
 

TSE‐668

	

	
“State‐contingent	analysis	of	farmers’	response	to	weather	
variability:	Irrigated	dairy	farming	in	the	Murray	Valley,	

Australia”	
	

Thilak	Mallawaarachchi,	Céline	Nauges,  
Orion	Sanders	and	John	Quiggin	

July	2016	



2	

State‐contingent analysis of farmers’ response to 
weather variability: Irrigated dairy farming in the 
Murray Valley, Australia 

	
Thilak	Mallawaarachchi	(ABARES	and	School	of	Economics,	University	of	Queensland,	
Australia)	
	
Céline	Nauges	(Toulouse	School	of	Economics,	INRA,	University	of	Toulouse	Capitole,	
France)		
	
Orion	Sanders	(ABARES,	Australia)	
	
John	Quiggin	(School	of	Economics,	University	of	Queensland,	Australia)			
	

Abstract	

The	agricultural	sector	is	commonly	regarded	as	one	of	the	most	vulnerable	to	climate	change.	
Current	understanding	of	the	impact	of	climate	change	on	this	sector	relies	on	the	underlying	
assumptions	about	farmers’	possible	responses	to	weather	variability,	including	changes	in	crop	
choice,	input	combinations	and	land	management	practices.		

Many	previous	analyses	rely	on	the	implicit	(and	restrictive)	assumption	that	farmers	operate	
under	a	fixed	technology	set	across	different	states	of	nature.	This	assumption,	represented	
through	stochastic	production	or	profit	functions,	is	commonly	made	but	seldom	tested,	and	
may	understate	farmers’	responses	to	climate	change	if	state‐contingent	production	
technologies	are,	in	reality,	more	flexible.		

The	potential	for	farmers	to	adapt	production	technologies	in	response	to	unforeseen	events	is	
at	the	core	of	the	state‐contingent	approach.	Advanced	in	Chambers	and	Quiggin	(2000),	the	
theory	contends	that	producers	can	manage	uncertainty	through	the	allocation	of	productive	
inputs	to	different	states	of	nature.	In	this	article	we	test	the	assumption	that	farmers’	observed	
behaviour	is	consistent	with	the	state‐contingent	production	theory	using	farm‐level	data	from	
Australia.	More	precisely,	we	estimate	the	milk	production	technology	for	a	sample	of	irrigated	
dairy	farms	from	the	southern	Murray–Darling	Basin	over	the	period	from	2006‐07	to	2009‐10.	
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1.	Introduction	

Agricultural	systems	have	evolved	to	manage	natural	variability	in	the	environment	through	a	

range	of	evolutionary	and	human‐induced	adaptations.	These	adaptations	have	helped	raise	

agricultural	productivity,	reduce	the	adverse	effects	of	agriculture	on	the	wider	environment	
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and	deliver	the	capacity	for	maintaining	agricultural	supplies	year	round.	A	key	feature	of	these	

adaptations	has	been	a	greater	integration	of	production	technologies,	business	structures	and	

human	resources	in	farming	to	manage	uncertainty	relating	to	the	natural	environment.	

However,	since	these	developments	have	tended	to	diminish	the	forces	of	natural	selection,	

through	management	to	overcome	the	constraints	of	history	and	chance,	the	overall	fitness	of	

these	systems	under	environmental	change	may	be	suboptimal	(Cody	1974).		

The	agricultural	sector	is	one	of	the	most	vulnerable	to	climate	change.	Climate	change	can	lead	

to	increased	variability	in	seasonal	conditions,	which,	in	turn,	can	expose	agricultural	systems	to	

conditions	beyond	their	historical	experience.	Such	variation	may	render	certain	established	

farming	practices	ecologically	infeasible	or	commercially	unviable	in	current	geographic	

locations,	thus	increasing	the	risk	of	failure	as	extreme	conditions	become	more	frequent	

(Hennessy	et	al.	2007;	Pittock	and	Wratt	2001).		

Climate	mitigation	will	help	reduce	the	long	term	rate	of	climate	change.	However,	the	costs	of	

climate	change	also	depend	on	the	efficiency	with	which	production	systems	adapt	to	higher	

temperatures	and	changed	patterns	of	precipitation	(Garnaut	2010).	The	efficiency	of	adaptive	

responses	will,	in	turn,	be	affected	by	the	flexibility	or	otherwise	of	agricultural	production	

technology.	This	will	rest	largely	on	the	availability	and	dissemination	of	knowledge	of	possible	

changes	in	climate,	and	the	effectiveness	of	farmers’	responses	to	changes	in	the	availability	of	

critical	inputs	such	as	water	(Adamson	et	al.	2009;	Garnaut	2010).	

	For	example,	from	2002	to	2009,	during	the	extended	drought	in	Australia,	irrigated	farming	

systems	in	the	Murray–Darling	Basin	that	were	designed	to	operate	productively	under	

intensive	irrigation	experienced	difficulties	in	coping	with	severe	water	shortages	(ABS	2010;	

Adamson	et	al.	2009;	Ashton	et	al.	2010).	As	a	result,	many	irrigated	dairy	farms	in	the	Basin	

were	forced	to	change	pasture	management	practices,	feeding	regimes	and	husbandry	methods	

(Mallawaarachchi	and	Foster	2009),	and	suffered	significant	deterioration	of	financial	

performance	(Ashton	et	al.	2010).		
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These	coping	responses	were	assisted	by	the	availability	of	flexible	technologies	incorporating	

varying	levels	of	crop–livestock	integration,	pasture	and	fodder	utilisation	(Ashton	and	Oliver	

2012a;	Bell	and	Moore	2012),	and	irrigation	water	trading,	which	permits	in‐season	

adjustments	to	on‐farm	feed	availability	in	response	to	variations	in	irrigation	water	allocations	

(National	Water	Commission	2010).	The	availability	of	these	technological	and	institutional	

innovations	has	significantly	enhanced	the	capacity	of	dairy	farmers	to	adapt	to	environmental	

changes	that	exceeded	their	historical	experience	(Khan	et	al.	2010).		

Farmers	are	best	placed	to	observe	changes	in	the	states	of	nature	that	affect	their	farms.	In	

2006‐07,	nearly	a	two‐third	(65.6	per	cent)	of	Australian	agricultural	businesses	reported	that	

they	considered	the	climate	affecting	their	enterprise	has	changed	and	62.4	per	cent	reported	

that	the	perceived	change	in	climate	had	an	impact	on	their	enterprise.	Approximately	half	(49.5	

per	cent)	of	agricultural	businesses	reported	a	change	in	management	practices	on	their	

enterprise	in	response	to	perceived	changes	in	climate.	Dairy	cattle	farming	businesses	were	

among	the	top	four	agricultural	industries	with	nearly	75	per	cent	of	businesses	reporting	that	

they	considered	the	climate	affecting	their	enterprise	had	changed	(ABS	2008).	In	this	context,	it	

is	instructive	to	examine	how	management	practices	adopted	by	dairy	farmers	have	influenced	

their	performance	and,	in	particular,	whether	the	farmers’	behaviour	resembles	decision‐

making	under	increasing	uncertainty.		

Numerous	studies	have	attempted	to	assess	the	impact	of	climate	change	on	agriculture.	The	

most	prominent	approach	to	the	analysis	is	a	stochastic	production	function	approach	in	which	

climate	enters	as	an	exogenous	shock.	This	method	depends	on	the	implicit	(and	restrictive)	

assumption	that	farmers	operate	under	a	fixed	technology	set	across	different	states	of	nature,	

rather	than	adjusting	input	combinations	to	better	suit	changes	in	climatic	and	other	states	of	

nature	affecting	production	choices	as	observed	in	the	above	discussion.		

The	commonly	made,	yet	seldom‐tested,	assumption	of	fixed	production	technology	is	usually	

represented	through	stochastic	production	or	profit	functions,	which	could	understate	farmers’	
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responses	to	climate	change	if	production	technologies	are,	in	reality,	more	flexible.	For	

example,	using	Bayesian	methods	to	estimate	state‐contingent	production	frontiers	for	

Philippine	rice	farmers,	O'Donnell	and	Griffiths	(2006)	show	that	elasticities	of	expected	output	

with	respect	to	inputs	vary	significantly	across	states	of	nature.	Moreover,	their	estimates	

indicate	that	farmers	display	significantly	higher	estimates	of	technical	efficiency	when	

measured	under	state‐contingent	analysis.	

The	potential	for	farmers	to	adapt	production	technologies	in	response	to	unforeseen	events	is	

at	the	core	of	the	state‐contingent	approach.	Extended	and	generalised	in	Chambers	and	Quiggin	

(2000),	the	theory	is	based	on	the	premise	that	producers	can	manage	uncertainty	by	changing	

the	allocation	of	productive	inputs	under	different	states	of	nature.	By	considering	uncertain	

events	over	mutually	exclusive	states	(for	example	low,	normal	or	high	water	availability	in	a	

growing	season),	greater	flexibility	is	achieved	to	represent	technology	choice	under	uncertainty	

within	the	standard	modern	theory	of	production	(Adamson	et	al.	2007).	State‐contingent	

treatment	of	uncertainty	thus	overcomes	some	difficulties	in	the	traditional	stochastic	approach	

to	production	choice	problems,	because	it	allows	for	substitutability	between	state‐contingent	

outputs	(that	is,	outputs	under	different	seasonal	conditions	that	are	derived	using	alternative	

production	technologies).		

The	use	of	such	state‐allocable	production	technologies	where	inputs	can	be	allocated	between	

different	states	of	nature	permits	substitution	between	state‐contingent	outputs	(Chambers	and	

Quiggin	2000).	Therefore,	it	allows	for	production	and	decision	maker	uncertainty	to	be	treated	

separately	in	decision	analysis	(O'Donnell	and	Griffiths	2006;	Rasmussen	2011),	and	brings	risk	

management	into	focus	(Just	2003).	This	permits	analysis	of	adaptation	to	increased	climate	

variability	and	change.	

In	this	article	we	test	the	assumption	that	farmers’	observed	behaviour	in	managing	production	

uncertainty	is	consistent	with	state‐contingent	production	theory	using	farm‐level	data	for	

irrigated	dairy	producers	in	Australia.	More	precisely,	we	estimate	the	milk	production	
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technology	parameters	for	a	sample	of	irrigated	dairy	farms	from	the	southern	Murray–Darling	

Basin	over	the	period	from	2006‐07	to	2009‐10.	Two	states	of	nature	(favourable	and	

unfavourable)	are	defined,	based	on	water	allocation	announcements	in	October	of	each	year.		

Major	inputs	in	the	production	process	include	land,	capital,	fertilisers,	labour,	water,	and	

purchased	fodder.	Some	of	these	inputs,	such	as	land	and	capital	are	determined	prior	to	the	

realisation	of	the	state	of	nature,	but	may	nonetheless	be	allocated	in	ways	that	have	differential	

benefits	in	different	states	of	nature.	For	example,	choosing	water‐efficient	irrigation	systems	

may	reduce	variability	arising	from	stochastic	water	allocations.	Other	inputs,	such	as	purchased	

fodder,	are	chosen	after	the	state	of	nature	is	known.	These	inputs	may	be	allocated	primarily	

either	to	favourable	states	(amplifying	the	variability	of	returns)	or	to	unfavourable	states	

(mitigating	variability).	

The	paper	is	structured	as	follows.	In	Section	2	we	present	a	background	to	the	study.	A	brief	

introduction	to	the	state‐contingent	model	is	presented	in	Section	3	and	the	data,	econometric	

model	and	estimation	method	are	presented	in	Section	4,	including	an	explanation	of	the	

specification	of	the	production	technology	and	the	estimation	method.	The	model	results	are	

examined	in	Section	5.	We	briefly	conclude	in	Section	6	with	some	suggestions	for	further	work.	

2.	Background	

The	Murray	Valley	is	an	important	dairy	production	region	in	Australia,	forming	part	of	the	

Murray–Darling	basin	(MDB)	in	south‐eastern	Australia.	Historically,	the	Murray	Valley	dairy	

industry	has	been	developed	as	year‐round	pasture‐based	operations	supported	with	irrigated	

pastures,	with	supplementary	feeding	of	fodder	and	concentrates	to	account	for	seasonal	

variability.	In	2010‐11,	the	most	recent	season	with	favourable	conditions	for	irrigation,	the	

MDB	accounted	for	40	per	cent	of	agricultural	firms	using	irrigation,	61	per	cent	of	all	irrigated	

agricultural	land,	applying	68	per	cent	of	available	irrigation	water.	Pasture	for	grazing	was	the	
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predominant	irrigated	land	use,	accounting	for	around	45	per	cent	of	the	irrigated	land	in	the	

Basin	in	2010‐11	(ABS	2012).		

The	MDB	experienced	a	period	of	sustained	low	rainfall	from	2000‐01	to	2008‐09.	In	2006‐07,	

dam	storage	levels	remained	very	low,	reaching	only	15	per	cent	of	their	capacity.	Water	

allocations	for	irrigation	dropped	to	historically	low	levels	in	some	regions,	although	rainfall	had	

improved	slightly.	In	2009‐10,	the	MDB	experienced	above‐average	rainfall	and	water	storage	

levels	began	to	recover.		

Weather	variability	directly	affects	production	in	rainfed	systems	and	irrigation	water	

availability	for	intensively	irrigated	systems	such	as	the	Murray	Valley	dairy	industry.	Farm	

costs	have	increased	as	farmers	adapt	to	drier	conditions.	In	particular,	reliance	on	purchased	

feed	has	increased	considerably.	Murray	Valley	milk	production	fell	from	3	billion	litres	per	year	

in	2002,	to	2	billion	litres	per	year	in	2009	in	response	to	drought	that	affected	irrigation	water	

availability	(Australian	Dairy	Industry	2014;	Dharma	et	al.	2012).		

Dairy	production	typically	involves	two	calving	periods	(or	batches),	with	a	primary	batch	in	

spring,	with	peak	milk	production	in	the	spring	pasture	growth	season.	Pasture‐based	systems	

are	often	managed	to	optimise	rather	than	maximise	milk	production	by	carefully	controlling	

input	costs.	Most	producers	use	a	combination	of	grazing,	cut	forage	(hay	and	silage)	and	

concentrate	feeding,	allowing	flexibility	in	managing	costs	and	nutritional	requirements	through	

substitution.	However,	the	practice	exposes	dairy	farms	to	an	increased	level	of	risk	as	forage	

and	grain	prices	can	rise	sharply	during	dry	conditions,	particularly	if	irrigation	water	supplies	

are	restricted.		

Year‐round	pasture	availability	is	advantageous	for	dairy	farming.	The	Murray	Valley	dairy	

industry	draws	this	advantage	from	the	ability	to	raise	feed	under	irrigation.	Irrigation	increases	

the	flexibility	for	year‐round	feed	supply	using	a	combination	of	annual	and	perennial	pastures	

that	can	be	grazed,		or	cut	for	hay	and	silage,	as	conditions	warrant.	
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In	recent	decades,	as	the	opportunity	cost	of	water	for	irrigation	has	increased	through	greater	

competition	[including	water	trading],	dairy	farmers	have	opted	to	substitute	purchased	feed	for	

farm‐grown	pastures.	Purchase	of	hay,	silage,	and	grains	such	as	wheat	and	barley	adds	to	the	

flexibility	as	it	permits	sourcing	feed	from	different	regions	that	may	have	different	exposure	to	

climate	variability,	and	different	opportunity	costs	for	water	and	land.	Some	farmers	have	also	

opted	to	raise	their	dry	cows	and	replacement	stock	at	different	properties	away	from	the	main	

dairy,	allowing	a	further	level	of	flexibility	(Mallawaarachchi	and	Foster	2009).	

Based	on	past	experience	farmers	would	then	be	able	to	differentiate	between	good	and	bad	

seasons	with	high	and	low	productivity,	respectively.	In	such	assessments,	the	separation	of	high	

and	low	prospects	would	depend	on	the	balance	between	marginal	productivity	and	risk	

tolerance	(Jones	et	al.	2013;	Just	2003,	2008;	Miller	et	al.	2013).		

Risk‐neutral	producers	will	seek	to	maximise	expected	net	returns	by	equalising	the	marginal	

cost	of	expected	output	across	states	of	nature.	This	will	yield	a	relatively	risky	net	return.	By	

contrast,	risk‐averse	producers	will	seek	lower	variation	in	net	returns	across	states	of	nature,	

provided	the	cost,	in	terms	of	expected	net	returns,	is	not	too	great.	The	trade‐off	may	be	

measured	using	the	concept	of	the	production	certainty	premium,	developed	by	Chambers	and	

Quiggin	(2000).	

3.	The	state‐contingent	model	

The	origins	of	state‐contingent	production	theory	can	be	traced	back	to	Arrow	and	Debreu	

(1954)	and	recent	developments	of	this	theory	can	be	found	in	Chambers	and	Quiggin	(2000).	In	

essence,	the	state‐contingent	theory	considers	that	outputs	are	conditional	on	the	states	of	

nature	(each	state	representing	a	particular	uncertain	event)	and	that	producers	can	manage	

uncertainty	through	the	allocation	of	productive	inputs	to	different	states	of	nature.	In	other	

words,	the	state‐contingent	approach	recognises	that	actions	(input	choices)	can	have	different	

consequences	in	different	states	of	nature.	This	is	not	a	property	of	conventional	stochastic	
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production	theory,	in	which	the	role	that	inputs	play	remains	the	same	regardless	of	which	state	

occurs,	and	hence	does	not	permit	substitutability	between	state‐contingent	outputs.	In	this	

paper,	we	test	whether	the	production	behaviour	of	dairy	farmers	from	the	MDB	in	Australia	

represents	state‐contingent	production	technologies,	where	the	states	are	defined	based	on	the	

expected	level	of	water	available	for	irrigation.	

In	the	general	state‐contingent	model	(Quiggin	and	Chambers	2006),	there	are	M	distinct	

outputs,	N	distinct	inputs,	and	S	possible	states	of	nature.	Inputs	ई ∈ Ըା
௺	are	committed	before	

the	state	of	nature	is	known	and	fixed	ex	post.	State‐contingent	outputs	ݖ ∈ Ըା
ௌൈெ	are	chosen	ex	

ante	but	produced	ex	post.	That	is,	if	state	s	is	realised,	and	the	ex	ante	output	choice	is	the	

matrix	z,	the	observed	output	is	ݖ௦ ∈ Ըା
ெ,	which	corresponds	to	the	M	outputs	produced	in	state	

s.	

Inputs	that	are	variable	ex	post,	such	as	irrigation,	may	be	regarded	as	negative	state‐contingent	

outputs,	in	which	case	we	generalise	to	allow	ݖ௦ ∈ Ըெ.	We	denote	by	1௦ ∈ Ըௌ	the	unit	vector	

with	all	entries	equal	to	1.	

The	formal	structure	may	be	considered	as	a	two‐period	game	with	nature,	with	periods	

denoted	0	and	1.	In	period	0,	the	producer	commits	inputs	ई ∈ Ըା
௺.	When	nature	reveals	the	

state	s,	the	individual	produces	the	output	ݖ௦.	

The	technology	of	production	determines	the	feasible	strategies	(ई,	z).	In	the	current	analysis,	

dairy	farmers’	choice	of	irrigation	and	the	level	of	fodder	substitution	for	pastures	in	low	and	

high	water	availability	seasons	are	treated	as	state‐allocable	production	technologies	that	

contribute	to	state‐contingent	outputs	(here	milk	produced)	in	low	and	high	seasons	

respectively.	

The	number	of	applications	of	the	state‐contingent	theory	has	grown	in	recent	years.	The	most	

notable	applications	are	O'Donnell	and	Griffiths	(2006),	Chavas	(2008),	O'Donnell	et	al.	(2010),	

Serra	et	al.	(2010),	and	Nauges	et	al.	(2011).	The	studies	from	Chavas	(2008)	and	Serra	et	al.	
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(2010),	which	are	based	on	aggregated	data	from	the	United	States	over	a	50‐year	period,	

provide	empirical	support	for	an	output‐cubical	technology	(technology	that	does	not	permit	

substitutability	between	state‐contingent	outputs).	However,	Nauges	et	al.	(2011),	using	farm‐

data	from	Finland,	found	that	a	state‐contingent	production	model	with	identifiable	state‐

allocable	inputs	is	preferred	to	the	more	restrictive	output‐cubical	state‐contingent	model.		

The	existence	of	a	state‐allocable	production	technology	has	a	number	of	important	implications	

for	agricultural	production	under	uncertainty	and	farmers’	adaptation	to	changing	conditions.	If	

the	production	technology	is	state‐allocable,	producers	can	respond	to	information	by	

reallocating	inputs	towards	states	of	nature	that	appear	more	likely	in	the	light	of	new	

information.	By	contrast,	under	an	output‐cubical	model,	producers	can	respond	to	information	

by	changing	only	the	scale	of	production	(Chambers	and	Quiggin	2007).	The	state‐contingent	

framework	thus	allows	for	greater	flexibility	and	adaptability	of	farmers	when	facing	

uncertainty	than	the	standard	(output‐cubical)	production	models.	

3.1.	The	cost	function	and	production	certainty	premiums	

The	state‐contingent	technology	described	above	may	be	characterised	by	a	cost	function	

c(z,w,π),	where	z	∈ Ըௌ	is	the	state‐contingent	output	of	interest	(in	this	case,	milk),	w	is	a	vector	

of	(possibly	state‐contingent)	input	prices	and	π	is	a	probability	vector.	The	cost	function	is	

defined	as	

(1)	 c(z,w,π)	=	min	Eπ[wx:	(ई,	z)	is	feasible]	

For	a	given	stochastic	output	z,	and	probabilities	π,	let	̅ݖ	∈ Ըௌdenote	the	non‐stochastic	output	

vector	with	all	elements	equal	to	Eπ[z],	and	define	the	absolute	production	certainty	premium	as	

(2)	      , , , , , ,a z w c z w c z w     	

and	the	relative	production	certainty	premium	
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	(3)		    
 
, ,

, , .
, ,

r c z w
z w

c z w


 


 		

For	any	μ,	let	

(4)	 z*(μ)	=	arg	min	{c(z,w,	π):	Eπ[z]=μ}.	

Observe	that	ρa(z*,w,π)	≥	0,	ρr(z*,w,π)	≥	1.	Equality	arises	in	the	case	where	z*(μ)	is	non‐

stochastic.	That	is,	in	the	terminology	of	Chambers	and	Quiggin	(2000),	the	technology	is	not	

inherently	risky.	

3.2.	State‐contingent	inputs	and	risk	premiums	

As	noted	above,	some	inputs	may	be	state‐contingent.	Risk‐averse	producers	may	increase	the	

use	of	such	inputs	in	unfavourable	states	of	nature	in	order	to	reduce	the	variability	of	state‐

contingent	output.	For	livestock	enterprises,	including	the	dairy	farms	studied	here,	the	most	

important	response	to	adverse	seasonal	conditions	is	the	use	of	purchased	fodder	to	supplement	

pasture.	

Following	the	approach	described	above,	state‐contingent	inputs	may	be	treated	as	negative	

outputs.	We	may	model	the	use	of	purchased	fodder	by	way	of	a	two‐stage	technology,	in	which	

the	final	state‐contingent	output	is	

(5)	 z	=	f(ζ,‐χ)	

where		

ζ	is	milk	output	in	the	absence	of	purchased	fodder;	and	

χ	is	the	input	of	purchased	fodder.		

We	will	further	simplify	by	assuming	that	z	=f(ζ,χ)	takes	the	simple	separable	form	

(6)	 zs	=	ζs	+	g(χs)	
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where	zs	denotes	output	in	state	s,	χs	is	fodder	input	in	state	s,	and	g(χs)	is	a	concave	increasing	

function.	We	will	make	the	specific	assumption	g(χs)=	ψlog(χs)	where	log	is	the	natural	

logarithm	and	ψ	is	a	constant.	

With	this	specification,	minimising	the	expected	cost	of	producing	a	given	expected	output	Eπ[z]	

requires	making	the	fodder	input	χs	equal	in	all	states.1	However,	risk‐averse	producers	will	tend	

to	use	more	fodder	(and	other	variable	inputs)	in	unfavourable	states.	The	resulting	expected	

output,	as	a	proportion	of	the	maximal	expected	output	achieved	by	setting	all	inputs	equal	may	

be	measured	as:	

(7)	 E[log	(χ)]/log(E[χ])		

If	fodder	inputs	are	chosen	to	equalise	state‐contingent	outputs,	this	is	a	version	of	the	

production	certainty	premium.	

4.	Empirical	analysis	

4.1.	Specification	of	the	production	technology	and	estimation	method	

We	propose	to	estimate	a	production	technology	of	the	form:	y	 ൌ 	fሺx, zሻ	where	y	represents	

milk	production	per	cow,	x	is	a	vector	of	production	inputs,	and	z	is	a	vector	of	variables	to	

control	for	farm	heterogeneity.	We	consider	the	following	production	inputs:	purchased	fodder;	

area	used	to	produce	hay	and	silage;	area	of	irrigated	pasture;	labour;	and	the	number	of	milking	

cows	(as	a	proxy	for	capital).	We	consider	all	inputs	on	a	per	cow	basis	(based	on	the	number	of	

milking	cows).	We	will	test	a	number	of	functional	forms	(Cobb‐Douglas,	Translog,	quadratic)	

and	keep	the	one	that	best	fits	our	data.	

The	chosen	estimation	method	must	address	three	potential	issues:	first,	inputs	may	be	

endogenous	if	unobserved	productivity	shocks	(or	unobserved	farm‐specific	effects)	are	

																																																													
1	This	assumes	that	fodder	prices	are	equal	across	states.	If	fodder	prices	are	higher	in	unfavourable	
states,	risk	neutral	producers	would	use	less	in	those	states.	
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correlated	with	both	inputs	and	output;	second,	some	farmers	in	some	years	do	not	have	any	

irrigated	pasture;	finally,	our	dataset	is	an	unbalanced	panel	so	not	all	farms	have	been	observed	

in	all	years.	We	propose	the	following	two‐stage	estimation	strategy:	in	the	first	stage	potential	

endogenous	inputs	are	regressed	on	a	set	of	instrumental	variables,	and	in	the	second	stage	

their	predicted	values	(instead	of	their	observed	values)	are	used	in	estimating	the	production	

function.	We	estimate	the	first	stage	using	a	Tobit	model,	as	the	potential	endogenous	inputs	

contain	observations	that	take	the	value	zero.	In	the	second	stage,	a	fixed‐effect	estimator	is	used	

to	model	the	production	technology,	where	the	within	transformation	removes	unobserved	

farmer	specific	effects	and	corrects	the	endogeneity	bias	due	to	the	correlation	of	farmer	specific	

effects	with	the	independent	variables.	Finding	appropriate	instrumental	variables	is	difficult,	so	

we	consider	a	number	of	possible	options:	the	(median)	regional	price	of	milk;	the	(median)	

regional	price	of	water	allocations;	the	(median)	regional	price	of	fodder;	summer	rainfall;	and	

regional	dummies.	We	assume	that	the	size	of	the	area	is	exogenous	over	the	four‐year	period	

covered	by	our	data.	

4.2.	Description	of	data	

This	study	uses	farm‐level	data	obtained	from	a	short	time	series	of	irrigation	surveys	

conducted	on	farm	by	the	Australian	Bureau	of	Agricultural	and	Resource	Economics	and	

Sciences	(ABARES).	Four	rounds	of	these	annual	survey	data	are	available,	beginning	from	the	

2006‐07	financial	year	(see	Ashton	and	Oliver	2012b).	The	data	cover	only	four	years	but	

encompass	periods	of	lower‐than‐average	rainfall	(2006	to	2008)	and	periods	with	rainfall	well	

above	the	long‐term	average	(2009	and	2010).	In	2006‐07,	water	allocations	dropped	to	their	

lowest	levels	in	some	regions.		

The	sample	is	an	unbalanced	panel	of	408	observations,	comprising	204	farms	observed	from	

2006‐07	to	2009‐10.	Descriptive	statistics	on	the	variables	used	as	explanatory	factors	in	the	

production	function	are	shown	in	Table	1.	More	detailed	information	is	given	in	the	Appendix.	
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Table	1.	Descriptive	statistics	on	the	potential	explanatory	variables	

Variable	 Unit	 Mean Std.	
dev.	

25th	
perc.	

50th	
perc.	

75th	
perc.	

	 	 	 	 	 	

Purchased	fodder		 quantity	

index/cow	

789	 546	 375	 699	 1147	

On‐farm	irrigated	pasture	 ha/cow	 0.26	 0.32	 0	 0.18	 0.39	

On‐farm	hay	and	silage	 ha/cow	 0.23	 0.30	 0	 0.14	 0.33	

Family	labour	 weeks/cow	 0.71	 0.60	 0.38	 0.56	 0.84	

Hired	labour	 weeks/cow	 0.09	 0.14	 0	 0	 0.17	

Area	operated	 ha	 255	 257	 93	 165	 324	

Number	of	milking	cows	 219	 162	 110	 160	 300	

	

In	Table	2	we	report	annual	averages	for	variables	of	interest.	The	average	milk	production	per	

cow	has	remained	quite	stable	over	the	four	years,	varying	from	5	506	litres	in	2007‐08	to	5	738	

litres	in	2009‐10.	The	quantity	of	fodder	purchased	has	varied	across	the	four	years	from	a	low	

of	640	(quantity	index	per	cow)	in	2006‐07	to	a	high	of	1	013	in	2008‐09.	The	large	variation	in	

the	quantity	of	fodder	purchased	is	driven,	among	other	factors,	by	water	availability	(through	

rainfall	and	water	allocations)	and	the	price	of	fodder.		

Table	2.	Time	variation	of	variables	of	interest	

	 2006–
07	

2007–
08	

2008–
09	

2009–
10	

	 	 	 	 	

Milk	production	 l/cow	 5	660	 5	506	 5	703	 5	738	

Purchased	fodder		 quantity	

index/cow	

640	 896	 1	013	 749	

Farmers	having	irrigated	pasture	 %	 66	 69	 63	 80	

Irrigated	pasture	(all	farms)	 ha/cow	 0.29	 0.18	 0.23	 0.34	

Irrigated	pasture	

(for	farms	having	irrigated	pasture)	

ha/cow	 0.44	 0.26	 0.37	 0.42	

Farmers	growing	fodder	crops	 %	 38	 38	 35	 35	

On‐farm	hay	and	silage	 ha/cow	 0.23	 0.22	 0.21	 0.26	

Family	labour	 weeks/cow	 0.77	 0.66	 0.67	 0.70	
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Hired	labour	 weeks/cow	 0.08	 0.09	 0.11	 0.10	

Area	operated	 ha	 237	 242	 287	 279	

Number	of	milking	cows	 ‐	 208	 217	 245	 220	

Winter	rainfall	 mm	 146	 196	 159	 237	

Summer	rainfall	 mm	 101	 210	 161	 252	

Index	price	of	fodder	 1	in	2010	 1.04	 1.34	 1.15	 1.00	

Price	of	milk		 c/l	 31	 47	 40	 34	

Price	of	water	allocations	 AUD/Ml	 343	 335	 297	 164	

Note:	summer	rainfall	is	total	rainfall	from	1	November	until	31	March.	Winter	rainfall	is	total	rainfall	from	1	April	
until	31	October.	

	

5.	Estimation	results	

5.1.	Estimation	of	the	production	technology	

In	the	first	stage	we	consider	three	potentially	endogenous	variables	–	fodder	expenditure,	area	

of	irrigated	pasture,	and	hired	labour	–	and	find	evidence	for	endogeneity	of	the	area	under	

irrigated	pasture	only.	Because	some	farms	do	not	have	any	irrigated	pasture	in	some	years,	we	

use	a	Tobit	model.	Estimation	results	are	shown	in	Table	A3	in	Appendix.	The	likelihood‐ratio	

test	indicates	the	overall	significance	of	the	model.	Our	estimates	indicate	that	higher	water	

allocation	prices,	higher	summer	rainfall	and	larger	area	operated	are	associated	with	smaller	

areas	of	irrigated	pasture	(per	cow).	We	also	find	significant	differences	across	regions,	with	

irrigated	pasture	(on	a	per	cow	basis)	being	lower	in	the	Murray	region	and	higher	in	the	

Loddon–Avoca	region	in	comparison	with	the	Goulburn	region,	all	other	things	being	equal.	

In	the	second	stage	we	use	the	predicted	area	under	irrigated	pasture	in	place	of	the	observed	

value	to	estimate	the	production	technology.	We	find	that	a	quadratic	functional	form	fits	the	

data	better	than	a	Translog	or	Cobb‐Douglas	functional	form,	and	that	most	of	the	interaction	

terms	are	not	significant.	The	within	estimation	results	are	shown	in	Table	3,	after	excluding	

insignificant	interaction	terms	from	the	model.	
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Table	3.	Within	estimation	results	–	Milk	production	technology	

Dependent	variable:		 Coef. Std.	Err. P>t
milk	production	per	cow	

	
Irrigated	pasture	(ha/cow)	 0.07 0.05 0.11

Fodder	purchase	(qty/cow)	 0.20 0.03 0.00

Hired	labour	(weeks/cow)	 0.12 0.02 0.00

Family	labour	(weeks/cow)	 0.17 0.04 0.00

Hay	and	silage	(ha)	 0.004 0.01 0.71

Number	of	milking	cows	 ‐0.27 0.07 0.00

Area	operated	(ha/cow)	 0.16 0.04 0.00

Goulburn	region	(ref)	 ‐ ‐ ‐

Loddon–Avoca	region	 ‐0.08 0.05 0.08

Murray	region	 ‐0.10 0.07 0.15

Fodder	purchase	x	Hired	labour	 ‐0.05 0.02 0.01

Constant	 0.76 0.16 0.00

	

All	inputs	have	the	expected	positive	sign.	Our	findings	also	indicate	that	production	per	cow	is	

significantly	lower	in	larger	herds.	Using	the	estimated	coefficients	from	Table	3,	we	calculate	

the	elasticities	of	milk	production	with	respect	to	the	main	inputs.	Milk	production	is	found	

relatively	inelastic	to	irrigated	pasture	(0.12),	fodder	purchase	(0.15)	and	hired	labour	(0.10).		

5.2.	Test	of	a	state‐contingent	production	technology	

We	now	test	whether	the	observed	dairy	production	system	is	better	represented	in	a	state‐

contingent	framework	as	opposed	to	the	standard	‘output‐cubical’	technology	estimated	

previously,	the	latter	being	a	restricted	form	of	the	state‐contingent	production	technology.	We	

define	two	states	of	nature	to	reflect	favourable	and	unfavourable	conditions	of	water	

availability	as	at	1	October	each	year.	Based	on	knowledge	of	the	dairy	industry,	this	date	

represents	the	beginning	of	the	prime	growing	season	after	production	decisions	have	been	

made	and	so	fits	into	a	state‐contingent	framework	where	a	set	of	state‐allocable	inputs	can	be	

identified	with	available	data.		
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The	state	variable	is	constructed	at	the	farm	level	based	on	an	‘effective	water	allocation	level’,	

which	is	calculated	as	the	proportion	of	water	covered	by	a	farm’s	entitlements	that	is	actually	

available	for	use.	This	calculation	takes	into	account	the	suite	of	entitlements	held	by	the	farmer	

(available	from	ABARES	survey	data)	and	their	relative	water	allocations	(obtained	from	

regional	water	authorities).	For	regulated	surface	water	entitlements,	water	allocations	vary	

from	0	per	cent	to	100	per	cent	of	entitlement	volume	depending	on	the	type	of	entitlement,	

region,	and	date	(allocations	generally	increase	throughout	the	year	as	inflows	enter	storages).	

We	assume	that	groundwater	entitlements	have	an	effective	100	per	cent	allocation.	The	

remaining	entitlement	categories,	which	comprise	less	than	2	per	cent	of	total	entitlement	

volumes,	we	assume	to	have	an	effective	100	per	cent	allocation,	as	detailed	information	is	not	

available.	We	define	farmers	to	be	experiencing	a	favourable	state	when	effective	water	

allocations	are	equal	to	or	greater	than	30	per	cent.	The	proportion	of	farmers	in	a	favourable	

state	in	each	region	and	in	each	year	is	given	in	Table	4.2	

The	determination	of	the	number	of	states	and	the	definition	of	the	states	is	a	crucial	modelling	

choice	in	the	estimation	of	state‐contingent	technology.	A	larger	number	of	states	allows	for	

more	flexible	estimation,	but	also	increases	the	number	of	parameters	to	be	estimated,	thereby	

reducing	the	precision	of	estimates	and	the	power	of	hypothesis	tests.	Most	published	analyses	

using	the	state‐contingent	approach	have	allowed	for	either	two	or	three	states	of	nature.	In	the	

present	paper,	two	states	of	nature	are	modelled,	with	the	threshold	set	at	an	allocation	of	30	

per	cent	or	more.	The	choice	of	two	states	of	nature	reflects	the	relatively	small	sample	size	

(approximately	400	observations	on	100	farms	over	four	years).	Our	primary	motivation	for	the	

relatively	low	choice	of	threshold	was	the	need	to	have	sufficiently	many	farms	in	both	states	of	

																																																													
2	One	caveat	of	our	analysis	which	covers	only	four	years	is	that	a	number	of	farms	remain	in	the	same	
state.	More	precisely	75	data	points	only	are	from	farms	observed	in	both	states.	The	remaining	
observations	are	233	from	farms	observed	only	in	the	unfavourable	state,	and	100	from	farms	observed	
only	in	the	favourable	state.	Identification	would	be	stronger	if	we	had	more	farmers	switching	states	but	
we	do	not	think	it	is	critical	for	two	main	reasons:	first,	we	control	for	farm‐specific	unobserved	effects	
when	estimating	the	production	technology	and	second,	we	do	not	believe	there	is	a	risk	of	selection	bias.	
Such	a	bias	would	occur	if	the	dairy	farmers	in	our	sample	had	selected	the	location	of	their	farm	based	on	
expected	water	allocations,	which	we	believe	is	highly	unlikely.		
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nature	in	all	regions.	As	shown	in	Table	4,	even	with	this	relatively	low	threshold,	only	a	few	

farms	in	the	Loddon–Avoca	catchment	experienced	the	favourable	state.3	

	

Table	4.	Percentage	of	farmers	in	a	favourable	state	(our	sample)	

Region	 2006‐07	 2007‐08 2008‐09 2009‐10

Goulburn	 32	 16	 13	 20	

Loddon–Avoca	 17	 7	 8	 16	

Murray	 91	 37	 41	 36	

	

In	Table	5,	we	report	the	mean	values	of	the	main	variables	of	interest	in	each	state	of	nature,	

along	with	the	outcome	of	a	t‐test	of	mean	equality.	This	test	highlights	some	differences	in	input	

use	between	the	states.	However,	output	remains	relatively	similar	between	states.	This	is	partly	

because	many	farmers	are	on	commitment	to	deliver	a	specific	volume	of	milk	and	hence	strive	

to	maintain	output.	Furthermore,	dairy	cows	represent	a	significant	capital	asset	to	these	farms	

and	their	production	goal	is	to	maintain	dairy	cow	performance	over	a	productive	lifespan.		

	

Table	5.	Comparison	of	means	between	the	two	states	

	 Unfavourable	
state	

Favourable	
state	

Test	of	mean	
equality	

	 	 	 	

Milk	production	per	cow	 litre	 6	139	 6	296	 ns	

Irrigated	pasture	 ha/cow	 0.26	 0.19	 **	

Purchased	fodder	 qty/cow	 1	030	 850	 ***	

Fodder	crops	 ha/cow	 0.10	 0.12	 ns	

Hired	labour	 weeks/cow 1.04	 0.91	 ns	

Note:	‘ns’	is	for	non‐significant;	**	and	***	indicate	a	significant	difference	between	the	two	means	at	the	5%	and	1%	
level,	respectively.	

	

																																																													
3	We	ran	some	sensitivity	analyses	by	varying	the	threshold	that	distinguishes	between	favourable	and	
unfavourable	states.	Instead	of	a	30	per	cent	threshold	we	re‐estimated	the	model	using	a	20	per	cent	and	
a	40	per	cent	threshold.	We	find	that	the	results	(in	particular	in	terms	of	elasticities	of	milk	production	to	
inputs)	were	not	substantially	different	as	a	result	of	varying	the	threshold.	
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We	then	estimate	the	original	two‐stage	model	separately	for	the	two	states	of	nature	and	test	

whether	the	parameters	are	the	same.	The	first‐stage	estimation	results	are	shown	in	Table	A4	

in	Appendix	and	the	estimation	of	the	production	technology	along	with	corresponding	

elasticities	of	milk	production	to	inputs	in	Table	6.		

The	Fisher‐test	of	equality	of	coefficients	between	the	two	states	has	a	p‐value	of	0.036,	which	

indicates	rejection	of	the	null	hypothesis	that	the	coefficients	of	the	production	technology	are	

equal	between	the	two	states	of	nature	at	the	5	per	cent	level	of	significance.	This	finding	thus	

confirms	our	initial	hypothesis	that	the	production	technology	is	flexible	and	state‐specific.		

The	elasticities	of	milk	production	with	respect	to	fodder	purchase,	irrigated	pasture,	and	hired	

labour	in	the	two	states	of	nature	were	computed	for	each	observation	in	the	sample.	Milk	

production	is	found	to	be	more	elastic	to	fodder	purchase	and	less	elastic	to	irrigated	pasture	in	

favourable	states	of	nature.	The	distributions	of	the	output	elasticities	to	fodder	purchase	and	

irrigated	pasture	are	shown	in	Figures	A1	and	A2	in	Appendix.		

	

Table	6.	State‐contingent	production	technology:	estimated	coefficients	and	elasticities	

Dependent	variable:	milk	production	
per	cow	

Unfavourable	state Favourable	state	

	 Coef. P>t Coef. P>t	
	 	
Irrigated	pasture	(ha/cow)		 0.09** 0.049 0.02 0.853	
Fodder	purchase	(qty/cow)		 0.18*** 0.000 0.20*** 0.000	
Hired	labour	(weeks/cow)		 0.08*** 0.006 0.06 0.269	
Hay	and	silage	(ha/cow)		 0.01 0.477 ‐0.01 0.633	
Number	of	milking	cows		 ‐0.38*** 0.000 ‐0.33*** 0.001	
Area	operated	(ha/cow)		 0.06 0.341 0.17*** 0.000	
Family	labour	(weeks/cow)		 0.08 0.119 0.16*** 0.002	
Fodder	purchase	x	Hired	labour	 ‐0.04** 0.044 0.02 0.647	
	 	
Estimated	elasticities	of	milk	
production	to:	
	

	

																	Fodder	purchase	(qty/cow)	 0.15
0.16	
0.04	

0.18	
0.03	
0.06	

																	Irrigated	pasture	(ha/cow)	
																	Hired	labour	(weeks/cow)	
Note:	*,	**	,	***	indicate	significance	at	the	10,	5,	and	1	per	cent	level,	respectively.	
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5.3.	The	production	certainty	premium	

The	summary	statistics	presented	in	Table	5	show	that	farmers	use	state‐allocable	inputs	to	

reduce	the	state‐contingent	variability	of	output.	The	difference	in	mean	output	between	the	

favourable	and	unfavourable	states	is	neither	statistically	significant	nor	large	in	relative	

magnitude	(about	2.5	per	cent).	It	may	be	conjectured	that	farmers	value	stable	output	because	

it	helps	them	to	meet	contractual	requirements.	A	similar	idea,	‘insurance	milk’	was	proposed	by	

Alston	and	Quilkey	(1980),	though	the	market	conditions	at	the	time,	with	fluid	milk	quotas	

playing	a	central	role,	were	very	different.	Stabilisation	of	output	is	achieved	by	increasing	the	

use	of	state‐contingent	inputs,	most	notably	purchased	fodder,	in	unfavourable	states	of	nature.	

As	shown	in	Table	5,	the	mean	input	of	purchased	fodder	is	approximately	20	per	cent	higher	in	

the	unfavourable	state.	The	productivity	of	fodder,	as	measured	by	the	elasticity	of	output	with	

respect	to	fodder,	is	correspondingly	lower,	also	by	around	20	per	cent	(Table	6).	

These	observations	indicate	that	farmers	are	willing	to	incur	a	production	certainty	premium	in	

order	to	stabilise	output.	However,	as	we	will	show,	the	flexibility	of	the	production	technology	

means	that	this	premium	is	quite	modest.	Since	the	marginal	product	of	fodder	is	approximately	

inversely	proportional	to	the	input	level,	we	may	estimate	the	premium	using	the	additively	

separable	technology	in	(6),	with	g(χ)	=	log	(χ).	We	have	

Log(χu)	=	6.94,	

Log(χf)	=	6.75,	

Log(E[χ])	=	6.879,	

E[log	(χ)]	=	6.875,	

Where	χu	=	1030	is	input	in	the	unfavourable	state	and	χf	=	850	is	input	in	the	favourable	state.		

Computation	of	the	ratio		

E[log	(χ)]/log(E[χ])	
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	yields	a	value	of	0.9995,	which	is	close	enough	to	1	to	be	within	the	range	of	measurement	

error.		

6.	Conclusion	

Using	limited	farm	survey	data	our	analysis	demonstrates	that	the	production	technology	

adopted	by	irrigated	dairy	farmers	in	the	Murray–Darling	Basin	represents	a	pattern	consistent	

with	state‐contingent	production.	Over	recent	years,	irrigators	in	this	region	have	endured	

highly	variable	seasonal	water	allocations	making	them	more	vulnerable	to	production	and	

market	risks.	However,	despite	significant	variability	in	seasonal	conditions,	milk	production	

levels	in	the	region	have	been	relatively	stable.		Farmers	have	used	additional	resources	in	

unfavourable	states	to	maintain	output	levels.	The	cost	of	stabilization	turns	out	to	be	modest.	

This	is	a	manifestation	of	the	flat	payoff	function	commonly	found	in	agricultural	decision	

problems	(Anderson	1975,	Pannell	2006).		Our	finding	that	output	is	quite	stable	across	states	

also	somehow	echoes	results	presented	in	Crean	et	al.	(2013).	Using	discrete	programming	

models	on	simulated	data	from	a	representative	farm	of	the	Central	West	region	of	New	South	

Wales,	the	authors	find	that	decisions	consistent	with	the	state‐contingent	theory	lead	to	a	

reduced	variability	in	farm	income	across	the	three	states	(characterised	as	dry,	average,	and	

wet)	compared	to	decisions	modelled	under	the	traditional	expected	utility	framework.	

The	state‐contingent	technology	estimated	here	is	very	flexible,	approaching	the	polar	case	of	a	

perfectly	state‐allocable	technology.	This	finding	contrasts	with	some	previous	estimates	of	

state‐contingent	production	technology	which	have	been	closer	to	the	opposite	pole	of	a	

stochastic	production	function	(for	example,	Chavas	2008).	Our	finding	that	farmers	use	state‐

allocable	inputs	to	manage	their	exposure	to	unfavourable	conditions	using	flexible	technologies	

has	significant	policy	relevance	in	understanding	adaptation	to	climate	variability	and	change.	
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Appendix	

Data	description	

The	data	set	contains	detailed	financial	and	physical	information	on	irrigated	farms	in	three	

industries	(broadacre,	dairy	and	horticulture)	across	10	regions	of	the	Murray–Darling	Basin.	In	

particular,	the	data	set	contains	information	on	area	allocated	to	pasture	and	other	crops;	crop,	

livestock,	and	milk	production	and	sales;	expenditure	on	inputs,	including	fertilisers,	chemicals,	

fodder,	and	number	of	weeks	worked	by	permanent	and	casual	workers	(hired	labour)	and	by	

family	members;	and	the	volume	and	prices	of	water	allocations	purchased	and	sold	by	each	

farmer	on	the	market.	For	our	purposes,	expenditure	on	fodder	was	converted	into	a	quantity	

index	using	a	national	price	index	for	fodder	and	feedstuff	(ABARES	2011).	

In	addition,	we	restrict	the	data	to	farms	whose	main	enterprise	is	dairy:	those	farms	for	which	

milk	receipts	represent	at	least	50	per	cent	of	total	cash	receipts.	We	also	restrict	the	data	to	

farms	located	in	the	southern	regions	of	Goulburn,	Loddon–Avoca,	and	Murray.	These	regions	

contain	the	majority	of	dairy	farms	in	the	survey	and	historical	information	on	water	availability	

for	these	regions	is	easily	accessible.	The	excluded	regions	are	the	Condamine–Balonne,	which	is	

farther	north	and	in	a	different	climate	zone,	and	Eastern	Mount	Lofty	Ranges,	for	which	

appropriate	water	use	data	is	not	available.	We	also	remove	farms	for	which	milk	production	is	

zero	or	the	number	of	milking	cows	is	zero.		The	final	sample	is	an	unbalanced	panel	of	408	

observations,	comprising	204	farms	observed	over	a	four‐year	period	from	2006‐07	to	2009‐10.	

The	distribution	of	observations	and	the	variation	of	the	output	variable,	milk	production	per	

cow	(litres),	over	the	three	regions	and	four	years	are	shown	in	Tables	A1	and	A2	in	Appendix,	

respectively.4	

	

																																																													
4	Output	(milk)	is	measured	in	litres	since	we	do	not	have	any	information	in	the	data	to	control	for	milk	
composition	or	milk	quality.		
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Table	A1.	Number	of	dairy	farms	by	region	and	by	year	(our	sample)	

Region	 2006‐07	 2007‐08	 2008‐09	 2009‐10	 Total	

Goulburn	 38	 32	 40	 35	 145	

Loddon–Avoca	 18	 15	 25	 32	 90	

Murray	 47	 46	 44	 36	 173	

Total	 103	 93	 109	 103	 408	

	

Table	A2.	(Weighted)	average	of	milk	production	per	cow	(litres)	

Region	 2006‐07	 2007‐08	 2008‐09	 2009‐10	

Goulburn	 5	242	 4	834	 5	435	 5	447	

Loddon–Avoca	 5	244	 5	933	 5	885	 5	314	

Murray	 6	091	 6	108	 5	969	 6	327	

	

Table	A3.	Tobit	estimation	results	

Dependent	variable:		
irrigated	pasture	per	cow	(ha)	

Coef. Std.	Err. P>t

	
Price	of	water	allocations	 ‐1.49 0.41 0.00

Summer	rainfall	 ‐0.62 0.27 0.02

Goulburn	region	(ref)	 ‐ ‐ ‐

Loddon–Avoca	region	 0.04 0.25 0.87

Murray	region	 ‐0.62 0.19 0.00

Area	operated	 ‐0.19 0.09 0.03

Constant	 3.21 0.70 0.00

	
Number	of	observations	 408

Number	of	censored	observations	 134

Likelihood‐ratio	test	(p‐value)	 33.38 (0.000)
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Table	A4.	First‐stage	estimation	results	(Tobit	model)	

	 Unfavourable	state Favourable	state

Dependent	variable:		
irrigated	pasture	per	cow	(ha)	

Coef. Std.	Err. P>t Coef. Std.	
Err.	

P>t

	 	
Price	of	water	allocations	 ‐1.42 0.41 0.000 ‐1.34 0.67	 0.044

Summer	rainfall	 ‐0.35 0.37 0.348 ‐0.97 0.35	 0.005

Goulburn	region	(ref)	 ‐ ‐ ‐ ‐ ‐	 ‐

Loddon–Avoca	region	 0.11 0.26 0.683 ‐0.04 0.66	 0.950

Murray	region	 ‐0.57 0.22 0.009 ‐0.65 0.43	 0.134

Area	operated	 ‐0.23 0.10 0.022 ‐0.11 0.13	 0.384

Constant	 2.92 0.78 0.000 3.23 1.01	 0.001

	 	
Number	of	observations	 277 131 	

Number	of	censored	observations	 86 48 	
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Figure	1.	Distribution	of	estimated	elasticities	of	output	with	respect	to	fodder	purchase	

	

Figure	2.	Distribution	of	estimated	elasticities	of	output	with	respect	to	irrigated	pasture	
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