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ABSTRACT

How can we explain the success of cooperative networks of firms which share
innovations, such as the Silicon Valley or the Open Source community? This
paper shows that if innovations are cumulative, making an invention publicly
available to a network of firms may be valuable if the firm expects to benefit
from future improvements made by other firms. A cooperative equilibrium
where all innovations are made public is shown to exist under certain conditions.
Furthermore, such an equilibrium does not rest on punishment strategies being
followed after a deviation: it is optimal not to deviate regardless of other firm’s
actions following a deviation. A cooperative equilibrium is more likely to arise,
the greater the number of firms in the network. When R&D effort is endogenous,
cooperative equilibria are associated with strategic complementarities between
firms’ research effort, which may lead to multiple equilibria.

Keywords: R & D, cooperation, innovation, growth, technical progress, in-
formation sharing, Open Source, Silicon Valley, cumulative knowledge.

JEL: O3
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1 Introduction

There are several examples of the emergence of business networks or commu-

nities where firms exchange strategic information, or even share important

innovations, with competitors.

One traditional example is the Silicon Valley. Accounts of its success in-

sist on the role of informations sharing between firms. Information sharing

allows a firm to easily improve on an innovation by another firm, thus stimu-

lating the growth process. Employee mobility and low enforcement of trade

secrets by courts implied that many innovations ended being shared by firms

in the network. While such process does not seem to rely on a voluntary

policy of information sharing from firms, there is evidence that the culture of

Silicon Valley penalizes those entrepreneurs who do not share enough infor-

mation and/or sue departing employees fo violations of trade secrets. Thus,

Hyde (1998) writes that ”enforceability [of trade secrets] is limited because

firms that litigate in defense of their trade secrets face substantial informal

social and economic sanction from other firms (whose cooperation is neces-

sary to accomplish many projects), venture capitalists, and incumbent and

prospective employees”. This suggests that while the instrument of informa-

tion sharing was employee mobility between firms, entrepreneurs recognized

that they had an interest in cooperating with other members of the network

by not blocking such mobility by litigation or other means.

Another more recent example is the emergence of the ”Open Source”

community in the software industry. As described by its proponents (Ray-

mond (2003)), open source software allows very fast growth for a project,

as improvements that different users implement cumulate. This is especially

true with respect to debugging, where users who have access to the source

have an interest in finding and fixing bugs, and, with enough good will, will

make their fixes public.

To an economist, a simple question is: why do such networks function at

all? Why don’t individual firms just free-ride by using other participants’
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public information while hoarding their own valuable information? To be

sure, the literature on dynamic games has highighted a number of cooper-

ation mechanisms: ”trigger strategies”, ”reputation”, etc.1 However, these

mechanisms rely on free riding being detected, which is problematic in a con-

text where cooperation is about information revelation, since one may well

play cooperative while having nothing valuable to reveal.

In this paper I describe another, far more robust, cooperation mecha-

nism which applies to the revelation of innovations and captures part of the

incentives underlying the open source movement. I assume innovations are

cumulative, i.e. an innovation opens the door for further innovations. An

individual firm then has an incentive to make its innovations public, because

this will increase the number of firms heading toward the next step in the

technological ladder. If it is expected that the next innovation will also be

made public, sharing one’s invention with other members in the network will

shorten the time until the next innovation arrives, which benefits the indi-

vidual firm. As is shown below, this benefit may outweigh the short-run cost

of lower profits for the innovating firm.

This mechanism does not rely on cheating being detected nor on the

sustainability of a punishment strategy. By not revealing its information the

firm punishes itself since it will have to wait longer for the next innovative

step. However, given that the benefits from information sharing rely on future

innovations being also public, the agument does rest on the horizon being

infinite and a ”Nash” equilibrium where information is kept private always

exists. Nevertheless, for a range of parameters, a cooperative equilibrium also

exists. Another interesting result is that the cooperative equilibrium is more

likely to exist, the larger the number of firms in the network. This contrasts

with traditional arguments, which suggest that free-riding is more likely, the

greater the number of agents. Here, more firms mean a much greater benefit

of making one’s innovation public, because a much larger number of firms

will work toward the next step.

1See Tirole (1990) for a survey.
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I also show that the cooperative equilibrium has faster growth than the

non cooperative equilibrium. In some sense, when innovations are cumulative

the case for public innovations is sronger than when they are not, when it can

be shown that public innovations may reduce long-run growth on net because

they depress the profitability of private innovation (Saint-Paul, 2003).

Finally, the model is extended to allow for an endogenous R & D effort. It

is shown that the results are robust to introducing such endogeneity. Further-

more, as the cumulative benefits of an innovation depends on improvements

by other firms, and thus on their R & D effort, research efforts by different

firms are now complementary, which may lead to multiple equilibria.

There exists a large literature on the value of R and D cooperation be-

tween firms when there are spillovers. The value of technology sharing is

well recognized by that literature. Hence, Baumol (1992) writes that ”in

an industry with, say, ten firms similar in output and investment in R&D,

each member of a nine-firm technology cartel can expect to obtain imme-

diate access to nine times the number of innovations that the remaining

enterprise can anticipate on the average”. However, to my knowledge, this

is the first paper to analyze how that advantage can be turned into a coop-

eration mechanism when innovation is cumulative. The literature, instead,

typically relies on traditional trigger strategy mechanisms, exogenously as-

sumes cooperation, or uses a cooperative game framework.2 Furthermore,

most of it deals with cooperation in setting R&D levels rather than in the

decision to make an innovation public.3 For example, Cozzi (1999) analyzes

the consequences for growth of switches between cooperative and noncoop-

erative equilibria; but cooperation is enforced by a standard trigger-strategy

mechanism and cooperation is about the R&D level. Another stand of the

2This is the option in Aloysius (1999). See also Brod and Shivakumar (1997). Petit
and Tolwinski (1999) assume away any problem in enforcing cooperation.

3An interesting paper by Dutta and Seabright (2002), looks at the impact of the ex-
tent to which knowledge is explicit on growth, and at its cross-impact with competition.
However, the degree of explicitness of knowmledge is exogenous, whereas it can be viewed
as endogenous in the current paper. Katz and Ordover (1990) discuss informally how
improvements in intellectual property rights may enhance incentives to share information
by licensing. Licensing is not considered in the present paper.
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literature (d’Aspremont and Jacquemin (1988), Leahy and Neary (1997))

compares outcomes with and without R and D cooperation when there are

spillovers, but again does not ask the question of how cooperation is enforced

and focuses on investment rather than information.

2 The model

There are N firms, competing with each other by producing differentiated

goods. Each firm i is characterized by a level of technological advancement

captured by an integer number ni. The profit of firm i is given by a function

πi(n1, ..., ni, ...nN).

We assume that technical progress in a given firm increases its profits:

∂πi
∂ni

> 0,

while technical progress in another firm decreases profits:

∂πi
∂nj

< 0, j 6= i.

Finally, progression of all firms by one step in the technological ladder

increases the profits of any given firm:

NX
j=1

∂πi
∂nj

> 0.

We shall assume that if all firms other than i have the same technical level

n, while firm i has technical level n̂, then firm i’s profit can be expressed in

the following way:

πi(n, ..., n, n̂, n, ..., n) = π(n̂, n) (1)

= Anf(n̂− n),

where A > 1, f(.) > 0, f 0(.)/f(.) > lnA.
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Example: The demand curve for firm i is isoelastic and given by yi =

Y p−α(pi/p)−σ, where σ > 1, Y is an index of demand for the whole sector

and p a sectoral price index given by

p =

Ã
NX
i=1

p1−σi

! 1
1−σ

.

Firm i’s unit cost is c/Bni , with B > 1; thus each step in technical

progress represents a geometric reduction in unit costs. Firms set their price

so as to maximize their profit πi = yi(pi−c/Bni). They neglect the impact of
their decision on the sectoral price level and thus set pi = (σ − 1) /σ · c/Bni .
Thus we find that the equilibrium πi(...) function is given by

πi(n1, ..., nN) = KB
(σ−1)ni

"
NX
i=1

B(σ−1)nj
#σ−α
1−σ

,

where K is a constant given by K = Y
£

σc
σ−1
¤σ−α
1−σ c1−σ

σ−1
¡

σ
σ−1
¢−σ

. If nj = n, j 6=
i, and ni = n̂, we get

πi = KB
n(α−1)

·
B(σ−1)(p−n)

¡
N − 1 +B(σ−1)(p−n)¢σ−α1−σ

¸
;

thus we have A = Bα−1 and f(q) = K
h
B(σ−1)q

¡
N − 1 +B(σ−1)q¢σ−α1−σ

i
. The

properties A > 1 and ∂πi/∂nj < 0, j 6= i hold if 1 < α < σ. The property

f 0(.)/f(.) > lnA is equivalent to

(σ − α) lnB − (σ − α)B(σ−1)q lnB
(N − 1 +B(σ−1)q) > 0,

which clearly holds if σ > α.

This example shows how a functional form like (1) can be derived from

monopolistic competition among differentiated goods. As the whole sector

climbs the technological ladder (i.e. the ni’s grow), it grows in terms of

output and, as long as α > 1, in terms of profits.

Without loss of generality we shall normalize f(0) to 1 (in the previous

example this amounts to pickin the right value of Y ).
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Time is continuous; firms maximize the expected present discounted value

of their profits given by

Vi(t) = Et

Z +∞

t

πi(n1(u), ..., ni(u), ...., nN(u))e
−rudu, (2)

where r is the discount rate, assumed fixed and exogenous.

The technical level available to a given firm jumps from ni to ni + 1

according to a Poisson process with arrival rate λ. Furthermore, the technical

level of a given firm is transferable to other firms. Firm i has the option of

revealing its level to other firms, in which case they can jump to level ni, i.e.,

in some sense, adopt its technology. Therefore, with probability λ per unit

of time, a given firm’s technology level improves by one step, which allows it

to increase it from ni to ni + 1, and it has two options:

1. Do not share its innovation with other firms, in which case they all

remain at level nj.

2. Share the innovation, in which case all firms such that nj < ni+1 can

upgrade to level ni + 1.

To fix ideas we shall assume that an innovation can be released only at the

time it occurs, and not after, although this is immaterial and only simplifies

the analytics.
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2.1 The Nash solution

Clearly, there always exists an equilibrium where firms do not share inno-

vations. If I anticipate that other firms will never share their innovations

with me, giving away my innovations to them will increase their technolog-

ical level forever, which reduces my own profits, by virtue of the fact that

∂πi/∂nj < 0. Thus it is a subgame perfect equilibrium to never release in-

formation. In such an equilibrium, the average speed of innovation for any

given firm is λ.

3 Cooperative equilibria

We now construct an equilibrium such that it is profitable for firms to reveal

their innovations to their competitors, despite the fact that it reduces their

profits upon impact.

We construct an equilibrium where an innovation is shared every time it

occurs. Thus, in the equilibrium path, all firms have the same technological

level. Situations with a dispersion in technological levels only occur off the

equilibrium path.

To construct such an equilibrium, we compute the value of a firm along

the equilibrium path and an upper bound of the value of deviating by not

releasing information; we then show that the former is greater than the latter

for a given range of parameters. This yields the following proposition:

PROPOSITION 1 – Assume f(.) satisfies

sup
k=0,1,...

A−kf(k) ≤ r + λ(N −A)
r − λ+ λN(2−A) (3)

Then there exists a equilibrium where each innovation is instantaneously

made public.

PROOF – Along the equilibrium path which we seek to construct, all

firms have the same technological level n. Furthermore, all firms upgrade

to level n + 1 with a flow probability equal to λN, since the day any given
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firm innovates, its innovation spreads to the whole sector. Consequently, the

value of a firm when the whole sector is at technical level n is determined by

VC(n) =
π(n, n) + λNVC(n+ 1)

r + λN
.

The numerator is equal to the sum of the profit flow at technical level

n, π(n, n), and of the flow probability of any one firm innovating, equal to

the product of the arrival rate for innovations λ and the number of firms N,

times the value of the firm when all firms upgrade to the next level, VC(n+1).

Iterating forward allows to compute the value of a firm along the equilibrium

path:

VC(n) =
+∞X
i=0

µ
λN

r + λN

¶i
π(n+ i, n+ i)

r + λN
,

which, using (1), is equivalent to

VC(n) =
An

r − λN(A− 1) (4)

For this formula to be meaningful, it must be that λN(A − 1) < r, i.e.
that the growth rate of profits be lower than the interest rate; otherwise the

value of a firm would be infinite.

Let f̄ = supk=0,1,...A
−kf(k). Then:

πi(n1, ..., ni, ....nN) ≤ πi(0, ..., ni, ....0)

= f(ni)

≤ Ani f̄ . (5)

Let ~n = (n1, ...nN) denote a vector of firm’s technological advancements,

and Vi(~n) the value of firm i, if ~n is the current state of technology level,

conditional on each firm pursuing its optimal strategy upon a shock.

Let

V̄i(n, p) = max
~n=(n1,...,nN )

ni=n
nj≤p,j 6=i

Vi(~n)
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We define operator Tj as follows. If ~n = (n1, ..., nN), then Tj~n = (n01, ...., n
0
N)

such that

n0k = nj, if nk < nj,

n0k = nk, if nk ≥ nj.

Operator Tj tells us how the state vector is transformed if firm j releases

its technical level: all firms with a lower technical level are lifted to level nj.

We also define Uj, which tells us how the state vector is transformed upon a

shock hitting firm j, before it has decided whether to make it public or not:

Uj~n = (n1, ..., nj−1, nj + 1, nj, ..., nN).

Next the indicator function Ij(~n) is defined as

Ij(~n) = 1 if Vj(Tj(~n)) ≥ Vj(~n),
= 0 if not.

The value function Vi(~n) then obeys the following recursive condition:

Vi(~n) =
πi(~n) + λ

PN
j=1(Ij(Uj~n)Vi(TjUj~n) + (1− Ij(Uj~n))Vi(Uj~n))

r + λN
.

For any ~n = (n1, ..., nN) such that nj ≤ p < ni = n, j 6= i, we have, for
j 6= i, Vi(TjUj~n) ≤ V̄i(n, p+1) and Vi(Uj~n) ≤ V̄i(n, p+1), while Vi(Ui(~n)) ≤
V̄i(n+ 1, p). This, along with (5), implies

Vi(~n) ≤ A
ni f̄ + λ(N − 1)V̄i(n, p+ 1) + λV̄i(n+ 1, p)

r + λN
,

consequently:

V̄i(n, p) ≤ A
nf̄ + λ(N − 1)V̄i(n, p+ 1) + λV̄i(n+ 1, p)

r + λN
. (6)
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To proceed, we now show that for ~n = (n1, ..., nN) such that nj ≤ p ≤
ni = n, it must be that

Vi(~n) ≤ Anf̄

r − λN(A− 1) .

To see this, write

Vi(~n) =

Z +∞

0

Z
Ωt

πi(~n(ω))dF (ω, t)e
−rtdt,

where ω is a state of nature representing the whole history of shocks between

date 0 and date t, ~n(ω) the corresponding state vector (which depends on the

strategies followed by firms), and dF (ω, t) is the probability distribution of ω

at date t. Clearly, regardless of which strategy is followed, the most advanced

firm climbs by at most one step every time a firm is hit by a shock. Thus, if

~n(ω) = (n1(ω), ...., nN(ω)), then maxk nk(ω) ≤ n + S(ω), where S(ω) is the
total number of shocks that has occured to any firm between 0 and t. S(ω)

follows a Poisson distribution with arrival rate λN, (that is, Pt(S(ω) = k) =
(λNt)k

k!
e−λNt). Consequently, we have in particular that ni(ω) ≤ n+ S(ω), so

that πi(~n(ω)) ≤ An+S(ω)f̄ . Hence:

Vi(~n) ≤ Anf̄

Z +∞

0

Z
Ωt

AS(ω)dF (ω, t)e−rtdt

= Anf̄

Z +∞

0

Ã
+∞X
k=0

Ak
(λNt)k

k!
e−λNt

!
e−rtdt

= Anf̄

Z +∞

0

e−(r−λN(A−1))tdt

=
Anf̄

r − λN(A− 1) .

Note that this inequality holds regardless of the strategies that are fol-

lowed by firm i or any other firms with respect to revealing their technologies

upon being hit by an innovation.
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A corollary is that

V̄i(n, p) ≤ Anf̄

r − λN(A− 1) for p ≤ n. (7)

Substituting that inequality into the second term in the numerator of the

RHS of (6) (which we can do since in (6) one assumes p < n), we get:

V̄i(n, p) ≤
Anf̄ + λ(N − 1) Anf̄

r−λN(A−1) + λV̄i(n+ 1, p)

r + λN
. (8)

By virtue of (7), we have limk−→+∞
¡

λ
r+λN

¢k
V̄i(n+k, p) = 0, since λA/(r+

λN) < 1. This allows us to integrate (8) forward and get:

V̄i(n, p) ≤
+∞X
k=0

µ
λ

r + λN

¶k An+kf̄ + λ(N − 1) An+kf̄
r−λN(A−1)

r + λN

= Anf̄
r − λNA+ 2λN − λ

(r + λN −Aλ)(r − λN(A− 1)) .

Now, if inequality (3) holds, then V̄i(n, p) ≤ Vi(n, ..., n) = VC(n) =
An

r−λN(A−1) . Consequently, releasing innovation always dominates hoarding it

when other firms are expected to follow the equilibrium path, which shows

that it is indeed an equilibrium.Q.E.D.

An important aspect of Proposition 1, is that a cooperative equilibrium

is more likely to exist, the greater the number of firms participating in the

network. This effect runs counter to the usual analysis of free rider problems,

where cooperation is made more difficult by a greater number of players.

Here, the greater the number of players, the quicker one will be paid back

for sharing one’s innovations with others, as the next technological step is

discovered by one participant.

Note also that the proof relies on using an upper-bound for the value of

deviating for any response of other players to the deviation. Consequently,
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cooperation is not sustained by a trigger punishment strategy, as deviation is

deterred even in the case where all other firms continue to release their inno-

vations at all nodes following the deviation. The loss from other firms being

one step backwards relative to cooperation is enough to deter opportunistic

behavior. In some sense, the feedback effects of benefitting from other’s fu-

ture improvements on one’s innovation generates gains from cooperation that

are more robust — in that a firm contemplating deviations can ignore what

others would do following its deviation — than those coming from punish-

ment strategies. Thus, even if for some reason a deviation were undetected4,

incentives to cooperate would still remain.

Going back to the isoelastic example discussed above, in that special case

we have

supA−kf(k) = lim
k−→+∞

A−kf(k)

= lim
k−→+∞

KB(σ−α)q(N − 1 +B(σ−1)q)σ−α1−σ

= K

= N
σ−α
σ−1 ,

where the last equality comes from the normalization f(0) = 1.

Thus, a sufficient condition for a cooperative equilibrium to exist is

N
σ−α
σ−1 <

r + λ(N −A)
r − λ+ λN(2−A) .

Note that the conclusion that greater values of N favor cooperation is

now inverted. This is because N now also affects the f(.) function, raising

the value of limk−→+∞A−kf(k). This captures the fact that with a larger

number of differentiated firms, having an edge on the others is more valuable

4In the model’s setting, a deviation would be detected as other firms would observe a
fall in profits without an innovation being released; but that would change if profits were
subject to shocks.
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for a single firm, as the effect of decreasing marginal revenus at the sector

level is less severe.

We can also establish a necessary condition for cooperation to hold, which

has similar determinants as the sufficient one derived in Proposition 1.

PROPOSITION 2 — A necessary condition for a cooperative equilibrium

to exist is

f(1)/A ≤ r − λ(A− 1)
r − λN(A− 1) . (9)

PROOF — Assume a cooperative equilibrium exists and consider a firm

which deviates by not releasing its innovation. Assume it releases its inno-

vation next time it gets one. Then this strategy yields a value given by

Ṽ (n+ 1, n) =
Anf(1) + λ(N − 1) An+1

r−λN(A−1) + λ An+2

r−λN(A−1)
r + λN

.

The middle term in the numerator reflect the fact that if another firm is

hit by an innovation, it will release it, and all firms will be at technical level

n+ 1.

For a cooperative equilibrium to exist, this strategy must yield a lower

value than releasing the innovation, i.e. one must have

Ṽ (n+ 1, n) ≤ An+1

r − λN(A− 1) .

One can straightforwardly check that it is equivalent to (9). Q.E.D.

13



4 Endogenous R and D effort: the role of
strategic complementarities.

In the preceding analysis, the only decision made by a firm is whether or

not to release its innovation. The arrival rate of innovations λ is entirely ex-

ogenous. It is relatively straightforward to extend the model to allow for an

endogenous λ and to compute its equilibrium value in a cooperative equilib-

rium. The cost is that the sufficient condition that I am able to establish for

such an equilibrium to exist is more stringent than in the previous section.

Endogenizing λ yields two key insights. First, one may believe that the

previous result that an increase in the network’s size boosts growth and is

good for sustaining cooperation can be overturned with an endogenous λ. As

N is greater and innovations arrive at a higher rate, an individual firm might

be tempted to spend less on R & D and reduce λ. In fact, that intuition is

incorrect: at a cooperative equilibrium5, an increase in N increases λ locally.

The reason is that the total arrival rate of innovations is additive in each

firm’s specific λ, so that an increase in the number of firms does not reduce

the marginal gain from increasing one’s λ. On the contrary, a greater value

of N increases the incentives for R & D via a capitalization effect. The

greater N, the faster the rate at which the increments in profits from a given

innovation grow, and the greater the incentives to innovate. Or, to put it

otherwise, the greater N, the greater the speed at which my innovation is

improved by other firms, and the greater my incentive to innovate.

Second, there exist strategic complementarities between the R and D

effort of different firms. The increase in R and D by one firm tends to increase

the R and D by another firm. The reason is again the capitalization effect.

If other firms increase their R and D effort, improvements on my innovation

will come faster, and my incentive to innovate is larger. As a result, there

may in principle be several cooperative equilibria with different arrival rates

of innovation.
5Note that we rule out any cooperation on λ, which may be unobservable, and continue

to focus on the incentive to make one’s innovation public.
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To endogenize the arrival rate of innovations, I assume that at each point

in time a firm i can choose its own value of λ at a cost equal to πic(λ),

where πi is its current profit. That the cost is proportional to πi ensures that

it will not become negligible relative to benefits as the economy grows. As

cooperative equilibria are symmetrical, it is easy to compute the equilibrium

common value of λ in such an equilibrium. Denoting again the value of a firm

when all have a technical level equal to n by VC(n), the Bellman equation

for an individual firm can be written as

VC(n) = max
λ

π(n, n)(1− c(λ)) + λ̂(N − 1)VC(n+ 1) + λVC(n+ 1)

r + λ+ λ̂(N − 1) ,

where λ̂ is the common value of λ of other firms, taken as given by the firm.

We assume that c(λ) is concave, differentiable, increasing over [λ, λ̄], with

c0(λ) = 0, c(λ̄) = 1. If there is an interior solution for λ, it is given by the

first-order condition:

c0(λ)π(n, n) = VC(n+ 1)− VC(n). (10)

This equation has the usual straightforward interpretation. The LHS is

the marginal cost of increasing λ by one unit. The RHS is the marginal

benefit, equal to the capital gain made when all firms climb one step in the

technological ladder. In a symmetrical equilibrium we have λ = λ̂, and the

equivalent of eq. (4) holds, i.e.

VC(n) =
An(1− c(λ))
r − λN(A− 1) .

Substituting that along with (1) into (10), and normalizing again f(0) to

1, we get an equation determining the equilibrium value of λ, denoted by λ∗ :

c0(λ∗) =
(A− 1)(1− c(λ∗))
r − λ∗N(A− 1) . (11)

If c( r
N(A−1)) > 1, then this equation always has at least one solution,

which is indeed interior and satisfies (10).6

6Furthermore, this restriction preents degenerate solutions where the growth rate is
greater than the interest rate.

15



While the LHS is a increasing function of λ, the RHS may be either

increasing or decreasing. This is because a rise in λ has two conflicting

effects on the capital gains from an innovation. Because R and D costs are

proportional to profits, a higher λ compresses the difference in income flows

between two consecutive technological levels: one can call that a revenue

effect. On the other hand, a higher λ increases the growth rate of that

difference, which tends to increase its expected present discounted value:

This is the capitalization effect. If the capitalization effect is strong enough,

then multiple equilibria may arise, as illustrated on Figure 1.

In such a case, as in the general analysis of Cooper and John (1988),

multiple equilibria comes from a strategic complementarity between a firm’s

research effort and the effort of other firms, as discussed above.

The preceding discussion does not tell us, however, whether a cooperative

equilibrium exists. In fact, Proposition 1 can be extended and a sufficient

condition, although by no means obvious, for a cooperative equilibrium can

be established.

PROPOSITION 3 — Assume the following inequality holds:

f̄

·
1

r +Nλ
+

(N − 1)λ̄
(r − λ̄N(A− 1))(r + λ̄(N − 1) + λ)

¸
1

1− Aλ̄
r+(N−1)λ+λ̄

≤ 1− c(λ∗)
r − λ∗N(A− 1) ,

then there exists a cooperative equilibrium where all firms constantly set

λ = λ∗ and make all innovations public.7

Proof — See Appendix.

5 Conclusion

We hope the present paper has shed some light on the viability of public

innovation when technical progress has a cumulative dimension. Further
7The condition in Proposition 3 is non empty, since it collapses to that in Proposition

1 for λ̄ = λ = λ and c(.) = 0. By continuity one can then construct examples where both
sides of that inequality are arbitrarily close to the corresponding expressions in Proposition
1.
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research could focus on more specific aspects. For example, in the Silicon

Valley, worker mobility has been an important vector of innovation sharing.

It could be valuable to further analyze the role of the labor market in the

diffusion of knowledge, a largely untouched topic until now.8

8Lerner and Tirole (2002), though, deals with the role of career concerns in the devel-
opment of open source software.
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APPENDIX

Proof of proposition 3.

We follow the same steps as in the proof of Proposition 1. At each con-

ceivable point in time there exists a vector of ~n = (n1, ..., nN) of technological

levels and a vector ~λ = (λ1, ...,λN) of R&D efforts. Assume we restrict λi to

be a sole function of the state vector ~n, λi = λi(~n). That is, we only consider

”Markov strategies” that depend on the current vector of state variables.

Clearly, if all agents consider than along any path markov strategies are fol-

lowed, it is indeed optimal for them to follow such a strategy. Then the value

of a firm i can be recursively written as

Vi(~n) =
πi(~n)(1− c(λi(~n))) +

PN
j=1 λj(~n) [Ij(Uj~n)Vi(TjUj~n) + (1− Ij(Uj~n))Vi(Uj~n)]

r +
PN

j=1 λj(~n)

Defining, as previously,

V̄i(n, p) = max
~n=(n1,...,nN )

ni=n
nj≤p,j 6=i

Vi(~n),

we again have the property that for any ~n = (n1, ..., nN) such that nj ≤ p <
ni = n, j 6= i,

Vi(~n) ≤
Anf̄(1− c(λi(~n))) +

P
j 6=i λj(~n)V̄i(n, p+ 1) + λi(~n)V̄i(n+ 1, p)

r +
PN

j=1 λj(~n)
.

(A1)

We can again prove that for n = max(ni),

Vi(~n) ≤ Anf̄

r − λ̄N(A− 1) ,
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along the same lines as in the proof of Proposition 1. Plugging into (A1)

yields

Vi(~n) ≤
Anf̄(1− c(λi(~n))) +

³P
j 6=i λj(~n)

´
Anf̄

r−λ̄N(A−1) + λi(~n)V̄i(n+ 1, p)

r +
PN

j=1 λj(~n)
.

(A2)

Then, observe that the following inequalities hold:

P
j 6=i λj(~n)

r +
PN

j=1 λj(~n)
≤ (N − 1)λ̄
r + (N − 1)λ̄+ λ

.

λi(~n)

r +
PN

j=1 λj(~n)
≤ λ̄

r + (N − 1)λ+ λ̄
.

Therefore, we have that

Vi(~n) ≤ Anf̄

r +Nλ
+

(N − 1)λ̄
r + (N − 1)λ̄+ λ

Anf̄

r − λ̄N(A− 1) +
λ̄

r + (N − 1)λ+ λ̄
V̄i(n+ 1, p).

(A3)

Since this holds for all vectors such that nj ≤ p < ni = n, j 6= i,we have,
for p < n:

V̄i(n, p) ≤ Anf̄

r +Nλ
+

(N − 1)λ̄
r + (N − 1)λ̄+ λ

Anf̄

r − λ̄N(A− 1) +
λ̄

r + (N − 1)λ+ λ̄
V̄i(n+ 1, p).

Iterating, this yields

V̄i(n, p) ≤
+∞X
k=0

αAn+kβk =
αAn

1−Aβ , (A4)
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where

α = f̄

"
1

r +Nλ
+

(N − 1)λ̄¡
r + (N − 1)λ̄+ λ

¢ ¡
r − λ̄N(A− 1)¢

#
;

β =
λ̄

r + (N − 1)λ+ λ̄
.

Note that if we can prove that V̄i(n, n − 1) ≤ VC(n) regardless of the

strategies followed in a deviation, then clearly there exists a cooperative

equilibrium. Given (A4) and that

VC(n) =
An(1− c(λ))
r − λN(A− 1) ,

Consequently, a sufficient condition is

α

1−Aβ ≤
1− c(λ∗)

r − λ∗N(A− 1) , (12)

where λ∗ is the equilibrium value of λ in a cooperative equilibrium, that is

any solution to (11). Substituting the expressions for α and β into yields the

required condition and completes the proof. QED
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