

otherwise remain constant and equal to �H .
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C Optimal sales policy

Choosing the optimal sales policy. Given optimal prices are determined
by Lemma 2, we can focus on deriving the optimal sales policy. We view the

seller�s problem as a sequence of sub-problems where, at each sales date a, the

seller must determine the subsequent sales date (the validity of this approach

is veri�ed in the Appendix).

Our dynamic programming argument hinges on showing that the choice of

sales policy after any sales date a is separable from the choice of sales policy

before a. This follows from a property of the optimal prices found in Lemma

2. To illustrate, consider some sales date a, and suppose at �rst that the

seller chooses no subsequent sales, so that a buyer with a low value at date a

has payo¤ �
M�

P;A
a (�L) = 0. Consider then the e¤ect of including sales after a

on the rent obtained by buyers arriving before a. If �
M�

P;A
a (�L) is increased to

some value �, then the change in the expected payo¤ of a buyer who arrives

at date � < a is simply �e�(r+�)(a��), where recall r is the discount rate and

� is the rate of leaving the market. The e¤ect on date-zero pro�ts from all

buyers arriving before date a is then equal to

�

�
Ie�a(r+�) +

Z a

0

�e�ra��(a��)d�

�
= �Ie�ra,

where recall � is the arrival rate and I = �
�
is the constant population of buyers.

Thus, the e¤ect on pro�ts from buyers arriving before a is proportional to the

constant population size I, and is independent of the choice of sales dates

before a.

This observation facilitates de�ning the seller�s problem of choosing future

sales dates after any sales date a. The value of this problem will be the pro�ts

earned from buyers arriving after a, less the reduction in pro�ts from buyers

arriving before a due to including sales after a. It can be stated recursively

as follows. Given a sale at date a, the seller speci�es the next sales date a+ z.

The value of the problem at date a comprises (i) the pro�ts earned from buyers

arriving between a and a+z in case there are no sales after date a+z (so that
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a buyer with a low value at date a+z has payo¤ zero; i.e. �
M�

P;A

a+z (�L) = 0), (ii)

the reduction in pro�ts earned from buyers arriving before a due to including

exactly one more sale, at date a+ z, rather than including no additional sales,

and (iii) the discounted continuation value of the problem at date a+ z.

We now determine the pro�ts the seller expects from a buyer who arrives

a length s before the next sale, supposing that the next sale is the last. This

is

R (s) = S�H +
�
1� S

� �
�H

Z s

0

�Le
�t(�L+r+�)dt+ �Le

�s(�L+r+�)
�

�Se�s(r+�) (�H � �L) .(5)

The �rst two terms are the expected surplus. The �rst term accounts for

the surplus generated when the buyer�s value is initially high (which occurs

with probability S). The second term accounts for the surplus generated

when the buyer�s value is initially low. Either the buyer�s value jumps from

low to high before the sale, precipitating a purchase (this happens at rate �L
and is accounted for by the �rst term in square brackets), or the buyer�s value

remains low and he buys at the sale (as accounted for by the second term in

square brackets). The �nal term in (5) is the buyer�s discounted expected

rent. This is found by observing that (i) the buyer is willing to wait and

purchase at the sale (he never has strict incentives to buy beforehand), and

(ii) the probability that the buyer�s value is high at the sale is S, while, if his

value is high at the sale and he does not leave the market due to an exogenous

shock, he earns a discounted rent e�rs (�H � �L).10

Suppose then that there are sales at dates a and a+z, but no further sales.

The date-a value of expected pro�ts from buyers arriving between a and a+ z

10Note that the simplicity of the expression for buyer rents is a result of our stationarity
assumption. This implies that the probability a buyer�s value is high at the sale is simply
S , which does not depend on how long the buyer has been in the market (nor directly on
the rates of switching �L and �H).
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is then

(6) � (z) =

Z z

0

�e�r�R (z � �) d� .

This expression simply integrates over the pro�ts from buyers who arrive dur-

ing this interval at rate �, as given by (5).

Next, note that, if there is exactly one sale after date a, at date a+ z, then

the expected rent of a buyer with a low value at a is equal to

�
M�

P;A
a (�L) = Pr

�
~�a+z = �H j~�a = �L

�
e�z(r+�) (�H � �L) :

This follows because a low-value buyer at date a is indi¤erent between pur-

chasing at date a and instead waiting and then purchasing at the next sale

a+ z (if his value happens to be high at date a+ z, and he has not exited the

market, then he earns a discounted rent e�rz (�H � �L)). Including the sale

at date a+ z therefore reduces pro�ts from buyers arriving before a by

I Pr
�
~�a+z = �H j~�a = �L

�
e�z(r+�) (�H � �L) ,

where the e¤ect is measured in date-a terms.

We can now state recursively the seller�s problem of choosing the next sale

after a sales date a. In particular,

(7) W � (a) = sup
z>0

(
� (z)� I Pr

�
~�a+z = �H j~�a = �L

�
e�z(r+�) (�H � �L)

+e�rzW � (a+ z)

)
,

where � (z) is given by (6). The stationarity of the seller�s problem is thus

clear. Since W � (a) is independent of a, it is given simply by

(8) W � = sup
z>0

8<:� (z)� I Pr
�
~�z = �H j~�0 = �L

�
e�z(r+�) (�H � �L)

1� e�rz

9=; .
Equation (8) can be used to determine the optimal time between sales dates,
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if any.

Characterization of the optimal sales policy. It turns out that the

form of the optimal sales policy can be divided broadly into three classes,

depending on the ratio of the high to low values (�H
�L
). In particular, there are

thresholds � and ��, satisfying 1 < � < ��, such that the following result holds.11

Proposition 1 The optimal sales policy A� is determined as follows.
Case (i): If �H

�L
� �, then low-value buyers always buy; i.e., A� = R+.

Case (ii): If � < �H
�L
< ��, then low-value buyers buy periodically; there is a

unique scalar z� > 0 such that A� = fiz� : i 2 N[f0gg.
Case (iii): If �H

�L
� ��, low-value buyers either never buy, or they buy only

at date zero; i.e., either A� = ; or A� = f0g.12

The dependence on the ratio �H
�L
should be expected. If �H

�L
is no more than

�, the e¢ ciency loss of delaying sales to low-value buyers is large relative to

the reduction in buyer rents. The optimal sales policy A� is all of R+, which
means the seller commits to a constant price below �L. Conversely, if �H�L is at

least ��, the rents ceded to buyers by holding sales is large relative to e¢ ciency

gains, so the seller chooses either no sales date or a single sales date at zero

(either possibility may arise, as explained below). In either case, the price is

constant at �H at all dates after zero. If a sale is included at date zero, the

price at this date is �L.

Case (ii) is intermediate between the two extremes, and is the focus of our

attention. Sales then occur a constant length z� > 0 apart, with the �rst sale

11Let � = r+�+�L
r+�+�L+�H

. Then � and �� satisfy

� =

�L
� + S + �

�
1� S

�
�L
� + S + � (1� S) �L

r+�+�L

and

�� 2
 

�L
� + 1

�L
� + S + (1� S) �L

r+�+�L

;
1

S + (1� S) �L
r+�+�L

!
.

12In Case (i), the supremum in (8) is approached as z ! 0. In Case (ii), it is attained at
z�. In Case (iii), it is approached as z ! +1.
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at date zero. Prices �uctuate over time as shown in Figure 2. Prices are

at their lowest at date zero, but jump immediately thereafter. They then

fall gradually up to each sale, and subsequently jump. As we have noted,

the lowest price is below the low value �L (equal to 1 in the example). This

ensures low-value buyers are willing to purchase, given that they can wait for

their values to become high.

Figure 2: Optimal price path for the following parameters: �H = 1:65, �L = 1,
�H = ln (4=3), �L = (1=4) ln (4=3), S = 1=5, r = ln (3=2), � = ln (8=7), � = 1.
If time is measured in years, then a high-value buyer�s value changes with
probability one quarter within a year, while a low-value buyer�s value changes
with probability 0.07. The probability that a buyer leaves the market due to
a shock (at rate �) in the course of a year is one eighth. One third of the
good�s value is destroyed due to discounting (at rate r) in the course of a year.

While the form of the optimal sales policy depends on the ratio �H
�L
as

described in Proposition 1, the time between sales z� in Case (ii) also depends

on this ratio in a natural way. In particular, as �H
�L
increases, the seller

�nds frequent sales more costly in terms of buyer rents, and less valuable for

improving e¢ ciency, so that the following holds.

Corollary 1 The time between sales z� in Case (ii) of Proposition 1 is in-
creasing in �H

�L
over the interval

�
�; ��
�
.
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Intuition for price �uctuations. Recalling the argument in the Intro-

duction, consider why the seller may bene�t from spacing sales apart, rather

than selling to low-value buyers at all dates. By spacing sales apart, the seller

can reduce the rents to buyers who arrive with high values between sales dates.

The seller �nds this particularly e¤ective given that a high value may turn low

by the time of the next sale. There is also another reason the seller bene�ts

from this policy: It reduces the rents left to buyers who arrive with low values,

owing to the possibility that their values become high in the future. Given

the optimal prices described in Lemma 2, this in turn reduces the rents of all

buyers who arrive at earlier dates, back to date zero.

This intuition can be reinforced by studying what happens as the rate

of downward switching grows large (i.e., as �H ! +1). The next result

considers this case while assuming that it is more e¢ cient to sell to low-value

buyers than to wait for their values to turn high. This means assuming

1 < �H
�L
< r+�+�L

�L
.13

Corollary 2 Fix �; �L; r; �; �H ; �L > 0 such that 1 < �H
�L

< r+�+�L
�L

. Now,

consider varying �H , while letting the probability a buyer�s value is initially

high, , equal �L
�L+�H

(thus maintaining stationarity). For any " > 0, there

exists ��H such that, if �H > ��H , then Case (ii) of Proposition 1 applies and

z� < ".

Corollary 2 simply states that, as �H grows large, the seller optimally

holds sales at regular intervals, and sales are very frequent. The reason for

this result is the following. If sales are held periodically, and if the time

between sales, z, is �xed to be small, then the e¢ ciency loss due to delayed

purchases is small. As �H ! +1, buyers� expected rents approach zero
(i.e., there is full surplus extraction), and the price on sales dates approaches

13If instead �H
�L
> r+�+�L

�L
, then selling to a low-value buyer is ine¢ cient. To see why this

might occur in practice, suppose a buyer�s date-t value �t represents the expected future
�ow payo¤s from holding the good. Suppose the buyer�s state alternates between �low�,
where he does not need the good, and �high�, where he does need it (his value is �L in the
low state and �H otherwise). Then, it is ine¢ cient for the buyer to acquire the good in the
low state if he incurs a storage cost and hence receives a negative �ow payo¤ in this state.
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the low value �L. To see why, note that a buyer with a high value at any

time other than a sales date (or moments before a sales date) believes that his

value will, with high probability, drop to low by the next sale. The additional

rents a buyer expects due to a (temporarily) high value therefore vanish as

�H ! +1 (recall Equation (2)). Buyers with low values then realize that,

if their values become high, this is unlikely to occur at (or just before) a sale.

The rent expected by low-value buyers hence vanishes as well (recall Equation

(4)). In contrast, if A = R+, then rents do not vanish as �H ! +1. In fact,
the optimal price path conditional on A = R+ (see Lemma 2) is a constant
price, and this price is independent of �H . In particular, it remains �xed

below �L as �H ! +1. Hence, A = R+ cannot be optimal.
Corollary 2 stands in contrast to what happens if instead �L grows large.

Then, holding frequent sales cedes large rents to buyers (since low-value buyers

believe it is likely their values will be high by the next sale). Moreover, since

a low-value buyer�s value will increase soon, precipitating a purchase, sales are

less important for e¢ ciency (in fact, they reduce surplus if �L is large enough;

see Footnote 13). Whenever �L is su¢ ciently large, the seller therefore holds

no sales and the optimal price path is constant at �H . Note that this conclusion

also holds if both �L and �H grow large, while maintaining stationarity (i.e.,

 = �L
�L+�H

) and while holding the probability of a high value, �L
�L+�H

, constant.

Constant values benchmark. It is now interesting to examine the

role of the various elements in our model, which can be achieved by removing

them, one at a time. First, suppose that values do not change (i.e., suppose

�L = �H = 0), as in Conlisk, Gerstner and Sobel (1984). Set the probability

of a high value equal to any  2 (0; 1). Then the optimal price is constant

and either equal to �L or �H . A simple proof is as follows. If the seller can

(counterfactually) condition her o¤er on each buyer�s arrival date (consider

any o¤er, not necessarily a price path), then the seller does no better than to

o¤er the static monopoly price at that date, inducing the buyer to make any

purchase immediately. But this policy does not depend on the arrival date,

and the seller can therefore achieve the same outcome for all arrival dates by

committing to a constant price path, with price equal to the static monopoly
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price. The buyer then �nds it optimal to make any purchase immediately,

because his value does not change. This shows that a constant price is optimal

among all possible mechanisms, not just price paths. While this logic is well

known, it is worth pointing out that it applies also in our setting where buyers

leave the market stochastically (at rate � > 0). It is therefore clear that price

�uctuations are not driven in our model by random exits from the market.

Shutting down dynamic arrivals. We can instead shut down dynamic
arrivals by assuming the initial mass of consumers I is positive, but that the

arrival rate � is zero. In this case, the seller optimally chooses at most one

sales date. The pro�t from choosing a sales date a is IR (a), with R (�) given
by (5), since all buyers must wait exactly length a for a sale. It is easy to

see that either IR (a) obtains its maximum at a = 0,14 or IR (a) approaches

its supremum as a ! +1, so that A� = ;. Thus, under the optimal policy,

either all buyers purchase at date zero, or low-value buyers never purchase.

In particular, low-value buyers never wait to purchase, unlike what we �nd for

our baseline model.15

This benchmark, where all buyers arrive on the same date, sheds light on

the optimality of including a sale at date zero in our baseline model. If IR (a)

obtains its maximum at a = 0, then the optimal sales policy in Case (iii) of

Proposition 1 is A� = f0g (otherwise, it is A� = ;). By selling to low-value

buyers at zero, the seller maximizes pro�ts obtained from the mass I of buyers

arriving at zero, but it yields no rents to buyers who arrive later. The reason

the seller �nds it optimal to include a sale at date zero, but no subsequent

sales, is simply that subsequent sales increase the rents of all earlier arrivals

(whereas, at date zero, there are no earlier arrivals in our model). As explained

above, the optimal price path for our baseline model therefore involves a low

price (�L) at date zero and a constant high price (�H) thereafter. The form of

14This is true if and only if �L � �H
�
S +

�
1� S

� R1
0
�Le

�t(�L+r+�)dt
�
.

15This �nding is analogous to Biehl�s (2001) result for a two-period model. Biehl �nds
that either all buyers purchase in the �rst period, or low-value buyers never purchase. In
both Biehl�s setting, and ours, stationarity of values plays an important role. If we instead
assume I > 0, � = 0,  > 0, �H > 0 and �L = 0 (so that the evolution of values is
nonstationary), then we may have A� = fag for a > 0. In this case, a low-value buyer waits
and purchases at date a.
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the price path is thus as in Deb (2014), who studies a model where all buyers

arrive at date zero, have a continuum of values, and where these values change

at most once. Deb suggests this as a theory of �introductory pricing�(and

points to its use by Amazon, iTunes and Google Play, among others). Finally,

note that our observations here apply also in Case (ii) of Proposition 1. For

parameters such that Case (ii) applies, IR (a) necessarily obtains its maximum

at a = 0, and we show it is indeed optimal to include a sale at date zero in

the baseline model.

Our analysis also sheds light on what happens if there is a rush of buyers

into the market on a particular date. For instance, consider our baseline model

and suppose that Case (iii) of Proposition 1 applies, while IR (a) obtains its

maximum at a = 0. Then a large enough mass of buyers arriving at a given

(foreseen) date implies the optimality of a sale at that date, with the price

dropping to �L. This is simply because the seller optimally maximizes pro�ts

for the large mass of arrivals, and is relatively less concerned with lowering the

rents of earlier arrivals.16 The observation arguably squares well with Warner

and Barsky�s (1995) evidence that the prices of durables are low at times

when shopping intensity is high (such as holidays). In particular, it may be

reasonable to think that such dates are times when the number of arrivals to

the market is large.17

Shutting down exogenous exits. Next, consider the role of stochastic
departures from the market (at rate �). These are important for the stationar-

ity of the seller�s problem (this stationarity, for instance, is what ensures price

cycles have a constant length in Case (ii) of Proposition 1). If we instead

set the exit rate � to zero, but suppose that the initial mass of buyers I is

�nite, then the total population of buyers (that is, all buyers, not only those

who have not purchased) grows without bound and the seller�s problem is no

16Note that changing values are crucial for the �nding of a price reduction in response
to a large mass of arrivals: if values were instead constant over time, then optimal prices
would be constant and independent of the timing of buyer arrivals.
17Warner and Barsky make a related, but di¤erent, argument. They suggest that price

reductions often occur at times when consumers can economize on search costs by searching
across a range of products. In particular, they suggest weekends and holidays as times
when the �intensity of shopping activity�is exogenously high due to low search costs.
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longer stationary. The original working paper version (Garrett, 2011) consid-

ers this case (setting I = 0) and shows that the optimal sales policy is always

bounded. Hence, the optimal price eventually remains constant and equal to

�H . The reason is that sales held at later dates becomes increasingly costly

in terms of buyer rents, as compared with the e¢ ciency gains from selling to

low-value buyers. Intuitively, this is because all earlier buyers have the option

to wait for the sale, and are at no risk of exiting the market due to an exoge-

nous shock. However, for the same reasons discussed above, price �uctuations

can still arise at early enough dates (i.e., before the price transitions to �H).

This provides a sense in which stochastic exits are not crucial to our �nding

of cycling prices.

Conversely, one can consider the polar opposite case in which all buyers

stay in the market only for an instant (this case has also been of interest in

the literature; see, e.g., Gershkov and Moldovanu, 2009). That values change

is then irrelevant and the optimal price remains constant over time.

Other processes and more than two values. Finally, it is important

to consider the extent to which our �nding of, and intuition for, �uctuating

prices can be expected to extend to other stochastic processes for values. First,

one can observe that stationarity is not essential. Many of the arguments in

this paper can be easily extended to allow the probability a buyer�s value is

high at the arrival date, , to di¤er from the stationary probability S = �L
�L+�H

(for instance, Lemmas 1 and 2 did not use  = S). Stationarity does simplify

somewhat the formulation of the dynamic program (in (8)) and it simpli�es

the statement of our main result (Proposition 1).

For more general processes, for instance with more than two values, we can

point out where our intuition for price �uctuations seems robust. Provided

those buyers with higher values than others in the market do not expect these

to persist for too long, the seller stands to gain by making them wait for low

prices. Indeed, this is a way to reduce their rents, and hence also the rents of

buyers who arrive earlier with relatively low values, but who expect that they

may later have high values.

To be more precise, it is useful to recall the �ndings of the literature on
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dynamic mechanism design with stochastic types. Unlike the present paper

(which restricts the seller to o¤ering a price path), this literature does not

restrict the space of mechanisms or buyer communication. However, some of

its insights remain relevant. For instance, Battaglini (2005) �nds, in a two-

value model, that low-value buyers initially receive ine¢ ciently low allocations,

close to the time of contracting. After enough time, however, buyers whose

values remain low receive close-to-e¢ cient allocations; Battaglini terms this the

principle of �vanishing distortions at the bottom�. Case (ii) of Proposition 1 in

the present paper re�ects a similar principle. When this case applies, low-value

buyers do not take the e¢ cient action of purchasing the good immediately upon

arrival, but they instead wait for a sale. Distortions vanish on the sales date,

when all the low-value buyers (who are still in the market and have not yet

purchased) buy the good. Garrett (2011) makes the connection between the

optimal dynamic mechanism (of any form) and the optimal price path more

formally. Pavan, Segal and Toikka (2014) consider the optimal mechanism

with a continuum of agent types and show that vanishing distortions also arise

provided that the impulse responses of later types to initial types vanish with

time (for instance, consider a �rst-order autoregressive process with persistence

parameter less than one). It thus seems reasonable to conjecture that, for the

same reasons as in the present paper, the optimal price path should feature

cycling prices when buyers have a continuum of values and arrive dynamically

to the market, provided impulse responses vanish over time.

One reason the above observations are interesting is that they suggest cases

where our ideas do not apply. Suppose impulse responses do not vanish, but

are instead equal to one, as with a random walk. Then the key intuition of

this paper should not be expected to apply. In this case, values are highly

persistent, and a buyer with a high value therefore does not expect his value

to systematically decline.
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III Conclusion

We studied the pro�t-maximizing price path when buyers arrive over time and

have values for the good which change stochastically. For a range of parameter

values, optimal prices �uctuate over time. Prices gradually fall up to sales

dates and jump thereafter.

Our results have both normative and positive implications. On the norma-

tive side, we suggest a new reason why �rms may be justi�ed in changing their

prices over time: buyers�uncertainty about their own future values. Indeed,

price discounting can be optimal even when the environment is completely

stationary, as described above. Understanding optimal pricing in such envi-

ronments seems important at a time when �rms increasingly have the tools

to inform themselves about patterns in customer preferences. This paper

suggests the importance of understanding not only patterns in aggregate de-

mand, but also how individual consumers expect their values for products to

evolve. On the positive side, we provided a new explanation for temporary

price discounts.

Appendix

This Appendix provides the proofs of all results.

Proof of Lemma 1. Follows from the arguments in the text.

Proof of Lemma 2. Let

wAt (�L) �
Z 1

t

�Le
�(r+�)(s�t)�(r+�+�L+�H)(mA(s)�s) (�H � �L) ds, and

wAt (�H) � wAt (�L) + e�(r+�+�L+�H)(mA(t)�t) (�H � �L)

be the lower bounds on buyer expected rents under the sales policy A, as

derived in the text. As explained in the text, if buyers �nd the mechanism

M�
P;A = hp�A; x�Ai incentive compatible, then buyers expect rents equal to these
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lower bounds, and so this mechanism must maximize expected pro�t subject

to x�A (�L; t) = 1 i¤ t 2 A. Therefore, it is enough to verify x�A is indeed

an optimal stopping rule for buyers given p�A, so that the value of a buyer�s

problem is indeed given by wAt .

For any stopping rule � 2 �, any t, and any �t 2 f�L; �Hg, letting 1~�s=�s
be the indicator function for �s 2 f�L; �Hg,

Et
h
e�(r+�)(~���t)

�
~�~�� � p�A (~��)

�
j ~�t = �t

i
� Et

h
e�(r+�)(~���t)wA~��

�
~�~��

�
j ~�t = �t

i
� wAt (�t)

+E

2666666666666664

Z ~��

t

e�(r+�)(s�t)

0BBBBBBBBBBBBBB@

1~�s=�L

0BBBB@
� (r + �)wAs (�L)

+dwAs (�L)
ds

+�L

 
wAs (�H)

�wAs (�L)

!
1CCCCA

+1~�s=�H

0BBBB@
� (r + �)wAs (�H)

+dwAs (�H)
ds

+�H

 
wAs (�L)

�wAs (�H)

!
1CCCCA

1CCCCCCCCCCCCCCA
ds j ~�t = �t

3777777777777775
� wAt (�t) .

The �rst inequality follows by choice of p�A (�). The second inequality follows
by applying Dynkin�s formula, after observing that (i) dwAs (�H)

ds
exists except

on the countably many boundary points of A, @A, and (ii)

wAt (�H) = wA0 (�H) +

Z t

0

dwAs (�H)

ds
ds�

X
f�2@A:�<tg

g (�) ;

where

g (�) =

�
1� lim

s&�
e�(r+�+�L+�H)(mA(s)�s)

�
(�H � �L)
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takes only non-negative values on @A. The third inequality follows because

� (r + �)wAt (�L) +
dwAt (�L)

dt
+ �L

�
wAt (�H)� wAt (�L)

�
= 0

and

� (r + �)wAt (�H) +
dwAt (�H)

dt
+ �H

�
wAt (�L)� wAt (�H)

�
� 0

except for at most countably many points. When � = x�A, all inequalities

hold with equality. Thus wAt is the value function associated with the buyer�s

problem and x�A is an optimal strategy for the buyer.

Proof of Proposition 1. Let A be any left-closed subset of R+.18 After

integration by parts, the rent earned by all buyers who arrive after date zero

is equal to

(9) (�H � �L)

Z 1

0

�e�r�
�
�L
�

�
1� e���

�
+ S

�
e�(r+�+�L+�H)(mA(�)��)d� ,

where mA (�) gives the date of purchase for a buyer who arrives at date � if

his value remains low. The expected rent of a single buyer who arrives at

date zero is equal to

(�H � �L)

Z 1

0

�Le
�(r+�)s�(r+�+�L+�H)(mA(s)�s)ds(10)

+Se�(r+�+�L+�H)mA(0) (�H � �L) .

Multiplying (10) by the mass of date-0 arrivals I = �
�
and adding to (9), we

�nd that the total rent across all buyers is

(�H � �L)

Z 1

0

�e�r�
�
�L
�
+ S

�
e�(r+�+�L+�H)(mA(�)��)d�

+
�

�
Se�(r+�+�L+�H)mA(0) (�H � �L) .

18Thus A is any set of dates such that, for some � 2 �, � (�L; t) = 1 i¤ t 2 A.

27



The seller�s total expected pro�t is therefore

(11)
Z 1

0

�e�r�b (mA (�)� �) d� +
�

�
 (mA (0))

where, for all y � 0,

b (y) = �H

�
S +

�
1� S

� �L
r + �+ �L

�
+e�(r+�+�L)y

�
1� S

��
�L �

�L
r + �+ �L

�H

�
�e�(r+�+�L+�H)y

�
�L
�
+ S

�
(�H � �L) ,(12)

and

 (y) = �H

�
S +

�
1� S

� �L
r + �+ �L

�
+e�(r+�+�L)y

�
1� S

��
�L �

�L
r + �+ �L

�H

�
�Se�(r+�+�L+�H)y (�H � �L) .

The seller�s problem is to maximize (11) by choice of A given that mA (�) is

de�ned by (1) for all � .

Case (i). It is easiest to dispose with Case (i) right away, hence suppose
�H
�L
� � (with � given in Footnote 11). In this case, it is easy to verify that b

and  are maximized over R+ at zero. Hence, mA (�) = � for all � is optimal,

i.e. A� = R+.

Remaining Cases. If instead �H
�L

> �, then Case (i) cannot apply. To

see this, compute the derivative of b,

b0 (y)

= �e�(r+�+�L)y
0@ (r + �+ �L)

�
1� S

� �
�L � �L

r+�+�L
�H

�
�e��Hy

�
�L
�
+ S

�
(r + �+ �L + �H) (�H � �L)

1A ,
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and note that b is strictly quasi-concave. Either b is increasing on R+, or
there exists y# such that b is increasing up to y# and decreasing thereafter.

In particular, b0
�
y#
�
= 0 or

(13) y# � 1

�H
log

0@
�
�L
�
+ S

�
(r + �+ �L + �H) (�H � �L)

(1� S) (r + �+ �L)
�
�L � �L

r+�+�L
�H

�
1A .

It is thus easy to see that the policy A = R+ is not optimal. For instance,

pro�ts are increased by taking A =
�
iy# : i 2 N[f0g

	
: thus m (0) = 0, and

m (�)� � � y# for all � > 0.

Next note that our problem is separable in the sense described in the main

text. If sales dates are determined up to date a, itself a sales date, then

W � (a) = sup
An[0;a]

Z 1

a

�e�r(��a)b (mA (�)) d�

is the value of the principal�s continuation problem of choosing sales dates

after a (as de�ned in (7) in the main text). Past sales choices do not enter

this expression; nor does calendar time. Let

(14) V (z) =

R z
0
�e�r�b (z � �) d�

1� e�rz
.

It is easy to show that

W � (a) =W � � sup
z>0

V (z)

(where W � is de�ned by (8)). Assuming that �H
�L
> �, continuity of V (�) and

our previous observation implies that either V (�) obtains its maximum at some
z� 2 [y#;+1), or W � = limz!+1 V (z). The former possibility corresponds

to Case (ii) in the proposition, while the latter corresponds to Case (iii).

Case (ii). Consider now Case (ii), i.e., suppose V (�) is maximized at
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z� 2 [y#;+1). We now show that z� is unique. Note that

V 0 (z) =
�b (z)� rV (z)

1� e�rz
.

Hence the �rst-order condition for maximization of V (�) yields b (z�) = r
�
W �.

Since z� � y#, and since b0 (y) < 0 for y > y#, there can exist only one value

of z�.

Next, we show that, when Case (ii) applies, the �rst sale optimally occurs

at date zero. Since Case (ii) applies, there must be some initial sales date, say

at date k � 0. The expected pro�t when the �rst sale is at k can be written

�H

�
S +

�
1� S

� �L
�L + r + �

��
�

�
+
�

r

�
+
�
1� S

�
e�rk

�
�

�
e�(�L+�)k +

Z k

0

�e�(�L+�)(k��)d�

��
�L � �H

�L
�L + r + �

�
�e�rkS �

�
(�H � �L)

+e�rk

R z�
0
�e�r�

�
b (z� � �)� �H

�
S +

�
1� S

�
�L

r+�+�L

��
d�

1� e�rz�
.

(15)

The �rst term is the surplus that would be generated if all buyers purchased

only when their values become high. The second term represents the addi-

tional surplus generated because buyers arriving at or before k, whose values

remain low until k, purchase at date k rather than waiting for their values to

become high (such purchases generate an additional expected surplus equal to

�L � �H
�L

�L+r+�
). The third term is the rent that would be earned by buyers

arriving at or before date k if there were no sales after date k. In particular,

this is the rent these buyers would earn if waiting until date k to purchase (they

are willing to do so), and if there were no sales after date k. In this case, there

would be S �
�
purchases by high-value buyers, realizing them a rent (�H � �L).

The �nal term is the discounted additional value of the continuation problem

over and above what would be obtained by holding no sales after k (the value
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of holding no sales after k is already accounted for by the �rst term). Note

that the second terms is positive and that �
�
e�(�L+�)k +

R k
0
�e�(�L+�)(k��)d�

obtains its maximum at k = 0. It is then easy to see that (15) is maximized

by k = 0, which implies the result.

Case (iii). Case (iii) can be divided into two sub-cases. Either there is

an initial sale at some date k, or there are no sales (A� = ;). In the �rst case,
the (date-0 value of) additional surplus due to the sale is no greater than

e�rk
�

�

�
1� S

��
�L � �H

�L
�L + r + �

�
(since the mass of buyers with low values at date k, who have not left due to

a shock and have not purchased the good, is weakly less than �
�

�
1� S

�
; and

since if there were no sales, these buyer would eventually purchase when their

values become high), while the additional rent due to the sale is e�rk �
�
S (�H � �L)

(since buyers arriving before k earn a rent equal to that obtained by waiting

and purchasing at k, and since the mass of purchases by high-value buyers is

then �
�
S). If k = 0, the additional pro�t from the sale is exactly equal to

�

�

��
1� S

��
�L � �H

�L
�L + r + �

�
� S (�H � �L)

�
;

which is thus larger than the additional pro�t in case k > 0. This establishes

that either there is a sale, and it occurs at date zero, or there is no sale.

Case (ii) versus Case (iii). It remains to consider the boundary between
Cases (ii) and (iii). If Case (iii) applies then

W � =
�

r
lim
z!+1

b (z) =
�

r
�H

�
S +

�
1� S

� �L
r + �+ �L

�
.

The two cases are therefore mutually exclusive, since otherwise we must have

b (z�) = limz!+1 b (z) for z� 2 [y#;+1), which is impossible because b is
strictly decreasing on [y#;+1).
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Now, note that

(16)
�H
�L
�

�L
�
+ 1

�L
�
+ S + (1� S) �L

r+�+�L

implies

b (y) � �H

�
S +

�
1� S

� �L
r + �+ �L

�
;

with strict inequality whenever y > 0. Hence, if (16) holds, Case (iii) cannot

apply.

It remains to show that there is a threshold �� such that Case (iii) applies

for �H
�L
� ��, and to show that

�� 2
 

�L
�
+ 1

�L
�
+ S + (1� S) �L

r+�+�L

;
1

S + (1� S) �L
r+�+�L

!

(as speci�ed in Footnote 11). That Case (iii) applies for

�H
�L
� 1

S + (1� S) �L
�L+r+�

is immediate, because then R (s) (in (5)) approaches its supremum

�H

�
S +

�
1� S

� �L
�L + r + �

�
as s! +1, and attains it if there are no sales. Moreover, complete absence
of sales minimizes buyer rents. That Case (iii) applies also for somewhat

smaller values follows from examining Equation (8).

Finally, we want to show that which of Case (ii) and Case (iii) applies is

determined simply relative to a threshold value for �H
�L
. To see this, note �rst

that the optimal sales policy depends on the ratio �H
�L
, but not the values �H

and �L individually. Then note that, holding �L �xed, we have that, for all
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y 2 [0;+1),

b (y)� �H

�
S +

�
1� S

� �L
r + �+ �L

�

= e�(r+�+�L)y

0@ �
1� S

� �
�L � �L

r+�+�L
�H

�
�
�
�L
�
+ S

�
e��Hy (�H � �L)

1A
is decreasing in �H . Hence, there must exist a threshold value for �H�L , depen-

dent on the other parameters of the model, above which Case (iii) applies. A

simple continuity argument implies that the set of parameters for which Case

(iii) applies must be closed.

Proof of Corollary 1. Since the optimal sales policy depends only on the

ratio �H
�L
, make the normalization �L = 1. Then, let the functions de�ned

in (12) and (14) depend explicitly on �H ; i.e., write b (�; �H) and V (�; �H).
From the proof of Proposition 1, we know that the optimal time between sales

z� (�H), if Case (ii) applies, is given by

b (z� (�H) ; �H) =
r

�
V (z� (�H) ; �H) .

Fix �0H > 1 such that Case (ii) of Proposition 1 applies. Then b (z; �0H) �
r
�
V (z; �0H) is strictly decreasing in z in a neighborhood of z

� (�0H), since, by

optimality of z� (�0H),
@V (z�(�0H);�0H)

@z
= 0, while we argued in the proof of Propo-

sition 1 that
@b(z�(�0H);�0H)

@z
< 0. Thus, by the implicit function theorem, there

is a unique local solution z� (�H) for �H in a su¢ ciently small neighborhood of

�0H . Continuity of W
� in �H then implies that the local solution must indeed

give the optimal time between sales (since the optimal time between sales must

satisfy b (z� (�H) ; �H) = r
�
W � for all �H with z� (�H) � y#, where y# is given
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by (13), as argued in the proof of Proposition 1). Finally, observe that

b (z; �H)�
r

�
V (z; �H)

= e�(r+�+�L)z
�
1� S

��
1� �L

r + �+ �L
�H

�
�
�

r

1� e�rz

Z z

0

e(�+�L+�H)�d� � 1
�

�

0@e��Hz
�
�L
�
+ S

�
(�H � 1)

1� �L
r+�+�L

�H
�

r
1�e�rz

R z
0
e(�+�L)�d� � 1

r
1�e�rz

R z
0
e(�+�L+�H)�d� � 1

1A .
Thus, we �nd that b (z� (�0H) ; �H) � r

�
V (z� (�0H) ; �H) is strictly positive for

�H 2
�
�0H ;

r+�+�L
�L

�
, and strictly negative for �H 2 (1; �0H), and hence z� (�)

must be increasing over a su¢ ciently small neighborhood of �0H .

Proof of Corollary 2. Note �rst that � in Footnote 11 converges to 1

as �H ! +1; hence Case (i) of Proposition 1 does not apply for all �H
su¢ ciently large. Second, inspecting (12), we see that W � ! �

r
�L as �H !

+1 and this is attained only by a policy with frequent sales, time z� apart,

where z� ! 0 as �H ! +1.
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