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Abstract

We investigate identi�cation in semi-parametric binary regression models, y =
1(x� + v + � > 0) when � is assumed uncorrelated with a set of instruments z, �
is independent of v conditionally on x and z, and the support of �(x� + �) is �nite.
We characterize the set of observationally equivalent parameters � when v is discrete
or when interval data only are available on v. When there exist as many instruments
z as variables x, the sets within which lie the scalar components �k of parameter �
can be expressed as simple linear moments. Also, in the case of interval data, it is
shown that additional information on the distribution of v within intervals shrinks the
identi�cation set. Namely, the closer to uniformity the conditional distribution of v
given z is, the smaller the identi�cation set is. Point identi�cation is achieved if and
only if v is uniform within intervals.
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1 Introduction1

In empirical research, point identi�cation of parameters often requires assumptions that are

di¢ cult to motivate. The recourse to more credible and weaker restrictions that lead to

partial identi�cation remains rare. Yet, the context of partial identi�cation, when the iden-

ti�ed region is convex and bounded, is not conceptually di¤erent from the familiar context

of con�dence intervals.

We analyse in this paper partial identi�cation in a binary regression model with discrete

or interval-valued data, a case that is admittedly speci�c although surprisingly rich in terms

of implications and facility of application. The identi�ed set is bounded and convex and

bounds are easy to characterise by simple moments of the data.

One of the practical interest of our model stems from the fact that the data on covariates

that researchers have access to, are very often discrete or interval-valued. Such covariates

tend to render point identi�cation very problematic (Manski, 1988). When all covariates

(denoted x) are discrete, Bierens and Hartog (1988) showed that there exists an in�nite

number of single-index representations for the mean regression of a dependent variable, y:

Under weak conditions, for almost any parameter �; there exists a measurable real function

'� such that E(y j x) can be written as '�(x�).

The contribution byManski and Tamer (2002) considers a reasonably more speci�c frame-

work where the non-parametric mean regression E(y j x) is assumed monotonic with respect

to at least one particular regressor, say v. As a special case, they study the identi�cation of

the parameter of the familiar semiparametric binary regression model y = 1(x�+ v+ � > 0),

when interval-data only are available on v. They analyse identi�cation of � under a quantile

independence assumption and show that parameters belong to a non-empty, convex set of

observationally equivalent values.

The �rst message of our paper is that set-identi�cation of parameter � in the binary

model can be obtained through a di¤erent set of weak restrictions (i.e. Lewbel, 2000),

and that the estimation of the identi�ed region in this setting only requires usual regression

1We thank Arthur Lewbel and Francesca Molinari for helpful discussions, the editor and two referees
for their constructive comments and participants at seminars at LSE, CREST, CEMFI, Toulouse, Montréal
and Rochester and at conferences (ESRC Econometrics Study Group �04 in Bristol, ESWC�05, Northwestern
U.�05, Econometrics in Rio �06) for helpful comments. The usual disclaimer applies.
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tools. Speci�cally, it is shown that the combination of an uncorrelated-error assumption (i.e.,

E(x0") = 0) with a conditional independence assumption (i.e., F�(� j x; v) = F�(� j x)) and

a �nite support assumption (Supp(�x� � ") � [vl; vu]; where vl and vu are �nite) restricts

the parameters of the semiparametric binary regression model to a non-empty bounded and

convex set. We characterise this set and show that the bounds of the intervals in which

lie any scalar linear combination of parameter � can be estimated through simple linear

regression methods. These �ndings are probably the most important results of this paper

for practitioners because they enable researchers to estimate the identi�ed set very easily.

Conditional independence in the latent model implies that the binary outcome is monotone

in v. Interestingly, the support condition does not impose supplementary restrictions on the

binary outcome that can be analysed, although it requires to be careful when it comes to

application. The support assumption implies that when v is varying between the extreme

points vl to vu �that are not necessarily observed in the data �the conditional probability

of success varies from zero to one. As discussed below, there are many potential applications

of this set-up, including contingent valuation studies, optimal schooling models, failure time

experiments and any models where y� = x� + " represents a subject�s latent ability, �v an

exogenous threshold and where we observe y = 1(y� > �v) only.

A last interesting feature of the set-up analysed in this paper is that, in the case where

v is censored by interval, additional information on the distribution of v within intervals

might reduce the size of the identi�ed region. Speci�cally, the size of the identi�ed region

diminishes, in a sense made precise below, as the conditional distribution of the special

regressor within intervals becomes closer to uniformity. The identi�ed set is a singleton and

the parameter of interest � is exactly identi�ed if and only if v is uniformly distributed

within intervals conditional on covariates. This property is particularly interesting when one

has control over the process of censoring the continuous data on v (e.g. the birthdate) into

interval data (e.g. month of birth). In order to minimize the size of the identi�ed set, one

should censor the data in a way such that the distribution of the censored variable is as close

as possible to a uniform distribution within the resulting intervals.

As for references, this paper belongs to the small, but growing literature on partial

identi�cation as pioneered by Manski (2003, and references therein) and derived from seminal
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papers such as Marschak and Andrews (1944) and Fréchet (1952). A very general setting of

partial identi�cation is also provided by Galichon and Henry (2006). Our results on bounds

on parameters in binary regressions can be seen as generalizations of bounds on averages,

derived in the paper by Green, Jacowitz, Kahneman & McFadden (1998). They are also

reminiscent of the results presented by Leamer (1987). He considers a system of equations

where covariates are mismeasured and shows that the vector of parameters of interest lies

in an ellipsoid. Also, there exist striking similarities between our identi�cation results and

those of Chesher (2005), even though the topic is quite di¤erent. Chesher estimates the local

e¤ect of an endogenous discrete variable in non-separable models and shows that discrete

variation of this endogenous variable as opposed to continuous variation gives rise to partial

identi�cation.

This paper focuses on identi�cation issues, not on inference problems. As a matter of

fact, the inference issues are adressed by several recent works. Chernozhukov, Hong and

Tamer (2004) study inference in multivariate cases under more general conditions of set-

identi�cation than ours and we show how their �ndings can be applied to our results. It

is also possible to follow Horowitz and Manski (2000) who study inference about intervals

i.e. the lower and upper bounds of identi�ed intervals. An alternative route is proposed by

Imbens and Manski (2004) who changed focus by considering inference about the true value

of the parameter (within an identi�ed interval) and not about the interval in itself. Finally,

a recent contribution by Beresteanu and Molinari (2006) develops inference procedures for

partially identi�ed population features and discusses how these procedures could be adapted

to the monotone binary model using interval data analyzed in this paper.

The paper is organized as follows : The �rst section sets up notations and models. The

second section examines the discrete case, the third section analyzes the case of interval data,

the fourth section brie�y reports Monte Carlo experiments and the last section concludes.

Since the special case where variables x are exogenous is not simpler, we will consider right

from the start the endogenous case where �, though potentially correlated with the variables

x, is uncorrelated with a set of instruments z. Some results will be specialized to the case

where the number of instruments is equal to the number of explanatory variables. All proofs

are in appendices.
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2 The Set-Up

Let the �data�be given by the distribution of the following random variable2:

! = (y; v; x; z)

where y is a binary outcome, while v , x and z are covariates and instrumental variables

whose role and properties are speci�ed below. We �rst introduce some regularity conditions

on the distribution of !. They will be assumed valid in the rest of the text.

Assumption R(egularity):

R:i. (Binary model) The support of the distribution of y is f0; 1g

R:ii: (Covariates & Instruments) The support of the distribution, Fx;z of (x; z) is Sx;z �

Rp�Rq. The dimension of the set Sx;z is r � p+ q where p+ q� r are the potential overlaps

and functional dependencies.3 The condition of full rank, rank(E(z0x)) = p, holds.

R:iii: (Discrete or Interval-Valued Regressor) The support of the distribution of v con-

ditional on (x; z) is a �nite interval 
v � [v1; vK ] almost everywhere-Fx;z (a.e. Fx;z). This

conditional distribution, denoted Fv(: j x; z); is de�ned a.e. Fx;z.

R:iv. (Functional Independence) There is no subspace of 
v � Sx;z of dimension strictly

less than r + 1 whose probability measure, (Fv(: j x; z):Fx;z), is equal to 1.

Assumptions R:i and R:ii de�nes a binary model where there are p explanatory variables

and q instrumental variables. In assumption R:iii; the support of v is assumed to be inde-

pendent of variables (x; z). If this support is an interval in R (including R itself), we are

back to the case studied by Lewbel (2000) and Magnac & Maurin (2007). In the next section

(section 3), this support is assumed to be discrete, 
v = fv1; ::; vKg so that the special re-

gressor is said to be discrete. In section 4, the support is assumed continuous, 
v = [v1; vK);

but v is observed imperfectly because it is censored. In such a case, the special regressor is

said to be interval-valued. In all cases, Assumption R:iv avoids the degenerate case where v

and (x; z) are functionally dependent.

2We only consider random samples and we do not subscript individual observations by i.
3With no loss of generality, the p explanatory variables x can partially overlap with the q � p instrumental

variables z. Variables (x; z) may also be functionally dependent (for instance x, x2, log(x),...). A collection
(x1; :; xK) of real random variables is functionally independent if its support is of dimension K (i.e. there is
no set of dimension strictly lower than K whose probability measure is equal to 1).
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There are many examples of discrete covariates in applied econometrics. Variables such

as gender, levels of education, occupational status or household size of survey respondents are

genuinely discrete. In contingent valuation studies, prices are set by the experimenter and

they are in general discrete, by steps of 0.10, 1 or 10 euros. There are also many examples

of interval-valued data. They are common in surveys where, in case of non-response to an

item, follow-up questions are asked. Manski & Tamer (2002) describe the example of the

Health and Retirement Study. If a respondent does not want to reveal his wealth, he is then

asked whether it falls in a sequence of intervals (�unfolding brackets�). Another important

reason for interval data is anonymity. Age is a continuous covariate which could in theory

be used as a source of continuous exogenous variation in many settings. For con�dentiality

reasons however, statisticians often censor this information in the public versions of household

surveys by transforming dates of birth into months (or years) of birth only. They are afraid

that the exact date of birth along with other individual and household characteristics might

reveal the identity of households responding to the survey.

2.1 The Latent Model

Assuming that the data satisfy R:i� R:iv, the question adressed in this paper is how they

can be generated by the following semi-parametric latent variable index structure :

y = 1fx� + v + � > 0g; (LV)

where 1fAg is the indicator function that equals one if A is true and zero otherwise and

where the random shock � satis�es the following properties,

Assumption L(atent)

(L:1) (Conditional independence) � and v are independent conditionally on covariates x

and variables z.

F"(: j v; x; z) = F"(: j x; z)

The support of " is denoted 
"(x; z):

(L:2) (Support) There exist two �nite real numbers vl and vu such that the support of

�x� � " is included in [vl; vu) and such that vl � v1 and vu � vK (see R:iii).
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(L:3) (Moment condition) " is uncorrelated with variables z:

E(z0�) = 0:

Powell (1994) discusses conditional independence assumptions (calling them exclusion

restrictions) in the context of other semiparametric models, i.e. without combining them

with (L:2) or (L:3). More recently, Lewbel (2000) and Honoré and Lewbel (2002) provide an

analysis of model (LV ) using (L1) and a more restrictive support assumption (Supp(�x��

") � Supp(v)) as identifying restrictions.4.

As de�ned by (L:1) and (L:2), conditional independence and support assumptions restrict

the class of statistical models that can actually be analyzed. If a binary reduced-form

Pr(y = 1 j v; x; z) is generated through (LV) by a latent model satisfying (L:1 � L:3); it

satis�es necessarily,

Pr(y = 1 j v; x; z) = Pr(" > �x� � v j x; z) = 1� F"(�x� � v j x; z);

which implies that Pr(y = 1 j v; x; z) is non decreasing in v. Second, as the support of�x��"

is included in [vl; vu); we have necessarily Pr(y = 1 j vl; x; z) = 0 and Pr(y = 1 j vu; x; z) = 1:

To sum up, we have

(NP:1) (Monotonicity) The conditional probability Pr(yi = 1 j v; x; z) is non decreasing

in v (a.e. Fx;z).

(NP:2) (Complete Variation) There exist two �nite real numbers vl and vu such that

Pr(yi = 1 j v = vl; x; z) = 0 and Pr(yi = 1 j v = vu; x; z) = 1:

In the following, we focus on the class of statistical models satisfying (NP:1�NP:2) and

analyse the conditions under which they can be generated through (LV) by a latent model

satisfying (L:1�L:3). To better understand what the restriction (NP:2) implies for applied

research, it is worth distinguishing two cases. First, when Pr(y = 1 j v; x; z) is actually

observed increasing from 0 when v = v1 to 1 when v = vK ; then vl can be set equal to

v1 and vu equal to vK . In such a case, (NP:2) is unambiguously satis�ed. Second, when

either Pr(y = 1 j v1; x; z) > 0 or Pr(y = 1 j vK ; x; z) < 1, then either vl or vu has to be

4There is another minor di¤erence between assumptions L and the set-up introduced by Lewbel (2000),
namely the distribution function F" can have mass points. When the special regressor is discrete or interval-
valued, it is much easier than in the continuous case to allow for such discrete distributions of the unobserved
factor. If all distribution functions are CADLAG (i.e., continuous on the right, limits on left), the large
support assumption (L:2) has to be slightly rephrased however in order to exclude a mass point at �x��vu:
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set outside the observed support of v. In such a case, Pr(y = 1 j v; x; z) satis�es (NP:2)

only if there are plausible values of vl and vu outside the observed support of v such that

Pr(y = 1 j vu; x; z) = 0 or Pr(y = 1 j vl; x; z) = 1: By construction, this assumption is not

testable. As discussed next, there are many examples where this assumption is plausible,

but the case should be argued in each speci�c application.

2.2 Examples

Potential applications of Assumption L include controled experiments where y� = x� +

" represent a latent failure time and where individuals (or animals, or equipments) are

observed at discrete, exogenously set, points in time or after having been exposed to discrete

exogenously set doses of treatment (denoted �v): We observe y = 1(x� + � > �v) and we

seek to identify �. By construction, this model satis�es the conditional independence and the

uncorrelated error assumptions. It satis�es the support assumption provided that it can be

assumed that the probability of "failure" varies from zero at the beginning of the experiment

to one after a su¢ cient long (or strong) exposition to the treatment.

A second type of applications are optimal investment models. For example, in optimal

schooling models, y� = x� + � represents the number of years of post-compulsory education

which maximises discounted lifetime wealth5 and �v is the respondent�s age minus the

minimum school leaving age. The e¤ects of family background x on y� is the parameter

of interest: Surveys provide us with information about y = 1(y� > �v) only, namely an

indicator that the respondent still attends school at �v. In these models, the support

assumption boils down to assuming that there is an upper bound for the number of years

that can be spent in the higher education system.

Other interesting empirical applications come from contingent valuation studies where

we evaluate the impact of covariates x on the willingness to pay y� = x� + � for a good or

a resource, see e.g. Lewbel, Linton and McFadden (2006). Individuals are asked whether

their willingness to pay exceeds a bid �v chosen by experimental design: Again, we observe

y = 1(x� + � > �v) and we seek to identify �: Bids are typically drawn from a discrete

distribution. Given the experimental design, they may be constructed in order to satisfy the

exclusion restriction (L:1). The model satis�es the support assumption provided that it can
5See for example Cameron and Heckman (1998).
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be assumed that nobody would answer "yes" for su¢ ciently high bids and nobody would

answer "no" for su¢ ciently low bids.

Finally, applications of the conditional independence set-up are also provided by cases

where y� is a latent ability, v an exogenous ability threshold and where y indicates whether

the ability exceeds the threshold. For example Maurin (2002) estimates a model on French

data where y is grade repetition in primary schools, y� is pupils�latent schooling ability, x

is parental income, v is date of birth within the year. The date of birth within the year

determines pupils�age at entry into elementary school and, as such, represents an important

determinant of early performance at school. In this model, the support assumption means

that if it was possible to observe su¢ ciently young children at the entry into elementary

school they would all have to repeat a grade, whereas su¢ ciently mature children would all

be able to avoid grade repetition. A related example is Lewbel (2006) who studies the ability

to obtain a university degree using the cost of attending a local public college (relative to

local unskilled wages) as the exogenous regressor v.

2.3 Identifying Restrictions and Parameter of Interest

The relationship between our set-up and the one in Manski and Tamer (2002) are simi-

lar to the relationship between quantile independence (Manski, 1988) and Lewbel (2000)

identifying restrictions. The quantile independence set-up assumes that one quantile of " is

independent of all covariates, whereas the conditional independence assumption used in this

paper is equivalent to assuming that all quantiles of " are independent of one covariate. In

this crude sense, both assumptions are comparably restrictive. Another di¤erence is that the

conditional independence hypothesis makes it possible to characterize the domain of obser-

vationally equivalent distribution functions of the unobserved residuals. The price to pay is

that conditional independence requires additional conditions on the support of the covariates

that are stronger than the conditions required under quantile-independence. Assumption L

and other examples are commented in Lewbel (2000) or Magnac and Maurin (2007). Once v

is continuously distributed and has large support (i.e. Supp(�x� � ") � [vl; vu)) , the latter

paper shows that Assumption L is su¢ cient for exact identi�cation of both � and F"(: j x; z).

Before moving on to the issue of identi�cation of �, it is important to understand the

9



relationship between this parameter and the e¤ect of changes in covariates on the choice

probability. Consider an experiment where (say) (v; x0 = x+ �x; z; ") is assigned to everyone

of characteristics (v; x; z; "); namely a exogenous change �x in covariates holding the unob-

served heterogeneity term " constant: The counterfactual probability of success conditional

on (v; x; z) is

E(1fv + (x+ �x)� + � > 0g j v; x; z) = E(1f(v + �x�) + x� + � > 0g j x; z)

= Pr(y = 1 j x; v + �x�; z):

In other words, the probability of success when (v; x0 = x + �x; z; ") is assigned to everyone

of characteristics (v; x; z; ") is equal to the probability of success actually observed in the

data conditional on (v+ �x�; x; z): The parameter of interest � de�nes the shifts in v whose

e¤ects on y are equivalent to exogenous shifts in x when we hold "; v and z constant.

In the following, any (�; F"(: j x; z)) satisfying Assumption L is called a latent model. The

index parameter � 2 Rp is the unknown parameter of interest. The distribution function

of the error term, �, is also unknown and may be considered as a nuisance parameter.

Identi�cation is studied in the set of all such (�; F"(: j x; z)).

3 The Discrete Case

In this section, the support of the special regressor is supposed to be a discrete set given by:

Assumption D(iscrete): 
v = fv1; :; vKg; vk < vk+1 for any k = 1; :; K � 1:

We consider a binary reduced-form Pr(y = 1 j v; x; z) satisfying (NP:1 � NP:2) and

we ask whether there is a latent model (�; F"(: j x; z)) satisfying assumptions (L1 � L3)

and generating through (LV ) the values Pr(y = 1 j v = vk; x; z); k = 1; :::K; taken by

Pr(y = 1 j v; x; z) on the observed support of v. The answer is positive though the admissible

latent model is not unique. There are many possible latent models whose parameters are

observationally equivalent. We start this section by proving that the identi�ed set is given

by a set of incomplete moment restrictions. We continue by showing that this set is non

empty, bounded and convex. We then give a sharp characterization of the identi�ed set.
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3.1 Incomplete Moment Restrictions

We begin with a one-to-one change in variables which will allow us to characterize the set of

observationally equivalent parameters through simple linear moment conditions. Denote:

�k = (vk+1 � vk�1)=2 for k 2 f2; :; K � 1g

�1 = (v2 � vl)=2; �K = (vu � vK�1)=2

pk(x; z) = Pr(v = vk j x; z):

Using these notations, the transformation of the binary response variable which will be used

to characterize the identi�ed set is de�ned as:6

~y =
�k:y

pk(x; z)
� vu + vK

2
if v = vk; for k 2 f1; :; Kg; (1)

In contrast to the large-support, continuous case studied by Lewbel (2000) or Magnac and

Maurin (2007), the identi�cation of � when v is discrete is not exact anymore. The following

theorem shows that � satis�es a set of moment conditions that are incomplete.

Theorem 1 Let us consider � a vector of parameter and, Pr(y = 1 j v = vk; x; z) (denoted

Gk(x; z)) for k=1,...K, a conditional probability function which is non decreasing in v: The

two following statements are equivalent,

(i) there exists a latent random variable " such that the latent model (�; F"(: j x; z))

satis�es Assumption L and such that Gk(x; z); k=1,...K, is the image of (�; F"(: j x; z))

through the transformation (LV );

(ii) there exists a measurable function u(x; z) from Sx;z to R which takes its values in the

interval (a.e.Fx;z) I(x; z) = (��(x; z);�(x; z)]; where �(x; z) is positive and de�ned by,

�(x; z) =
(v1 � vl)

2
G1(x; z)+

KX
k=2

�
(vk � vk�1)

2
(Gk(x; z)�Gk�1(x; z))

�
+
(vu � vK)

2
(1�GK(x; z));

and such that,

E(z0(x� � ey) = E(z0u(x; z)): (2)

6For almost all (v; x; z) in its support, which justi�es that we divide by pk(x; z). Division by zero is a
null-probability event.
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Proof. See Appendix A.

Theorem 1 characterizes the set denoted B of all observationally equivalent values of

parameter �: It shows that � 2 B if and only if it satis�es equation (2) which is an incomplete

moment restriction since function u(x; z) is not completely known. Green et al. (1998) proves

a special case of this Theorem when neither regressors x nor instruments z are present. It

allows them to provide bounds for the average willingness to pay in a contingent valuation

experiment. As discussed in a Remark in Appendix A, the proof of Theorem 1 also leads to

a characterization of the set of observationally equivalent distribution functions F"(: j x; z).

Figure 1 provides an illustration of the results stated in Theorem 1. Given some (x; z),

the nodes represent the conditional probability distribution G(v; x; z) as a function of v.

G(v; x; z) satis�es (NP:2) since it is equal to 0 at the lower bound (v = �1) and equal to

1 at the upper bound (v = 1). The other observed values of G are at v = �:5; 0; 0:5. By

construction, a latent model (�; F") generates G through (LV ) if it satis�es 1�F"(�x��v j

x; z) = G(v; x; z). Hence, the only compatible distribution functions of the shock " are

such that 1 � F"(�x� � v j x; z) is passing through the nodes at v = �:5; 0; 0:5. The only

other restriction is that these distribution functions are non-decreasing within the rectangles

between the nodes. An example is reported in the graph, but it is only one among many

other possibilities. The total surface of the rectangles is given by function 2�(x; z) and it

measures the degree of our ignorance on the distribution of ".

3.2 Sharp Bounds on Structural Parameters

This section builds on Theorem 1 to provide a detailed description of B; the set of observa-

tionally equivalent parameters: We focus on the case where the number of instruments z is

equal to the number of variables x (the exogenous case z = x being the leading example).

At the end of the section, we brie�y discuss how the results could be extended to the case

where the number of instruments z is larger that the number of explanatory variables, x.

3.2.1 General Properties of the Identi�ed Set

When the number of instruments is equal to the number of variables, the assumption that

E(z0x) is full rank (R.ii) implies that equation (2) has one and only one solution in � for

any function u(x; z): Given that u(x; z) = 0 is admissible, B is non empty. It contains ��
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the focal value associated with u(x; z) = 0;

E(z0(x�� � ey)) = 0:
Second, set B is convex because the set of admissible u(x; z) is convex and equation (2) is

linear in �. Lastly, since

�(x; z) � �M = max(v1 � vl; :::; vk � vk�1; :::; vu � vK)=2

the admissible u(x; z) is bounded by �M so that B is bounded. Speci�cally, using the

de�nition of �� and rephrasing Theorem 1, � lies in B if and only if there is u(x; z) taking

its value in I(x; z) such that

E(z0x)(� � ��) = E(z0u(x; z)):

Denoting W = E(z0z)�1=2E(z0x) and using the generalized Cauchy-Schwarz inequality, we

have,

(� � ��)0W (� � ��) = E(u0(x; z)z)E(z0z)�1E(z0u(x; z)) � E(u2(x; z)):

As �(x; z) � �M ; we have,

(� � ��)0W (� � ��) � E(u2(x; z)) � E(�(x; z)2) � �2
M ;

that shows that B is included in a sphere in the metric W . Previous developments are

summarized in the following proposition,

Proposition 2 The identi�ed set B is non empty, convex and bounded. It contains the focal

value �� = E(z0x)�1E(z0~y): In the metric W , B is included in a sphere whose center is ��

and whose radius is �M .

The maximum-length index, �M , can be taken as a measure of distance to continuity of

the distribution function of v (or between its support 
v and [vu; vl]). For a latent model

(�; F"(: j x; z)), Proposition 2 proves that, for a sequence of support 
v indexed by �M ; the

distance d(��; B) = inf
b2B

k�� � bk between �� and B converges to zero as �M 7! 0:

lim
�M 7!0

d(��; B) = 0;

and point identi�cation is restored. We now give sharp bounds �rst for single coe¢ cients,

second for linear combinations of coe¢ cients and show that it yields a sharp characterization

of set B.
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3.2.2 Interval Identi�cation in the Coordinate Dimensions

Let

Bp =
�
�p 2 R j 9(�1; :::; �p�1) 2 Rp�1; (�1; :::; �p�1; �p) 2 B

	
represent the identi�ed interval of the last coe¢ cient (say). All scalars belonging to this

interval, are observationally equivalent to the pth component of the true parameter.

Proposition 3 Bp is an interval centered at ��p; the p-th component of �
�. Speci�cally, we

have,

Bp =

�
��p �

E(j expj�(x; z))
E( exp2) ; ��p +

E(j expj�(x; z))
E( exp2)

�
where exp is the remainder of the IV-projection of xp onto the other components of x using
instruments z (as formally de�ned in the proof).

Proof. See Appendix A.

Given that the estimation of Bp requires the estimation of E(j expj�(x; z)), it is worth
emphasizing that �(x; z) can be rewritten E(~y� j x; z) where ~y�, as ~y, is an a¢ ne function

of y whose de�nition is given at the end of the proof of Proposition 3. Furthermore, by

de�nition, ��p =
E(jfxpj~y)
E(fxp2) . Hence, the construction of the upper and lower bounds of Bp

only requires [1] the construction of the transforms ~y + ~y�, ~y � ~y� [2] the construction of

the residual exp and [3] the linear regression of ~y + ~y�, ~y � ~y� on j expj : Estimation follows
accordingly.

3.2.3 Characterisation and Construction of the Identi�ed Region

We begin by characterizing the identi�ed region of any linear combination of the parameters.

Consider q a column vector of dimension [p; 1] such that k q k= 1: The issue is to

characterize the identi�ed interval of �q = q0:�: To begin with, we can always chose Q

a matrix of dimension [p; p � 1] such that the matrix (Q; q) is an orthogonal matrix of

dimension p. By construction, it satis�es (Q; q)(Q; q)0 = I so that:

x� = x(Q; q)(Q; q)0�:

The p-th component of parameter (Q; q)0� is �q = q
0:�. It is associated to the p-th explana-

tory variable, sq = xq. Let Bq the identi�ed interval associated to this explanatory variable.
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Denoting ~sq the remainder of the projection of sq onto xQ; we can apply Proposition 3 and

write,

Bq =

�
q0:�� � E(j ~sq j �(x; z))

E(~s2q)
; q0:�� +

E(j ~sq j �(x; z))
E(~s2q)

�
:

For any normalized vector of weights q, this equation provides us with an analytical de�nition

of the set of scalars that are observationally equivalent to the true q0�.7 By construction,

for any q in the unit sphere of Rp (denoted S) the upper bound of Bq corresponds to the

supremum of q0:� when � lies in B. This function is known as the support function of B at

q: It is denoted ��(q j B) and it is equal to:

��(q j B) = sup
�2B

q0:� = q0:�� +
E(j ~sq j �(x))

E(~s2q)

It leads to a sharp characterization of the identi�ed set B: As B is bounded and convex,

its closure cl(B) is indeed completely characterized by its support function and equal to the

intersection of its supporting halfspaces (Rockafellar, 1970),

cl(B) = f� such that for any q 2 S; q0� � q0:�� + E(j ~sq j �(x))
E(~s2q)

g:

Interestingly enough, we have an analytical de�nition of the support function of B: It makes

it possible to construct B very easily by simulation. Randomly draw S vectors qs; k qs k= 1,

construct the half-spaces fq0s� � ��(qs j B)g and their intersection. Then make S go to

in�nity.

The e¤ect on set B of various auxiliary parameters can now be assessed. The impact

of the limit points vl; vu are of particular interest in the case where they do not belong to

the support of v (vl < v1 or vK < vu) and where G1(x; z) > 0 or GK(x; z) < 1. Using the

de�nitions of �� and �(x; z); it is not di¢ cult to check that

@��(q j B)
@vl

=
�E((j ~sq j �~sq)G1(x; z))

E(~s2q)
and

@��(q j B)
@vu

=
E((j ~sq j �~sq)(1�GK(x; z))

E(~s2q)
:

which do not depend on vl nor on vu: As @�
�

@vl
< 0 or @��

@vu
> 0, the size of B decreases when vl

or vu are getting closer to the actual limits of the support of v, [v1; vK ]: Second, B becomes

unbounded in all directions when either vl ! �1 or vu ! +1: This result was obtained

by Magnac and Maurin (2007) when v is continuous.

7It is worth emphasizing that ~sq (and consequently, Bq) is independent of the choice of the matrix Q. It
can be shown that it is invariant to the replacement of Q by QR, where R can be any orthogonal matrix.

15



Regarding inference, Horowitz and Manski (1998), Imbens and Manski (2004) or Cher-

nozhukov et al. (2004) provide tools that can be applied to estimate either the intervals of

interest using the former two articles and the whole set B using the latter. In particular,

Chernozhukov et al. (2004) provide con�dence regions for sets of parameters that correspond

to the zeroes of a non-negative continuous econometric criterion functions Q(�): In our case,

Q(�) =

Z
S
(q0� � ��(q j B))21(q0� > ��(q j B))d�(q)

where d�(q) can be any strictly positive �nite measure on the unit sphere S. The sample

analog Qn of Q is not di¢ cult to construct since �
�(q j B) can be estimated through simple

linear regressions. In such a context, assuming various regularity conditions, Chernozhukov

et al.(2004) show how to construct con�dence sets Cn such that lim
n7!1

P (B � Cn) = � or

lim
n7!1

sup�2B P (� � Cn) = � for a prespeci�ed con�dence level � 2 (0; 1):

3.3 Supplementary Restrictions

A potentially interesting development of this framework is when the number of instruments is

larger than the number of variables (q > p). In such a case, B is not necessarily non-empty

since condition (2) in Theorem 1 may have no solutions at all (i.e., some supernumerary

restrictions may not be true).

Consider zA, a random vector whose dimension is the same as random vector x; de�ned

by:

zA = zA

and such that E(z0Ax) is full rank. De�ne the set, A, of such matrices A of dimension p,

q. The previous analysis can then be repeated for any A in such a set. The identi�ed set

B(A) is now indexed by A. Under the maintained assumption (L:3), the true parameter (or

parameters) belongs to the intersection of all such sets when matrix A varies:

B �
\
A2A

B(A)

As previously, the set on the RHS is convex because it is the intersection of convex sets.

Also, we can always project this set onto its elementary dimensions. The intersection of the

projections is the projection of the intersections. What changes is that it can be empty.
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As a subject of work in progress (Bontemps, Magnac and Maurin, 2006) we are currently

exploring ways of characterizing the support function of B and the possibility of constructing

test procedures of surnumerary restrictions in such partial identi�cation frameworks, when

the number of instruments is greater than the number of covariates.

4 Interval Data

In this section, we deal with the case where v is continuous although it is observed by

intervals only. We show that the set of parameters observationally equivalent to the true

structural parameter has a similar structure to the discrete case. It is a convex set and,

when there are no supernumerary restrictions (p = q), it is not empty. It contains the

value corresponding to an IV regression of a transformation of y on x given instruments z.

When some information is available on the conditional distribution function of regressor v

within-intervals, the identi�ed set shrinks. Its size diminishes as the distribution function of

the special regressor within intervals becomes closer to uniformity. When v is conditionally

uniformly distributed within intervals, the identi�ed set is a singleton and the parameter of

interest � is exactly identi�ed.

4.1 Identi�ed Set: the General Case

The data are now characterized by a random variable (y; v; v�; x; z) where v� is the result of

censoring v by interval:

v� = k:1fv 2 [vk; vk+1)g for k = 1; :; K � 1:

Only realizations of (y; v�; x; z) are observed and those of v are not. Variable v� is discrete

and de�nes the interval in which v lies. More speci�cally, assumption D is replaced by:

Assumption ID:

(i) (Interval Data) The support of v� conditional on (x; z) is f1; :::; K � 1g almost every-

where Fx;z. The distribution function of v� conditional on (x; z) is denoted pv�(x; z): It is

de�ned almost everywhere Fx;z.

(ii) (Continuous Regressor) The support of v conditional on (x; z; v� = k) is [vk; vk+1)

(almost everywhere Fx;z). The overall support is [v1; vK) where v1 = vl and vK = vu. The
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distribution function of v conditional on x; z; v� is denoted Fv(: j v�; x; z) and is assumed to

be absolutely continuous. Its density function denoted fv(: j v�; x; z) is strictly positive and

bounded.

For the sake of simplicity, we focus on the case where v1 = vl and vK = vu: Our results

can readily be extended to cases where v1 > vl or vK < vu without additional insight. We

consider latent models which satisfy the large support condition (L:2) (i.e., the support of

�x� � � is included in the support of v), the moment condition (L:3) (i.e., E(z0�) = 0) and

the following extension of the partial independence hypothesis,

F"(: j v; v�; x; z) = F"(: j x; z) (L:1�)

The conditional probability distributions Pr(y = 1 j v�; x; z) generated through transforma-

tion (LV ) by such latent models is necessarily non decreasing in v�.

Interval censorship that we consider does not cover cases where intervals are unbounded

on the left and/or on the right. Using Magnac and Maurin (2007), we can indeed prove that

parameter � does not belong to a bounded set in these cases. We thus restrict ourselves to this

set of assumptions which is, not only in this respect, quite similar to assumptions proposed

by Manski and Tamer (2002). Their Interval (I) assumption is equivalent to Assumption

(ID.ii) and their Monotone assumption (M) is exactly the monotonicity restiction imposed

on Pr(y = 1 j v�; x; z) by our latent model. Also their Mean Independence assumption (MI)

is a consequence of our assumption (L:1�); ours being slightly stronger. We however depart

from the quantile restriction and exogeneity assumptions that they use in the binary case

since we assume that shocks are uncorrelated with some instruments z and that the bounds

of the intervals of observation are not random.

In analogy with the discrete case, we begin with constructing a transformation of the

dependent variable. If �(v�) = vv�+1 � vv� denotes the length of the v�th interval, the

transformation adapted to interval data is :

�y =
�(v�)

pv�(x; z)
y � vK (3)

It is slightly di¤erent from the transformation (1) in terms of weights �(v�) and in reference

to the end-points but the dependence on the random variable y=pv�(x; z) remains the same.
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With these notations, the following theorem gives an exact representation of the set of

observationally equivalent parameters as solutions to incomplete linear moment conditions

as in Theorem 1.

Theorem 4 Consider � a vector of parameter and Pr(y = 1 j v�; x; z) (denoted Gv�(x; z)) a

conditional distribution function which is non decreasing in v�. The two following statements

are equivalent,

(i) there exist a latent conditional distribution function of v, Fv(: j x; z; v�); and a latent

random variable " de�ned by its conditional distribution function F"(: j x; z) such that:

a. (�; F"(: j x; z)) satis�es (L:1�; L:2; L:3)

b. Gv�(x; z) is the image of (�; F"(: j x; z)) through the transformation (LV );

(ii) there exists a function u�(x; z) taking its values in I�(x; z) = (��(x; z);�
�
(x; z))

where (by convention, G0(x; z) = 0, GK(x; z) = 1),

�
�
(x; z) =

X
k=1;:::K�1

(Gk+1(x; z)�Gk(x; z))(vk+1 � vk);

��(x; z) = �
X

k=1;:::K�1

(Gk(x; z)�Gk�1(x; z))(vk+1 � vk);

and such that,

E(z0(x� � �y) = E(z0u�(x; z))): (4)

Proof. See Appendix B

Theorem 4 provides a characterization of the set of latent models satisfying (L1� � L3)

and generating Gk(x; z); k = 1; :::; K � 1; through (LV ); when [vl; vu) coïncides with the

observed support of v, [v1; vK): If the observed support were [v2; vK�1) rather than [vl; vu);

the characterization of the identi�ed set would follow similar lines.

The identi�ed set has the same general structure in the interval-data case as in the

discrete case. It is a bounded and convex set which always contains the focal value de�ned

by the moment condition E(z0(x��� �y) = 0:We now study how additional information helps

to shrink the identi�ed set.
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4.2 Inference Using Additional Information on the Distribution
Function of the Special Regressor

There are many instances where additional information on the conditional distribution func-

tion of v within intervals is available. Variable v could be observed at the initial stage of a

survey or a census and for con�dentiality reasons, dropped from the �les that are provided to

researchers. Only information about interval-data and the conditional distribution function

of v remains Another instance is when the conditional distribution function of v is available

in one database that does not contain information on y while the information on y is avail-

able in another database which contains only interval information on v.8 To analyse these

situations, we complete the statistical model by assuming that we have full information on

the conditional distribution of v which is denoted �(v j v�; x; z).

The �rst unsurprising result is that additional knowledge on �(v j x; z; v�) actually helps

to shrink the identi�ed set. Secondly, knowing how identi�cation is related to the conditional

distribution �(v j x; z; v�)may provide interesting guidelines to control censorship and choose

intervals for de�ning v� in an optimal way. It is thus quite surprising to �nd that point-

identi�cation is restored provided that the conditional distribution function of the censored

variable v is piece-wise uniform.

To state these two results, we are going to use indexes measuring the distance of a

distribution function �(v j v� = k; x; z) to uniformity. Speci�cally, we denote

U(v j v� = k) = v � vk
vk+1 � vk

;

the uniform c.d.f, and we consider the two following indexes,

�Uk (x; z) = sup
v2(vk;vk+1)

�
�� U
�

�
; �Lk (x; z) = inf

v2(vk;vk+1)

�
�� U
1� �

�
;

where the arguments of � and U are made implicit for expositional simplicity.

Given that � is absolutely continuous and its density is positive everywhere (ID(ii)),

��U
�
and ��U

1�� are well de�ned on (vk; vk+1) and satisfy
��U
�
< 1 and ��U

1�� > �1: Furthemore,

given that ��U
�
(resp. ��U

1�� ) is continuous and equal to zero at vk+1 (resp. vk), the supremum

of this function in the neighborhood of vk+1(resp. vk) is clearly non negative (resp. non

8Mo¢ tt and Ridder (2006) provides a survey of two-sample techniques for such data design.
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positive). Hence, we have �Lk (x; z) 2 (�1; 0] and �Uk (x; z) 2 [0; 1), the two indices being equal

to zero when � is equal to U: Using additional information, Theorem 4 is translated into:

Theorem 5 Consider � a vector of parameters, Pr(y = 1 j v�; x; z) (denoted Gv�(x; z)) a

conditional distribution function which is non decreasing in v� and �(v j v�; x; z) a condi-

tional distribution function. The two following statements are equivalent,

(i) there exists a latent random variable " de�ned by its conditional distribution function

F"(: j x; z) such that:

a. (�; F"(: j x; z)) satis�es (L:1�; L:2; L:3)

b. Gv�(x; z) is the image of (�; F"(: j x; z)) through the transformation (LV );

(ii) there exists a function u�(x; z) taking its values in [��
�(x; z);�

�
�(x; z)] where:

��
�(x; z) =

X
k=1;:::K�1

(vk+1 � vk)�Lk (x; z)(Gk(x; z)�Gk�1(x; z))

�
�
�(x; z) =

X
k=1;:::K�1

(vk+1 � vk)�Uk (x; z)(Gk+1(x; z)�Gk(x; z))

and such that,

E(z0(x� � �y) = E(z0u�(x; z))):

Proof. See Appendix B

Given that �Lk (x; z) 2 (�1; 0] and �Uk (x; z) 2 [0; 1), the identi�ed set characterized by

Theorem 5 is smaller than the identi�ed set characterized by Theorem 4 when no information

is available on v (see below). Also, Theorem 5 makes clear that the size of identi�ed set

diminishes with respect to the distance between the conditional distribution of v and the

uniform distribution, as measured by �Lk (x; z) and �
U
k (x; z): When v is piece-wise uniform

(conditionally), the identi�ed set boils down to a singleton.

Corollary 6 The identi�ed set is a singleton if and only if the conditional distribution,

�(v j x; z; v�); for all v� = k, and a.e. Fx;z, is uniform, i.e.:

�(v j v� = k; x; z) = v � vk
vk+1 � vk
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Proof. See Appendix B

Corollary 6 provides a necessary and su¢ cient condition for identi�cation which is very

di¤erent from the su¢ cient conditions given in Manski and Tamer (2002, Corollary page

524). Their conditions (c) and (d) for point identi�cation imply that the probability that

the interval of observation of v (denoted v0, v1 in their notations) is as small as we want,

is positive. In our case, this length is �xed. As our condition is necessary and su¢ cient, a

complete comparison with what can be obtained in the setting of Manski and Tamer (2002)

is out of the scope of this paper.

Assuming that the distribution of v is not piece-wise uniform, the question remains

whether it is possible to rank the potential distributions of v according to the correspond-

ing degree of underidenti�cation of �: The answer is positive. Speci�cally, the closer to

uniformity the conditional distribution of v is, the smaller the identi�ed set is.

To state this result, we �rst need to rank distributions according to the magnitude of

their deviations from the uniform distribution.

De�nition 7 �2(v j x; z; v�) is closer to uniformity than �1(v j x; z; v�); when a.e. Fx;z and

for any k 2 f1; :::; K � 1g:

�Lk;1(x; z) � �Lk;2(x; z)

�Uk;1(x; z) � �Uk;2(x; z):

The corresponding preorder is denoted �1 � �2.

Using this de�nition:

Corollary 8 Let �(v j v� = k; x; z) any conditional distribution. Let B the associated region

of identi�cation for �. Then:

�1 � �2 =) B�2 � B�1

Proof. Straightforward using Theorem 5.

Assuming that we have some control on the construction on v� (i.e., on the information

on v that are made available to researchers), this result shows that this variable should
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be constructed in a way that minimizes the distance between the uniform distribution and

the distribution of v conditional on v� (and other regressors). Such a choice minimizes the

length of the identi�ed interval. Consider for instance date of birth. The frequency of this

variable plausibly varies from one season to another, or even from one month to another,

especially in countries where there exist strong seasonal variations in economic activity. At

the same time, it is likely that the frequency of this variable does not vary signi�cantly within

months, so that it is uniformly distributed within months in most countries. In such a case,

our results show that we only have to made available the month of birth of respondents

(and not necessarily their exact date-of-birth) to achieve exact identi�cation of structural

parameters of binary models which are monotone with respect to date-of-birth.

4.3 Projections of the identi�ed Set

Results concerning projections of the identi�ed set in the discrete case can be easily extended

to the case of interval data. As in the discrete case and for simplicity, we restrict our analysis

to the leading case when the dimension of z and x are the same. The identi�ed set B can be

projected onto its elementary dimensions using the same usual rules as in Corollary 3.

Let:

Bp =
�
�p 2 R j 9(�1; :::; �p�1) 2 Rp�1; (�1; :::; �p�1; �p) 2 B

	
be the projected set corresponding to the last (say) coe¢ cient. All scalars belonging to this

interval, are observationally equivalent to the pth component of the true parameter. We

denote �� the solution of equation (4) when function u�(x; z) = 0 (as E(z0x) is a square

invertible matrix):

�� = E(z0x)�1E(z0�y)

To begin with, we consider the case where no information is available on the distribution of

v and state the corollary to Theorem 4.

Corollary 9 Bp is an interval whose center is ��p; where �
�
p represents the p-th component

of ��: Speci�cally, we have,

Bp = (�
�
p + &L;p; �

�
p + &U;p]

where :

&L;p =
�
E( exp2)��1E( exp(1f exp > 0g��(x; z) + 1f exp � 0g��

(x; z))
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&U;p =
�
E( exp2)��1E( exp(1f exp � 0g��(x; z) + 1f exp > 0g��

(x; z))

with exp is the residual of the projection of xp onto the other components of x using instru-
ments z.

Proof. See Appendix B.

The corresponding corollary to Theorem 5 replaces �� and �
�
by ��

� and �
�
�: In the

proof, we also show how to construct &L;p and &U;p as functions of moments of observable

variables as in the previous section. Analogously, we can de�ne the support function of set

B for any vector q of the unit sphere and characterize exactly set B and a criterium function

Q(�) whose zeroes de�ne B:

5 Monte Carlo Experiments

Deriving empirical estimates for the upper and lower bounds of intervals of interest is

straightforward since these bounds can be expressed as moments. When the number of

observations become large, the properties of interval estimates conform with theoretical

properties that have just been derived. It remains to be seen how these estimators of the

bounds behave in small and medium-sized samples (i.e., 100 to 1000 observations). This is

why we brie�y present Monte Carlo experiments in this section. The simulated model is

y = 1f1 + v + x2 + " > 0g: For the sake of clarity, the set-up is chosen to be as close as

possible to the set-up originally used by Lewbel (2000). We adapt this original setting to

the case where regressor v is discrete or interval-valued. The design is described in Appendix

B.5.

5.1 Statistical Summaries

Before moving on to the results, we introduce simple statistics to describe the small sample

properties of our estimates. Let �̂i; i = u; b; be the estimators of the lower and upper

bounds of the estimated interval and ��i = E(�̂i), i = u; b, the expected values of these

estimators. Using these notations, let us consider ��m = (��u + ��b)=2 the expected average of

the estimated lower and upper bounds, (��u � ��b)=2
p
3 the expected adjusted length of the
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estimated interval, and �2 the average sampling error de�ned as:

�2 = (�2u + �
2
b + �ub)=3

where �2u = E(�̂u � ��u)2 and �2b = E(�̂b � ��b)2 are the estimated standard errors of the

estimated lower and upper bounds whereas �ub = E[(�̂b � ��b)(�̂u � ��u)] is their estimated

covariance. Interestingly enough, these three statistics provide a way to decompose the mean

square error uniformly integrated over the interval [�̂b; �̂u]:

MSEI = E

Z �̂u

�̂b

(� � �0)2
d�

�̂u � �̂b
=
1

3
E

"
(�̂u � �0)3 � (�̂b � �0)3

�̂u � �̂b

#
=

1

3
E
h
(�̂u � �0)2 + (�̂b � �0)2 + (�̂b � �0)(�̂u � �0)

i
;

= (��m � �0)2 +
1

3

�
(��u � ��b)=2

�2
+
1

3
E
h
(�̂u � ��u)2 + (�̂b � ��b)2 + (�̂b � ��b)(�̂u � ��u)

i
The �rst term is the square of a �decentering�term (denoted Dec) which can be interpreted

as a familiar bias term. The second term is the square of the �adjusted� length (AL),

which can be interpreted as the speci�c �uncertainty�due to partial identi�cation instead

of point identi�cation. The third term is an average of standard errors (ASE) which can be

interpreted as the e¤ect of sample variability. This decomposition is an adaptation of the

classical decomposition of mean square error to the case where identi�cation is partial.

5.2 Results

We have performed several Monte Carlo experiments using discrete and interval data where

the sample size varies between 100, 200, 500 or 1000 observations. In all experiments, the

number of Monte Carlo replications is equal to 1000. Additional replications do not a¤ect any

estimates (resp. standard errors) by more than a 1% margin of error (resp. 3%). Generally

speaking, in all experiments, the true value of the parameter belongs to the 95% con�dence

interval built up around the estimates of the lower and upper bounds.

Table 1 presents the results of an experiment using interval data by reporting variations

of Dec, AL; ASE, and MSEI1=2 when both the size of the sample and the bandwidth

used to compute the denominator of transformation (3) vary. It shows that the estimated

intervals can be severely decentered for the intercept term, especially when the sample size
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is small. Increasing the bandwidth decenters interval estimates for the coe¢ cient of the

variable towards the negative numbers though at a much lesser degree. The mean square

error (MSEI) for the intercept decreases with the bandwidth, especially when the size of

the sample is small. It has frequently a U-shape form for the coe¢ cient of the variable. We

have tried to look for a data-driven choice of the bandwidth by minimizing this quantity,

but it was unconclusive. A larger bandwidth seems to be always preferred. Some further

research is clearly needed on this issue. In the working paper version9, we report results when

other parameters vary: the degree of non normality of ", the degree of endogeneity of x2 and

the number of points in the support of v. It is shown that decentering can be quite severe

when the degree of non-normality of the random shock or the degree of endogeneity of the

covariate are large. Interval length is not a¤ected by non-normality, but exhibits some non

monotonic variations with the amount of endogeneity. Lastly, we �nd that interval length

decreases with the number of points of the support of v; as predicted by the theory. This

decrease is not much a¤ected by sample sizes.

The projections of the identi�ed set onto one dimensional intervals may provide a dis-

torted picture of the bi-dimensional set. For example, when the identi�ed set is stretched

along the 45� line, the single dimensional intervals might be very wide even when the total

area of the bi-dimensional set is small. This is why it might be informative to construct the

complete identi�ed region on top of its one dimensional projections. In our example, the

complete bi-dimensional set can be computed quite easily. Figure 2 shows 100 replications

of the complete bi-dimensional estimated sets. An interesting feature of these complete sets

(i.e., a feature which is not perceptible when working with one dimensional projections) is

their "ocular" shape. The kinks on both sides stems from the deterministic nature of one of

the covariate (the intercept). If x2 were discretely distributed, we would obtain polyhedral

sets. Table 2 reports the magnitude of error when we proxy the complete estimated set by

the rectangle given by the projections of the estimated set on both vertical and horizontal

axes. In our speci�c case, the error is moderate, the surface of the true set being around

75% of the area of the rectangle, with some variation according to the size of the sample.

9See http://www.idei.fr/doc/wp/2005/magnac.pdf
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6 Conclusion

In this paper, we explored partial identi�cation of coe¢ cients of binary variable models

when the very exogenous regressor is discrete or interval-valued . We derived bounds for the

coe¢ cients and show that they can be written as moments of the data generating process. We

also show that in the case of interval data, additional information can shrink the identi�ed

set. When the unknown variable is distributed uniformly within intervals, these sets are

reduced to one point.

Some additional points seem to be worthwhile considering. First, we do not provide

proofs of consistency and asymptotic properties of the estimates of the bounds of the intervals

because they would add little to the ones Lewbel (2000) presents. The asymptotic variance-

covariance matrix of the bounds can also be derived along similar lines. Moreover, adapting

the proofs of Magnac and Maurin (2007) these estimates are e¢ cient in a semi-parametric

sense under some conditions. In contrast, constructing con�dence sets for the identi�ed set

or the true value of the parameter is more involved (Beresteanu and Molinari, 2006) and is

the object of work in progress.

Generally speaking, the identi�cation results obtained in this paper when data are not

continuous may be used to enhance identi�cation power when the data are actually con-

tinuous. Speci�cally, if the support of the continuous very exogenous regressor is not large

enough, one could use additional measurements or structural priors at discrete points at the

left and right of the actual support in order to achieve partial or point identi�cation. Such

additional information generates a case with mixed discrete and continuous support. It can

be analyzed by using simultaneously the proofs used in the discrete, interval or continuous

settings. An interesting situation corresponds to a binary variable whose probability of oc-

currence is known to be monotone in some regressor v and varies between 0 and 1 in a known

interval. School-leaving (as a function of age) is such an example. In such a case, the coe¢ -

cients of the binary latent model are partially identi�ed regardless of whether the scheme of

observation of the very exogenous regressor is complete, discrete, by interval or continuous.

Two extreme cases lead to exact identi�cation, i.e. complete and continuous observation in

the interval on the one hand, and, on the other hand, complete & interval-data observation

when the distribution of the very exogenous regressor is uniform within intervals. Other
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cases are nevertheless still informative.

Finally, a more complex research question is whether our results can be extended to

settings where the moment condition (L:3) is replaced by stronger conditional mean inde-

pendence or conditional independence assumptions. Such assumptions can be analysed as

supernumerary moment conditions which are the object of a companion paper (Bontemps

et al., 2006).

28



REFERENCES

Bierens, H.J., and J., Hartog, 1988, �Nonlinear Regression with Discrete Explana-
tory Variables with an Application to the Earnings Function�, Journal of Econometrics,
38:269-299.
Beresteanu, A. and F., Molinari, 2006, "Asymptotic Properties for a Class of Par-

tially Identi�ed Models", working paper.
Bontemps, C., T. Magnac and E. Maurin, 2006, "Set Identi�ed Linear Models",

unpublished manuscript.
Chernozhukov, V., H. Hong, E. Tamer, 2004, "Inference on Parameter Sets in

Econometric Models", unpublished manuscript.
Chesher, A., 2003, "Non Parametric Identi�cation under Discrete Variation", Econo-

metrica, 73:1525-1550.
Galichon A., and M., Henry, 2006, "Inference in Incomplete Models", Unpublished

Manuscript.
Green, D., K.E. Jacowitz, D. Kahneman, D. McFadden, 1998, "Referendum

Contingent Valuation, Anchoring and Willingness to Pay for Public Goods", Resource and
Energy Economics, 20:85-116.
Honoré, B., and A., Lewbel, 2002, �Semiparametric Binary Choice Panel Data Mod-

els without Strict Exogeneity�, Econometrica, 70:2053-2063.
Horowitz, J., 1998, Semiparametric methods in Econometrics, Springer: Berlin.
Horowitz, J., and C.,F., Manski, 2000, �Non Parametric Analysis of Randomized

Experiments with Missing Covariate and Outcome Data�, Journal of the American Statistical
Association, 95:77-84.
Imbens, G., and C.F., Manski, 2004, �Con�dence Intervals for Partially Identi�ed

Parameters�, Econometrica, 72:1845-1859.
Leamer, E.E., 1987, "Errors in Variables in Linear Systems", Econometrica, 55(4):

893-909.
Lewbel, A., 2000, �Semiparametric Qualitative Response Model Estimation with Un-

known Heteroskedasticity or Instrumental Variables�, Journal of Econometrics, 97:145-77.
Lewbel, A., 2006, "Endogenous Selection or Treatment Model Estimation," forthcoming

Journal of Econometrics.
Lewbel, A., O., Linton and D., McFadden, 2006, "Estimating Features of a Distri-

bution From Binomial Data", unpublished manuscript.
Magnac, T., and E., Maurin, 2007, �Identi�cation & Information in Monotone Binary

Models�, forthcoming Journal of Econometrics.
Manski, C.F., 1988, �Identi�cation of Binary Response Models�, Journal of the Amer-

ican Statistical Association, 83:729-738.
Manski, C.F., 2003, Partial Identi�cation of Probability Distributions, Springer-Verlag:

Berlin.
Manski, C.F., and E. Tamer, 2002, �Inference on Regressions with Interval Data on

a Regressor or Outcome�, Econometrica, 70:519-546.
Maurin, E., 2002," The Impact of Parental Income on Early Schooling Transitions: A

Re-examination Using Data over Three Generations, Journal of Public Economics, 85:301-
332.
Marschak, J. and W.H. Andrews, 1944, "Random Simultaneous Equations and the

theory of Production", Econometrica, 12:143-205.

29



Mo¢ tt, R. and G. E. Ridder, (2006), "The econometrics of data combination", in J.
J.Heckman and E. E. Leamer (Eds.), Handbook of Econometrics, Volume 6, North-Holland,
Amsterdam.
Powell, J., 1994,�Estimation of Semiparametric Models�, in eds. R. Engle and D.

McFadden, Handbook of Econometrics, 4:2444-2521.
Rockafellar, R.T., 1970, Convex Analysis, Princeton University Press: Princeton.

30



A Proofs in Section 3

A.1 Proof of Theorem 1
Let fGk(x; z)gk=1;:;K satisfy monotonicity (Gk < Gk+1). It is an ordered set of functions
such that G1 � 0 and GK � 1. Fix �. We �rst prove that (i) implies (ii).
(Necessity) Assume that there exists a latent random variable " such that (�; F"(: j x; z))

satis�es (L:1�L:3) and such that fGk(x; z)gk=1;:;K is its image through transformation (LV ):
In the following, we denote v0 = vl and vK+1 = vu and G0(x; z) � 0 and GK+1(x; z) � 1: By
(L:2), the conditional support of " given (x; z), is included in (�(vK+1 + x�);�(v0 + x�)]
and we can write,

8k 2 f1; :::; K + 1g; Gk(x; z) =
Z �(v0+x�)

�(vk+x�)
f"(" j x; z)d" = 1� F"(�(vk + x�) j x; z): (A.1)

Put di¤erently, we necessarily have F"(�(vk + x�) j x; z) = 1 � Gk(x; z); for each k in
f0; :::; K + 1g :
Denote sk = (vk + vk�1)=2 and �k =

vk+1 � vk�1
2

= sk+1 � sk for all k = 1; :; K. Setting

the transformed variable ~y is (
�ky

pk(x; z)
� sK+1) where y = 1fv > �(x� + �)g. Integrate ey

with respect to v (of support fv1; :; vKg) and ":

E(ey j x; z) =

Z

(�jx;z)

[
KX
k=1

�k1fvk > �(x� + �)g]f(� j x; z)d�� sK+1

=

Z

(�jx;z)

[
KX
k=1

(sk+1 � sk)1fvk > �(x� + �)g]f(� j x; z)d�� sK+1

As the support of w = �(x� + ") is included in [v0; vK+1[, we can also de�ne an integer
function j(w) in f0; :; Kg, such that vj(w) � w < vj(w)+1: By construction, vk > w , k >

j(w) and
PK

k=1(sk+1 � sk)1fvk > wg = (sK+1 � sj(w)+1): Hence, we have :

E(ey j x; z) =

Z

(�jx;z)

(sK+1 � sj(�(x�+"))+1)f(� j x; z)d�� sK+1 = �E[sj(�x���)+1 j x; z]

= x� + E(� j x; z)� E[sj(�x���)+1 + x� + � j x; z]
= x� + E(� j x; z)� u(x; z) (A.2)

where (recall that w � �(x� + ")):

u(x; z) = E(sj(w)+1 � w j x; z):

Bounds on u(x; z) can be obtained using the de�nition of j(w). Given that vj(w) � w <
vj(w)+1; we have :

�
vj(w)+1 � vj(w)

2
< sj(w)+1 � w =

vj(w)+1 + vj(w)
2

� w �
vj(w)+1 � vj(w)

2
:
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Hence, we can write using the upper bound and decomposing the support of " into intervals,

E(sj(w)+1 � w j x; z) =

K+1X
k=1

Z �(vk�1+x�)

�(vk+x�)
(sk + x� + �)f(� j x; z)d�

�
K+1X
k=1

Z �(vk�1+x�)

�(vk+x�)

vk � vk�1
2

f(� j x; z)d�

=
K+1X
k=1

�
vk � vk�1

2
(Gk(x; z)�Gk�1(x; z))

�
= �(x; z)

where in the last equation, we use equation (A.1). For the lower bound, a similar proof
yields:

��(x; z) < u(x; z) � �(x; z):
Since GK+1(x; z) = 1 and G0(x; z) = 0; we have �(x; z) � min

k
(vk�vk�1

2
); meaning that

�(x; z) > 0 and that I(x; z) is non-empty. It �nishes the proof that statement (i) implies
statement (ii) since equation (A.2) implies (2).
(Su¢ ciency) Conversely, let us prove that statement (ii) implies statement (i). We

assume that there exists u(x; z) in I(x; z) = (��(x; z);�(x; z)] such that equation (2) holds
true and we construct a distribution function F"(: j x; z) satisfying (L:1�L:3) such that the
image of (�; F"(: j x; z)) through (LV ) is fGk(x; z)gk=1;:;K .
First, let � a random variable whose support is (0; 1]; whose conditional density given

(v; x; z) is independent of v (a.e. Fx;z) and is such that:

E(� j x; z) = (u(x; z) + �(x; z))=(2�(x; z)): (A.3)

As this expectation lies bteween 0 and 1; it is always possible to �nd such a random variable.
Second, let � a discrete random variable whose support is f1; :; K+1g and whose conditional
distribution given (v; x; z) is independent of v and is given by:

Pr(� = k j x; z) = Gk(x; z)�Gk�1(x; z): (A.4)

where we keep on denoting GK+1(x; z) � 1 and G0(x; z) � 0: For any k 2 f1; :; K + 1g,
consider K random variables, say �(�; k) which are constructed from � by:

�(�; k) = �x� � �vk�1 � (1� �)vk

Given that � > 0; the support of �(�; k) is (�x� � vk;�x� � vk�1]. Finally, consider the
random variable:

" = �(�; �) (A.5)

whose support is (�x� � vK ;�x� � v1] and which is independent of v (because both � and
� are). It therefore satis�es (L:1) and (L:2). Furthermore, because of (A.4), the image of
(�; F"(: j x; z)) through (LV ) is fGk(x; z)gk=1;:;K because these functions satisfy equation
(A.1). The last condition to prove is (L:3). Consider, for almost any (x; z),Z


("jx;z)

(sj(�x��")+1 + x� + ")f(" j x; z)d" =
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K+1X
k=1

�Z �x��vk�1

�x��vk
(
vk + vk�1

2
+ x� + ")f(" j x; z; � = k)d"

�

=
K+1X
k=1

E(
vk + vk�1

2
� �vk�1 � (1� �)vk j x; z)(G(vk; x; z)�G(vk�1; x; z))

=

K+1X
k=1

E(�� 1=2 j x; z):(vk � vk�1):(Gk(x; z)�Gk�1(x; z))

= (u(x; z)=(2�(x; z)))(2�(x; z)) = u(x; z):

where the third line is the consequence of the de�nition of " and the last line is using equation
(A.3). Therefore, equation (A.2) holds and:

E(z0ey) = E(z0x)� + E(z0")� E(z0u(x; z)):
Equation (2) implies E(z0") = 0; that is (L:3); which �nishes the proof of Theorem 1.�
Remark: It is worth emphasizing that this proof also provides a characterization of the

domain of observationally equivalent distribution functions F", i.e. the set of random vari-
ables " such that there exists � with (�; F") satisfying conditions (L:1�L:3) and generating
fGk(x; z)gk=1;:;K . We have:

The two following statements are equivalent,
(i) there exists a vector of parameter � such that the latent model (�; F"(: j x; z)) veri�es

conditions L and such that fGk(x; z)gk=1;:;K is its image through the transformation (LV );
(ii) there exist two independent random variables (�; �), conditional on (x; z), such that

the support of � is (0; 1], the support of � is f2; :; Kg; equation (A.4) holds and such that:

" = �x� � �v��1 � (1� �)v�

where � veri�es:
E(z0(x� � ~y) = E(z0�(x; z)(2�� 1))

A.2 Proof of Corollary 3
For the sake of clarity, we start with the exogeneous case where z = x. Denote xp the last
variable in x , x�p all the other variables (i.e., x = (x�p; xp)). Consider any � 2 B and
�� = (E(x0x))�1E(x0ey). There exists a function u(x) in ]��(x);�(x)] such that � � �� =
(E(x0x))�1E(x0u(x)) which is also the result of the regression of u(x) on x.
Denote the residual of the projection of xp onto the other components x�p as exp :

exp = xp � x�p �E(x0�px�p)��1E(x0�pxp)
Applying the principle of Frish-Waugh, we have

�p � ��p =
�
E((~xp)

2)
��1

E(expu(x));
since ~xp is a scalar. The maximum (resp. minimum) of E(expu(x)) when u(x; z) varies
in (��(x);�(x)] is obtained by setting u(x) = �(x)1f~xp > 0g��(x)1f~xp � 0g (resp.
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u(x) = ��(x)1f~xp > 0g +�(x)1f~xp � 0g): Hence E(expu(x)) lies between �E(j expj�(x))
and E(j expj�(x)) and the di¤erence �p � ��p varies in:�

�E(j expj�(x))
E( exp2) ;

E(j expj�(x))
E( exp2)

�
:

To show the reciprocal, consider any �p in�
��p �

E(j expj�(x))
E( exp2) ; ��p +

E(j expj�(x))
E( exp2)

�
:

Denote

� =
E( exp2)

E(j expj�(x))(�p � ��p) 2 (�1; 1] :
Consider u(x) = ��(x) when exp > 0 and u(x) = ���(x) otherwise which means that

E(expu(x))
E( exp2) = (�p � ��p):

Function u(x) takes its values in ]��(x);�(x)] and therefore satis�es point (ii) of Theorem
1. Thus, there exists � 2 B such that its last component is �p.
The adaptation to the general IV case uses the generalized transformation:

exp = z(E(z0z))�1E(z0xp)�
z(E(z0z))�1E(z0x�p)

�
E(x0�pz)(E(z

0z))�1E(z0x�p)
��1

E(x0�pz)(E(z
0z))�1E(z0xp)

Generally speaking, the estimation of Bp requires the estimation of E(j expj�(x; z)): Given
this fact, it is worth emphasizing that �(x; z) can be rewritten as E(~y� j x; z) where

~y� =
KX
K=1

[
(vk � vk�1 � (vk+1 � vk))

2pk(x; z)
1(v = vk)]y +

vK+1 � vK
2

;

Speci�cally,

�(x; z) =
(v1 � v0)

2
G1(x; z) +

KX
k=2

�
(vk � vk�1)

2
(Gk(x; z)�Gk�1(x; z))

�
+
(vK+1 � vK)

2
(1�GK(x; z))

=
KX
k=1

(vk � vk�1 � (vk+1 � vk))
2

Gk(x; z) +
vK+1 � vK

2

= E([
KX
k=1

1(v = vk)
(vk � vk�1 � (vk+1 � vk))

2pk(x; z)
]y +

vK+1 � vK
2

j x; z) = E(~y� j x; z)

Using these notations, E(j expj�(x; z)) can be rewritten E(j expj ~y�) which means that the
estimation of the upper and lower bounds of Bp only requires [1] the construction of the
transform ~y�, [2] an estimation of the residual exp and [3] the linear regression of ~y� on j expj :
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B Proofs in Section 4

B.1 Proof of Theorem 4
Consider a vector of parameters � and a conditional probability distribution Pr(y = 1 j
v�; x; z) (denoted Gv�(x; z)) which is non-decreasing in v�.
(Necessity) We prove that (i) implies (ii). Denote, Fv(: j x; z; v�); and F"(: j x; z); two

conditional distribution functions satisfying (i). By Assumption R(vi), Fv(: j x; z; v�) is
absolutely continuous and its density function is denoted fv. By assumption (i), (�; F"(: j
x; z)) satis�es condition (L1�); (L2) and (L3) and fGk(x; z)gk=1;:;K�1 is its image through
transformation (LV ):
For the sake of clarity, set w = �(x� + ") so that y = 1fv > wg and the support of w

is a subset of [v1; vK) by (L:2). The variable w is conditionally (on (x; z)) independent of v
and v� and the corresponding conditional distribution is:

Fw(w j x; z) = 1� F"(�(x� + w) j x; z)

The conditional probability of occurrence of y = 1 in the k-th interval (v� = k in f1; :::; K � 1g)
is,

Gk(x; z) =

Z vk+1

vk

E(1fv > w j v; v� = k; x; z)fv(v j k; x; z)dv

which yields the convolution equation:

Gk(x; z) =

Z vk+1

vk

Fw(v j x; z)fv(v j k; x; z)dv: (B.1)

Note that this condition implies:

Fw(vk j x; z) � Gk(x; z) � Fw(vk+1 j x; z): (B.2)

with a strict inequality on the right if Fw(vk j x; z) < Fw(vk+1 j x; z) because Fv is absolutely
continuous and Fw is continuous on the right (CADLAG).
To prove (4), write E(�y j x; z) asX

v�=1;::;K�1

Z

(vjv�;x;z)

Z

(wjv�;v;x;z)

[�y:pv�(x; z):fv(v j v�; x; z)dvdFw(w j v�; v; x; z)]:

Using the de�nition of �y; the term pv�(x; z) cancels out and using condition (L:1�); the
integral over dw on the one hand, and the sum and other integral on the other hand, can be
permuted:Z


(wjx;z)

24 X �(v�)
v�2f1;:;K�1g

Z

(vjv�;x;z)

1(v > w))fv(v j v�; x; z)dv

35 dFw(w j x; z)� vK : (B.3)

Evaluate �rst the inner integral with respect to v: As the support of w is included in [v1; vK),
we can de�ne for any value of w in its support, an integer function j(w) in f1; :::; K � 1g,
such that vj(w) � w < vj(w)+1: Distinguish three cases. First, when v� < j(w); the whole
conditional support of v lies below w and,Z


(vjv�;x;z)

1(v > w)fv(v j v�; x; z)dv = 0:
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while when v� > j(w), the whole conditional support of v lies strictly above w and thus:Z

(vjv�;x;z)

1(v > w)fv(v j v�; x; z)dv = 1:

Last when v� = j(w);Z

(vjv�;x;z)

1(v > w)fv(v j v�; x; z)dv = 1� Fv(w j v�; x; z):

Summing over values of v�,X
v�2f1;:;K�1g

�(v�)

Z

(vjv�;x;z)

1(v > w)fv(v j v�; x; z)dv

= �Fv(w j vj(w); x; z)(vj(w)+1 � vj(w)) + vK � vj(w):

Replacing in (B.3) and integrating w.r.t. w, implies that:

E(�y j x; z) = �E(w j x; z)� u�(x; z) = x� + E(� j x; z)� u�(x; z): (B.4)

where

u�(x; z) =

Z

(wjx;z)

(Fv(w j vj(w); x; z)(vj(w)+1 � vj(w)) + vj(w) � w)dFw(w j x; z):

Integrating (B.4) with respect to x; z and using condition (L:3) yields condition (4).
To �nish the proof, upper and lower bounds for u�(x; z) are now provided. Let write,

u�(x; z) =
K�1X
k=1

(vk+1 � vk)�k(x; z) (B.5)

where:

�k(x; z) =

Z vk+1

vk

(Fv(w j k; x; z) +
vk � w
vk+1 � vk

)dFw(w j x; z): (B.6)

By integration by parts, the �rst term is:

�k(x; z) =

Z vk+1

vk

(
1

vk+1 � vk
� fv(w j k; x; z))Fw(w j x; z)dw

Therefore, using the convolution equation (B.1),

�k(x; z) = �Gk(x; z) +
Z vk+1

vk

Fw(w j x; z)
vk+1 � vk

dw:

Using (B.2) implies

Gk�1(x; z)�Gk(x; z) � �k(x; z) � Gk+1(x; z)�Gk(x; z):
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where at least one inequality on the right and one inequality on the left are strict since there
exists at least one k such that Fw(w = �(x�+ vk+1) j x; z)�Fw(w = �(x�+ vk) j x; z) > 0.
Therefore:

��(x; z) < u�(x; z) < �
�
(x; z):

where the de�nitions of �
�
(x; z) and ��(x; z) correspond to those given in the body of the

Theorem.
(Su¢ ciency) We now prove that (ii) implies (i). Denote u�(x; z) in (��(x; z);�

�
(x; z))

such that
E(z0(x� � �y)) = E(z0u�(x; z))

We are going to prove that there exists a distribution function of w = �(x� + ") and a
distribution function of v such that (�; F"(: j x; z)) satis�es (L:1�; L:2; L:3) and Gv�(x; z) is
the image of (�; F"(: j x; z)) through the transformation (LV ):
To begin with, we are going to construct w: We proceed in three steps.
First, we choose a sequence of functions Hk(x; z) such that H1 = 0, HK = 1; and such

that:
Hk(x; z) � Gk(x; z) � Hk+1(x; z), for k 2 f1; :; K � 1g (B.7)

where at least one inequality on the right is strict and:

K�1X
k=1

(vk+1 � vk)(Hk(x; z)�Gk(x; z)) < u�(x; z) <
K�1X
k=1

(vk+1 � vk)(Hk+1(x; z)�Gk(x; z))

Consider for instance

�(x; z) >
u�(x; z)

��(x; z)
;1� �(x; z) > u�(x; z)

�
�
(x; z)

;

for instance, �(x; z) =
�(x; z)� u�(x; z)
�(x; z)��(x; z)

: By construction �(x; z) 2 (0; 1] and one checks

that
Hk(x; z) = �(x; z)Gk�1(x; z) + (1� �(x; z))Gk(x; z)

satis�es the two previous conditions. Generally speaking, the closer u�(x; z) is from the
lower bound ��(x; z), the closer is Hk to Gk�1, and the closer u�(x; z) is from the upper
bound �

�
(x; z), the closer is Hk to Gk.

Secondly, we consider � a discrete random variable whose support is f1; :; K � 1g; which
is independent of v� (a.e. Fx;z) and whose conditional on (x; z) distribution is:

Pr(� = k j x; z) = Hk+1(x; z)�Hk(x; z): (B.8)

Thirdly, we consider � a random variable whose support is (0; 1); which is independent of v�

(a.e. Fx;z) and whose conditional (on (x; z)) expectation is:

E(� j x; z) =
PK�1

k=1 (vk+1 � vk)(Hk+1(x; z)�Gk(x; z))� u�(x; z)PK�1
k=1 (vk+1 � vk)(Hk+1(x; z)�Hk(x; z))

(B.9)

For instance, � can be chosen discrete with a mass point on

�0(x; z) =

PK�1
k=1 (vk+1 � vk)(Hk+1(x; z)�Gk(x; z))� u�(x; z)PK�1

k=1 (vk+1 � vk)(Hk+1(x; z)�Hk(x; z))
:
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Given the constraints on the Hk(x; z) and given that u�(x; z) is in in (��(x; z);�
�
(x; z)),

�0(x; z) belongs to (0; 1).
Within this framework, we can de�ne w as:

w = (1� �)v� + �v�+1

By construction, the support of w is [v1; vK) and w is independent of v� conditionally on
(x; z) because both � and � are. Hence, " = �(x� + w) satis�es (L:1) and (L:2):
To construct v, we �rst introduce a random variable � whose support is [0; 1), which is

absolutely continuous, which is de�ned conditionally on (k; x; z); which is independent of �
and such that:Z 1

0

F�(� j x; z):f�(� j k; x; z)d� =
Gk(x; z)�Hk(x; z)
Hk+1(x; z)�Hk(x; z)

2 [0; 1)

where F�(: j x; z) denotes the distribution of � conditional on (x; z):
For instance, when � is chosen discrete with a mass point on �0(x; z), we simply have to

chose � such that

F�(�0(x; z) j x; z) =
Hk+1(x; z)�Gk(x; z)
Hk+1(x; z)�Hk(x; z)

:

Within this framework, we de�ne v by the following expression:

v = vk + (vk+1 � vk)�

Having de�ned w and v, we are now going to prove that the image of (�; Fw(: j x; z))
through (LV ) is Gv�(x; z) because it satis�es equation (B.1):Z vk+1

vk

Fw(v j x; z):fv(v j k; x; z)dv = Hk(x; z)+

+(Hk+1(x; z)�Hk(x; z))
Z vk+1

vk

Pr(w = (1� �)vk + �vk+1 � v j x; z):fv(v j k; x; z)dv =

Hk(x; z) + (Hk+1(x; z)�Hk(x; z))
Z 1

0

Pr(� � � j x; z):f�(� j k; x; z)d� = Gk(x; z)

The last condition to prove is (L:3). Rewrite equation (B.6), for almost any (x; z),

�k(x; z) = �Gk(x; z) +
Z vk+1

vk

Fw(w j x; z)
vk+1 � vk

dw

= �Gk(x; z) +Hk+1(x; z)� (Hk+1(x; z)�Hk(x; z))E(� j x; z):

Therefore,

K�1X
k=1

(vk+1 � vk)�k(x; z) =
K�1X
k=1

(vk+1 � vk)(Hk+1(x; z)�Gk(x; z))

�
K�1X
k=1

(vk+1 � vk)(Hk+1(x; z)�Hk(x; z))E(� j x; z) = u�(x; z):

using equation (B.9). Plugging (4) in (B.4) yields E(z0") = 0 that is (L:3).
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B.2 Proof of Theorem 5
We use large parts of the proof of Theorem 4:
(Necessity) Same as the proof of Theorem 4 until equation (B.6) that we rewrite as:

�k(x; z) =

Z vk+1

vk

(�(v j k; x; z)� v � vk
vk+1 � vk

)dFw(v j x; z):

We then have �rst:

�k(x; z) =

Z vk+1

vk

(1�
v�vk

vk+1�vk
�(v j k; x; z))�(v j k; x; z)dFw(v j x; z)

� sup
v2(vk;vk+1)

(1�
v�vk

vk+1�vk
�(v j k; x; z))

Z vk+1

vk

�(v j k; x; z)dFw(v j x; z)

= �Uk (x; z)

Z vk+1

vk

�(v j k; x; z)dFw(v j x; z):

where �Uk (x; z) is de�ned in the text. Equation (B.1) delivers:

Z vk+1

vk

�(v j k; x; z)dFw(v j x; z):

=

Z vk+1

vk

d[�(v j k; x; z)Fw(v j x; z)]�
Z vk+1

vk

Fw(v j x; z)d�(v j k; x; z)

=

Z vk+1

vk

d[�(v j k; x; z)Fw(v j x; z)]�Gk(x; z):

Hence, using Fw(vk+1 j x; z) � Gk+1(x; z), we have,

�k(x; z) � �Uk (x; z):(Gk+1(x; z)�Gk(x; z)):

The derivation of the lower bound follows the same logic:

�k(x; z) � inf
v2(vk;vk+1)

(�1�
v�vk+1
vk+1�vk

1� �(v j k; x; z))
Z vk+1

vk

(1� �(v j k; x; z))dFw(v j x; z)

� �Lk (x; z)[

Z vk+1

vk

d[(1� �(v j k; x; z))Fw(v j x; z)] +Gk(x; z)]

where �Lk (x; z) is de�ned in the text. Hence, using Fw(vk j x; z) � Gk(x; z), we have

�k(x; z) � �Lk (x; z)(Gk(x; z)�Gk�1(x; z)):

Therefore, using the de�nition of u�(x; z) (B.5), we have:

��
�(x; z) � u�(x; z) � �

�
�(x; z) (B.10)

where ��
�(x; z) and �

�
�(x; z) are de�ned in the text.
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(Su¢ ciency) We now prove that (ii) implies (i). We assume that there exists u�(x; z) in
[��

�(x; z);�
�
�(x; z)] such that

E(z0(x� � �y)) = E(z0u�(x; z))

Unde this assumption, we are going to prove that there exists a distribution function of the
random term " such that (�; F"(: j x; z)) satis�es (L:1�; L:2; L:3) and Gv�(x; z) is the image
of (�; F"(: j x; z)) through the transformation (LV ); when the distribution function of the
special regressor v is �(v j k; x; z). As in the proof of Theorem 4, we proceed by construction
in three steps.
First, choose a sequence of functions Hk(x; z) such that H1 = 0, HK = 1; and for any k

in f1; :; K � 1g such as:
Hk(x; z) � Gk(x; z) < Hk+1(x; z): (B.11)

and such as:

K�1X
k=1

(vk+1 � vk)�Lk (x; z)(Gk(x; z)�Hk(x; z)) � u�(x; z)

�
K�1X
k=1

(vk+1 � vk)�Uk (x; z)(Hk+1(x; z)�Gk(x; z))

If �Lk (x; z) < 0 and �Uk (x; z) > 0, the closer u�(x; z) is from the lower bound ��
�(x; z), the

closer is Hk to Gk�1, and the closer u�(x; z) is from the upper bound �
�
�(x; z), the closer is

Hk to Gk.
Decompose now u�(x; z) into ��k(x; z) such that:

u�(x; z) =
K�1X
k=1

(vk+1 � vk)��k(x; z)

and such that the bounds on u� can be translated into:

�Lk (x; z)(Gk(x; z)�Hk(x; z)) � ��k(x; z) � �Uk (x; z)(Hk+1(x; z)�Gk(x; z)) (B.12)

There are many decompositions of this type. Choose one.
Second, consider � a discrete random variable whose support is f1; :; K � 1g; which is

independent of v� (a.e. Fx;z) and whose conditional on (x; z) distribution is:

Pr(� = k j x; z) = Hk+1(x; z)�Hk(x; z): (B.13)

Consider also K � 1 random variable �k whose support is (0; 1); which are independent of
v� (a.e. Fx;z) and whose conditional (on (x; z)) expectation is:

E(�k j x; z) =
Hk+1(x; z)�Gk(x; z)� ��k(x; z)

Hk+1(x; z)�Hk(x; z)
(B.14)

and such that:Z 1

0

(�v(�vk + (1� �)vk+1 j k; x; z)�
v � vk
vk+1 � vk

)dF�k(� j x; z) =
��k(x; z)

Hk+1(x; z)�Hk(x; z)
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Given constraints (B.11) and (B.12), it is always possible to construct such a random variable.
Finally, de�ne the random variable:

w = (1� �)v� + �v�+1
By construction, the support of w is [v1; vK) and w is independent of v� conditionally on
(x; z) because all �ks and � are. Hence, " = �(x� + w) satis�es (L:1) and (L:2):
Finish the proof as in Theorem 4.

B.3 Proof of Corollary 6
(Necessity) Let the conditional distribution of v, �0, be piece-wise uniform by intervals,
v� = k. Then, for any k = 1; :; K � 1, �Uk (x; z) = �Lk (x; z) = 0. Using Theorem 5 yields that
��
�(x; z) = �

�
�(x; z) = 0 and therefore u

�(x; z) = 0. Identi�cation of � is exact and its value
is given by the moment condition (4).
(Su¢ ciency) By contraposition; Assume that there exists k 2 f1; :; K�1g; a measurable

set A included in [vk; vk+1) with positive Lebesgue measure and a measurable set S of ele-
ments (x; z) with positive probability Fx;z(S) > 0 such that �(v j k; x; z) is di¤erent from a
uniform distribution function on A for any (x; z) in S. Because � is absolutely continuous
(ID(ii)), and for the sake of simplicity assume that:

8v 2 A;8(x; z) 2 S; �(v j k; x; z)� v � vk
vk+1 � vk

> 0

Because �Uk (x; z) > 0; we can always construct a function u
�
1(x; z) which is stricly positive on

S satisfying the conditions of Theorem 5. Thus E(z0u�1(x; z)) 6= 0 and the moment condition
(4) can be used to construct parameter �1: It implies that the identi�ed set B contains at
least two di¤erent parameters �; i.e. the one corresponding to u�(x; z) = 0 and the one
corresponding to u�1(x; z) (and in fact the whole real line between them as B is convex).

B.4 Proof of Corollary 9
Same as Corollary 2 except that the maximisation of E(~xpu�(x; z)) is obtained when:

u�(x; z) = 1f exp � 0g��(x; z) + 1f exp > 0g��
(x; z)

and the minimization of such an expression is obtained when:

u�(x; z) = 1f exp > 0g��(x; z) + 1f exp � 0g��
(x; z)

Furthermore, we have:

���(x; z) =

K�1X
k=1

[(vk+1 � vk)(Gk+1(x; z)�Gk(x; z))]

= �(v2 � v1)G1(x; z) +
K�1X
k=2

(vk � vk�1 � (vk+1 � vk))Gk(x; z) + vK � vK�1

=
K�1X
k=1

(vk � vk�1 � (vk+1 � vk))E(y j v = vk; x; z) + vK � vK�1

= E(
�U;k:y

pk(x; z)
j x; z) + vK � vK�1 = E(�yU j x; z)
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where by convention v0 = v1. Similarly:

��(x; z) =
K�1X
k=1

[(vk+1 � vk)(Gk�1(x; z)�Gk(x; z))]

=
K�2X
k=1

(vk+2 � vk+1 � (vk+1 � vk))Gk(x; z)� (vK � vK�1)GK�1(x; z)

=
K�1X
k=1

(vk+2 � vk+1 � (vk+1 � vk))E(y j v = vk; x; z)

= E(
�L;k:y

pk(x; z)
j x; z) = E(�yL j x; z)

if the convention vK+1 = vK is adopted.

B.5 Design of Monte Carlo Experiments
The construction of the special regressor v, the covariate x2, the instrument z and the random
shock " proceeds in several steps. To begin with, we consider four random variables : e1 is
uniform on [0; 1], e2 and e3 are zero mean unit variance normal variates and e4 is a mixture
of a normal variate N(�:3; :91) using a weight of :75 and a normal variate N(:9; :19) using
a weight of :25. Using these notations, we de�ne:

� = 2e2 + �e4; x2 = e1 + e4

" = �(e1 � :5) + e3; z = e4:

where � is a parameter that makes the random shock a non-normal variate and � is a
parameter that renders x2 endogenous. The case where � = � = 0 (resp. � = � = 1) roughly
corresponds to what Lewbel calls the simple (resp. messy) design.
Regressor v is de�ned by truncating � to the 95% symmetric interval around 0, denoted

[v1; vK ]. To comply with assumption L:2, we then truncate x2+ " so that 1+x2+ "+ v1 < 0
and 1 + x2 + "+ vK > 0. We construct the censored K � 1 intervals using:

v� = k if v 2 [vk; vk+1)
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Figure 1: A graphical argument for set-identi�cation
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Note: Simple experiment. 1000 observations and 100 replicated estimates of the set
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Table 1: Simple experiment, Interval Data: Sensitivity to Bandwidth

Lower and upper estimated bounds with standard errors

Error Decomposition: Decentering, Adjusted Length and Sampling Error
Intercept Variable

Nobs Bwidth Dec AL ASE RMSEI Dec AL ASE RMSEI
100 1.000 0.554 0.396 0.398 0.789 -0.041 0.353 0.491 0. 606

1.500 0.410 0.404 0.325 0.661 -0.068 0.352 0.411 0. 545
3.000 0.247 0.401 0.266 0.541 -0.079 0.337 0.327 0. 476
5.000 0.182 0.383 0.281 0.508 -0.090 0.321 0.322 0. 464

200 1.000 0.358 0.428 0.204 0.594 0.007 0.375 0.267 0.4 61
1.500 0.218 0.422 0.172 0.505 -0.039 0.367 0.225 0. 432
3.000 0.079 0.412 0.144 0.444 -0.101 0.350 0.191 0. 412
5.000 0.046 0.410 0.140 0.435 -0.126 0.347 0.202 0. 420

500 1.000 0.096 0.411 0.094 0.433 -0.053 0.357 0.122 0. 381
1.500 0.025 0.406 0.085 0.415 -0.088 0.349 0.106 0. 375
3.000 -0.038 0.400 0.080 0.410 -0.129 0.340 0.104 0 .378
5.000 -0.050 0.399 0.080 0.410 -0.138 0.338 0.113 0 .383

1000 1.000 -0.006 0.402 0.059 0.406 -0.094 0.345 0.073 0.364
1.500 -0.044 0.399 0.056 0.405 -0.119 0.339 0.067 0.365
3.000 -0.076 0.396 0.055 0.407 -0.146 0.334 0.071 0.372
5.000 -0.082 0.396 0.055 0.408 -0.151 0.334 0.078 0.374

Notes: The number of interval values is equal to 10. The simple experiment refers to the case where
� = � = 0. All details are reported in the text. Experimental results are based on 1000 replications. LB and
UB refer to the estimated lower and upper bounds of intervals with their standard errors (SE). Bwidth
refers to the bandwidth that is used. Dec stands for decentering of the mid-point of the interval that is,
(UB+LB)/2. AL is the adjusted length of the interval, (UB-LB)/2

p
3. ASE is the sampling variability of

bounds as de�ned in the text. The identity Dec2+AL2+ASE2 = RMSEI2 is shown in the text. RMSEI
is the root mean square error integrated over the identi�ed interval.
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Table 2: Approximating true sets by their projections on axes.
True Area Square Area Proportion

Observations Mean Standard Deviation
100 1.57 1.81 0.91 0.41
200 1.40 1.79 0.80 0.12
500 1.41 1.91 0.74 0.05
1000 1.51 2.12 0.71 0.02

Notes: Simple experiment. 100 replicated estimates of the set. "True area" is the mean of the estimated
areas of the true sets. "Square Area" si the area of the square given by the estimated intervals on the two
axis. "Proportion" is the ratio of the former over the latter
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