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1 Introduction

In a world of perfect capital market, firms could finance their operating costs
and investments by issuing shares at no cost. As long as the net present value
of a project is positive, it will find investors ready to supply funds. This is
the central assumption of the Modigliani and Miller theorem [23]. On the
other hand, when firms face external financing costs, these costs generate a
precautionary demand for holding liquid assets and retaining earnings. This
departure from the Modigliani-Miller framework has received a lot of attention
in recent years and has given birth to a series of papers explaining why firms
hold liquid assets. Pioneering papers are Jeanblanc and Shiryaev [18], Radner
and Shepp [27] while more recent studies include Bolton, Chen and Wang [4],
Décamps, Mariotti, Rochet and Villeneuve [7] and Hugonnier, Malamud and
Morellec [17]. In all of these papers, it is assumed that firms are all equity fi-
nanced. Should it runs out of liquidity, the firm either liquidates or raises new
funds in order to continue operations by issuing equity. This binary decision
only depends on the severity of issuance costs.
The primary objective of our paper is to study a setup where a cash-constrained
firm has a mixed capital structure. To do this, we build on the paper by Bolton,
Chen and Wang [4] chapter V to allow the firm to access a secured credit line.
While [4] assumed a constant-returns-to-scale and homogeneous adjustment
costs which allows them to work with the firm’s cash-capital ratio and thus
to reduce the dimension of their problem, we rather consider a decreasing-
returns-to-scale technology with linear adjustments costs.
Bank credit lines are a major source of liquidity provision in much the same
way as holding cash does. Kashyap, Rajan and Stein [19] found that 70% of
bank borrowing by US small firms is through credit line. However, access to
credit line is contingent to the solvency of the borrower which makes the use
on credit line costly through the interest rate and thus makes it an imperfect
substitute for cash (Sufi [29]). From a theoretical viewpoint, the use of credit
lines can be justified by moral hazard problems (Holmstrom-Tirole [15]) or
from the fact that banks can commit to provide liquidity to firms when capi-
tal market cannot because banks have better screening and monitoring skills
(Diamond [9])
In this paper, we model credit line as a full commitment lending relationship
between a firm and a bank. The lending contract specifies that the firm can
draw on a line of credit as long as its outstanding debt, measured as the size
of the firm’s line of credit, is below the value of total assets (credit limit). The
liability side of the balance sheet of the firm consists in two different types
of owners: shareholders and bankers. Should the firm be liquidated, bankers
have seniority over shareholders on the total assets. We assume that the se-
cured line of credit continuously charges a variable spread1 over the risk-free
rate r indexed on the firm’s outstanding debt, the higher the size of firm’s

1 The spread may be justified by the cost of equity capital for the bank. Indeed, the full
commitment to supply liquidity up to the firm’s credit limit prevents bank’s shareholders
to allocate part of their equity capital to more valuable investment opportunities.
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line of credit, the higher the spread is. With this assumption, the secured line
of credit is somehow similar to the performance-sensitive debt studied in [22]
except that the shareholders are here forced to go bankrupt when they are no
more able to secure the credit line with their assets.

Many models initiated by Black and Cox [3] and Leland [20] that consider
the traditional tradeoff between tax and bankruptcy costs as an explanation
for debt issuance study firms liabilities as contingent claims on its underlying
assets, and bankruptcy as an endogenous decision of the firm management.
On the other hand, these models assume costless equity issuance and thus
put aside liquidity problems. As a consequence, the firm’s decision to borrow
on the credit market is independent from liquidity needs and investment deci-
sions. A notable exception are recent papers by Della Seta, Morellec, Zucchi [8]
and Hugonnier, Morellec (2015) [16] which study the effects of debt structure
and liquid reserves on banks’ insolvency risk. Our model belongs to the class
of models that consider endogenous bankruptcy of a firm with mixed capital
structure replacing taxes with liquidity constraints.
From a mathematical point of view, problems of cash management have been
formulated as singular stochastic optimal control problems. As references for
the theory of singular stochastic control, we may mention the pioneering
works of Haussman and Suo [12] and [13] and for application to cash manage-
ment problems Højgaard and Taksar [14], Asmussen, Højgaard and Taksar [1],
Choulli, Taksar and Zhou [5], Paulsen [25] among others. To merge corporate
liquidity, investment and financing in a tractable model is challenging because
it involves a rather difficult three-dimensional singular control problem with
stopping where the state variables are the book value of equity, the size of pro-
ductive asset and the size of the firm credit line while the stopping time is the
decision to default. The literature on multi-dimensional control problems relies
mainly on the study of leading examples. A seminal example is the so-called
finite-fuel problem introduced by Benes, Shepp and Witsenhausen [2]. This
paper provides a rare example of a bi-dimensional optimization problem that
combines singular control and stopping that can be solved explicitly by ana-
lytical means. More recently, Federico and Pham [10] have solved a degenerate
bi-dimensional singular control problem to study a reversible investment prob-
lem where a social planner aims to control its capacity production in order to
fit optimally the random demand of a good. Our paper complements the paper
by Federico and Pham [10] by introducing firms that are cash-constrained2.
To our knowledge, this is the first time that such a combined approach is used.
This makes the problem much more complicated and we do not pretend solv-
ing it with full generality, but rather, we pave the way for future developments
of these multidimensional singular control models. In particular, we lose the
global convexity property of the value function that leads to the necessary
smooth-fit property in [10] (see Lemma 4.12). Instead, we will give properties
of the value function (see Proposition 5.3) and characterize it by means of

2 Ly Vath, Pham and Villeneuve [21] have also studied a reversible investment problem
in two alternative technologies for a cash-constrained firm that has no access to external
funding
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viscosity solution (see Theorem 5.4). Furthermore, we will solve explicitly by
a standard verification argument the peculiar case of costless reversible invest-
ment. A last new result is our characterization of the endogenous bankruptcy
in terms of the profitability of the firm and the spread function.

The remainder of the paper is organized as follows. Section 2 introduces
the model with a productive asset of fixed size, formalizes the notion of secured
line of credit and defines the shareholders value function. Section 3 contains
our first main result, it describes the optimal credit line policy and gives the
analytical characterization of the value function in terms of a free boundary
problem for a fixed size of productive assets. Section 4 is a technical section
that builds the value function by solving explicitly the free boundary problem.
Section 5 extends the analysis to the case of reversible investment on produc-
tive assets and paves the way to a complete characterization of the dividend
and investment policies.

2 The No-investment Model

We consider a firm owned by risk-neutral shareholders, with a productive asset
of fixed size K, whose price is normalized to unity, that has an agreement with
a bank for a secured line of credit. The credit line is a source of funds available
at any time up to a credit limit defined as the total value of assets. The firm
has been able to secure the credit line by posting its productive assets as
collateral. Nevertheless, in order to make the credit line attractive for bank’s
shareholders that have dedicated part of their equity to this agreement, we
will assume that the firm will pay a variable spread over the risk-free rate r
depending on the size of the used part of the credit line. In this paper, the
credit line contract is given and thus the spread is exogenous, see Assumption
1. Finally, building on Diamond’s result [9] we assume that the costs of equity
issuance are so high that the firm is unwilling to increase its cash reserves by
raising funds in the equity capital market and prefers drawing on the credit
line. The firm is characterized at each date t by the following balance sheet:

K Xt

Mt Lt

– K represents the firm’s productive assets, assumed to be constant3 and
normalized to one.

– Mt represents the amount of cash reserves or liquid assets.
– Lt represents the size of the credit line, i.e. the amount of cash that has

been drawn on the line of credit.
– Finally, Xt represents the book value of equity.

3 The extension to the case of variable size will be studied in Section 4
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The productive asset continuously generates cash-flows over time. The cu-
mulative cash-flows process R = (Rt)t≥0 is modeled as an arithmetic Brow-
nian motion with drift µ and volatility σ which is defined over a complete
probability space (Ω,F ,P) equipped with a filtration (Ft)t≥0. Specifically, the
cumulative cash-flows evolve as

dRt = µdt+ σ dBt

where (Bt)t≥0 is a standard one-dimensional Brownian motion with respect
to the filtration (Ft)t≥0.

Credit line requires the firm to make an interest payment that is increasing
in the size of the used part of the credit line. We assume that the interest
payment is defined by a function α(.) where

Assumption 1 α is a strictly increasing 4, continuously differentiable convex
function such that

∀x ≥ 0, α′(x) ≥ r and α(0) = 0. (2.1)

The credit line spread x→ α(x)− rx is thus strictly increasing and positive.

The liquid assets earn a rate of interest r − δ where δ ∈ (0, r] represents a
carry cost of liquidity5. Thus, in this framework, the cash reserves evolve as

dMt = (r − δ)Mt−dt+ (µ− α(Lt−))dt+ σdBt − dZt + dLt (2.2)

where (Zt)t is an increasing right-continuous (Ft)t adapted process represent-
ing the cumulative dividend payment up to time t and (Lt)t is a positive
right-continuous (Ft)t adapted process representing the size of the credit line
at time t. Using the accounting relation 1 + Mt = Xt + Lt, we deduce the
dynamics for the book value of equity

dXt = (r−δ)Xt−dt+(µ−(r−δ)+(r−δ)Lt−−α(Lt−))dt+σdBt−dZt. (2.3)

Finally, we assume the firm is cash-constrained in the following sense:

Assumption 2 The cash reserves must be non negative and the firm manage-
ment is forced to liquidate when the book value of equity hits zero. Using
the accounting relation, this is equivalent to assume bankers get back all the
productive assets after bankruptcy.

4 Under a credit line agreement, banks must block part of their funds to provide liquidity.
This prevents banks for seizing new opportunities and this especially as the demand for
funds is high. When the banking system is not competitive, banks charge an increasing
credit line spread to offset the opportunity costs.

5 This assumption is standard in models with cash. It captures in a simple way the agency
costs, see [7], [17] for more details.
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The goal of the management is to maximize shareholders value which is de-
fined as the expected discounted value of all future dividend payouts. Because
shareholders are assumed to be risk-neutral, future cash-flows are discounted
at the risk-free rate r. The firm can stop its activity at any time by distributing
all of its assets to stakeholders. Thus, the objective is to maximize over the
admissible control π = (L,Z) the functional

V (x, l;π) = Ex,l(
∫ τ0

0

e−rtdZt)

where

τ0 = inf{t ≥ 0, Xπ
t ≤ 0}

according to Assumption 2. Here x (resp. l) is the initial value of equity capital
(resp. liability). We denote by Π the set of admissible control variables and
define the shareholders value function by

V ∗(x, l) = sup
π∈Π

V (x, l;π). (2.4)

Remark 2.1 We suppose that the cash reserves must be non negative (As-
sumption 2) so to be admissible, a control π = (L,Z) must satisfy at any time
t

dZt ≤ Xt− .

3 No-investment Model solution

This section derives the shareholders value and the optimal dividend and credit
line policies. It relies on a standard HJB characterization of the control prob-
lem and a verification procedure.

3.1 Optimal credit line issuance

The shareholders optimization problem (2.4) involves two state variables, the
value of equity capital Xt and the size of the credit line Lt, making its reso-
lution difficult. Fortunately, the next proposition will enable us to reduce the
dimension and make it tractable the computation of V ∗. Proposition 3.1 shows
that credit line issuance is only optimal when the cash reserves are depleted.

Proposition 3.1 A necessary and sufficient condition to draw on the credit
line is that the cash reserves are depleted, that is

∀t ∈ R+, LtMt = 0 or equivalently Lt = (1−Xt)
+.
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Proof: First, by Assumption 2, it is clear that the firm management must
draw on the credit line when cash reserves are nonpositive. Conversely, assume
that the level of cash reserves m is strictly positive. We will show that it is
always better off to reduce the size of the credit line by using the cash reserves.
We will assume that the initial size of the credit line is L0− = l > 0 and denote
πt = (Lt, Zt) any admissible strategy. Let us define by φ the cost of the credit
line on the variation of the book value of equity, that is φ(l) = α(l)− (r − δ)l
such that the book value of equity dynamics is

dXt = (r − δ)Xt−dt+ (µ− (r − δ)− φ(Lt−))dt+ σdBt − dZt. (3.1)

Note that φ is strictly increasing. We first assume that the firm does not draw
on the credit line at time 0, L0 = l. Because m > 0, we will built a strategy
from π as follows:{

Lε0 = l − ε for 0 < ε < min(m, l) and 0 ≤ Lεt ≤ Lt,
Zεt = Zt +

∫ t
0
(φ(Ls)− φ(Lεs)) ds

Note that the credit line issuance strategy Lε consists in always having less
debt that under the credit line issuance strategy L and because φ is increasing,
the dividend strategy Zεt pays more than the dividend strategy Zt. Further-
more, denoting by πε = (Lεt, Z

ε
t ), equation (3.1) shows that the bankruptcy

time under πε starting from (x, l−ε) and the bankruptcy time under π starting
from (x, l) have the same distribution. Therefore,

V (x, l;πε) = E(x,l−ε)(

∫ τπ
ε

0

0

e−rs dZεs)

> E(x,l−ε)(

∫ τπ
ε

0

0

e−rs dZs)

= E(x,l)(

∫ τπ0

0

e−rs dZs)

= V (x, l;π),

which shows that it is better off to follow πε than π. So if m > l, it is optimal
to set l = 0 by using m− l units of cash reserves while if m < l, it is optimal
to reduce the credit line to l −m. In any case, at any time Lt = (1−Xt)

+.
Now, if we assume that the firm draw on the credit line at time 0, i.e. ∆L0 6= 0,
two cases have to be considered.

– L0 = 0 which is possible only if m > l. In that case, we set Lεt = Lt and
Zεt = Zt for t > 0.

– L0 > 0. In that case, we take the same strategy πε with 0 < ε < min(m, l+
∆L0).

�
According to Proposition 3.1, we define the value function as v∗(x) = V ∗(x, (1−
x)+). The rest of the section is concerned with the derivation of v∗.
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3.2 Analytical Characterization of the firm value

Because the level of capital is assumed to be constant, Proposition 3.1 makes
our control problem one-dimensional. Thus, we will follow a standard verifica-
tion procedure to characterize the value function in terms of a free boundary
problem. In order to focus on the impact of credit line on the liquidity man-
agement, we will assume hereafter that δ = r. This assumption is without loss
of generality but allow us to be more explicit in the analytical derivation of
the HJB free boundary problem. We denote by L the differential operator:

LΦ = (µ− α((1− x)+))Φ
′
(x) +

σ2

2
Φ
′′
(x)− rΦ. (3.2)

We start by providing the following standard result which establishes that a
smooth solution to a free boundary problem coincides with the value function
v∗.

Proposition 3.2 Assume there exists a C1 and piecewise twice differentiable
function w on (0,+∞) together with a pair of constants (a, b) ∈ R+×R+ such
that,

∀x ≤ a, Lw ≤ 0 and w(x) = x

∀a ≤ x ≤ b, Lw = 0 and w′(x) ≥ 1

∀x > b, Lw ≤ 0 and w′(x) = 1.

(3.3)

with w
′′
(b) = 0 (3.4)

then w = v∗.

Proof: Fix a policy π = (Z) ∈ Π. Let:

dXt = (µ− α((1−Xt−)+)dt+ σdBt − dZt, X(0−) = x

be the dynamic of the book value of equity under the policy π. Let us decom-
pose Zt = Zct +∆Zt for all t ≥ 0 where Zct is the continuous part of Z.
Let τε the first time when Xt = ε. Using the generalized Itô’s formula, we
have:

e−r(t∧τε)w(Xt∧τε) = w(x) +

∫ t∧τε

0

e−rsLw(Xs)ds+

∫ t∧τε

0

σe−rsw
′
(Xs)dBs

−
∫ t∧τε

0

e−rsw
′
(Xs)dZ

c
s

+
∑

0≤s≤t∧τε

e−rs[w(Xs)− w(Xs−)].
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Because w′ is bounded, the third term is a square integrable martingale. Taking
expectation, we obtain

w(x) = Ex[e−r(t∧τε)w(Xt∧τε)]− Ex[

∫ t∧τε

0

e−rsLw(Xs)ds]

+ Ex[

∫ t∧τε

0

e−rsw
′
(Xs)dZ

c
s ]

− Ex[
∑

0≤s≤t∧τε

e−rs[w(Xs)− w(Xs−)]].

Because w′ ≥ 1, we have w(Xs)−w(Xs−) ≤ ∆Xs = −∆Zs therefore the third
and the fourth terms are bounded below by

Ex(

∫ t∧τε

0

e−rsw
′
(Xs)dZs).

Furthermore w is positive because w is increasing with w(0) = 0 and Lw ≤ 0
thus the first two terms are positive. Finally,

w(x) ≥ Ex(

∫ t∧τε

0

e−rsw
′
(Xs)dZs) ≥ Ex(

∫ t∧τε

0

e−rsdZs).

Letting t → +∞ and ε→ 0 we obtain w(x) ≥ v∗(x).
To show the reverse inequality, we will prove that there exists an admissible
strategy π∗ such that w(x) = v(x, π∗). Let (X∗t , Z

∗
t ) be the solution of

X∗t =

∫ t

0

(µ− α((1−Xs−)+))ds+ σBt − Z∗t (3.5)

where,

Z∗t = (x11{x≤a} + (x− b)+)1{t=0−} +

∫ t∧τ−a

0

1{X∗s=b}dZ
∗
s + a1{t≥τa} (3.6)

with

τa = inf{t ≥ 0, X∗t− ≤ a}

whose existence is guaranteed by standard results on the Skorohod problem
(see for example Revuz and Yor [28]). The strategy π∗ = (Z∗t ) is admissible.
Note also that X∗t is continuous on [0, τ−a ]. It is obvious that v(x, π∗) = x =
w(x) for x ≤ a. Now suppose x > a. Along the policy π∗, the liquidation time
τ0 coincides with τa because X∗τa = 0. Proceeding analogously as in the first
part of the proof, we obtain



10 Erwan Pierre et al.

w(x) = Ex[e−r(t∧τ0)w(X∗t∧τ0)] + Ex[

∫ t∧τ−0

0

e−rsw
′
(X∗s )dZ∗s ] +

Ex[11t>τ0e
−rτ0(w(X∗τ0−)− w(X∗τ0))]

= Ex[e−r(t∧τ0)w(X∗t∧τ0)] + Ex[

∫ t∧τ−0

0

e−rsw
′
(b)dZ∗s ] + Ex[11t>τ0e

−rτ0a]

= Ex[e−r(t∧τ0)w(X∗t∧τ0)] + Ex[

∫ t∧τ0

0

e−rsdZ∗s ],

where the last two equalities uses, w(a) = a w
′
(b) = 1 and (∆Z∗)τ0 = a. Now,

because w(0) = 0,

Ex[e−r(t∧τ0)w(X∗t∧τ0)] = Ex[e−rtw(X∗t )11t≤τ0 ].

Furthermore, because w has at most linear growth and π∗ is admissible, we
have

lim
t→∞

Ex[e−rtw(X∗t )11t≤τ0 ] = 0.

Therefore, we have by letting t tend to +∞,

w(x) = Ex[

∫ τ0

0

e−rsdZ∗s ] = v(x, π∗)

which concludes the proof. �

Remark 3.3 We notice that the proof remains valid when a = 0 and w′(0) is
infinite by a standard localisation argument which will be the case in section
4.

3.3 Optimal Policies

The verification theorem allows us to characterize the value function. The
following theorem summarizes our findings.

Theorem 3.4 Under Assumption 1 and 2, the following holds:

– If µ ≤ r, it is optimal to liquidate the firm, v∗(x) = x.
– If µ ≥ α(1), the value of the firm is an increasing and concave function

of the book value of equity. Any excess of cash above the threshold b∗ =
inf{x > 0, (v∗)

′
(x) = 1} is paid out to shareholders.(See Figure 1).

– If µ < α(1), the value of the firm is an increasing convex-concave function
of the book value of equity. When the book value of equity is below the
threshold a = sup{x > 0, v∗(x) = x}, it is optimal to liquidate. Any excess
of cash above the threshold b∗a = inf{x > a, (v∗)

′
(x) = 1} is paid out to

shareholders.(See Figure 2)
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It is interesting to compare our results with those obtained in the case of all
equity financing. First, because the use of credit line is costly, it is optimal to
wait that the cash reserves are depleted to draw on it. Moreover, there exists
a target cash level above which it is optimal to pay out dividends. These two
first findings are similar to the case of all equity financing. On the other hand,
the marginal value of cash may not be monotonic in our case. Indeed, when the
cost of the credit line is high, it becomes optimal for shareholders to terminate
the lending relationship. This embedded option value makes the shareholder
value locally convex in the neighborhood of the liquidation threshold a. The
higher is the cost, measured by λ in our simulation, the sooner is the strategic
default or equivalently, the value function decreases, while the embedded exit
option increases, with the cost of the credit line. The strategic default comes
from the fact that the instantaneous firms profitability µ−α(x) becomes nega-
tive for low value of equity capital. This is a key feature of our model that does
not appear when the firm is all-equity, where the firm profitability is constant
and the marginal value of cash at zero is the only statistic either to trigger the
equity issuance or to liquidate.

Figure 1 plots some value functions, when µ ≥ α(1), using a linear function
for α, α(x) = λx with different values of λ.

Fig. 3.1 Comparing shareholders value functions with µ = 0.25, r = 0.02, σ = 0.3 and
µ ≥ α(1) for different values of λ where α(x) = λx.

Figure 2 plots some value functions, when α(1) > µ, using a linear function
for α, α(x) = λx for different values of λ.
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Fig. 3.2 Comparing shareholders value functions with µ = 0.25, r = 0.02, σ = 0.3 and
α(1) > µ for different values of λ where α(x) = λx.

Next section is devoted to the proof of Theorem 3.4. The proof is based
on an explicit construction of a smooth solution of the free boundary problem
and necessitates a series of technical lemmas.

4 Solving the free boundary problem

The first statement of Theorem 3.4 comes from the fact that the function
w̃(x) = x satisfies Proposition 3.2 when µ ≤ r. To see this, we have to show
that Lw̃(x) is nonpositive for any x ≥ 0. A straightforward computation gives

for x > 1, Lw̃(x) = µ− rx < µ− r ≤ 0,

for x ≤ 1, Lw̃(x) = µ− α(1− x)− rx.

Using Equation (2.1) of Assumption 1, we observe that Lw̃(x) is nondecreasing
for x ≤ 1 and nonpositive at x = 1 when µ ≤ r.

Hereafter, we will assume that µ > r and focus on the existence of a
function w and a pair of constants (a, b) satisfying Proposition 3.2. We will
proceed in two steps. First we are going to establish some properties of the
solutions of the differential equation Lw = 0. Second, we will consider two
different cases- one where the productivity of the firm is always higher than
the maximal interest payment α(1) ≤ µ, the other where the interest payment
of the loan may exceed the productivity of the firm α(1) > µ.



Liquidity management with Decreasing-returns-to-scale and Secured Credit Line. 13

Standard existence and uniqueness results for linear second-order differential
equations imply that, for each b, the Cauchy problem:

rw(x) = (µ− α((1− x)+))w
′
(x) +

σ2

2
w
′′
(x)

w
′
(b) = 1

w
′′
(b) = 0

(4.1)

has a unique solution wb over [0, b]. By construction, this solution satifies

wb(b) = µ−α((1−b)+)
r . Extending wb linearly to [b,∞[ as wb(x) = x − b +

µ−α((1−b)+)
r , for x ≥ b yields a twice continuously differentiable function over

[0,∞[, which is still denoted by wb.

4.1 Properties of the solution to the Cauchy Problem

We will establish a series of preliminary results of the smooth solution wb of
(4.1).

Lemma 4.1 Assume b > 1. If wb(0) = 0 then wb is increasing and thus
positive.

Proof: Because wb(0) = 0, wb(b) = µ
r and Lwb = 0, the maximum principle

implies wb > 0 on (0,+∞). Let us define

c = inf{x > 0, w
′

b(x) = 0}

If c = 0 then wb(0) = w
′

b(0) = w
′′

b (0) = 0. By unicity of the Cauchy problem,
this would imply wb = 0 which contradicts wb(b) = µ

r . Thus, c > 0. If c < b,

we would have wb(c) > 0, w
′

b(c) = 0 and w
′′

b (c) ≤ 0 and thus Lwb(c) < 0 which

is a contradiction. Therefore w
′

b is always positive. �

Lemma 4.2 Assume b > 1. We have w
′

b > 1 and w
′′

b < 0 on [1, b[.

Proof: Because wb is smooth on ]1, b], we differentiate Equation (4.1) to
obtain,

w
′′′

b (b) =
2r

σ2
> 0.

As w
′′

b (b) = 0 and w
′

b(b) = 1, it follows that w
′′

b < 0, and thus w
′

b > 1 over
some interval ]b− ε, b[, where ε > 0. Now suppose by way of contradiction that
w′b(x) ≤ 1 for some x ∈ [1, b − ε] and let x̃ = sup{x ∈ [1, b − ε], w′b(x) ≤ 1}.
Then w

′

b(x̃) = 1 and w′b(x) > 1 for x ∈]x̃, b[, so that wb(b)−wb(x) > b− x for
all x ∈]x̃, b[. Because wb(b) = µ

r , this implies that for all x ∈]x̃, b[,

w
′′

b (x) =
2

σ2
[rwb(x)− µw

′

b(x)] <
2

σ2
[r(x− b+ wb(b))− µ] =

2

σ2
r(x− b) < 0
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which contradicts w′b(b) = w′b(x̃) = 1. Therefore w′b > 1 over [1, b[. Further-
more, using Lemma 4.1,

w
′′

b (x) =
2

σ2
[rwb(x)− µw

′

b(x)]

<
2

σ2
[rwb(x)− µ]

<
2

σ2
[rwb(b)− µ]

= 0.

�

The next result gives a sufficient condition on b to ensure the concavity of wb
on (0, b).

Corollary 4.3 Assume b ≥ α(1)
r and µ ≥ α(1), we have w′b > 1 and w′′b < 0

over ]0, b[.

Proof: Proceeding analogously as in the proof of Lemma 4.2, we define x̃ =
sup{x ∈ [0, b− ε], w′b(x) ≤ 1} such that w′b(x̃) = 1 and w′b(x) > 1 for x ∈]x̃, b[,

so that wb(b)−wb(x) > b−x for all x ∈]x̃, b[. Because b > α(1)
r > 1, wb(b) = µ

r ,
we have

w
′′

b (x) =
2

σ2
[rwb(x)− (µ− α((1− x)+))w′b(x)]

<
2

σ2
[r(x− b+ wb(b))− (µ− α((1− x)+)]

<
2

σ2
[r(x− b) + α((1− x)+)].

Denote by g the function

g(x) =
2

σ2
[r(x− b) + α(1− x)], x ∈ [0, 1[.

We have g′(x) = 2
σ2 [r − α′(1 − x)] < 0 by Assumption 1. Because g(0) =

2
σ2 [−rb+ α(1)] ≤ 0 if b ≥ α(1)

r , we have w
′′

b (x) < 0 for x ∈]0, 1] which contra-

dicts w
′

b(x̃) = 1 and w′b(1) > 1 by Lemma 4.2. Therefore w′b > 1 over [0, 1[,
from which it follows w′′b < 0 and wb is concave on ]0, 1[. Because Lemma 4.2
gives the concavity of wb on [1, b[, we conclude. �

The next proposition establishes some results about the regularity of the func-
tion b→ wb(y) for a fixed y ∈ [0, 1[.

Lemma 4.4 For any y ∈ [0, 1[, b→ wb(y) is an increasing function of b over
[y, 1] and strictly decreasing over ]1,+∞[.
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Proof: Consider the solutions Hy
0 and Hy

1 to the linear second-order dif-
ferential equation LH = 0 over [y,∞[ characterized by the initial condi-
tions Hy

0 (y) = 1, (Hy
0 )′(y) = 0, Hy

1 (y) = 0, (Hy
1 )′(y) = 1. We first show

that (Hy
0 )′ and (Hy

1 )′ are strictly positive on ]y,∞[. Because Hy
0 (y) = 1 and

(Hy
0 )′(y) = 0, one has (Hy

0 )′′(y) = 2r
σ2 > 0, such that (Hy

0 )′(x) > 0 over some
interval ]y, y + ε[ where ε > 0. Now suppose by way of contradiction that
x̃ = inf{x ≥ y + ε, (Hy

0 )′(x) ≤ 0} <∞. Then (Hy
0 )′(x̃) = 0 and (Hy

0 )′′(x̃) ≤ 0.
Because LHy

0 = 0, it follows that Hy
0 (x̃) ≤ 0, which is impossible because

Hy
0 (y) = 1 and Hy

0 is strictly increasing over [y, x̃]. Thus (Hy
0 )′ > 0 over

]y;∞[, as claimed. The proof for Hy
1 is similar, and is therefore omitted.

Next, let WHy0 ,H
y
1

= Hy
0 (Hy

1 )′ − Hy
1 (Hy

0 )′ be the Wronskian of Hy
0 and Hy

1 .
One has WHy0 ,H

y
1
(y) = 1 and

∀x ≥ y, W ′Hy0 ,H
y
1
(x) =Hy

0 (x)(Hy
1 )′′(x)−Hy

1 (x)(Hy
0 )′′(x)

=
2

σ2
[Hy

0 (x)(rHy
1 (x)− (µ− α((1− x)+))(Hy

1 )′(x))

−Hy
1 (x)(rHy

0 (x)− (µ− α((1− x)+))(Hy
0 )′(x))]

=− 2[µ− α((1− x)+)]

σ2
WHy0 ,H

y
1
(x).

Because α is integrable, the Abel’s identity follows by integration:

∀x ≥ y, WHy0 ,H
y
1
(x) = exp[

2

σ2
(−µ(x− y) +

∫ x

y

α((1− u)+)du)].

Because WHy0 ,H
y
1
> 0, Hy

0 and Hy
1 are linearly independent. As a result of this,

(Hy
0 , H

y
1 ) is a basis of the two-dimensional space of solutions to the equation

LH = 0. It follows in particular that for each b > 0, on can represent wb as :

∀x ∈ [y, b], wb(x) = wb(y)Hy
0 (x) + w′b(y)Hy

1 (x).

Using the boundary conditions wb(b) = µ−α((1−b)+)
r and w′b(b) = 1, on can

solve for wb(y) as follows:

wb(y) =
(Hy

1 )′(b)µ−α((1−b)+)
r −Hy

1 (b)

WHy0 ,H
y
1
(b)

.

Using the derivative of the Wronskian along with the fact that Hy
1 is solution

to LH = 0, it is easy to verify that:

∀b ∈ [y, 1[,
dwb(y)

db
=

(Hy
1 )′(b)(α

′(1−b)+
r − 1)

WHy0 ,H
y
1
(b)

∀b ∈]1,∞[,
dwb(y)

db
=
−(Hy

1 )′(b)

WHy0 ,H
y
1
(b)

.

So wb(y) is an increasing function of b over [y, 1] and strictly decreasing over
]1,∞[. �
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Corollary 4.5 If b2 > b1 > 1, then wb2 < wb1 .

Proof: Let us define W = wb1 − wb2 . Clearly, W > 0 on [b2,+∞[. More-
over, we have LW = 0 on [0, b1] and W (0) > 0 by Lemma 4.4. Moreover,
wb1(b1) = wb2(b2) and wb2(b2) > wb2(b1) by Lemma 4.2. Therefore, the
maximum principle implies wb2 < wb1 on [0, b1]. Finally, wb2 is concave and
w′b2(b2) = 1 therefore for b1 ≤ x ≤ b2,

wb2(x) ≤ wb2(b2) + x− b2
=
µ

r
+ x− b2

<
µ

r
+ x− b1

= wb1(x).

�

4.2 Existence of a solution to the free boundary problem

We are now in a position to characterize the value function and determine the
optimal dividend policy. Two cases have to be considered: when the profitabil-
ity of the firm is always higher than the maximal interest payment (µ ≥ α(1))
and when the interest payment exceeds the profitability of the firm (µ < α(1)).

4.2.1 Case: µ ≥ α(1)

The next lemma establishes the existence of a solution wb∗ to the Cauchy
problem (4.1) such that wb∗(0) = 0.

Lemma 4.6 There exists b∗ ∈]1, µr [ such that the solution to (4.1) satisfies
wb∗(0) = 0.

Proof: Because µ ≥ α(1), we know from Corollary 4.3 that wµ
r

is a concave
function on [0, µr ]. Moreover, because µ > r, wµ

r
(µr ) = µ

r . Because wµ
r

is

strictly concave over ]0, µr [ with wµ
r

(µr ) = µ
r and w

′
µ
r

= 1, wµ
r

(x) ≤ x for all

x ∈]0, µr [. In particular, wµ
r

(0) < 0.
Moreover, we have:

w0(0) =
µ− α(1)

r
≥ 0.

Therefore, Lemma 4.4 implies w1(0) > 0. Finally by continuity there is some
b∗ ∈]1, µr [ such that wb∗(0) = 0 which concludes the proof. �

The next lemma establishes the concavity of wb∗ .

Lemma 4.7 The function wb∗ is concave on [0, b∗]
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Proof: Because b∗ > 1, Lemma 4.2 implies that wb∗ is concave on [1, b∗] thus
w′′b∗(1) ≤ 0.
For x < 1, we differentiate the differential equation satisfied by wb∗ to get,

σ2

2
w′′′b∗(x) + (µ− α(1− x))w′′b∗(x) + (α′(1− x)− r)w′b∗(x) = 0. (4.2)

Because wb∗(0) = 0 we have w′′b∗(0) = − 2
σ2 (µ− α(1))w′b∗(0) ≤ 0 .

Now, suppose by a way of contradiction that w′′b∗ > 0 on some subinterval of

[0, 1]. Because w
′′

b∗ is continuous and nonpositive at the boundaries of [0, 1],
there is some c such that w′′′b∗(c) = 0 and w′′b∗(c) > 0. But, this implies

w′b∗(c) = − (µ− α(1− c))w′′b∗(c)
α′(1− c)− r

< 0

which is a contradiction with Lemma 4.1. �

Proposition 4.8 If µ ≥ α(1), wb∗ is the solution of the control problem (9).

Proof: Because wb∗ is concave on [0, b∗] and w′(b∗) = 1, w′ ≥ 1 on [0, b∗].
Therefore we have a twice continuously differentiable concave function wb∗ and
a pair of constants (a, b) = (0, b∗) satisfying the assumptions of Proposition
3.2 and thus wb∗ = v∗. �

When the maximal interest payment is lower than the firm profitability, the
value function is concave. This illustrates the shareholders’ fear to liquidate a
profitable firm. In particular, the shareholders value is a decreasing function
of the volatility.

4.2.2 Case: µ < α(1)

We first show that, for all y ∈ [0, 1[, there exists by such that wby is the solution
of the Cauchy Problem (4.1) with wby (y) = y.

Lemma 4.9 For all y ∈ [0, 1[, we have w1(y) > y.

Proof: Because α is continuous with α(0) = 0 and µ > r, there exists ε such

that w1−ε(1− ε) = (µ−α(ε)
r ) > 1. Differentiating Equation (4.1), we observe

w′′′1−ε(1− ε) =
2

σ2
(r − α′(ε)) < 0

using Equation (2.1). Therefore w1−ε is convex in a left neighborhood of 1−ε.
If w1−ε is convex on (0, 1 − ε) then w1−ε(x) ≥ x − (1 − ε) + µ−α(ε)

r > x for ε
small enough and the result is proved.
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If w1−ε is not convex on (0, 1 − ε) then it will exist some x̄ < 1 − ε such
that w

′′

1−ε(x̄) = 0, w
′′′

1−ε(x̄) > 0 and w1−ε convex on ]x̄, 1 − ε]. Differentiating

Equation (4.1) at x̄ gives w
′

1−ε(x̄) < 0. Therefore w1−ε is non-increasing in a
neighborhood of x̄. Assume by a way of contradiction that w1−ε is increasing
at some point x̂ ∈ [0, x̄[. This would imply the existence of x̃ < x̄ such that
w
′

1−ε(x̃) = 0, w
′′

1−ε(x̃) < 0 and w1−ε(x̃) > 0 which contradicts Equation (4.1).
Therefore w1−ε is decreasing on (0, x̄) and convex on (x̄, 1− ε) which implies
that w1−ε(x) > x for all x ≤ 1 − ε. To conclude, for any y < 1, we can find
ε small enough to have w1−ε(y) > y which can be extended to w1(y) > y by
Lemma 4.4. �

Corollary 4.10 For all y ∈ [0, 1[, there is an unique by ∈]1, 1 + µ
r [ such that

wby (y) = y.

Proof: By Lemma 4.1, w1+µ
r

is concave on ]1, 1 + µ
r [, thus w1+µ

r
(1) <

µ
r +(1−(1+µ

r )) = 0. Suppose that there exists c in [0, 1[ such that w1+µ
r

(c) > 0,

then there exists x̃ ∈]c, 1[ such that w1+µ
r

(x̃) < 0, w
′

1+µ
r

(x̃) = 0, w
′′

1+µ
r

(x̃) > 0

yielding to the standard contradiction with the maximum principle. We thus
have w1+µ

r
(y) < y for all y ∈ [0, 1 + µ

r ]. Using Lemma 4.9 and the continuity
of the function b→ wb(y), it exists for all y < 1 a threshold by ∈]1, 1 + µ

r [ such
that wby (y) = y. The uniqueness of by comes from Corollary 4.5. �

We will now study the behavior of the first derivative of wby .

Lemma 4.11 There exists ε > 0 such that w
′

b1−ε
(1− ε) ≥ 1 and b1−ε <

µ
r .

Proof: Because α(0) = 0 and µ > r, it exists η > 0 such that

∀x ∈ [1− η, 1], α(1− x) + rx− µ < 0. (4.3)

Moreover wµ
r

is strictly concave on [1, µr [ by Lemma 4.2 and thus

wµ
r

(1) ≤ wµ
r

(
µ

r
) + (1− µ

r
)w
′
µ
r

(
µ

r
)

= 1.

Because by Lemma 4.2, we have w′µ
r
> 1 on [1, µr [, there exists ν > 0 such

that ∀x ∈ [1− ν, 1], wµ
r

(x) < x. Let ε = min(η, ν). By Corollary 4.10, it exists
b1−ε ∈]1, 1+ µ

r [ such that wb1−ε(1−ε) = 1−ε. We have wb1−ε(1−ε) > wµ
r

(1−ε)
and then b1−ε <

µ
r by Corollary 4.5.

Let us consider the function W (x) = wb1−ε(x) − x, we have W (1 − ε) = 0,
W (b1−ε) = µ

r − b1−ε > 0. Moreover, W is solution

(µ− α((1− x)+)W ′(x) +
σ2

2
W ′′(x)− rW (x) = α((1− x)+) + rx− µ. (4.4)
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On [1− ε, 1], the second member of Equation (4.4) is negative due to Equation
(4.3). On [1, b1−ε] , it is equal to rx − µ which is negative because b1−ε <

µ
r .

Assume by a way of contradiction that there is some x ∈ [1− ε, b1−ε] such that
W (x) < 0, then it would exist x̃ ∈ [1− ε, b1−ε] such that W (x̃) < 0,W ′(x̃) = 0
and W ′′(x̃) > 0 which is in contradiction with Equation (4.4). Hence, W is a
positive function on [1−ε, b1−ε] with W (1−ε) = 0 which implies w′b1−ε(1−ε) ≥
1. �

Lemma 4.12 When µ < α(1), wb0 is a convex-concave function.

Proof: According to Corollary 4.10, there exists b0 ∈]1, 1 + µ
r [ such that

wb0(0) = 0 and by Lemma 4.1, w′b0 > 0 on (0, b0). Using Equation (4.1), we

thus have w
′′

b0
(0) > 0 implying that wb0 is strictly convex on a right neighbor-

hood of 0. Because b0 > 1, Lemma 4.2 implies w′′b0(x) < 0 on [1, b0[. If there is
more than one change in the concavity of wb0 , it will exist x̄ ∈ [0, 1[ such that
w′′′b0(x̄) > 0, w′′b0(x̄) = 0 and w′b0(x̄) ≥ 0 yielding the standard contradiction. �

Proposition 4.13 If µ < α(1) and w′b0(0) ≥ 1, wb0 is the shareholders value
function (2.4)

Proof: It is straightforward to see that the function wb0 satisfies Proposition
3.2 when w′b0(0) ≥ 1. �

Now, we will consider the case w′b0(0) < 1.

Lemma 4.14 If w′b0(0) < 1, it exists a ∈]0, 1[ such that wba(a) = a and
w′ba(a) = 1.

Proof: Let φ(x) = w
′

bx
(x). By assumption, we have φ(0) < 1 and by Lemma

4.11, φ(1−ε) > 1. By continuity of φ, there exists a ∈]0, 1[ such that w′ba(a) =
1. By definition, the function wba satisfies wba(a) = a. �

Lemma 4.15 wba is a convex-concave function on [a, ba].

Proof: First, we show that wba is increasing on [a, ba]. Because w′ba(a) = 1,
we can define x̃ = min{x > a,w′ba(x) ≤ 0}. If x̃ ≤ ba, we will have w′ba(x̃) = 0,
wba(x̃) > 0 and w′′ba(x̃) ≤ 0 yielding the standard contradiction. According
to Lemma 4.1, we have w′′ba(x) < 0 over [1, ba[ because ba > 1. Proceeding
analogously as in the proof of Lemma 4.12, we prove that wba is a convex-
concave function because it cannot change of concavity twice. �

Lemma 4.16 We have wba > 1 on (a, ba) with ba <
µ
r .
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Proof: According to Lemma 4.15, wba is convex-concave with w′ba(a) = 1 and
w′ba(ba) = 1, therefore ∀x ∈]a, ba[, w′ba(x) > 1. As a consequence, wba(x) > x
on ]a, ba] and in particular wba(1) > 1. Remembering that wµ

r
(1) < 1 and

using Corollary 4.5, we have ba <
µ
r . �

Proposition 4.17 If w′b0(0) < 1, the function

w(x) =

 x for x ≤ a
wba(x) for a ≤ x ≤ ba

x− ba + µ
r for x ≥ ba

is the shareholders value function (2.4).

Proof: it is straightforward to check that w satisfies Proposition 3.2. �

5 The Investment Model

In this section, we enrich the model to allow variable investment in the produc-
tive assets. We will assume a decreasing-returns-to-scale technology by intro-
ducing an increasing concave function β with limx→∞ β(x) = β̄ that impacts
the dynamic of the book value of equity as follows:{

dXt = β(Kt)(µdt+ σdWt)− α((Kt −Xt)
+)dt− γ|dIt| − dZt

dKt = dIt = dI+
t − dI−t

(5.1)

where I+
t (resp. I−t ) is the cumulative capital invested (resp. disinvested) in

the productive assets up to time t, γ > 0 is an exogenous proportional cost of
investment. Assumption (2) thus forces liquidation when the size of the credit
line reaches the sum of the liquidation value of the productive assets and the
liquid assets, (1−γ)Kt+Mt. The goal of the management is to maximize over
the admissible strategies π = (Zt, It)t≥0 the risk-neutral shareholders value

V ∗(x, k) = sup
π

Ex,k(

∫ τ0

0

e−rtdZt) (5.2)

where

τ0 = inf{t ≥ 0, Lt ≥ (1− γ)Kt +Mt} = inf{t ≥ 0, Xt ≤ γKt}.

By definition, we have

∀k ≥ 0, V ∗(γk, k) = 0. (5.3)
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5.1 Dynamic programming and free boundary problem

In order to derive a classical analytic characterization of V ∗ in terms of a free
boundary problem, we rely on the dynamic programming principle as follows
Dynamic Programming Principle: For any (x, k) ∈ S where S = {(x, k) ∈
R2

+, x ≥ γk}, we have

V ∗(x, k) = sup
π

E(

∫ θ

0

e−rtdZt + e−rθV ∗(Xθ,Kθ)) (5.4)

where θ is any stopping time.
Take the suboptimal control π which consists in investing only at time t = 0
a certain amount h. Then, according to the dynamic programming principle,
we have with θ = 0+,

V ∗(x, k) ≥ V ∗(X0+ ,K0+) = V ∗(x− γh, k + h).

So,

V ∗(x, k)− V ∗(x− γh, k) + V ∗(x− γh, k)− V ∗(x− γh, k + h) ≥ 0.

Dividing by h, we have

γ
V ∗(x, k)− V ∗(x− γh, k)

γh
− V ∗(x− γh, k + h)− V ∗(x− γh, k)

h
≥ 0.

If V ∗ were smooth enough, we can let h tend to 0 to obtain

γ
∂V ∗

∂x
− ∂V ∗

∂k
≥ 0.

Likewise, we can prove that

γ
∂V ∗

∂x
+
∂V ∗

∂k
≥ 0

∂V ∗

∂x
− 1 ≥ 0

and

−LkV ∗ ≥ 0

where Lk is the second order differential operator

Lkw =
(
β(k)µ− α((k − x)+)

)∂w
∂x

+
σ2β(k)2

2

∂2w

∂x2
− rw. (5.5)

The aim of this section is to characterize via the dynamic programming prin-
ciple the shareholders value as the unique continuous viscosity solution to the
free boundary problem in order to use a numerical procedure to describe the
optimal policies.

F (x, k, V ∗, DV ∗, D2V ∗) = 0 (5.6)
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where

F (x, k, w,Dw,D2w) = min(−Lkw,
∂w

∂x
− 1, γ

∂w

∂x
− ∂w

∂k
, γ
∂w

∂x
+
∂w

∂k
).

We will first establish the continuity of the shareholders value function
which relies on some preliminary well-known results about hitting times we
prove below for sake of completeness.

Lemma 5.1 Let a < b and (xn)n≥0 a sequence of real numbers such that
limn→+∞ xn = b and minn xn > a. Let (Xn

t )n≥0 the solution of the stochastic
differential equation {

dXn
t = µn(Xn

t )dt+ σndWt

Xn
0 = xn

where µn and σn satisfy the standard global Lipschitz and linear growth condi-
tions. Moreover, (σn)n≥0 are strictly positive real numbers converging to σ > 0
and (µn)n≥0 is a sequence of bounded functions converging uniformly to µ. Let
us define Tn = inf{t ≥ 0, Xn

t = a} and θn = inf{t ≥ 0, Xn
t = b}. We have

lim
n→+∞

P(θn < Tn) = 1.

Proof: Let us define the functions Un, Fn : I → R, on some bounded interval
I containing (a, b) as

Un(y) =

∫ y

0

µn(z + xn)dz, Fn(y) =

∫ y

0

e
− 2Un(z)

σ2n dz.

Because (µn)n≥0 converges uniformly to µ, we note that (Fn, Un)n≥0 converges
uniformly to (F,U) where

F (y) =

∫ y

0

e−
2U(z)

σ2 dz

and

U(y) =

∫ y

0

µ(z + b)dz.

Let Y nt = Xn
t − xn, Mn

t = Fn(Y nt ) and τn = inf{t ≥ 0, Y nt /∈]an, bn[} with
an = a−xn and bn = b−xn. We first show that τn is integrable. Because Fn is
the scale function of the process Y nt , Mn

t is a local martingale with quadratic
variation

< Mn >t=

∫ t

0

σ2
ne
− 4Un(Y ns )

σ2n ds.

Because

E(< Mn >t∧τn ) ≤ σ2
nt exp(− 4

σ2
n

min
y∈[an,bn]

Un(y)) < +∞
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the processes (Mn
t∧τn)t≥0 and ((Mn

t∧τn)2− < Mn >t∧τn)t≥0 are both martin-
gales. By Optional sampling theorem

E[(Mn
t∧τn)2− < Mn >t∧τn ] = 0

which implies

E[

∫ t

0

1[0,τn](s)σ
2
ne
− 4Un(Y ns )

σ2n ds] = E[F 2
n(Y nt∧τn)]

and

σ2
n exp(− 4

σ2
n

max
y∈[an,bn]

Un(y))E[t ∧ τn] ≤ max
y∈[an,bn]

F 2
n(y)

thus there is a constant Kn > 0 such that

∀t ≥ 0,E[t ∧ τn] ≤ Kn.

We conclude by dominated convergence that τn is integrable. The martingale
property implies

E[Fn(Y nt∧τn)] = 0

which yields
E[Fn(Y nτn)] = 0,

by dominated convergence because

∀t ≥ 0, |Fn(Y nt∧τn)| ≤ max
y∈[an,bn]

|Fn(y)|.

This is equivalent to

Fn(an)(1− p(an, bn)) + Fn(bn)p(an, bn) = 0

with p(an, bn) = P(Y nτn = bn). Hence,

p(an, bn) =
−Fn(an)

Fn(bn)− Fn(an)
.

Moreover,

P(θn < Tn) = P(Xn
τn = b)

= P(Y nτn = b− xn)

= p(an, bn).

Using the uniform convergence of Fn, we have

lim
n→+∞

P(θn < Tn) = lim
n→+∞

p(an, bn)

=
−F (a− b)

F (0)− F (a− b)
=1.

�
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Lemma 5.2 Let a < b and (xn)n≥0 a sequence of real numbers such that
limn→+∞ xn = b and minn xn > a. Let (Xn

t )n≥0 the solution to{
dXn

t = µn(Xn
t )dt+ σndWt

Xn
0 = xn

with the same assumptions as in Lemma 5.1. There exist constants An and
Bn such that

exp(−b− xn
σ2
n

(
√
A2
n + 2rσ2

n −An)) ≤ E[e−rθn ] (5.7)

≤ exp(−b− xn
σ2
n

(
√
B2
n + 2rσ2

n −Bn)).

Proof: Because µn are bounded functions, there are two constants An and Bn
such thatAn ≤ µn(x) ≤ Bn for all a < x < b. We define X̃n

t = xn+Ant+σnWt.
By comparison, we have X̃n

t ≤ Xn
t and θn ≤ θ̃n, with θ̃n = inf{t ≥ 0, X̃n

t = b}.
But the Laplace transform of θ̃n is explicit and given by

E[e−rθ̃n ] = exp(−b− xn
σ2
n

(
√
A2
n + 2rσ2

n −An))

which gives the left inequality of (5.7). The proof is similar for the right in-
equality introducing X̄t

n
= xn +Bnt+ σnWt. �

Proposition 5.3 The shareholders value function is jointly continuous.

Proof: Let (x, k) ∈ S and let us consider (xn, kn) a sequence in S converging
to (x, k). Therefore, {(xn − γ|k − kn|, k), (x− γ|k − kn|, kn)} ∈ S2 for n large
enough. We consider the following two strategies that are admissible for n
large enough:

– Strategy π1
n: start from (x, k), invest if kn − k > 0(or disinvest if kn − k <

0) and do nothing up to the minimum between the liquidation time and

the hitting time of (xn, kn). Denote (X
π1
n

t ,K
π1
n

t )t≥0 the control process
associated to strategy π1

n.
– Strategy π2

n: start from (xn, kn), invest if kn−k < 0(or disinvest if kn−k >
0) and do nothing up to the minimum between the liquidation time and the

hitting time of (x, k). Denote (X
π2
n

t ,K
π2
n

t )t≥0 the control process associated
to strategy π2

n.

To fix the idea, assume kn > k. The strategy π1 makes the process (X,K)
jump from (x, k) to (x− γ(kn − k), kn).
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Define

θ1
n = inf{t ≥ 0, (X

π1
n

t ,K
π1
n

t ) = (xn, kn)},

θ2
n = inf{t ≥ 0, (X

π2
n

t ,K
π2
n

t ) = (x, k)},

T 1
n = inf{t ≥ 0, X

π1
n,x

t ≤ γKπ1
n,k

t }

and

T 2
n = inf{t ≥ 0, X

π2
n,xn

t ≤ γKπ2
n,kn

t }.

Dynamic programming principle and V ∗(XT 1
n
,KT 1

n
) = 0 on T 1

n ≤ θ1
n yield

V ∗(x, k) ≥ E[

∫ θ1n∧T
1
n

0

e−rtdZ
π1
n

t + e−r(θ
1
n∧T

1
n)1{θ1n<T 1

n}V
∗(Xθ1n

,Kθ1n
)
)

]

≥ E[e−rθ
1
n1{θ1n<T 1

n}V
∗(xn, kn)]

≥ (E
(
e−rθ

1
n
)
− E

(
e−rθ

1
n1{θ1n≥T 1

n}
)
)V ∗(xn, kn)

≥ (E
(
e−rθ

1
n
)
− P

(
θ1
n ≥ T 1

n

)
)V ∗(xn, kn).

(5.8)

On the other hand, using V ∗(XT 2
n
,KT 2

n
) = 0 on T 2

n ≤ θ2
n

V ∗(xn, kn) ≥ E[

∫ θ2n∧T
2
n

0

e−rtdZ
π2
n

t + e−r(θ
2
n∧T

2
n)1{θ2n<T 2

n}V
∗(Xθ2n

,Kθ2n
)
)

]

≥ E[e−rθ
2
n1{θ2n<T 2

n}V
∗(x, k)]

≥ (E
(
e−rθ

2
n
)
− E

(
e−rθ

2
n1{θ2n≥T 2

n}
)
)V ∗(x, k)

≥ (E
(
e−rθ

2
n
)
− P

(
θ2
n ≥ T 2

n

)
)V ∗(x, k).

(5.9)
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The convergence of (xn, kn) implies

lim
n→+∞

(xn − γ|k − kn|, k) = (x, k)

from which we deduce using Lemma 5.1 that

lim
n→+∞

P(θ1
n ≥ T 1

n) = 0 (5.10)

and
lim

n→+∞
P(θ2

n ≥ T 2
n) = 0. (5.11)

Let µn(Xn
t ) = β(kn)µ− α((kn −Xn

t )+) and σn = β(kn)σ. The function µn is
bounded by

An = β(kn)µ− α(kn)

Bn = β(kn)µ

thus, according to Lemma 5.2

exp(−κ
n

σ2
n

(
√
A2
n + 2rσ2

n −An)) ≤ E[e−rθ
1
n ] ≤ exp(−κ

n

σ2
n

(
√
B2
n + 2rσ2

n −Bn))

with κn = x− xn + γ|kn − k|.
Letting n tend to +∞ and using

limn→+∞An = β(k)µ− α(k)
limn→+∞Bn = β(k)µ
limn→+∞ σn = β(k)σ

we obtain
lim

n→+∞
E(e−rθ

1
n) = lim

n→+∞
E(e−rθ

2
n) = 1. (5.12)

Finally, we have from (5.8) and (5.9),

V ∗(x, k) ≥ lim sup
n

V ∗(xn, kn) ≥ lim inf
n

V ∗(xn, kn) ≥ V ∗(x, k),

which proves the continuity of V ∗. �

We are now in a position to characterize the shareholders value in terms
of viscosity solution of the free boundary problem (5.6).

Theorem 5.4 The shareholders value V ∗ is the unique continuous viscosity
solution to (5.6) on S with linear growth.

Proof: The proof is postponed to the Appendix �

The main interest of Theorem 5.4 is to guarantee that the standard nu-
merical procedure to solve HJB free boundary problems proposed in [11] will
converge to the shareholders value function. We obtain the following descrip-
tion of the control regions (Figure 3). Our numerical analysis demonstrates
that
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– unlike [4], there exists an optimal level of productive assets (top of the yel-
low region) and thus an objective measure of managerial over-investment
in our context. This is clearly due to the decreasing-returns-to-scale as-
sumption.

– constrained firms with low cash reserves and low level of productive as-
sets will rather disinvest than tapping the credit line to offset cash-flows
shortfalls (the orange region passes below the diagonal at the South-West
corner), while constrained firms with low cash reserves and high level of
productive assets will first draw on the credit line to offset cash-flows short-
falls before disinvesting. This is due to the fact that productive assets are
used as collateral, having thus an impact of the cost of the credit line
throughout the spread. This prediction appears to be new relative to [4]
where the credit limit is assumed to be exogenous and independent of the
firm assets.

– the credit line is never used to invest (the yellow zone is always below the
diagonal) contrarily to [4] where the investment size is adjusted continu-
ously even when the cash reserves are nonpositive.

Fig. 5.1 Optimal control with µ = 0.25, r = 0.02, σ = 0.3, λ = 0.08, βmax = 20, β̄ = 10
and an investment cost γ = 5e−4.

While the numerical results give the above insights about the optimal poli-
cies, we have not been able to prove rigorously the shape of the optimal control
regions. Nonetheless, making the strong assumption that there is no transac-
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tion cost γ = 0 allows us to fully describe the control regions and gives us
reasons to believe in Figure 3. This is the object of our last subsection.

5.2 Absence of Investment cost

Using a verification procedure analogous to section 3, we characterize the value
function and the optimal policies in terms of a free boundary problem. The
following proposition proved in the Appendix summarizes our findings.

Proposition 5.5 When there is no cost of investment/disinvestment, γ = 0,
the following holds:

– If µβ
′
(0) ≤ r then it is optimal to liquidate the firm thus v∗(x) = x.

– If α
′
(0) > µβ

′
(0) > r and σ2β′(0) ≥ µ

(1−δ) , the shareholders value is an

increasing and concave function of the book value of equity. Any excess
of cash above the threshold b∗ = inf{x > 0, (v∗)

′
(x) = 1} is paid out to

shareholders (see Figure 4). The optimal size of the productive asset is
characterized by a deterministic function of equity capital (see Figure 5)
given by

∀0 ≤ x ≤ a, k(x) = β−1[
µx

σ2(1− δ)
]

∀x ≥ a, k(x) = x.

where a is the unique nonzero solution of the equation

σ2(1− δ)β(a) = µa. (5.13)

with

δ =
2rσ2

µ2 + 2rσ2
(5.14)

– If α
′
(0) > µβ

′
(0) > r and σ2β′(0) < µ

(1−δ) , the shareholders value is an

increasing and concave function of the book value of equity (see Figure 6).
Any excess of cash above the threshold b∗ = inf{x > 0, (v∗)

′
(x) = 1} is

paid out to shareholders. Moreover, all the cash reserves are invested in
the productive assets.

The above proposition has two interesting implications.

– When the volatility of earnings is low σ2β′(0) < µ
(1−δ) , it is optimal to

invest all the cash reserves in the productive assets and use it as a comple-
mentary substitute for cash which is better off than using a costly credit
line.

– Nonetheless, when the volatility of earnings is high, productive assets are
not a perfect substitute of cash because it implies a high risk of bankruptcy
when the book value of equity is low.
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Figure 4 plots the shareholders value functions with α
′
(0) > µβ′(0) and

σ2β′(0) ≥ µ
(1−δ) for different values of β′(0) using:

– a linear function for α, α(x) = λx.

– an exponential function for β, β(x) = βmax(1− e
−β′(0)
βmax

x).

Fig. 5.2 Comparing shareholders value functions with µ = 0.25, r = 0.02, σ = 0.6, λ = 0.8,
βmax = 5, for different values of β′(0) (case σ2β′(0) ≥ µ

(1−δ) ).

Figure 5 plots the optimal level of productive assets for different values of σ.
It shows that, for a given level of the book value of equity, the investment level
in productive assets is a decreasing function of the volatility.
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Fig. 5.3 Comparing optimal level of productive assets with µ = 0.25, r = 0.02, λ = 0.8,
βmax = 5, β′(0) = 2 for different values of σ.

Figure 6 plots the shareholders value functions when α′(0) > µβ′(0) and
σ2β′(0) ≤ µ

(1−δ) for different values of β′(0) using:

– a linear function for α, α(x) = λx.

– an exponential function for β, β(x) = βmax(1− e
−β′(0)
βmax

x).
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Fig. 5.4 Comparing shareholders value functions with µ = 0.25, r = 0.02, σ = 0.6, λ = 0.8,
βmax = 5, for different values of β′(0) (case σ2β′(0) ≤ µ

(1−δ) ).

6 Appendix

6.1 Proof of Theorem 5.4

Supersolution property. Let (x̄, k̄) ∈ S and ϕ ∈ C2(R2
+) s.t. (x̄, k̄) is a minimum

of V ∗ − ϕ in a neighborhood Bε(x̄, k̄) of (x̄, k̄) with ε small enough to ensure
Bε ⊂ S and V ∗(x̄, k̄) = ϕ(x̄, k̄).
First, let us consider the admissible control π̂ = (Ẑ, Î) where the shareholders
decide to never invest or disinvest, while the dividend policy is defined by Ẑt
= η for t ≥ 0, with 0 ≤ η ≤ ε. Define the exit time τε = inf{t ≥ 0, (X x̄

t ,K
k̄
t ) /∈

Bε(x̄, k̄)}. We notice that τε < τ0 for ε small enough. From the dynamic
programming principle, we have

ϕ(x̄, k̄) = V ∗(x̄, k̄) ≥ E[

∫ τε∧h

0

e−rtdẐt + e−r(τε∧h)V ∗(X x̄
τε∧h,K

k̄
τε∧h)]

≥ E[

∫ τε∧h

0

e−rtdẐt + e−r(τε∧h)ϕ(X x̄
τε∧h,K

k̄
τε∧h)]. (6.1)
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Applying Itô’s formula to the process e−rtϕ(X x̄
t ,K

k̄
t ) between 0 and τε ∧ h,

and taking the expectation, we obtain

E[e−r(τε∧h)ϕ(X x̄
τε∧h,K

k̄
τε∧h)] = ϕ(x̄, k̄) + E[

∫ τε∧h

0

e−rtLϕ(X x̄
t ,K

k̄
t )dt] (6.2)

+ E[
∑

0≤t≤τε∧h

e−rt[ϕ(X x̄
t ,K

k̄
t )− ϕ(X x̄

t− ,K
k̄
t )]].

Combining relations (6.1) and (6.3), we have

E[

∫ τε∧h

0

e−rt(−L)ϕ(X x̄
t ,K

k̄
t )dt]− E[

∫ τε∧h

0

e−rtdẐt]

−E[
∑

0≤t≤τε∧h

e−rt[ϕ(X x̄
t ,K

k̄
t )− ϕ(X x̄

t− ,K
k̄
t )]] ≥ 0. (6.3)

? Take first η = 0. We then observe that X is continuous on [0, τε ∧ h] and
only the first term of the relation (6.3) is non zero. By dividing the above
inequality by h with h→ 0, we conclude that −Lϕ(x̄, k̄) ≥ 0.

? Take now η > 0 in (6.3). We see that Ẑ jumps only at t = 0 with size η,
so that

E[

∫ τε∧h

0

e−rt(−Lϕ)(X x̄
t ,K

k̄
t )dt]− η − (ϕ(x̄− η, k̄)− ϕ(x̄, k̄)) ≥ 0.

By sending h→ 0, and then dividing by η and letting η → 0, we obtain

∂ϕ

∂x
(x̄, k̄)− 1 ≥ 0.

Second, let us consider the admissible control π̄ = (Z̄, Ī) where the share-
holders decide to never payout dividends, while the investment/disinvestment
policy is defined by Īt = η ∈ R for t ≥ 0, with 0 < |η| ≤ ε. Define again the
exit time τε = inf{t ≥ 0, (X x̄

t ,K
k̄
t ) /∈ Bε(x̄, k̄)}.

Proceeding analogously as in the first part and observing that Ī jumps only
at t = 0, thus

E[

∫ τε∧h

0

e−rt(−Lϕ)(X x̄
t ,K

k̄
t )dt]− (ϕ(x̄− γ|η|, k̄ + η)− ϕ(x̄, k̄)) ≥ 0.

Assuming first η > 0, by sending h → 0, and then dividing by η and letting
η → 0, we obtain

γ
∂ϕ

∂x
(x̄, k̄)− ∂ϕ

∂k
(x̄, k̄) ≥ 0.

When η < 0, we get in the same manner

γ
∂ϕ

∂x
(x̄, k̄) +

∂ϕ

∂k
(x̄, k̄) ≥ 0.

This proves the required supersolution property.
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Subsolution Property: We prove the subsolution property by contradiction.
Suppose that the claim is not true. Then, there exists (x̄, k̄) ∈ S and a neigh-
bourhood Bε(x̄, k̄) of x̄, k̄, included in S for ε small enough, a C2 function
ϕ with (ϕ − V ∗)(x̄, k̄) = 0 and ϕ ≥ V ∗ on Bε(x̄, k̄), and η > 0, s.t. for all
(x, k) ∈ Bε(x̄, k̄) we have

−Lϕ(x, k) > η, (6.4)

∂ϕ

∂x
(x, k)− 1 > η, (6.5)

(γ
∂ϕ

∂x
− ∂ϕ

∂k
)(x, k) > η. (6.6)

(γ
∂ϕ

∂x
+
∂ϕ

∂k
)(x, k) > η. (6.7)

For any admissible control π, consider the exit time τε = inf{t ≥ 0, (X x̄
t ,K

k̄
t ) /∈

Bε(x̄, k̄)} and notice again that τε < τ0. Applying Itô’s formula to the process
e−rtϕ(X x̄

t ,K
k̄
t ) between 0 and τ−ε , we have

E[e−rτ
−
ε ϕ(Xτ−ε

,Kτ−ε
)] = ϕ(x̄, k̄)− E[

∫ τ−ε

0

e−ruLϕdu]

+ E[

∫ τ−ε

0

e−ru(−γ ∂ϕ
∂x

+
∂ϕ

∂k
)dIc,+u ]

+ E[

∫ τ−ε

0

e−ru(−γ ∂ϕ
∂x
− ∂ϕ

∂k
)dIc,−u ]

− E[

∫ τ−ε

0

e−ru
∂ϕ

∂x
dZcu]

+ E[
∑

0<s<τε

e−rs[ϕ(Xs,Ks)− ϕ(Xs− ,Ks−)]] (6.8)

Using relations (6.4),(6.5),(6.6),(6.7), we obtain

V ∗(x̄, k̄) = ϕ(x̄, k̄)

≥ ηE[

∫ τ−ε

0

e−rudu] + E[e−rτ
−
ε ϕ(Xτ−ε

,Kτ−ε
)]

+ ηE[

∫ τ−ε

0

e−rudIc,+u ]

+ ηE[

∫ τ−ε

0

e−rudIc,−u ]

+ (1 + η)E[

∫ τ−ε

0

e−rudZcu]

− E[
∑

0<s<τε

e−rs[ϕ(Xs,Ks)− ϕ(Xs− ,Ks−)]]



34 Erwan Pierre et al.

Note that ∆Xs = −∆Zs − γ(∆I+
s + ∆I−s ), ∆Ks = ∆I+

s − ∆I−s and by
the Mean Value Theorem, there is some θ ∈]0, 1[ such that,

ϕ(Xs,Ks) − ϕ(Xs− ,Ks−) =
∂ϕ

∂x
(Xs− + θ∆Xs,Ks− + θ∆Ks)∆Xs +

∂ϕ

∂k
(Xs− + θ∆Xs,Ks− + θ∆Ks)∆Ks

=
∂ϕ

∂x
(Xs− + θ∆Xs,Ks− + θ∆Ks)(−∆Zs − γ(∆I+

s +∆I−s ))

+
∂ϕ

∂k
(Xs− + θ∆Xs,Ks− + θ∆Ks)(∆I

+
s −∆I−s )

= −∂ϕ
∂x

(Xs− + θ∆Xs,Ks− + θ∆Ks)∆Zs

+ (−γ ∂ϕ
∂x

(Xs− + θ∆Xs,Ks− + θ∆Ks)

+
∂ϕ

∂k
(Xs− + θ∆Xs,Ks− + θ∆Ks))∆I

+
s

+ (−γ ∂ϕ
∂x

(Xs− − θ∆Xs,Ks− + θ∆Ks)

+
∂ϕ

∂k
(Xs− + θ∆Xs,Ks− + θ∆Ks))∆I

−
s

Because (Xs + θ∆Xs,Ks + θ∆Ks) ∈ Bε(x̄, k̄), we use the relations (6.5),
(6.6), and (6.7) again

−(ϕ(Xs,Ks)− ϕ(Xs− ,Ks−)) ≥ (1 + η)∆Zs + η∆I+
s + η∆I−s

Therefore,

V ∗(x̄, k̄) ≥ E[e−rτ
−
ε ϕ(Xτ−ε

,Kτ−ε
)] + E[

∫ τ−ε

0

e−rudZu]

+ η(E[

∫ τ−ε

0

e−rudu] + E[

∫ τ−ε

0

e−rudI+
u ] + E[

∫ τ−ε

0

e−rudI−u ]

+ E[

∫ τ−ε

0

e−rudZu])

Notice that while (X−τε ,K
−
τε) ∈ Bε(x̄, k̄), (Xτε ,Kτε) is either on the boundary

∂Bε(x̄, k̄) or out of B̄ε(x̄, k̄). However, there is some random variable α valued
in [0, 1] such that:

(X(α),K(α)) = (Xτ−ε
,Kτ−ε

) + α(∆Xτε , ∆Kτε)

= (Xτ−ε
,Kτ−ε

)

+ α(−∆Zτε − γ∆I+
τε − γ∆I

−
τε , ∆I

+
τε −∆I

−
τε) ∈ ∂Bε(x̄, k̄).

Proceeding analogously as above, we show that

ϕ(X(α),K(α))− ϕ(Xτ−ε
,Kτ−ε

) ≤ −α[(1 + η)∆Zτε + η∆I+
τε + η∆I−τε ].
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Observe that

(X(α),K(α)) = (Xτε ,Kτε) + (1− α)(∆Zτε + γ∆I+
τε + γ∆I−τε ,−∆I

+
τε +∆I−τε).

Starting from (X(α),K(α)), the strategy that consists in investing (1−α)∆I+
τε

or disinvesting (1 − α)∆I−τε depending on the sign of K(α) −Kτε and payout
(1− α)∆Zτε as dividends leads to (Xτε ,Kτε) and therefore,

V ∗(X(α),K(α))− V ∗(Xτε ,Kτε) ≥ (1− α)∆Zτε .

Using ϕ(X(α),K(α)) ≥ V ∗(X(α),K(α)), we deduce

ϕ(Xτ−ε
,Kτ−ε

)− V ∗(Xτε ,Kτε) ≥ (1 + αη)∆Zτε + αη(∆I+
τε +∆I−τε).

Hence,

V ∗(x̄, k̄) ≥ η
(
E[

∫ τ−ε

0

e−rudu] + E[

∫ τ−ε

0

e−rudI+
u ] + E[

∫ τ−ε

0

e−rudI−u ]

+ E[

∫ τ−ε

0

e−rudZu]

+ E[e−rτεα(∆Zτε + γ∆I+
τε + γ∆I−τε)]

)
+ E[e−rτεV ∗(Xτε ,Kτε)] + E[

∫ τε

0

e−rudZu] (6.9)

We now claim there is c0 > 0 such that for any admissible strategy

c0 ≤ E[

∫ τ−ε

0

e−rudu+

∫ τ−ε

0

e−rudI+
u +

∫ τ−ε

0

e−rudI−u +

∫ τ−ε

0

e−rudZu]

+ E[e−rτεα(∆Zτε + γ∆I+
τε + γ∆I−τε)] (6.10)

Let us consider the C2 function, φ(x, k) = c0[1− (x−x̄)2

ε2 ] with,

0 < c0 ≤ min{ε
2
,
ε

2γ
,

1

r
,
ε2

σ2
nβ̄

2
,

ε

2dmax
}

where

dmax = sup{ |β(k)µ− α((k − x)+)|
ε

, (x, k) ∈ Bε(x̄, k̄)} > 0,

satisfies
φ(x̄, k̄) = c0

φ = 0, for (x, k) ∈ ∂Bε

min{1− Lφ, 1− γ ∂φ
∂x

+
∂φ

∂k
, 1− γ ∂φ

∂x
− ∂φ

∂k
, 1− ∂φ

∂x
} ≥ 0, for (x, k) ∈ Bε.
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Applying Itô’s formula, we have

0 < c0 = φ(x̄, k̄) ≤ E[e−rτ
−
ε φ(Xτ−ε

,Kτ−ε
)] + E[

∫ τε−

0

e−rudu]

+ E[

∫ τ−ε

0

e−rudI+
u ] + E[

∫ τ−ε

0

e−rudI−u ] + E[

∫ τ−ε

0

e−rudZu] (6.11)

Noting that ∂φ
∂x ≤ 1 and ∂φ

∂k = 0, we have

φ(Xτ−ε
,Kτ−ε

)− φ(X(α),K(α)) ≤ (Xτ−ε
−X(α)) = α(∆Zτε + γ∆I+

τε + γ∆I−τε).

Plugging into (6.11) with φ(X(α),K(α)) = 0, we obtain

c0 ≤ E[

∫ τ−ε

0

e−rudu+

∫ τ−ε

0

e−rudI+
u +

∫ τ−ε

0

e−rudI−u +

∫ τ−ε

0

e−rudZu]

+ E[e−rτεα(∆Zτε + γ∆I+
τε + γ∆I−τε)]

This proves the claim (6.10). Finally, by taking the supremum over π and using
the dynamic programming principle, (6.9) implies V ∗(x̄, k̄) ≥ V ∗(x̄, k̄) + ηc0,
which is a contradiction.

Uniqueness Suppose u is a continuous subsolution and w a continuous
supersolution of (5.6) on S satisfying the boundary conditions

u(x, 0) ≤ w(x, 0) u(γk, k) ≤ w(γk, k) for (x, k) ∈ S,

and the linear growth condition

|u(x, k)|+ |w(x, k)| ≤ C1 + C2(x+ k) ∀(x, k) ∈ S,

for some positive constants C1 and C2. We will show by adapting some stan-
dard arguments that u ≤ w.

Step 1: We first construct strict supersolution of (5.6) with perturbation of w. Set

h(x, k) = A+Bx+ Ck +Dxk + Ex2 + k2

with

A =
1 + µβ̄B + σ2β̄2E

r
+ C1 (6.12)

and 
B = 2 + 1+C

γ + 2µβ̄E
r

C = µβ̄D
r

D = 2γE
E = 1

γ2

and define for λ ∈ [0, 1] the continuous function on S

wλ = (1− λ)w + λh.
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Because 

∂h

∂x
− 1 = B +Dk + 2Ex− 1 ≥ 1

γ
∂h

∂x
− ∂h

∂k
= γ(B +Dk + 2Ex)− (C +Dx+ 2k) ≥ 1

γ
∂h

∂x
+
∂h

∂k
= γ(B +Dk + 2Ex) + (C +Dx+ 2k) ≥ 1

and

−Lh = −(β(k)µ− α((k − x)+))(B +Dk + 2Ex)

− σ2β(k)2

2
2E + r(A+Bx+ Ck +Dxk + Ex2 + k2)

≥ (rA− β(k)µB − σ2β(k)2E) + (rB − 2µβ(k)E)x

+ (rC − µβ(k)D)k

≥ 1.

we have that

min{−Lh, ∂h
∂x
− 1, γ

∂h

∂x
− ∂h

∂k
, γ
∂h

∂x
+
∂h

∂k
} ≥ 1.

which implies that wλ is a strict supersolution of (5.6). To prove this point,
one only needs to take x̄ and ϕ ∈ C2 such that x̄ is a minimum of wλ − ϕ
and notice that x̄ is also a minimum of wλ − ϕ2 with ϕ2 = ϕ−λh

1−λ which
allows us to use that w is a viscosity supersolution of (5.6).

Step 2: In order to prove the strong comparison result, it suffice to show that for
every λ ∈ [0, 1]

sup
S

(u− wλ) ≤ 0.

Assume by a way of contradiction that there exists λ such that

sup
S

(u− wλ) > 0. (6.13)

Because u and w have linear growth, we have

lim
||(x,k)||→+∞

(u− wλ) = −∞.

Using the boundary conditions

u(x, 0)− wλ(x, 0) = (1− λ)(u(x, 0)− w(x, 0))

+ λ(u(x, 0)− (A+Bx+ Ex2)),

≤ λ(u(x, 0)− (A+Bx+ Ex2)),

u(γk, k)− wλ(γk, k) ≤ λ(u(γk, k)

− (A+ (Bγ + C)k + (Dγ + Eγ2 + 1)k2)),

and the linear growth condition, it is always possible to find C1 in Equation
(6.12) such that both expressions above are negative and maximum in
Equation (6.13) is reached inside the domain S.
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By continuity of the functions u and wλ, there exists a pair (x0, k0) with
x0 ≥ γk0 such that

M = sup
S

(u− wλ) = (u− wλ)(x0, k0).

For ε > 0, let us consider the functions

Φε(x, y, k, l) = u(x, k)− wλ(y, l)− φε(x, y, k, l)

φε(x, y, k, l) =
1

2ε
(|x− y|2 + |k − l|2) +

1

4
(|x− x0|4 + |k − k0|4).

By standard arguments in comparison principle of the viscosity solution the-
ory (see Pham [26] section 4.4.2.), the function Φε attains a maximum in
(xε, yε, kε, lε), which converges (up to a subsequence) to (x0, k0, x0, k0) when ε
goes to zero. Moreover,

lim
ε→+∞

(|xε − yε|2 + |kε − lε|2)

2ε
→ 0 (6.14)

Applying Theorem 3.2 in Crandall Ishii Lions [6] , we get the existence of
symmetric square matrices of size 2 Mε, Nε such that:

(pε,Mε) ∈ J2,+u(xε, kε),

(qε, Nε) ∈ J2,−wλ(yε, lε),

and (
Mε 0
0 −Nε

)
≤ D2φε(xε, kε, yε, lε) + ε(D2φε(xε, kε, yε, lε))

2, (6.15)

where

pε = Dx,kφε(xε, kε, yε, lε) = (
(xε − yε)

ε
+ (xε − x0)3,

(kε − lε)
ε

+ (kε − k0)3),

qε = −Dy,lφε(xε, kε, yε, lε) = (
(xε − yε)

ε
,

(kε − lε)
ε

).

and

D2φε(xε, kε, yε, lε) =
1

ε

(
I2 −I2
−I2 I2

)
+


3(xε − x0)2 0 0 0

0 3(kε − k0)2 0 0
0 0 0 0
0 0 0 0


so

D2φε(xε, kε, yε, lε) + ε(D2φε(xε, yε, kε, lε))
2 =

3

ε

(
I2 −I2
−I2 I2

)
Mε

+


9(xε − x0)2(1 + ε(xε − x0)2) 0 0 0

0 9(kε − k0)2(1 + ε(kε − k0)2) 0 0
0 0 0 0
0 0 0 0


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Equation (6.15) implies

tr(
σ2β(kε)

2

2
Mε −

σ2β(lε)
2

2
Nε) ≤

3σ2

2ε
(β(kε)

2 − β(lε)
2)

+
9σ2β(kε)

2

2
(xε − x0)2(1 + ε(xε − x0)2)

(6.16)

Because u and wλ are respectively subsolution and strict supersolution, we
have

min
[
−
(
β(kε)µ− α((kε − xε)+)

)(xε − yε
ε

+ (xε − x0)3
)
−

tr(
σ2β(kε)

2

2
Mε) + ru(xε, kε),

xε − yε
ε

+ (xε − x0)3 − 1,

γ
(xε − yε

ε
+ (xε − x0)3

)
−
(kε − lε

ε
+ (kε − k0)3

)
,

γ
(xε − yε

ε
+ (xε − x0)3

)
+
(kε − lε

ε
+ (kε − k0)3

)]
≤ 0

(6.17)

and

min
(
−
(
β(lε)µ− α((lε − yε)+)

)xε − yε
ε

− tr(
σ2β(lε)

2

2
Nε) + rwλ(yε, lε),

xε − yε
ε

− 1, γ
xε − yε

ε
− kε − lε

ε
, γ
xε − yε

ε
+
kε − lε
ε

)
≥ λ.

(6.18)

We then distinguish the following four cases:

– Case 1. If xε−yεε +(xε−x0)3−1 ≤ 0 then we get from (6.18), λ+(xε−x0)3 ≤ 0
yielding a contradiction when ε goes to 0.

– Case 2. If γ
(
xε−yε
ε + (xε − x0)3

)
−
(
kε−lε
ε + (kε − k0)3

)
≤ 0 then we get

from (6.18) λ + γ
(

(xε − x0)3 − (kε − k0)3
)
≤ 0 yielding a contradiction

when ε goes to 0.

– Case 3. If γ
(
xε−yε
ε + (xε − x0)3

)
+
(
kε−lε
ε + (kε − k0)3

)
≤ 0, then we get

from (6.18) λ + γ
(

(xε − x0)3 + (kε − k0)3
)
≤ 0 yielding a contradiction

when ε goes to 0.
– Case 4. If

−
(
β(kε)µ− α((kε − xε)+)

)(xε − yε
ε

+ (xε − x0)3
)
−

tr(
σ2β(kε)

2

2
Mε) + ru(xε, kε) ≤ 0.

From

−
(
β(lε)µ− α((lε − yε)+)

)xε − yε
ε

− tr(
σ2β(lε)

2

2
Nε) + rwλ(yε, lε) ≥ λ
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we deduce

xε − yε
ε

(
µ(β(lε)− β(kε)) + α((kε − xε)+)− α((lε − yε)+)

)
−tr(

σ2β(kε)
2

2
Nε) + tr(

σ2β(kε)
2

2
Nε)

−
(
β(kε)µ− α((kε − xε)+)

)
(xε − x0)3

+r(u(xε, kε)− wλ(yε, lε)) ≤ −λ.

Using (6.16) we get,

xε − yε
ε

(
µ(β(lε)− β(kε)) + α((kε − xε)+)− α((lε − yε)+)

)
−
(
β(kε)µ− α((kε − xε)+)

)
(xε − x0)3 + r(u(xε, kε)− wλ(yε, lε))

≤ −λ+
3σ2

2ε
(β(kε)

2 − β(lε)
2) +

9σ2β(kε)
2

2
(xε − x0)2(1 + ε(xε − x0)2).

By sending ε to zero and using the continuity of u, wγi , α and β we obtain
the required contradiction: rM ≤ −λ.

This ends the proof.

6.2 Proof of the Proposition 5.5

Because β is concave and β′ goes to 0 , the existence of a is equivalent to
assume

σ2β′(0) ≥ µ

(1− δ)
. (6.19)

Let us define the function wA for A > 0 as the unique solution on (a,+∞) of
the Cauchy problem

µβ(x)w′A(x) +
σ2β(x)2

2
w′′A(x)− rwA(x) = 0

with wA(x) = Axδ for 0 ≤ x ≤ a and wA differentiable at a.

Remark 6.1 The Cauchy problem is well defined with the condition wA dif-
ferentiable at a. Moreover, it is easy to check, using the definition of a, that
the function wA is also C2. Because the spread α is high, the shareholders
optimally choose not to tap the credit line but rather adjust costlessly their
level of investment.

Lemma 6.2 For every A > 0 the function wA is increasing.

Proof: Clearly, wA is increasing and thus positive on [0, a]. Let c = min{x >
a ,w′A(c) = 0}. wA(c) > 0 because wA is increasing and positive in a left neigh-
borhood of c. Thus, according to the differential equation, we have w′′A(c) ≥ 0
which implies that wA is also increasing in a right neighborhood of c. There-
fore, w′A cannot become negative. �
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Lemma 6.3 For every A > 0, there is some bA such that w′′A(bA) = 0 and
wA is a concave function on ]a, bA[.

Proof: Assume by a way of contradiction that w′′A does not vanish. Using
Equations (5.14) and (5.13), we have

σ2β2(a)

2
w′′A(a) = −rAaδ.

Therefore, we equivalently assume that w′′A < 0. This implies that w′A is stricly
decreasing and bounded below by 0 by lemma 6.2 therefore wA is an increasing
concave function. Therefore, lim

x→+∞
w′A(x) exists and is denoted by l. Letting

x→ +∞ in the differential equation, we obtain, because β has a finite limit,

σ2β̄2

2
lim
x→∞

w′′A(x) = r lim
x→∞

wA(x)− µβ̄l.

Therefore, either limx→∞ wA(x) is +∞ from which we get a contradiction or
finite from which we get lim

x→+∞
w′′A(x) = 0 by mean value theorem. In the

second case, differentiating the differential equation, we have

µβ′(x)w′A(x) + µβ(x)w′′A(x) + σ2β′(x)β(x)w′′A(x) +

σ2β(x)2

2
w′′′A (x)− rw′A(x) = 0 (6.20)

Proceeding analogously, we obtain that lim
x→+∞

w′′′A (x) = 0 and thus l = 0.

Coming back to the differential equation, we get

0 = r lim
x→∞

wA(x)

which contradicts that wA is increasing. Now, define bA = inf{x ≥ a, w′′A(x) =
0} to conclude. �

Lemma 6.4 There exists A∗ such that w′A∗(bA∗) = 1.

Proof: For every A > 0, we have

µβ(bA)w′A(bA) = rwA(bA). (6.21)

Let A1 = µβ̄
raδ

. Lemma 6.2 yields

wA1(bA1) ≥ wA1(a)

=
µβ̄

r

≥ µβ(bA1)

r
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Therefore, Equation (6.21) yields w′A1
(bA1) ≥ 1.

On the other hand, let A2 = a1−δ

δ . By construction, w′A2
(a) = 1 and thus

w′A2
(bA2) ≤ 1 by concavity of wA on (0, bA). Thus, there is some A∗ ∈

[min(A1, A2),max(A1, A2)] such that w′A∗ = 1. �

Hereafter, we denote b = bA∗ .

Lemma 6.5 We have µβ′(b) ≤ r.

Proof: Differentiating the differential equation and plugging x = b, we get

σ2β(b)2

2
w′′′A (b) + µβ′(b)− r = 0

Because w′′A∗ is increasing in a left neighborhood of b, we have w′′′A (b) ≥ 0
implying the result.

�

Let us define

v =

{
wA∗(x) x ≤ b

x− b+ µβ(b)
r x ≥ b

We are in a position to prove the following proposition

Proposition 6.6 The shareholders value is v.

Proof: We have to check that (v, b) satisfies the standard HJB free boundary
problem. By construction, v is a C2 concave function on (0,+∞) satisfying
v′ ≥ 1. It remains to check maxk Lkv(x) ≤ 0.
For x > b, we have

Lkv(x) = µβ(k)− α((k − x)+)− µβ(b)− r(x− b).

If k ≤ x, concavity of β and Lemma 6.5 implies

Lkv(x) = µ(β(x)− β(b))− r(x− b)
≤ (µβ′(b)− r)(x− b)
≤ 0.

If k ≥ x, we differentiate Lkv(x) with respect to k and obtain using again
concavity of β and convexity of α,

∂Lkv(x)

∂k
= µβ′(k)− α′(k − x) ≤ µβ′(0)− α′(0) ≤ 0.

Therefore, Lkv(x) ≤ Lxv(x) ≤ 0.
Let x < b, because v is concave, the same argument as in the previous lines
shows that

∂Lkv(x)

∂k
≤ 0 for k ≥ x
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and therefore

max
k≥0
Lkv(x) = max

k≤x
Lkv(x).

First order condition gives for 0 ≤ k < x

∂

∂k
(Lkv) = µβ′(k)v′(x) + σ2β′(k)β(k)v′′(x)

= β′(k)[µv′(x) + σ2β(k)v′′(x)].

Thus for 0 < x < a, we have

∂

∂k
(Lkv) = β′(k)A∗xδ−2δ[µx+ σ2β(k)(δ − 1)]

which gives, 
∂

∂k
(L0v) > 0

∂

∂k
(Lxv) < 0.

Therefore the maximum k∗(x) of Lkv(x) lies in the interior of the interval
[0, x] and satisfies:

∀0 < x < a, β(k∗(x)) =
µx

σ2(1− δ)
.

Hence, for x ≤ a, we have by construction

max
0≤k≤x

{Lkv} =
µ2x

σ2(1− δ)
A∗δxδ−1 +

σ2µ2x2

2σ4(1− δ)2
A∗δ(δ − 1)xδ−2 − rA∗xδ

= 0.

Now, fix x ∈ (a, b). We note that
∂

∂k
(Lkv) has the same sign as µv′(x) +

σ2β(k)v′′(x) because β is strictly increasing. Moreover, because v is concave
and β increasing, we have

min
0≤k≤x

µv′(x) + σ2β(k)v′′(x) = µv′(x) + σ2β(x)v′′(x).

Thus, it suffice to prove µv′(x)+σ2β(x)v′′(x) ≥ 0 for x ∈ (a, b) or equivalently
because β is a positive function that the function φ defined as

φ(x) = µβ(x)v′(x) + σ2β(x)2v′′(x)

is positive. We make a proof by contradiction assuming there is some x such
that φ(x) < 0. As φ(a) = 0 by Equation 5.13 and φ(b) > 0 then there is some
x1 ∈ [a, b] such that {

φ(x1) < 0

φ′(x1) = 0.
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Using the differential equation (6.20) satisfied by v′, we obtain

φ′(x1) = (2r − µβ′(x1))v′(x1)− µβ(x1)v′′(x1) = 0

from we deduce

φ(x1) = µβ(x1)v′(x1) + σ2β(x1)2v′′(x1)

= µβ(x1)v′(x1) +
σ2β(x1)

µ
(2r − µβ′(x1))v′(x1)

= β(x1)v′(x1)(µ+
2rσ2

µ
− σ2β′(x1)).

But x1 ≥ a and thus β′(x1) ≤ β′(a). Moreover, by definition of a, we have
σ2β′(a) ≤ µ

(1−δ) . Therefore, Equation (5.14) yields

φ(x1) ≥ β(x1)v′(x1)(µ+
2rσ2

µ
− µ

1− δ
)

≥ β(x1)v′(x1)(
2rσ2

µ
− µ δ

1− δ
)

≥ β(x1)v′(x1)(
2rσ2

µ
− µ 2rσ2

µ2 + 2rσ2

µ2 + 2rσ2

µ2
)

= 0

which is a contradiction. �

To complete the characterization of the shareholders value when the spread
is high, we have to study the optimal policy when (6.19) is not fulfilled. We
expect that a = 0 in that case which means that for all x, the manager should
invest all the cash in productive assets. Thus we are interested in the solutions
to

µβ(x)w′(x) +
σ2β(x)2

2
w′′(x)− rw(x) = 0 (6.22)

such that w(0) = 0.

Proposition 6.7 Suppose that the functions x → x
β(x) and x → x2

β(x)2 are

analytic in 0 with a radius of convergence R. The solutions w to Equation
(6.22) such that w(0) = 0 are given by

w(x) =

∞∑
k=0

Akx
k+y1

with

∀k ≥ 1, Ak =
1

−I(k + y1)

k−1∑
j=0

(j + y1)p(k−j)(0) + q(k−j)(0)

(k − j)!
Aj
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where the functions p and q are
p(x) =

2µx

σ2β(x)

q(x) = − 2rx2

σ2β(x)2

the function I is given by

I(y) = µβ′(0)y +
σ2

2
β′(0)2y(y − 1)− r

and y1 is the positive root of I

y1 =
−µ+ σ2

2 β
′(0) +

√
(µ− σ2

2 β
′(0))2 + 2rσ2

σ2β′(0)
.

The radius of convergence of w is at least equal to R.

Proof: This result is given by the Fuchs’ theorem [24]. �

Note that the solutions of Equation (6.22) vanishing at zero can be written

wA0(x) = A0w1(x).

If the radius of convergence of the Frobenius series is finite, then the previously
defined function w1 can be extended by use of the Cauchy theorem.

Because µβ′(0) ≥ r, we have y1 < 1. As a consequence, we have

lim
x→0

w′1(x) = +∞ and lim
x→0

w′′1 (x) = −∞

Thus, proceeding analogously as in Lemma 6.3, we prove the existence of b such
that w′′1 (b) = 0. Because wA0

is linear in A0, we choose A0 = A∗ = 1
w′1(b) to get

a concave solution w∗ to (6.22) with w∗(0) = 0, (w∗)′(b) = 1 and (w∗)′′(b) = 0.
We extend w∗ linearly on (b,+∞) as usual to obtain a C2 function on [0,+∞[.

Proposition 6.8 The shareholders value is w∗.

Proof: It suffices to check that w∗ satisfies the free boundary problem. By
construction w∗ is a C2 concave function on R+∗. Because (w∗)′(b) = 1, we
have

∀x ∈]0, b], (w∗)′(x) ≥ 1

and

∀x ≥ b, (w∗)′(x) = 1.
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On [b,+∞[, we have

max
k≥0
{Lkw∗} = max

k≥0

[
µβ(k)− α((k − x)+)− µβ(b) + r(b− x)

]
= max

[
max
k≤x

µβ(k)− µβ(b) + r(b− x),

max
k≥x

µβ(k)− α(k − x)− µβ(b) + r(b− x)
]
.

Using β concave increasing, α convexe, α′(0+) > µβ′(0+), we have

max
k≥0
{Lkw∗} = µβ(x)− µβ(b) + r(b− x).

Then using the concavity of β,

∀x ≥ b,max
k≥0
{Lkw∗} ≤ 0.

It remains to show that for every x < b

max
k≥0
{Lkw∗} = 0.

Using β concave , α convex, α′(0) > µβ′(0) and w∗ concave increasing, we
have

∀k > x,
∂

∂k
(Lkw∗) = (µβ′(k)−α′(k−x))(w∗)′(x) +σ2β′(k)β(k)(w∗)′′(x) ≤ 0.

Thus,
max
k≥0
{Lk(w∗)} = max

0≤k≤x
{Lk(w∗)}.

Moreover,

∀0 < k < x,
∂

∂k
(Lk(w∗)) = µβ′(k)(w∗)′(x) + σ2β′(k)β(k)(w∗)′′(x)

= β′(k)[µ(w∗)′(x) + σ2β(k)(w∗)′′(x)].

We expect

∀x ∈]0, b],∀k ≤ x, ∂
∂k

(Lk(w∗)) ≥ 0.

Notice that β′(k) ≥ 0 and

min
0≤k≤x

µ(w∗)′(x) + σ2β(k)(w∗)′′(x) = µ(w∗)′(x) + σ2β(x)(w∗)′′(x)

because (w∗)′′(x) ≤ 0 and β is increasing. Thus it is enough to prove for every
x < b,

µ(w∗)′(x) + σ2β(x)(w∗)′′(x) ≥ 0

or equivalently, using β ≥ 0,

φ(x) = µβ(x)(w∗)′(x) + σ2β(x)2(w∗)′′(x) ≥ 0
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for x < b. We make a proof by contradiction assuming the existence of x
such that φ(x) < 0. In a neighborhood of 0, we have

(w∗)′(x) ∼ A∗y1x
y1−1

and

(w∗)′′(x) ∼ A∗y1(y1 − 1)xy1−2

From which we deduce because β(x)xy1−1 ≤ β′(0)xy1 ,

lim
x→0

β(x)(w∗)′(x) = 0

lim
x→0

β(x)2(w∗)′′(x) = 0

yielding

lim
x→0

φ(x) = 0.

But φ(b) > 0 thus there is x1 ∈]0, b[ such that{
φ(x1) < 0

φ′(x1) = 0.

Using the derivative of Equation (6.22)

φ′(x1) = (2r − µβ′(x1))(w∗)′(x1)− µβ(x1)(w∗)′′(x1) = 0

from which we deduce:

φ(x1) = µβ(x1)(w∗)′(x1) + σ2β(x1)2(w∗)′′(x1)

= µβ(x1)(w∗)′(x1) +
σ2β(x1)

µ
(2r − µβ′(x1))(w∗)′(x1)

= β(x1)(w∗)′(x1)(µ+
2rσ2

µ
− σ2β′(x1)).

Now, remember that x1 > 0 and thus using the concavity of β, we have

β′(x1) ≤ β′(0). Furthermore, β′(0) ≤ µ2+2rσ2

σ2µ when Equation (5.13) is not
fulfilled. Hence,

φ(x1) ≥ β(x1)(w∗)′(x1)(µ+
2rσ2

µ
− µ2 + 2rσ2

µ
)

≥ 0

which yields to a contradiction and ends the proof. �
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