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1. Introduction

This paper describes an endogenous growth model of the world economy with
carbon emission. This model serves as the basis for a calibrated empirical model
being developed at IDEI in Toulouse. In this paper we describe the building
blocks of the model as well as the main properties of its steady state.

An influential model of climate change and growth has been developed by
William Nordhaus of Yale University (Nordhaus, 1994; Nordhaus and Boyer,
2000). It predicts, in particular, that a carbon tax achieves very little in re-
ducing emissions, while having substantial costs in terms of GDP. As a result, the
optimal tax is minute, implying that arrangements such as the Kyoto protocol
are harmful from the point of view of social welfare.

It has long been recognized (see for example Carraro and Siniscalco (1994))
that the standard growth models may be inappropriate in assessing the long-run
costs and benefits of environmental policy, because they ignore how technology
itself may change in response to relative prices!. However, there have only been
few attempts to properly take care of these effects in a fully specified growth
model.

This is what the model presented here undertakes. I assume the existence of
induced innovative bias in response to carbon taxes. Productivity growth is the
outcome of R and D activity which introduces new intermediate goods in the fash-
ion of Romer (1990) and Grossman and Helpman (1991). This R and D activity
can be directed ex-ante toward inventing goods which reduce the energy input, or
goods which reduce the labor input. A carbon tax affects the relative profitability
of the first type of innovation compared to the second one. If parameters are such
that it goes up, then an increase in carbon taxes triggers a reallocation of R and
D labor toward the energy-saving sector. The energy content of output gradually
goes down as innovations of this sort are introduced, until a new steady state is

reached.

!This endogenous technology response seems substantial, as shown by Popp (2001), who
looks at the effects of energy prices on patents.



In the existing literature, the paper which is to my knowledge most related to
the present one is Bovenberg and Smulders (1995,1996). It shares two features
with the present model, namely that technical change is endogenous and increases
the efficiency of the pollution-intensive input. However, it differs in two main re-
spects. First, all innovation is energy-augmenting, whereas in the present model
it can be directed to another sector. Second, there are no intellectual property
rights: knowledge appears as a pure externality as in the AK models of Romer
(1986) and Rebelo (1990), and private investment in knowledge accumulation only
takes place if subsidized by the government. A similar ” AK” approach is used
by Byrne (1997), who, contrary to Bovenberg and Smulders, assume knowledge
to be output-augmenting. There, people invest in their own technology and it
is the only accumulable factor, which solves the problem of incentives for knowl-
edge accumulation. In contrast, in the present paper innovation takes the form
of new intermediate goods on which the inventor holds monopoly power as in
Romer (1990). This is also true in Aghion and Howitt (1998, chapter 5); they
analyze pollution and limited natural resources in the context of ’Schumpeterian’
endogenous growth models, and show that sustainable positive growth exists in
the long-run if there is enough substitutability between natural resources (or the
pollution-intensive input) and knowledge. However, as there is only one R & D
sector, they do not discuss the role of induced innovation, nor how it responds to
environmental policies.

In the rest of the paper, I lay out the model’s assumption, discuss how one
can compute the steady state, analyze numerical simulations of the steady state.
I then look at the effects of a constant carbon tax, a subsidy to ‘green’ R &D,
and an exploding carbon tax. I finally discuss the implications of a version of the

model with an endogenous number of R & D workers.

2. Factor demand and pricing

The aggregate production function is given by:

Yy = f(X1e, Xot) = [0 X3 + by X 3]V
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where Y; is total output, X;; an aggregate of intermediate goods using energy
as their input, and Xy; an aggregate of intermediate goods using labor as their
input.?

Following Romer (1990), each aggregate is defined as

X =

where z;; (w) is the amount of intermediate good intensive in energy (resp. labor)
for i = 1 (resp. i = 2). Thus, there is a continuum of mass ny;+ng; of intermediate
goods, each being indexed by (i,w).

Each intermediate good is produced under a constant returns to scale produc-
tion function, where the corresponding input is the only factor, and where input

requirements are normalized to unity.® Total energy consumption is thus equal to
nit
E, = / 21t (w)dw
0
Employment in the physical goods sector is given by
nat
L, = / zot(w)dw
0

As in the literature on endogenous growth, each intermediate good is owned by
a monopoly, which charges monopoly prices. The derived demand for intermediate

good (i,w) is, if its price is pi (w):
zit(w) = kipir(w) ™7,

where

it 2 —1/e;
ki =X, </ Dit (w) T= dw) )
0

and 0; = 1/(1 — ¢;) is the price elasticity of demand for good i.

2Capital does not appear, but this is not a very important issue, as the model is to be used
for very long run analysis, and capital adjusts quite quickly.

3This assumption is just a normalization. There is no loss of generality since measurement
units can always be set so that it is true.



Given that each producer of an intermediate good is infinitesimal, it considers
k; as given and therefore applies monopoly pricing under a constant demand
elasticity:

0;
O'i—l

Dit (w ) = qit,

where ¢;; is the price of input . We will denote by ¢; = ¢1; the price of energy
(inclusive of the energy tax) and wages by w; = ¢o;. The output of intermediate

good (i,w) and the corresponding monopoly profit is given by

Zit (W) = Xitn;tai/(arl) = Zit, Yw

Wit(w) = Xitn;tai/(aiil)%t/(ai - 1) = Tit.

By symmetry, these quantities do not depend on w. Total cost of intermediate

good i to the producer of the final good is therefore given by n;z;pi, i.e.:

n;tl/(aﬁl) ( 7 ) @it Xit = Qe Xt/ it < % ) ;

O'i—l 0'2'—1

where a; = nz1 /@1 T this formula, a; is an aggregate productivity index for

composite good i, therefore X1; = Fiay; and Xy = Liag. The RHS tells us that
the total input cost of composite good i is equal to the total input requirement
of factor i, X;/a;, times the cost of factor ¢, g;, times the markup ﬁ—l An
important aspect of that formula is that the introduction of new intermediate
goods is equivalent, at the aggregate level, to an increase in the productivity of
the corresponding input. Romer’s economic interpretation of that property, is
that an increase in the number of intermediate inputs is equivalent to a greater
division of labor in production, i.e. each intermediate input is interpreted as a
"task” and there are gains from dividing production into a greater number of
narrower tasks. While our analysis will use a; as state variable, the number of

goods can be recovered using;:

O'i—l

n; = a;



The final good sector is produced by competitive firms, implying that the

demand for composite good ¢ is given by

bia;o; — 1

qit 0;

1/(1-a)
Xy =Y, l ] .

Finally, we impose that the price index of the final good is normalized to one,

1.e.

1 = pl/-o) <i o1 >oz/(1oc) N y1/0-0) (% o1 >a/(1a) |
' apor—1 ¢ O 01 — 1

This normalization implies that all nominal quantities are expressed in terms

of the final good.

3. Emissions and Energy taxes

In this model, all energy is fossil. Carbon emissions are proportional to energy
consumption, and parameter cq reflects the physical carbon content of one unit of
energy. *

COy = . E,.

Thus, one simplification of this model is that the COy/FE ratio remains con-
stant. Reductions in emissions can only be obtained by three channels: (i) a
reduction in output, (ii) substitution of the labor-intensive composite good for
the energy-intensive one (but labor supply will be assumed to be inelastic), (iii)
productivity growth in a; which reduces the energy requirement for one unit of

the energy-intensive composite good. However, the economic impact of technical

4More generally, one could consider several distinct greenhouse gases, several primary inputs
with different emission contents, and several composite inputs. If a;; is the requirement for
aggregate composite good ¢ in primary input j at date ¢, and ¢, the unit emission of gas k by
input j, total emissions of gas k are given by

EM(k) = ZXH, Zaijtd’jk:
i J

or; in vector form:
EM = (A;®)' Xy)



progress in the carbon content of energy can still be analyzed within the limits
of this simplified model, by looking at the effects of an exogenous decline in c¢g.
More fundamentally, an extension of the model where ¢, is endogenous because a
fraction of intermediate goods use non-fossil energy is currently being studied.
The model can be used to consider a variety of fiscal instruments. The two
most relevant ones are a carbon tax, which, given our assumptions, is equivalent
to an energy tax, and a subsidy to energy-oriented R and D. We assume that the
energy tax is paid by producers of intermediate goods using energy. Therefore,

at any point in time, the price of energy ¢; is related to the production price of

energy G by

@ =q(l+71),

where 7, is the tax. Tax revenues are rebated to consumers in a lump-sum fashion

and therefore do not appear in their optimality conditions.

4. Innovation

Innovation is made by people who work in the R and D sector, or "researchers”.
They invent new intermediate goods in either sector. They represent a fraction
0 of total population N. While this number is fixed, there is free mobility of
researchers between R and D devoted to inventing new intermediate goods in
sector 1 (energy-intensive) and R and D devoted to inventing new intermediate
goods in sector 2 (labor-intensive).

Inventing a good gives an infinitely lived patent on production of that good.

The present discounted value of such a monopoly right evolves according to

reVir = Vig + Tt
The cost of inventing a new good in terms of R and D workers is given by ¢; /n;;.
As in Grossman and Helpman, the externality in n; guarantees that innovation

generates sustained growth at a strictly positive rate. Otherwise, the rate at which



new goods are invented n;; would eventually fall relative to the existing stock of
goods n;, and growth would tend to zero.

We allow for the government to subsidize R and D in sector ¢ at rate s;. In
practice we will only consider subsidies to "green” R and D, i.e. s = 0. As the
total number of researchers is fixed, this goes without loss of generality; only the
relative returns between R and D in sector 1 and R and D in sector 2 matter.
The subsidy is financed by a lump-sum tax on consumers, and therefore does not
distort their optimality conditions.

The R and D sector is competitive and firms in that sector take the wage of
researchers as given. Consequently, in equilibrium, this wage wg; must satisfy:

51:1211}2( (V;t — Ci(l — Si)th/nit) =0

’

This condition tells us that the net marginal present value of the most prof-
itable R and D firms must be zero, i.e. that the asset value of an extra patent is
exactly equal to its development cost c;wgi(1 — s;)/ny.

There are 3 possible regimes.

1. If 2~ _m¥ _ thep all researchers innovate in sector 1.

c1(1—s1) ca(1—s2)
2. If - mVi o — V2 they are indifferent between the two sectors and
1(1—s1) ca(1—s2)

endogenously spread themselves in both.

3. If Cl’(’lll/il) < 62’(’1222), they all innovate in sector 2.

Intuitively, which regime prevails in the long run should depend on the elas-
ticity of substitution in production between the energy-intensive and the labor-
intensive aggregate. If it is large, then an increase in productivity in sector 1
should increase the demand and the price of energy-intensive intermediate inputs,
so that innovation in that sector becomes more profitable. One should then expect
all researchers to be specialized in one sector; i.e. the economy will be in regime
1 or 3, depending on initial conditions. If elasticity of substitution is low, then

innovation in one sector creates a bottleneck in the other sector, thus increasing
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the value of innovating in that sector, and the economy should converge to regime
2.

5. Labor markets

In the physical goods sector, labor supply is inelastic. A fraction (1 — 6) of total
population supplies one unit of labor to that sector. Equilibrium in the labor

market implies that this supply must be equal to demand at any date:
Li=(1—-0)N = ayXy

In the R and D sector, innovation of both types must use the total number of

researchers. Calling y, the fraction of researchers devoted to sector 1, this implies:

w1, NOay,
ci(og — 1)
(1 — p)Nbay
co(og — 1)

6. Consumption
There exists a representative consumer who maximizes

+oo
/ Cy [y - e Ptdt.
0

Financial markets are perfect and there is no uncertainty. The Euler condition

is therefore
C
é = O-C(Tt - p)a

where ¢ = 1/(1 — ) and r; is the instantaneous real interest rate.

7. Extraction

In many models it is typically assumed that fossil energy is a natural resource

in fixed initial supply, implying that a Hotelling-style intertemporal arbitrage
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condition must hold for the price of energy. In a full-fledged growth model, this
assumption makes it difficult to obtain a balanced growth path, except under
special assumptions®. Furthermore, it adds one forward-looking condition, which
substantially increases the complexity of numerical simulations. Finally, assuming
a fixed total supply of natural resources, known by all, is not necessarily realistic:
new resources are regularly discovered, provided one spends enough on prospection
and extraction costs—presumably these costs go up as one moves toward resources
that are more costly to locate and extract. Our modelling of the extraction sector
captures these properties, while escaping the difficulties of the Hotelling model.
We assume that at each date t people can freely extract energy at a marginal
cost which increases both with the total stock of energy extracted in the past
and with the flow being currently extracted. Thus we assume that the extraction
technology uses the final good as its input and that the unit extraction cost is
equal to qﬁZfEtﬁ 1 where Z, = [*.. E.dt is the total stock extracted in the past
and 3,6 > 0. At date t, the marginal extraction cost is equal to qﬁZfEf , and we

assume it is equal to the producer’s price g;.
@ = (1+ B)¢Z Ef

Note that producers do not internalize the effect of their current extraction
activity on future extraction costs, via the increment in future values of Z;. This
will be true if there are no property rights on land. Otherwise ¢ would obey a
Hotelling-style intertemporal arbitrage equation, since the market value of land

would reflect future marginal extraction costs.

8. Goods market equilibrium

Finally, the goods market equilibrium condition states that total output is allo-

cated between consumption and extraction costs:

Y;f:Ct‘f‘QbZtéEtﬁEt

’One example is Aghion and Howitt (1998, ch. 5).



9. Summary

The following table summarizes the equations of the model.

There are 18 endogenous variables: X1, Xs,a1, a9, E,Y,C, Z,q,r,q,w, w1, 72, V1,
Va, i, wr, and 18 relationships among these variables (Equations (9.16)-(9.18) only
define one relationship between p, Vi, Vs, a1, as, and wg). Of these, there are three
state variables: the technological levels a; and a; and the stock of past extractions
Z. Furthermore, there are two forward looking variables whose expected rate of

change affect intra-period equilibrium determination: V; and V5.

Table 1 : Equations of the model

th = (1 — Q)Nagt (91)
Xlt = ClltEt (92)
Y, = [bi X3+ bXS]H® (9.3)
Y, = C,+¢Z EJE, (9.4)
Z, = E, (9.5)
G = (1+B)0Z E/ (9.6)
C
é = O'C('r't — p) (97)
b EERRVLCE
X, = Y, l 101 91 ] (9.8)
gt 01
b _ Ve
Xy = Y, l 292t 72 ] (9.9)
Wy 02
—a/(1—q) w o —a/(1-a)
1 = i) <&L> pL/ (=) <_t 2 ) 910
! a1t0'1—]_ + 2 CLQtO'Q—]_ ( )
@ = @(l+T7) (9.11)
T — Xltqtaﬁal(al — 1)71 (912)
reVie = Vig+ (9.13)
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T = Xoway ?(oy —1)7! (9.14)
rVay = Vi + o (9.15)
0 = max (Vlt —c1(1 — s))wpeal, 7, Vay — co(1 — Sg)tha%;OQ) (9.16)
0 = (VM —c(1— sl)tha%;‘“) (9.17)
0 = (1 — :U’t) <‘/Qt - CQ(]_ - SQ)thaét_”) (918)
. ,UftNealt

_ 1

aq 01(0'1 — 1) (9 9)
(1 — py)Nbay,

= — = .2

a9 02(0_2 — 1) (9 0)

10. Balanced growth paths with a constant energy tax

This section describes how a balanced growth path (BGP) can be computed if
the energy tax 7; is a constant. The next section studies ”semi-balanced” growth

paths with an energy tax increasing at a constant rate.

10.1. Computing growth rates

Let us look for a solution to (9.1)-(9.20) such that any endogenous variable z
grows at a constant rate g,. Let us also look for an equilibrium in regime 2, so
that (VM —c(1— sl)thah_“) = (Vgt — (1 — sz)thaét_”) = 0. Because of the
production function and the goods market equilibrium condition, consumption,
output, and the aggregates X; and X, must grow at the same rate g. Furthermore,
equations (9.1) and (9.2) imply that this common rate must be equal to that of
a2, gay, also equal to g4, + gr. Equation (9.10) implies g, = g7 = go, and gy = ga2-
Equation (9.6) implies 69z + 895 = g5 = ga,. Given that in a BGP, one must have
gg = gz, it follows that gr = gz = ¢a,/(60 + (). Using these relationships and
eliminating u, between (9.19) and (9.20), we get the following condition, which

allows to compute growth rates:

galcl(al — ].) + ga202(0'2 — 1) =0N
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Once this is done, all relevant growth rates can be computed. Equilibrium

growth rates of all variables are summarized below:®

o 6+ B)ON
Jar = 90790 L D61 8) +alos - )AL 61 5) (10-1)
ON
gE = 9z = ci(or —1)(0+B) +co(oe — 1)(1+ 6+ ) (10.2)
_ o ON(1+ 6+ B) (10.3)
foo = v =90 =00 = TG4 B) faalos D161 5)
gr1 = (2= 01)ga1 + 95 (10.4)
gr, = (2= 02)9a (10.5)
g = Gu=0 (10.6)

Note that in this steady state, technical progress in the labor sector must
be larger than in the energy sector. This is because the quantity of energy being
extracted grows at a positive rate, while total employment does not. For growth in
the aggregate energy-intensive input to match growth in the employment-intensive
input, technical progress must be slower in the former sector. The reverse would
occur if extraction were to grow at a negative rate. However, this is not the case
in the steady states of this model. With a constant tax on energy, extraction must
grow. One could try to construct a steady state where E grows at a negative rate,
thus falling to zero, while Z converges to a constant level. In such a steady state,
the marginal cost of energy must fall, and so must the price of energy. However,
this is incompatible with the requirement that the price of energy should grow at
the same rate as a;, since there cannot be technical regress. Economically, this

means that as energy gets cheaper and cheaper, the aggregate input X; will grow

6Note that for the economy to remain in regime 2 throughout, it must be that V; grows at
the same rate as a}[‘”, or equivalently:

Iy T (Ul - 1).9(11 = G, T+ (02 - ]-) Ga»

One can check that this condition is indeed satisfied.
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faster than output, which is inconsistent with being in a BGP, and would imply
a positive growth rate of extraction, which is a contradiction.

This important result implies that a constant energy tax cannot achieve ”sus-
tainable development”, if one defines it as a stabilization of carbon emissions.
Further below, we consider what happens when instead of a constant tax rate
there is a growing tax rate, and show that for a range of levels of the tax rate’s
growth rate, growth is ”sustainable”, i.e. output grows at a positive rate while

extraction and emissions fall.

10.2. Computing levels

The preceding analysis computes the long-term growth rates that endogenous
variables must have along a BGP. In the appendix, we show how the corresponding
levels can be recursively computed. We assume an arbitrary initial value of a;, ayq.
We compute the corresponding initial values of all the other variables consistent
with the economy being in a BGP from ¢ = 0 onwards. That is, the set of initial
values {x} for any endogenous variable x, such that x, = xge?" is solution to
(9.1)-(9.20), with g, as determined in the previous subsection.

They are summarized by the following table:

Table 2. Determination of the levels

r o= p+ga2/0
galcl(al_l)

= N
1 - p—
o1+ A1+ T0>a}gé+ﬁ/\ [ago(l + 7'0)1/(5+5)a10(1+1/(5+ﬁ))} GQO(&JFIB)
(L= s)(r—ge)\ = o (baoa—1 =
— N(1-206 645 <O'101 — S1)\' — gmy ) _§ <_20'2— 01 )
(M ) o9¢2(1 — $2)(1 — Gny) 2 by, oy o011
G = o) |as(1+79)/ gy )]
l—a
wo = 1-0)N a0\ (02
’ l¢(1 + TO)(l + 6)] @ e (( ) ) Q1o bl 09 o1 — 1

)



Ey = (1-6)N <@>_ﬁ (@@az 1 o )U(la)

aio woby o2 o1 —1

X1 = awko

Xoo = axpN(1-106)
Yo = [biXp)+ baeXg] "
Co = Yo— 0B gy’

—0o —1
o = Xiwqay (o1 —1)
—0 -1
T2 — X20w0a20 2(0’2 - ].)
10
Vio =
T = Gry
20
Voo =
T = Gry

do = qo/(1+70)

In these formulas, the A(.) function is defined so that A(y) is the value of =
solution to

K:O.I.ia/(lia) _I_ Rlx_m_mya g 1,

where the coefficients x; are defined in the Appendix.

It is not clear whether this procedure gives a solution, but if it does, it is
straightforward to check that the corresponding BGP is a solution to the model,
i.e. satisfies (9.1)-(9.20). In practice, we have constructed a computer program
which performs steps 1-6, and it does converge for a wide range of parameters. It

can be used to numerically evaluate the properties of the balanced growth path.

10.3. Properties of the steady state

In this subsection we report numerical simulations results for the long-run steady
state.” We first report a benchmark simulation with a set of parameters giving

reasonable steady state properties. These parameters are reported in Table 3.

"The parameters used correspond to a rough, reasonable calibration and not to the actual
set of parameters that will be used in the full model.
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Table 3. Parameter Values

Q -04
by 0.011
by 0.944
[0) 1.51
To 0.1
s1=s89 0

(e 1

g1 2

() 2

a1 2.5
Co 15

p 0.01
0 0.02
N 20

1] 0.35
) 1.64

The value of o¢ is consistent with studies of the intertemporal elasticity of sub-
stitution in consumption, while o and o4 give plausible markups. The proportion
of researchers is 2 %, consistent with observed values, while N was calibrated to
get reasonable orders of magnitudes for the growth rate, i.e. around 2 to 2.5 %.
The carbon tax is set at a benchmark level of 10 %, while we do not consider any
subsidy to R and D. The rate of time preference is set at 1 %, which is at the low
end, but appropriate for environmental problems. ¢; and c; were chosen to get an
equilibrium share of researchers in the green sector of 10 %. a was taken equal to
-0.4, in order to generate enough complementarity between labor and energy. b,
and by were calibrated so as to match the share of energy in value added and the
wage level. The initial level of technology in sector 1, a;y was normalized to 1.
0 and [ were calibrated so as to match the ratio of the growth rate of oil prices
over extraction in the long run (abstracting from oil shocks), and the estimated
elasticity of extraction with respect to the stock already extracted.

The following Table gives the main endogenous variables of interest in the

steady state.
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Table 4. Endogenous variables in the benchmark simulation

Variable Value
9 =9y = GJas = ¢ = Guw = Gug 2.4 %
Ja1 = Ygq 1.6 %
r= 3.4 %
= 10 %
Qo — 1.1
Ey = 0.0549
X0 = 0.0549
Xog = 21.69
Yo = 18.57
Co = 17.86
T = 1.05
oo =— 7.44
Vio = 40.36
Voo = 218.8
Zo = 6.85
Qo = 17.34
Wro = 16.14
sp=qE]Y 0.0564

This benchmark simulation implies a realistic growth rate of 2.4 %, and an
energy share in GDP which is a bit high but not too offmark: 5.64 %-The actual
share, is about 4 %-parameters were calibrated so as to match it under a zero
energy tax rate; increasing that rate increases the energy share in expenditure.
Note that the wages of researchers appear as much higher than production work-
ers’ wages; but this is essentially a matter of normalization: nothing would be
changed if one were to double the number of researchers and halve their labor
endowment (which is not commensurate with production work), or equivalently

double b; and by. This would reduce the predicted wage of researchers by half.

10.4. Doubling Carbon taxes

We now run another simulation where the energy tax is twice as high, 7 = 0.2,

and compare with the previous steady state. Note that one should be cautious
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with these comparisons, since levels are compared across points in time where
a; = 1, rather than across identical dates. Hence for any variable x one cannot
directly compare zy across the two steady states. Rather, one has to compute
meaningful ratios.

We already know that the energy tax is not going to affect the long-run growth
rates, nor the real interest rate. More surprisingly, it does not affect the long-run
value of u, the share of researchers devoted to green R and D. This is because
there is only one value of u consistent with the long-run growth rates, i.e. such
that g,, = g4, + 9, and it only depends on the parameters which determine these
growth rates.

On the other hand, as Table 5 makes clear, the relative technical level in sector
2 falls by 3.7 %. Note that this should not be interpreted as an absolute fall in as,
since in both simulations technological level in sector 1 is normalized to 1. What
this means is that in the long-run technology is relatively more advanced in the
energy-intensive sector than in the labor-intensive sector, by an amount equal to
3.7 %, if the energy tax is equal to 20 % rather than 10 %. Of course, if one starts
from a steady state with 7 = 10 % and if one applies a once-and-for all doubling of
the energy tax, in order to improve the relative technical level in sector 1 it must
be that i goes up. But such an increase cannot last forever as p must eventually
return to its long-run value. However this transitory event has long-lasting effects
on the relative productivity in energy-intensive goods, which has gone up by 3.7
% permanently.

Given that a; is normalized to one, the value of ¢y should be interpreted as
the (constant) value of ¢/a;, which is nothing but the relative price of one unit
of the energy-intensive aggregate X;. Line 2 of Table 5 tells us that it is almost
unchanged between the two steady states. This comes from two effects: on the
one hand, energy is relatively more expensive, which increases the cost of X;. On
the other hand, technology is relatively more advanced in sector 1, which reduces
the energy input requirement per unit of X;. The two effects seem to balance each
other almost exactly.

Line 3 of Table 5 reports one dimension of income distribution, namely the
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share of wages in final goods production (the rest goes to energy and to the profits
of intermediate goods firms). As can be seen, this share is virtually constant. The
next line looks at another dimension of income distribution, namely the ratio
between researchers’ wages and production workers wages. It is again virtually
unchanged.

The next line looks at the fraction of output devoted to extraction, which is
equal to 1—C'/Y, since all output is either consumed or dissipated in the extraction
sector. This share falls from 3.8 % to 3.48 %.

The next ratio, X;/Y = a1 F/Y), is a measure of the energy content of output.
The proper measure, E/Y, falls at rate g, whereas this measure is constant along
the steady state. This measure ”asks more” from economies that are more pro-
ductive in saving energy. It does not move for an economy whose energy use per
unit of output falls exactly by the amount its productivity in using energy goes

up. This is virtually what is going on here.

Table 5. Impact of a doubling of the carbon tax

Variable Previous New value Rel. change
a9 1.1 1.059 3.7 %

qo 19.07 19.07 0.0
woN(1—0)/Yy 0.443 0.443 0.0

wr/w 38.43 38.42 0.0
1-C/Y 3.8 % 3.48 % -8.4 %
Xi/Y 0.00296  0.00296 0.0

10.5. A subsidy to ”Green” R and D

These results can be compared to what one would obtain if instead one had a
subsidy to energy-saving R and D. Note however that comparing carbon taxes
with R and D subsidies is not obvious: which level of a subsidy is ”comparable”
to a given level of the tax? Here we take a not fully satisfactory stance, comparing
the introduction of a 10 % subsidy to the 10 percentage point increase in energy

taxes we have just considered. In both cases, at least, a relative price connected
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with the energy sector is distorted by 10 %. Thus we now report a simulation
with 79 = 0.1 and s; = 0.1.

A striking point is that such a policy is much more efficient in boosting the
relative productivity of the energy-intensive sector than a carbon tax. This rela-
tive productivity now goes up by 34.5 %. The induced fall in energy demand is
strong enough to generate a large fall in the relative price of the energy-intensive
aggregate. As a result, more output goes to wages, while inequality between re-
searchers and production workers falls very slightly. Finally, there is a slight fall
in the extraction share, while adjusted energy intensity goes up, reflecting the
large increase in the relative productivity of sector 1.

In short, this policy seems to have stronger effects on the structure of economic
activity than the carbon tax. But only dynamic simulations will be able to tell

us something about their cumulative impact on carbon emissions.

Table 6. Impact of a 10 % green R & D subsidy

Variable Previous New value Rel. change
Q90 1.1 0.72 -34.5 %

qo 19.07 13.72 -28 %
woN(1—0)/Yy 0.443 0.448 +1.12 %
1-C/Y 3.8 % 3.46 % -11.5 %
banl/Y 0.00296  0.00374 +26.3 %

11. Increasing carbon taxes: the case for ”sustainable de-
velopment”

In the preceding simulations, carbon emissions and therefore the temperature
grow without bounds. Therefore, there is a sense in which these balanced growth
paths are not sustainable in the long run. This brings the following question: do
there exist balanced growth paths that are sustainable, i.e. such that economic
growth is positive while the temperature is stabilized in the long run? Aghion

and Howitt (1998, ch.5) have provided an example of such a possibility, in the
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context of an endogenous growth model with a production function which is
Cobb-Douglas in natural resources and knowledge capital. Grimaud (1999) has
shown that the implementation of the social optimum in such a model involves
an exponentially increasing time profile of carbon taxes. Therefore, we now study
the determinants of long-run growth under an exponentially growing carbon tax,
Le. (1+7¢) = (14 79)ed".

The key difference relative to the preceding analysis is that emissions may
now grow at a negative rate, meaning that the cumulative stock of CO2 in the
atmosphere converges from below to a maximum (equal, up to a constant, to
minus the long-run value of the stock of energy in the ground, 7). Therefore, one
has to distinguish between two regimes:

Regime 1: gg > 0.

In this case, we have gz = gr and denoting by g = gy = g,, we get that

gy =39

P16+
Next, we can compute g,, as a function of g and g, :
= g—g _906+08)+gr
“ PTU146+8

and the growth rate can again be computed by writing down the equilibrium

condition on the market for researchers:

(g(0 +B) + gr)ei(or — 1)

+ gea(og — 1) = ON.

1+6+p
Thus,
_ ON(1+06+8) — grer(or — 1)
I oD@ +8) +ealoa—1)(1+06+5)
ON — g, (c1(07 — 1) + (02 — 1))
gE

Caler = 1)@+ 8) +exfoa = D1 +6+5)
This formula implies that g is a decreasing function of g, while g,, grows with
g-. A greater growth rate in the carbon tax accelerates technical change in the

energy-saving sector, but reduces long-run GDP growth.

20



This regime prevails if and only if the corresponding value of gg is indeed

positive, 1.e.

ON
CQ(O’Q — 1) +Cl(0'1 — 1)

gr <

Regime 2: gy < 0
In this case the long-run value of gz is equal to zero, and the corresponding

equations determining growth rates are

q :g_gT
B 1+ 3
and
9o =9~ _giter
a1 E 1+ﬂ

The growth rate is now determined by

Bg + g-

153 ci(or —1) + gea(oy — 1) = ON,
implying

_ ON(1+ B) — grci(o1 — 1)
ci(or — 1)+ ca(oa —1)(1+6)

g5 = ON — g-(c1(o1 — 1) + (02 — 1))
ci(for = 1B+ (o2 —1)(1+6)
This last formula confirms that this regime prevails if and only if

ON
CQ(O’Q — 1) + 01(0'1 — 1)7

gr >

while we see that the growth rate of GDP is positive provided

ON(1+3)

C1 (O’ 1 — 1) )
These formulas imply that there exists a ”window” of sustainable development,

in terms of the growth rate tax, given by:
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ON NP
02(02—1)+Cl(01—1) 9r 61(0'1—1)'

If g, satisfies that inequality, then output grows while emission fall. With the

above defined set of parameters, this window is wide: it goes from a growth rate
of the carbon tax of 2.3 % a year, which yields constant emissions and thus a
linearly (but not exponentially) exploding stock of CO2 in the atmosphere, and a
GDP growth rate of 2.3 % a year, to a tax growing at 21.6 % a year, corresponding
to a zero growth scenario. For a tax growing at 3 % a year, emissions decline at
-0.6 % a year, while GDP growth is at 2.2 % a year.

12. Endogenizing the number of researchers

In the preceding analysis, the carbon tax has either no impact on long-run growth,
or, if it grows, it reduces long-run growth. This runs counter to some arguments
according to which it could yield a ”double dividend”, by both reducing emissions
and boosting the ” competitiveness” of business firms (for example, Porter and van
den Linde, 1995). While it is not always clear what one means by ”competitive-
ness”, the above results suggest that at least the economy’s overall productivity
level does not go up with the (rate of growth) of the carbon tax.

Could this result be overturned? One strong assumption is that the overall
number of researchers is fixed. Total R and D effort cannot go up in response
to an increase in the relative income of researchers. If some supply response of
researchers were allowed, and if a carbon tax increased the value of R and D
and hence their wages, in principle it could trigger an increase in the number of
researchers and therefore in long-run growth.

To examine this possibility, we have studied an extension of the model where
there exists a representative consumer who allocates his time optimally between
productive labor and R and D. The utility being maximized must be modified as

follows:
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v
max/ [& +C((1—0)" 4+ bV | et
Y

The fraction of researchers 6 is now endogenous and time-dependent. The
added term ¢ ((1 — ;)" + €07)'/7 reflects concave preferences for the allocation
of time between research and production. An additional first-order condition
corresponding to optimality with respect to # must be added to the model. It is
given by

oyt
¢

Finally one can show that a balanced growth path with a constant value of 6

(wr — wie) = (1= 0,)" +67)"/"7 (671 = (1—6,)") (12.1)

exists provided v = 0, i.e. for a logarithmic utility function. Hence endogenizing
the number of researchers has a cost, in that to get a BGP utility must be loga-
rithmic in consumption. Note, however, that this is not far-off usual parameters
in the macro literature.

While it is not possible to get an analytical solution for the BGP, it can be
computed numerically by iteration on ¢ until (12.1) is met.

What do we find? Our numerical simulations have strikingly different impli-
cations depending on whether one considers a carbon tax or a subsidy to green R
and D.

In the case of a carbon tax, the model implies that it has zero effects on long-
run growth even though the number of researchers is endogenous. That number
simply does not respond to the carbon tax. The extension is therefore useless in
that case. The numerical simulations suggest that the effect is truly nil, rather
than negligible, which seems to come from some underlying analytical property
of the model.

In the case of a subsidy to green R and D, our simulations imply that it has
a strong positive effect on long-run growth. This is not surprising since it is a
subsidy to R and D, albeit directed. The following Table gives the effect of the

green R and D subsidy on the fraction of researchers in the economy and the
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long-run growth rate starting from a benchmark simulation where 6 ~ 0.02. That
simulation was reached by setting n = 0.8 and ¢ = 0.439; ( was normalized to 1.
For lower elasticities of the supply of researchers, like n = 0.2, we get some 0.1

percentage points of growth for 10 percentage points more of subsidy.

Table 7. Impact of a subsidy to green R & D on growth
s1 6 g

0 00196 2.35%

0.1 0.0218 2.62 %

0.2 0.0241 2.89 %

The message of this section is therefore as follows: There is no double-dividend,
in that a carbon tax does not accelerate growth; but there is a ”green way” of
subsidizing R and D, which is efficient in boosting growth. Recall, however, that
given 6, the green subsidy only has a level effect on emissions, while gp goes
up with 8. Thus the "green subsidy” boosts growth, but also the growth rate
of emissions. It does not achieve sustainable development; simply, the level of
emissions is lower than for an equivalent overall subsidy to R and D. Consequently,
from the point of view of emission reduction, the additional growth permitted by
the green subsidy may be undesirable. Presumably one would like to offset it by

an exploding carbon tax or by a tax on nongreen R and D.

13. Conclusion

This paper has described the basic theoretical block of the Toulouse model of
endogenous growth and carbon emissions. In the future it is planned to study
extensions of this model with renewable energies and also a multi-region version
of the model, while a numerical procedure is being developed for solving the

model’s transitional dynamics.
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APPENDIX

COMPUTING LEVELS IN THE STEADY STATE.
One can check that the following procedure delivers a balanced growth path
as a solution to the model.

1. The interest rate is constant and equal to

r=p+ gaz/ o
2. The equilibrium value of p

_ galcl(al _ 1)
K NO

3. Using equation (9.5), one must have
Zy= Ev/gE

4. Using (9.1)-(9.2), (9.8)-(9.9), (9.10), (9.11) and (9.6),we get a block of three

equations allowing to get wy, qo, Ey as a function of asq :

1/{(1—«
ax :<@@@@—1 7 )” )
ayo b

(1- 0N

byajpwy o2 o01—1

—a/(l—a) —a/(l—a)
1 =/ (ﬂ 7 ) + by <ﬂ—02 )
CL100’1—1 CL200'2—1

do/(1+7) = (1+ B)pgs"Eg ™’

This block can be solved recursively. One gets

go = a10A [aso(1 + 7)) g O] (13.1)

l—a

1 T pqdze M) —(1-a) <a20>°‘ <52 ox—1 o1
0 [¢(1+TO)(1+6)] qo 9g (( ) ) aqo
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P “1/(1-a)
Fy=(1-0)N <@> <@ 22— 9 ) ,

a9 wobl 09 0'1—1

where the A(.) function is defined so that A(y) is the value of x solution to
Iioflf_a/(l_a) + leiﬁiﬁya — ]_7

where

ad

k= g (L= ON) (9(1+0))7 babT ™ () 7T

0'1—]_

Hence, these steps allow to compute wg, qo, Eg as a function of asg, but one
has to compute the right value of ay.

5. One can also compute, as a function of ay :

X10 = a0k

XQO = agoN(l — 0)

Yo = [b1 XS 4 by X3

CO — }/0 . ¢Eé+6+ﬁgi’6

6. Finally, one must compute the equilibrium values of ay. To do so, we use

the arbitrage condition between the two types of R and D, which implies that
Vi Vo

= = Wg.
a1 —s1)  cak P(1—sy)

Given that:

m10 = Xwoqoay (o — 1)1
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—0 —1
oo = XooWoagy 2 (02 — 1),

and

0= T (13.2)
this is equivalent to
710 1 agl_l _ 20 1 oo—1
r—gr (1 —s;) ™ T — g, C2(1 — 53) %
using the preceding formulas, this is equivalent to:
FEoqo N(1 = 6)wo

(01 =Der(I=s1)(r —gm) (02 = D)ea(l = 52)(r — gn,)
Using (13.1)-(??) and other equations we can rewrite that as an equation

determining ayy as a function of ayg :

1 B S »
o1+ )1+ T0>a}5ré+ﬁ/\ [a20(1 + 70)1/(5+ﬁ)a10(1+1/( +/3))} GQO( +8)
= 516

(N8 <0101(1—81)(T—gm)> " <@02—1 o1 )

o9co(1 — 82) (1 — gy) by 09 o01—1

Steps 1-6 therefore allow in principle to compute the initial values of each

endogenous variable compatible with a BGP.

29



BASIC Source code for numerical computation of the steady state

10 rem parameters

20 al=0.3

30 b1=0.1

40 b2=0.97

50 k=0.74

60 phi=1.51

70 tau0=0.1

80 si=1:si1=2:8i2=2:10=0.01:th=0.02:nn=20

90 c1=2.5:c2=15

100 de=1.64:be=0.35

110 a10=1

1000 rem computes growth rates

1010 gal = (de+be)*th*nn/(c1*(sil-1)*(de+be)+c2*(si2-1)*(14+de+be))

1020 ggq=gal:print "gal=gq=",gq

1030 ge = gal/(de+be):print ”ge=",ge

1040 ga2 = gal/(de+be)*(1+de+be)

1050 gpil = (2-sil)*gal+-ge

1060 gpi2 = (2-si2)*ga2

1070 gy = ga2:print ”gy=ga2=gc=gw=",ga2

1080 gc = ga2

1090 gw = ga2

1100 gwr = gpil+(sil-1)*gal:print "gwr="gwr

1200 rem computes intermediate parameters

1210 kapO0=b1~(1/(1-al))

1220 kapl=ge~ (-al*de/(de+be))*((1-th)*nn) ~al*(phi/k) " (al/(de+be))*b2*b1~ (al/(1-
al))

1230 factor=(1+tau0)"(1/(de+be))*al0"(-(1+1/(de+be)))

2000 rem computes levels as a function of a20

2010 r = ro+ga2/si:print "r="r
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2020 mu = gal*cl*(sil-1)/nn/th:print ”"mu=",mu

2030 gosub 15000:print ”a20=",a20

2040 y=a20*factor:gosub 10000

2050 g0=al0*lambda:print ”q0=",q0

2060 wO=(phi*(1+tau0)/k)~(-(1-al)/(de+be))*q0~ (14(1-al) /(de+be))*ge " (de*(1-
al)/(de+be))*((1-th)*nn)~(-(1-al))*(a20/a10) " (al)*(b2/bl):print "w0=",w0

2070 ee0=(1-th)*nn*(a20/a10)" (-al/(1-al))*(q0*b2/w0/b1)~(-1/(1-al)):print ”ee0="ee0

2080 xx10=al0*ee0:print "xx10="xx10

2090 xx20=a20*nn*(1-th):print ”"xx20=",xx20

2100 yy0=(b1*xx10"al4+b2*xx20"~al)~(1/al):print "yy0=",yy0

2110 cc0=yy0-phi*ee0 " (14+de+be)*ge"-de:print ”cc0=",cc0

2120 pil0=xx10*q0*al0"-sil*sil~-si1*(sil-1)"(sil-1):print ”"pil0=",pil0

2130 pi20=xx20*w0* (a20"-si2)*(si2"-si2)*((si2-1) " (si2-1)):print " pi20=",pi20

2140 vv10=pil0/(r-gpil):print "vv10=",vv10

2150 vv20=pi20/(r-gpi2):print "vv20=",vv20

2160 zz0=ee0/ge:print ”zz0="zz0

2170 gbar0=q0/(1+tau0):print ”gbar0=",qbar0

2180 wrO0=vv10*(sil-1)"~(1-sil)/c1/sil"(1-sil)/al0"(1-sil):print ”wr0=",wr0

2185 se0=q0*ee0/yy0:print ”energy share="se0

2200 stop

10000 rem this subroutine delivers lamba as a function of y

10002 rem a marche ssi delta+-beta > 1-al (vrai avec ma calibration originale:
de+be =2; 1-al=0.7)

10010 x=1

10020 diff=1-kap0*x~(-al/(1-al))-kap1*x "~ (-al/(1-al)-al /(de+be))*y~al:if diff<0
then x=2*x:goto 10020

10030 xmax=x:x=1

10040 diff=1-kap0*x~(-al/(1-al))-kapl*x~(-al/(1-al)-al/(de+be))*y~al:if diff>0
then x=x/2:goto 10040

10050 xmin=x

10060 x=(xmin+xmax)/2
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10100 diff = 1-kap0*x~(-al/(1-al))-kap1*x~(-al/(1-al)-al/(de+be))*y~al

10110 if diff>0.00001 then xmax=x: goto 10060

10120 if diff<-0.00001 then xmin=x: goto 10060

10130 lambda = x: return

15000 rem this subroutine computes a20 as a function of al0, using the lambda
function

15030 target = (nn*(1-th)) "~ (de+be)*(sil*c1*(r-gpil)/si2/c2/(r-gpi2)) " ((de+be)/al)*ge -
de*(b2/bl) " ((de+be)/al)*phi*(1+taul)/k/al0" (1+de+be)

15060 a20=1

15070 y=a20*factor:gosub 10000:lhs=a20" (-(de+be))*lambda:if lhs>target then
a20=a20*2:goto 15070

15080 a20max=a20:a20=1

15090 y=a20*factor:gosub 10000:lhs=a20" (-(de+be))*lambda:if Ihs<target then
a20=a20,/2:goto 15090

15100 a20min=a20

15110 a20=(a20min+a20max),/2:

15120 y=a20*factor:gosub 10000:lhs=a20"(-(de+be))*lambda

15125 if lhs<target then a20max=a20

15130 if lhs>target then a20min=a20

15140 if a20max-a20min>0.000001 then 15110

15150 return
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