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Abstract

Converting Primary Resources Into Useful Energy: The Pollu-
tion Ceiling Efficiency Paradox

We study an economy producing energy services from a polluting fossil
fuel and a carbon free renewable resource under a constraint on the admissible
atmospheric carbon concentration, equivalently under a constraint on the ad-
missible temperature. The transformation rates of natural primary resources
energy into useful energy are costly endogenous variables. Choosing higher
efficiency rates requires to bring into operation more sophisticated energy
transformation devices, that is more costly ones. We show that, indepen-
dently of technical progress, along an optimal path, the transformation rate
of any exploited resource should increase throughout time, excepted within
the period during which the carbon constraint is binding, a phenomenon we
call the ’ceiling paradox’. The effects of technical progress in the fossil fuel
and the renewable energy sectors are strongly contrasted.

Keywords: energy efficiency; carbon pollution; non-renewable resources;
renewable resources.
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1 Introduction

It is a well documented fact that historically, the conversion rate of primary
energy into useful energy has steadily increased. For example, the first steam
power units operated in the British mining industry to pump water, in the
early eighteenth century, the steam engine of Thomas Newcomen (1712),
converted about 0.5% of its potential energy input (coal and/or wood) into
useful work output. About sixty years later (1769)1, the Watt engine was
converting 3% of its potential energy input, six times the performance of its
ancestor.2 Both engines were built according to some loose thermodynamic
principles.3 However, a glance at the two engines design shows that the
cooling system of the Watt engine was more sophisticated and more costly
than the cooling system of the Newcomen machine. Improvement still went
on during the nineteenth century and up to the middle of the twentieth
century with more and more complex engines, especially by multiplying the
number of cylinders and other devices for a better use of the steam produced
in the boiler.

Although technical progress and growing scientific knowledge are cer-
tainly key explanations of the increasing efficiency of the energy uses in an
historical perspective,4 the objective of this paper is to show that it may
result more simply from the mere working of competitive forces promoting
efficiency efforts in a world of nonrenewable energy resource scarcity even
without technical progress. Choosing a conversion rate of available energy
into useful energy is an economic choice and retaining a more efficient pro-
cess is also, generally, more costly. For example some part of the exhausted
energy resulting from the burning of gas in a today engine can be exploited,
via a turbo-charger, to improve the efficiency of combustion. But one has to
bear the cost of the turbo-charger and its installation in the car. In hybrid
cars, some part of the energy which would be otherwise dissipated within

11769 is the date of the first patent obtained by Watt. The first engines were sold by
Boulton and Watt seven years later, in 1776 according to Marsden (2002, p 102).

2Both rates from (Kümmel, 2011, p49) for the Newcomen engine and p50 for the Watt
engine. As usual, one must be cautious about such estimations. For example, (Brookes,
2000, p 359) gives respectively 0.75% for the Newcomen engine and 4% for the Watt
engine. However the scale of the increase factor is about the same, the Watt engine being
5.33 times more efficient than the Newcomen machine.

3The first theoretical essay by Carnot (1824) was published only fifty years later.
4However note that technical progress is partly endogenous.



the atmosphere, is used to save the gasoline consumption by transforming
the energy contained within the exhaust gas into electricity which in turn
is transformed into mechanical energy to propulse the car. But clearly two
engines, a classical gas one and an electric one, are more costly than only
one.

In this paper, we take explicitly into account the fact that to obtain
useful energy from a fossil resource, it is first necessary to transform the
underground energy into what we call available crude energy, an operation
undertaken by the extractive industry, and next to transform the available
crude energy into useful energy, a task generally performed jointly by utilities
and the final users themselves. We assume that the unitary extraction costs
depend negatively upon the resource grade under exploitation. Moreover,
the cost of transforming one unit of the extracted resource into useful energy
increases with the energy conversion rate.5

Transforming extracted fossil fuel into useful energy generates also as a
by-product polluting GHG emissions in the atmosphere with potential ad-
verse consequences. These emissions are more or less proportional to the
burnt fossil resource rather than to the useful energy output. Hence, im-
proving the conversion rate may be seen as an indirect abatement device.
The diesel engines emit less CO2 per unit of gas than the gasoline engines
because they are more efficient converters of potential energy, but they are
also more costly to produce. However contrary to other abatement options,
like carbon capture and sequestration installations, the conversion rate im-
provements simultaneously save the resource.

Several views of a climate change mitigation policy have been proposed
in the climate economics literature. The most conventional one expresses the
consequences of global warming as a combination of welfare losses (impacts on
properties, health impacts) and productivity losses (e.g. agricultural yields
losses). These losses are then aggregated as a ’damage’ function, assumed to
be some increasing function of the size of the atmospheric carbon stock (or of
the average temperature rise).6 The design of an optimal environmental reg-

5Also important empirically is the recovery rate of available crude energy from the
underground one. This problem requires a specific analysis outside the scope of the present
paper.

6Multiple theoretical and empirical studies have endorsed the ’damage function’ ap-
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ulation scheme is then accommodated in a Pigouvian way. An optimal global
carbon tax should identify with the marginal climate damage in annualized
value equivalent. Since the damages evolve through time with the climate
dynamics, the tax rate should also be adjusted to the climate damages trend.
An alternative policy to the implementation of a carbon tax, perhaps less de-
manding with respect to the commitment abilities of the governments, is the
creation of carbon emissions permits markets. The time adjustment of the
regulation is in this case achieved through a periodic revision of the quantity
of allowances issued by the regulator.

Instead of a climate damage function framework, we follow in the present
paper another route pioneered by Chakravorty, Magnd Moreaux (2006). In
their model, carbon accumulation in the atmosphere creates only negligible
damages provided that the pollution carbon stock stays under some critical
threshold. However, this threshold be crossed over, earth climate conditions
would become catastrophic. The objective of the environmental regulation
should then be to limit the atmospheric carbon concentration below the
threshold level. Such a modeling framework echoes the Paris Agreement
proposal of avoiding an average earth temperature rise above +20C by the
end of the current century.7

In our setting, the use of fossil fuels thus faces two kinds of constraints.
The first one is the physical scarcity of the available fossil fuels reserves, the
second one is the limited ability of the atmospheric compartment to store
carbon emissions without triggering potentially damaging climate change.
Raising the energy conversion rate of fossil fuels can alleviate these two con-
straints by saving the resource while mitigating carbon emissions.

An alternative to costly energy conversion efficiency efforts in fossil fuel

proach. Main original contributions are Tahvonen and Kuuluvainen (1991), Farzin and
Tahvonen (1996), Withagen (1994) Tahvonen and Withagen (1996), Tahvonen (1997),
Toman and Withagen (2000). For more recent contributions see Golosov et al. (2014),
Van der Ploeg and Withagen (2014), Hassler et al. (2012), Nordhaus (2014), Stern (2007).

7As pointed out by Weitzman (2010) and Mason and Wilmot (2015), damages are
depending on the temperature rather than directly on the carbon stock. Thus the ceiling
should be defined as a temperature ceiling, like the well-known +20C ceiling. However
as far as there exists a monotonic relationship between the temperature level and the
atmospheric carbon stock, the qualitative properties of the optimal paths would be the
same. The issue becomes more intricate when both the temperature level and the carbon
stock size drive the temperature dynamics.
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exploitation is the development of carbon free renewable energy use. How-
ever, the transformation of clean energy primary sources into useful energy
faces the same kind of physical and technical constraints than the exploita-
tion of fossil fuels. We model this problem by assuming that the unitary
production cost of useful energy from clean renewable energy increases with
its production rate. We want to describe in this context the dynamics of the
energy transition from fossil fuels toward clean energy.

Within this general framework, we show the following. When the demand
function for useful energy is stationary, the optimal transformation rate of
the fossil energy source broadly increases through time up to the end of
its exploitation. The time and the grade at which exploitation ends are
endogenously determined not only by the increasing costs of less accessible
grades but also by the increasing transformation cost of crude energy into
useful energy. When renewable energy is exploited in conjunction with fossil
energy, it takes progressively a larger share inside the energy mix until it
replaces completely the use of fossil energy.

Rather surprisingly, when a constraint on the atmospheric pollution stock
is added, then the transformation rate in the coal industry must stay constant
when coal is the only resource which is exploited within the time period
during which the constraint is active. Maybe even more surprising, when the
renewable resource is also exploited, its exploitation rate has also to be kept
constant. Restricting the use of coal does not open more room to the non-
polluting renewable resource. The energy mix must stay unmodified. We call
this feature of the optimal energy and climate policy under an atmospheric
carbon stabilization constraint, the ceiling paradox.

Thus if something evolves under the ceiling regime when the atmospheric
CO2 concentration is at its critical level, that must be the result of some
technical progress. We show that technical progress has contrasted effects
according to it is occurring in the fossil energy sector or in the renewable
energy sector. In particular technical progress in the renewable energy sector
only tends to deteriorate the efficiency of the fossil energy sector.

The paper is organized as follows. The model of useful energy production
from primary resources is laid down in Section 2. Section 3 presents the
optimality problem faced by the society and the main characteristics of the

4



optimal policies. The optimal paths are described in Section 4. Section 5 is
devoted to the effects of technical progress. Section 6 concludes.8

2 A model of useful energy production from
primary resources

We consider a stationary economy in which final energy services, in brief
the useful energy (U.E), can be obtained through the exploitation of two
primary energy resources: a polluting fossil fuel (’coal’ thereafter) and a
clean and renewable resource (’solar’ thereafter). Let qx(t) be the useful
energy production rate resulting from the coal energy processing (C.U.E)
and qy(t) be the production rate resulting from the solar energy processing
(S.U.E). Assuming that C.U.E and S.U.E are perfect substitutes and that
useful energy cannot be stored, we can define q(t), the total U.E production
rate, as the sum of the production resulting from the both processes: q(t) =
qx(t) + qy(t).

Users surplus

Let u(q) be the instantaneous user surplus generated by the consumption
of q units of U.E. We assume that the function u(q) satisfies the following
standard assumption A.1.9

Assumption A. 1 u : R++ → R+, is twice continuously differentiable,
strictly increasing, u′ > 0, strictly concave, u′′ < 0, with u′(0+) = +∞
and limq↑∞ u

′(q) = 0.

We sometimes use the notations p(q) for the marginal surplus function
u′(q), the inverse demand function, and qd(p) for the direct demand function,
the inverse of u′(q), well defined under A.1.

8An alternative formulation as perfect foresight equilibrium is given in Amigues and
Moreaux (2016).

9For any function f defined on X ⊆ R and any x̄ ∈ X, we denote respectively by f(x̄+)
and f(x̄−) the limits limx↓x̄ f(x) and limx↑x̄ f(x), when such limits exist.
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Coal mining

Let X(t) denote the coal stock not yet exploited at time t, measured in
energy units, and let X0 be the initial coal endowment: X0 = X(0). The coal
sites are ordered by cost merit order. Let a(X) be the unit extraction cost
of grade X, hence a total extraction cost a(X(t))x(t) for the coal extraction
rate x(t) at time t when the grade X(t) is exploited. The function a(X) is
assumed to satisfy the standard assumption A.2:

Assumption A. 2 a : (0, X0] → R+ is twice continuously differentiable
on (0, X0), strictly decreasing, a′(X) < 0, strictly convex, a′′(X) > 0, with
a(0+) = +∞.

The last property in A.2, a′(0+) = +∞, together with the later assump-
tions on the production cost in the S.U.E industry imply that some part of
the initial coal endowment, X0, would have to be kept underground. As
we will show, this part of necessary un-burned coal does not depend upon
its pollution content, even if the problem is to stay below some atmospheric
pollution stock ceiling.

The coal useful energy industry

Transforming the coal primary energy into useful energy implies a loss.
Let us denote by η the transformation rate of coal primary energy into useful
energy: 0 < η ≤ η̄ < 1, where η̄ is the maximum conversion rate technolog-
ically feasible. Thus the C.U.E industry produces, at time t, η(t)x(t) units
of U.E from x(t) units of coal energy: qx(t) = η(t)x(t).

The transformation, or conversion rate, η(t), η(t) ∈ (0, η̄), is a decision
variable. As explained in the introduction, choosing higher transformation
rates requires to incur higher unitary transformation costs (per unit of pro-
cessed coal input). Let us denote by b(η) the conversion cost of one unit of
coal energy into η units of U.E. Then the total transformation cost of x units
of coal into qx = ηx units of C.U.E amounts to b(η)x.

The unitary production cost of C.U.E, net of the extraction cost of coal,

6



amounts to b(η)/η, equal to the marginal production cost, that is a total cost
equal to b(η)qx/η. We assume that this unit cost is an increasing function
of the transformation rate. This implies that b(η), the unit conversion cost
should also be an increasing function of η.10 The unit cost function satisfies
the assumption A.3.

Assumption A. 3 b : [0, η̄) → R+ is twice continuously differentiable on
(0, η̄), strictly increasing, b′(η) > 0, strictly convex, b′′(η) > 0, with b(0+) =
0, b′(0+) > 0, b(η̄−) = +∞ and b′(η̄−) = +∞. Furthermore the unit
production cost of C.U.E in inputs other than coal, and so the marginal
production cost, is a strictly increasing function of η: b′(η) > b(η)/η and
limη↓0 b(η)/η = limη↓0 b

′(η) > 0.

Burning coal to obtain, for example, electricity requires other inputs, at
least equipments, hence a strictly positive marginal cost of C.U.E at 0+:
limη↓0 b(η)/η > 0. The same should apply to the derivative of the function
b(.) at η = 0+. The assumptions b(η̄−) = +∞ and b′(η̄−) = +∞ mean that
it is not physically possible to transform totally the potential energy of coal
into useful energy. Assuming b(η̄−) = +∞ and b′(η̄−) = +∞ allows some
simplifications but does not modify the main qualitative properties of the
optimal paths.

Pollution

Burning coal not only produces useful energy but also a pollution flow.
Assume an homogenous pollution power among the different grades of coal.11

Denoting by ζ the common unitary pollution content of coal, the pollution
flow generated by the transformation of x(t) units of coal at time t amounts
to ζx(t). This pollution flow feeds the pollution stock Z(t). The pollution

10Differentiating the unit production cost of C.U.E yields:

d

dη

b(η)

η
=

1

η

[
b′(η)− b(η)

η

]
.

It is immediate that b′(η) > 0 is a necessary condition for (d/dη)[b(η)/η] > 0.
11The issue of heterogenous polluting resources is thoroughly examined in Chakravorty

et al. (2008).
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stock is self-dissolving at a proportional rate α, α > 0, that we assume to be
constant to simplify.12 Thus the dynamics of Z(t) is given by:

Ż(t) = ζx(t)− αZ(t) .

We denote by Z0 the pollution stock inherited from the past.

The pollution stock is constrained to be at most equal to some critical
level or ceiling, Z̄, as in Chakravorty et al. (2006). This ceiling may, for
example, results from an international climate agreement, provided that the
agreement be enforced! In order that the model makes sense we must assume
that Z0 < Z̄. We denote by x̄ the maximum consumption of the coal input by
the C.U.E industry when the pollution is at the ceiling. From the dynamics
of Z with Ż = 0 and Z = Z̄, we get x̄ = αZ̄/ζ.

The solar useful energy industry

We do not detail the production process in the S.U.E industry. It is
not in this industry that lies what determines the qualitative properties of
the optimal paths. We simply assume that qy is produced at an increasing
marginal cost. Let c(qy) denote the cost of the S.U.E industry and q̄y the
upper bound of qy. We assume that the solar energy production cost function
satisfies the assumption A.4:

Assumption A. 4 c : [0, q̄y) → R+ is twice continuously differentiable on
R++, strictly increasing, c′(qy) > 0, strictly convex, c′′(qy) > 0, with c(0) = 0
and both c′(0+) > 0, c′′(0+) > 0 and c′(q̄y) = +∞.

As for the C.U.E production, the S.U.E production requires other inputs
than the solar radiation, hence c′(0+) > 0.

Absent the C.U.E production the optimal S.U.E production is this pro-
duction level solving u′(qy) = c′(qy). We denote by q̃y(≡ q̃) this S.U.E pro-
duction rate and by p̃ the corresponding U.E price: p̃ = u′(q̃y).

12A more realistic assumption would be to assume that α is some function of Z. See
Forster (1975), Farzin (1996), Farzin and Tahvonen (1996), Tahvonen and Salo, (1996),
Tahvonen and Withagen, (1996), Toman and Withagen, (2000), and Amigues and More-
aux, (2013), for more general formulations.
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In order that the coal be ever exploited we must assume that it is worth
to be exploited, some kind of competitiveness assumption: The full average
cost of the least costly way to produce C.U.E must be lower than p̃. The
last costly coal input of the C.U.E industry is the coal of grade X0 absent
any mining rent. Under this condition and given that qx/η units of coal are
required to produce qx with the conversion rate η, the total cost of qx amounts
to (1/η) [a(X0) + b(η)] qx. Minimizing the average cost (1/η) [a(X0) + b(η)]
(equal to the marginal cost) results in:

− 1

η2
[
a(X0) + b(η)

]
+

1

η
b′(η) = 0 =⇒ b′(η)− b(η)

η
=
a(X0)

η
(2.1)

Let ηe (e for coal enters the competition) be the solution of the above equation
(2.1).13 Then the coal competitiveness assumption reads:

Assumption A. 5 The C.U.E sector, the C.U.E industry together with the
coal mining industry, is competitive, that is: p̃ > [a(X0) + b(ηe)] /ηe.

Discounting and welfare

The social rate of discount ρ is strictly positive and constant through
time. The social welfare is the sum of the discounted net surplus provided
that the ceiling constraint be satisfied.

13The assumption A.2, a(X0) > 0, together with the assumption A.3 both imply that
(2.1) has a unique positive solution.
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3 The social planner problem and the main
properties of the optimal paths

3.1 Social planner program and necessary optimality
conditions

The social planner determines a path {(η(t), x(t), qy(t))}∞t=0 maximizing the
social welfare, that is solves the following program (S.P ):14

(S.P ) : max
η,x,qy

∫ ∞
0

{u (η(t)x(t) + qy(t))− a (X(t))x(t)− b (η(t))x(t)

−c (qy(t))} e−ρtdt (3.1)
s.t. Ẋ(t) = −x(t) , X(0) = X0 given (3.2)

Ż(t) = ζx(t)− αZ(t) , Z(0) = Z0 < Z̄ given ,
and Z̄ − Z(t) ≥ 0 (3.3)
η(t) ≥ 0 , x(t) ≥ 0 and qy(t) ≥ 0 . (3.4)

Let λX(t) and −λZ(t) be the co-state variables of X(t) and Z(t) respec-
tively;15 ν(t) be the Lagrange multiplier associated to the ceiling constraint;
γη(t), γx(t) and γy(t), be the Lagrange multipliers associated to the non-
negativity constraints on η(t), x(t) and y(t) respectively. The current value
Hamiltonian, H, and Lagrangian, L, read:16

H = u(ηx+ qy)− a(X)x− b(η)x− c(qy)− λXx− λZ [ζx− αZ]

L = H + ν
[
Z̄ − Z

]
+ γηη + γxx+ γyqy .

14We omit the constraint η ≤ η̄ which is never binding under A.3 and A.4. Also under
A.2 and A.4, the constraint X(t) ≥ 0 is never active.

15By choosing −λZ(t) as the co-state variable of Z(t), λZ(t) appears as the optimal
opportunity cost of pollution, that is the optimal taxation rate of the polluting emissions
flow.

16We omit the time argument absent any risk of confusion.

10



The first order conditions are:

∂L
∂η

= 0 =⇒ u′(ηx+ qy)x = b′(η)x− γη (3.5)

∂L
∂x

= 0 =⇒ u′(ηx+ qy)η = a(X) + b(η) + λX + ζλZ − γx (3.6)

∂L
∂qy

= 0 =⇒ u′(ηx+ qy) = c′(qy)− γy , (3.7)

together with the usual complementary slackness conditions.

The dynamics of the co-state variables, when time differentiable, satisfy:

λ̇X = ρλX −
∂L
∂X

=⇒ λ̇X = ρλX + a′(X)x (3.8)

λ̇Z = ρλZ +
∂L
∂Z

=⇒ λ̇Z = (ρ+ α)λZ − ν , together with:

ν ≥ 0 , and ν
[
Z̄ − Z

]
= 0 . (3.9)

Last the transversality condition at infinity is:

lim
t↑∞

e−ρt [λX(t)X(t) + λZ(t)Z(t)] = 0 . (3.10)

3.2 General properties of the optimal paths

3.2.1 Hotelling rule

The equation (3.8) expresses the Hotelling rule when the extraction costs
depend upon the grade which is exploited. Here λX(t) is the mining rent
of the grade X(t) exploited at time t. Under constant marginal costs, when
the extraction cost is the same for all grades, the rent must increase at a
proportional rate equal to the social rate of discount, that is by ρλX(t),
between t and t + dt. In the present context the extraction cost is larger at
t + dt than at t by an amount approximatively equal to −a′(X(t))x(t)dt.17

Thus the mining rent of the grade X(t + dt) must be equal to λX(t + dt) =
λX(t) + ρλX(t) + a′(X(t))x(t)dt, hence (3.8), if the mining rent of the grade

17Remember that a′(X) is negative.
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X(t) is equal to λX(t), in order that the extraction of x(t) be not postponed
to t + dt and the extraction of x(t + dt) be not switched earlier at t. Thus
(3.8) is the local arbitrage condition which must hold at any time along the
optimal path during the period of coal exploitation.

It is not clear from (3.8) that the mining rent path is monotonous.18

However the full marginal cost of coal, the sum of the marginal extraction
cost, a(X(t)), and the mining rent of the grade, λX(t), must grow during the
time period of coal exploitation.19 Time differentiating a(X(t)) + λX(t) and
substituting (3.8) for λ̇X(t), we obtain:

ȧ(X(t)) + λ̇X(t) = −a′(X(t))x(t) + ρλX(t) + a′(X(t))x(t) = ρλX(t) > 0 .

(3.11)

From now we denote by w(t) the full marginal cost of coal for the mining
industry: w(t) = a(X(t)) + λX(t) and rewrite (3.6) as:

u′
(
η(t)x(t) + qy(t)

)
η(t) = w(t) + b(η(t)) + ζλZ(t) .

3.2.2 Shadow marginal cost of pollution

Initially ν = 0 since Z0 < Z̄. Thus denoting by tZ , the time at which the
ceiling constraint begins to bind, we get from (3.9):

λZ(t) = λZ0e
(ρ+α)t , t ≤ tZ , where λZ0 ≡ λZ(0) . (3.12)

Once the ceiling constraint is no more active and forever, pollution is no more
a problem and its shadow marginal cost must be nil. Let t̄Z be the time at
which ends the phase at the ceiling, then:

λZ(t) = 0 , t ≥ t̄Z . (3.13)
18Note that, absent a renewable substitute, the mining rent could grow indefinitely. See

Krulce (1993) for a sufficient condition of monotically increasing rent in this case. For
more recent developments, see Hart (2016).

19However note that the discounted rent, λX(t)e−ρt, is unambiguously decreasing. Dif-
ferentiating and substituting (3.8) for λ̇X(t), results in:

d

dt

(
λX(t)e−ρt

)
= a′(X(t))e−ρt < 0 .
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What remains to determine, and will be determined later (see (3.20)), is the
path of λZ(t) during the phase at the ceiling, when ν(t) > 0.

3.2.3 Optimal conversion rates

The optimality conditions (3.5)-(3.6) can be interpreted as conditions of cur-
rent profit maximization of the U.E industry at time t given an U.E price p
equal to u′, a price of the coal input equal to its full marginal cost, w, and
a levy on the polluting emissions equal to the shadow marginal cost of the
pollution stock λZ , that is ζλZ per unit of processed coal. Thus the current
profits of the C.U.E industry denoted by πc(t) amount to:

πc(t) = p(t)η(t)x(t)− [w(t) + ζλZ(t)]x(t)− b(η(t))x(t) .

The f.o.c’s of the profit maximization w.r.t. η(t) and x(t), assuming that the
profit maximizing pair

(
η(t), x(t)

)
is strictly positive, are:

∂πc
∂η

= 0 =⇒ px = b′(η)x =⇒ p = b′(η) , that is (3.5)

∂πc
∂x

= 0 =⇒ pη = w(t) + ζλZ + b(η) , that is (3.6) .

The equation (3.5) determines the optimal energy transformation rate, η,
as a function of the U.E price. In order that the C.U.E industry be active
the U.E price must be at least equal to b′(0+).

Let us denote by ω(t) the full marginal (and average) user cost of the
coal input for the C.U.E industry, the sum of the coal unitary cost and the
tax having to be born for its processing: ω(t) = w(t) + ζλZ(t) = a(X(t)) +
λX(t) + ζλZ(t). The unitary cost of the C.U.E is the sum of the coal input
by units of C.U.E, ω(t)/η(t) and the cost of the other inputs b(η(t))/η(t).
This unitary cost is minimized for η(t) such that the derivative w.r.t. η is
nil, that is:

d

dη

{
ω + b(η)

η

}
= 0 =⇒ b′(η)η = b(η) + ω . (3.14)

Since b′(η) = p by (3.5) then the above condition is nothing but than (3.6).
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The equation (3.14) defines the optimal conversion rate and the U.E price
as functions of ω. Let us denote respectively by η∗(ω) and p∗(ω) these two
functions. Differentiating (3.14), we get:

dη∗

dω
=

1

b′′(η∗)η∗
> 0 and

dp∗

dω
=

1

η∗
> 0 . (3.15)

We may use (3.15) to define the optimal coal input use of the C.U.E
industry and the optimal C.U.E and S.U.E production rates as functions of
ω to determine their move during the different phases of the optimal path.

3.2.4 Optimal coal extraction rate, C.U.E and S.U.E productions

Let us denote by x∗(ω), q∗x(ω), q∗y(ω) and p∗(ω) respectively the optimal coal
extraction rate, C.U.E production rate, S.U.E production rate and U.E price
as functions of ω, p∗(ω) = u′(q∗(ω)), where q∗(ω) = q∗x(ω) + q∗y(ω) is the total
U.E production as a function of ω.

Assume first that only C.U.E is produced: p∗(ω) < c′(0+). In this case
the f.o.c (3.6) may be rewritten as:

u′(η∗(ω))η∗(ω) = b(η∗(ω)) + ω .

Differentiating and taking into account that b′ = u′, we get:

p∗(ω) < c′(0+) =⇒ dx∗

dω
=

1− u′′η∗x(dη∗/dω)

u′′(η∗)2
< 0 . (3.16)

Since dp∗/dω > 0, from u′(qx) = p∗(ω), we obtain:

p∗(ω) < c′(0+) =⇒ dq∗x
dω

=
1

u′′
dp∗

dω
< 0 . (3.17)

Consider now the case in which both energies are exploited: p∗(ω) >
c′(0+). In this case, (3.5) and (3.6) may be rewritten as:

u′(η∗(ω)x+ qy) = b(η∗(ω)) + ω

u′(η∗(ω)x+ qy) = c′(qy) .
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Differentiating, we obtain: u′′ (η∗)2 u′′η∗

u′′η∗ u′′ − c′′

 dqx

dqy

 =

 −u′′η∗x(dη∗/dω) + 1

−u′′x(dη∗/dω)

 dω ,

hence if p∗(ω) > c′(0+):

dx∗

dω
= −u

′′c′′η∗x− (dη∗/dω) + u′′ − c′′

u′′c′′ (η∗)2
< 0 (3.18)

dq∗y
dω

=
1

η∗
> 0 ,

dη∗

dω
=

1

u′′
dp∗

dω
< 0 and

dq∗x
dω

=
dq∗

dω
−
dq∗y
dω

< 0 .

(3.19)

We know that within the phase not constrained by the cap on the pollu-
tion stock, ω̇(t) = ρλX(t) + ζλ̇Z(t) with λ̇Z(t) ≥ 0, hence ω̇(t) > 0 as far as
the coal resource is exploited, so that by (3.15)-(3.19), the moves of p, η, x,
qx and ηy are easily determined.

The proposition P.1 summaries the implications of (3.11)-(3.13) and (3.15)-
(3.19).

Proposition P. 1 Unconstrained dynamics.

Along the optimal path, during any time period of unconstrained coal ex-
ploitation:

a. The price of useful energy, p(t), increases hence the production and
consumption of useful energy, q(t), decreases.

b. The shadow marginal cost of pollution, λZ(t), either increases if the
pollution stock ceiling is not yet attained, or is nil if the pollution stock
constraint will no more bind in the future.

c. The conversion rate of coal into useful energy, η(t), increases, the coal
extraction rate, equivalently the coal input used by the coal useful energy
industry, x(t), decreases.
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d. When both energies are exploited, the production of solar useful energy,
qy(t), increases. The aggregate production, q(t), being time decreasing,
the production of coal useful energy drops by an even higher rate, and
the same applies to the polluting emissions.

Consider now the phase at the ceiling, if any. Then x(t) = x̄, and since
dx∗/dω > 0, it must be the case that ω(t) = ω̄, a constant. This in turn
implies that the conversion rate of the coal energy into useful energy is con-
stant during the phase at the ceiling. Although reducing the emissions per
UE means increasing the conversion rate, the only way to increase the con-
sumption rate of C.U.E when the pollution constraint is binding, the best is
to stay with a constant conversion rate.

Furthermore when the solar source is exploited, although increasing the
S.U.E production rate is the only other way to increase the useful energy
consumption, the S.U.E production level too must be constant. We call
this phenomenon the ’ceiling paradox’: When the pollution stock is at its
maximum size, do nothing to increase the consumption of useful energy even
if what could be done would not increase the polluting emissions.

Last, because ω(t) is constant at the level ω̄ while ȧ(X(t)) + λX(t) =
ρλX(t), then:

λ̇Z(t) =
d

dt

1

ζ
[ω̄ − (a(X(t)) + λX(t))] = −ρ

ζ
λX(t) < 0 . (3.20)

The proposition P.2 summaries the characteristics of the optimal path during
the climate constrained phase.

Proposition P. 2 Constrained dynamics: the ceiling paradox.

Along the optimal path, during a period of constrained coal exploitation:

a. The price of useful energy, p(t), is constant hence its production and
consumption, q(t).
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b. The shadow marginal cost of pollution, λZ(t), decreases so that the full
marginal cost of the coal input in the coal useful energy industry, ω(t),
is constant.

c. The conversion rate of the coal resource into useful energy, η(t), is
constant and since the consumption of coal by the coal useful energy
industry is constant, x(t) = x̄, then the production of coal useful energy,
qx(t), is constant.

d. When the solar energy is simultaneously exploited, the production of
solar useful energy, qy(t), is also constant.

The Corollary 1 is a direct implication of the Propositions 1 and 2.

Corollary 1 Starting of the solar energy production.

The production of useful solar energy , if not started immediately at time
t = 0, must begin either before the phase at the ceiling if p∗(ω̄) > c′(0+), or
either after this phase if the reverse holds, but never during the phase.

4 Optimal paths

Assuming that the ceiling constraint is binding along the optimal path, we
first determine the number of constrained and unconstrained phases and their
necessary sequence.

Since Z0 < Z̄, the first phase of any optimal program is an unconstrained
phase during which the coal consumption of the C.U.E industry is larger than
x̄ and decreasing. That x(t) must be larger than x̄ is necessary in order that
Z(t) increases from Z0 up to Z̄ and the ceiling constraint be binding along
the path. Thus the next phase begins at the time tZ at which Z(t) = Z̄.

The following phase is thus necessarily a constrained phase. If not, the
coal consumption of the C.U.E industry will go on decreasing and the ceiling
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will never be hit again since during an unconstrained phase the use of coal
decreases.20

The problem is to determine the kind of phase following the constrained
phase, either an unconstrained phase of coal exploitation or a phase of ex-
clusive S.U.E consumption. Let us show that the right option is the first
one.

The proof is by contradiction. Assume that the phase following the con-
strained one is a phase of exclusive S.U.E consumption. Since the optimal
energy price path must be time continuous then p(t) = p̃ within both the con-
strained phase and the following one, where p̃ is the constant price along an
exclusive S.U.E consumption path. Thus the total U.E consumption is con-
stant too and equal to q̃. Let us denote by η̂, the constant transformation rate
during the constrained phase, hence a C.U.E consumption qx(t) = q̂x = η̂x̄
during the phase. Thus at t̄Z the S.U.E consumption should jump from q̃− q̂
up to q̃. But from the f.o.c (3.7) relative to qy we must have:

c′ (q̃ − qx) = p̃ = c′(q̃) ,

the l.h.s equality holding at t̄−Z and the r.h.s holding at t̄+Z , a contradiction
since c′(qy) is strictly increasing.

Since the phase following the first phase at the ceiling is an unconstrained
phase with C.U.E consumption, then the coal input use decreases, x(t) < x̄,
t > t̄Z , so that starting from Z̄ at the beginning of the phase, the pollution
stock never comes back later to the level Z̄. That means that there is only
one phase at the ceiling, after which the shadow marginal cost of pollution
is forever nil: λZ(t) = 0, t ≥ t̄Z .

Although the duration of the period of coal exploitation is not necessarily
finite because the extraction cost depends upon the cumulated extraction (c.f.
Salant et al., 1983), the cumulated coal extraction is well defined. The mining
rent, λX(t), is nil either asymptotically, if tX = +∞, or from some finite time
tX , and since the last phase of coal exploitation is an unconstrained phase,
then λZ(t) too is nil so that ω(t) tends to some a(X̃) where X̃ is the stock
of un-burned coal. Because the useful energy price tends toward p̃ then η(t)

20We show in Appendix A.1 that if Z̄ is attained only at an isolated time then λZ(t) = 0,
t ≥ 0 and the ceiling constraint may be forgotten.
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tends toward some definite value η̃, η̃ < η̄, and X̃ is this stock X solving
[a(X) + b(η̃)] /η̃ = p̃ (see Figure 1). Because under A.2, limX↓0 a(X) = +∞,
then X̃ > 0.

Figure 1 about here

The proposition P.3 sums up the properties of the optimal path not yet
listed in the propositions P.1 and P.2.

Proposition P. 3 Optimal paths. Any optimal path along which the ceil-
ing constraint binds includes at least three main time phases:

a. A first phase [0, tZ), 0 < tZ, of unconstrained coal exploitation during
which the coal input consumption by the C.U.E industry is larger than
x̄ and decreasing down to x̄ at the end of the phase while the shadow
marginal cost of pollution increases up to its maximum at the same date
tZ when Z(t) hits the ceiling Z̄;

b. A second phase, [tZ , t̄Z), tZ < t̄Z, of constrained coal exploitation,
x(t) = x̄, during which the shadow marginal cost of pollution decreases
from its maximum, λZ(tZ), at the beginning of the phase, down to 0 at
the time t̄Z, the end of the phase;

c. A third phase, (t̄Z , tX), t̄Z < tX ≤ +∞, of unconstrained coal exploita-
tion during which the coal extraction decreases from x̄ down to 0 either
asymptotically if tX = +∞, or at the end of the phase if tX < +∞. In
any case, the conversion rate of coal into useful energy tends towards a
definite upper limit, η̃, η̃ < η̄, and the cumulated coal extraction tends
toward X0−X̃ < X0, that is the stock X̃, X̃ > 0, is left un-burned. Si-
multaneously the production of solar useful energy increases and tends
toward q̃y;

d. The production of useful solar energy begins either within the first
phase, [0, tZ), if c′(0+) is lower than the U.E price at the ceiling,
c′(0+) < p∗(ω̄), or during the third one, (t̄Z , tX), in the alternative
case c′y(0+) > p∗(ω̄).
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e. If tX <∞, then the fourth and last phase is a phase, [tX ,∞), of infinite
duration during which the solar useful energy is the only available useful
energy.

A typical optimal price path is illustrated in Figure 2 for the case tX <

+∞.21

Figure 2 about here

The paths of useful energy production are illustrated in Figure 3, and
the paths of coal extraction and C.U.E production are illustrated in Figure
4, both for the case of a S.U.E production beginning within the first phase
(0, t̄Z) and tX < +∞.22

Figure 3 about here

Figure 4 about here

5 Technical progress

As stressed in the introduction, technical progress is currently put forward as
the main explanation for energy efficiency improvements in economic history.
Although a full fledged analysis of the effects of technical progress is outside
the scope of the paper, the way technical advances could affect the properties

21We show in Appendix A.2 that the price path is time differentiable both at the time
at which begins the S.U.E production and the time at which ends the coal exploitation
when tX < +∞. Hence, the qualitative properties of the price path illustrated in Figure 2
do not depend upon the time at which the S.U.E production must be started. Therefore
we do not record on the figure the time ty at which the S.U.E production begins.

22We show in Appendix A.2 that although q(t) is time differentiable at ty, both qx(t)
and qy(t) are not time differentiable.
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of the optimal path is worth some developments. We abstract from the pos-
sibility of technological revolutions in U.E production or from improvements
in the extraction techniques of the mining industry and focus the analysis on
the consequences of smooth and exogenous improvements of the fossil or the
renewable energy conversion techniques, in the form of a continuous down
drift of the transformation cost curves over time.

We first consider the consequences of technical progress in C.U.E. pro-
duction on the dynamics of both unconstrained and constrained time phases
before proceeding to a similar analysis for the case of S.U.E production.

5.1 Technical progress in useful coal energy production

Let b(η, t) denote the unit fossil energy conversion cost as a time dependent
function, ∂b(η, t)/∂η, be the corresponding time dependent marginal cost
curve and assume that ∂b/∂t < 0 together with ∂2b/∂η∂t < 0. We have
shown earlier (c.f. section 3, paragraph 3.2.3) that without technical progress,
for a given ω, the optimal transformation rate η is determined as the solution
of the equation (3.14):

ω

η
= b′(η)− b(η)

η
≡ δ(η) .

With technical progress the optimal transformation rate is determined as the
solution of (c.f eq (A.3.4) ), Appendix 3):

ω

η
=

∂b(η, t)

∂η
− b(η, t)

η
≡ δ(η, t) .

Thus for drifts preserving the difference between the marginal and average
costs of the transformation rate δ(η, t) for all η ∈ (0, η̄), the function η∗(ω, t)
giving the optimal rate as a function of the full marginal user cost of coal
and time is time independent:

∂δ(η, t)

∂t
= 0 =⇒ ∂2b(η, t)

∂η∂t
− 1

η

∂b(η, t)

∂t
= 0 .

In this case (5.1) below reduces to:

η̇ =
1

η∂2b/∂η2
ω̇ > 0 .
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Figure 5 about here

5.1.1 Dynamics over the unconstrained phases

We show in appendix A.3 that the optimal dynamics of the model variables
during an unconstrained time phase obey:

η̇ =
1

η∂2b/∂η2

[
∂b

∂t
− η ∂

2b

∂η∂t
+ ω̇

]
(5.1)

ẋ =
x

η2∂2b/∂η2

[
∂2b

∂η∂t
η − (1 + θ)

(
∂b

∂t
+ ω̇

)]
(5.2)

where θ ≡ ∂2b

∂η2

(
u′′ − ∂2c/∂q2y
u′′x∂2c/∂q2y

)
> 0

q̇x = − θx

η∂2b/∂η2

[
∂b

∂t
+ ω̇

]
(5.3)

q̇y =
1

ηc′′

[
∂b

∂t
+ ω̇

]
(5.4)

q̇ =
1

ηu′′

[
∂b

∂t
+ ω̇

]
and ṗ =

1

η

[
∂b

∂t
+ ω̇

]
. (5.5)

For cost curves distance preserving drifts, we have already shown that
the coal energy conversion performance increases as in the no technical
progress case. This result carries over to a drift progressively reducing
the vertical distance between the marginal and average cost curves since
∂b/∂t− η∂2b/∂η∂t > 0 implies also that η̇ > 0.

The production of useful coal energy increases over time with a sufficiently
fast technical progress. From (5.3) we get:

q̇x(t) > 0 ⇐⇒ ω̇(t) < −∂b
∂t

.

Note that this phenomenon can arise for any variation of the distance be-
tween the average and the marginal cost curve. That the useful coal energy
production rate may increase because of technical progress is an illustration
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of the so-called rebound effect in the energy literature. 23

A time increasing trend of the production of coal useful energy means a
decline of the energy price and an increase of the aggregate useful energy
production rate (see (5.5)). The useful renewable energy production rate
hence decreases (see (5.4)) thus useful coal energy takes a larger share of the
energy mix. It may even be the case that the coal extraction rate increases
over time because of a very fast technical progress, the so-called ’backfire’
effect of the energy literature. Making use of (5.2):

ẋ(t) > 0 ⇐⇒ −
(
∂b

∂t
+ ω̇

)
>

1

1 + θ

∂2b

∂η∂t
η .

Observe that a ’backfire’ of coal energy consumption can only happen in a
scenario of decreasing energy prices and declining renewable energy produc-
tion rates.

When technical progress generates increases of δ(η, t), that is if ∂b/∂t −
η∂2b/∂η∂t < 0, it is even possible that η̇ < 0 (see (5.1)). Note that in such
a situation, we get through (5.3)-(5.5):

η̇ < 0 =⇒ ∂b

∂t
− η ∂

2b

∂η∂t
+ ω̇ < 0 =⇒ ∂b

∂t
+ ω̇ < η

∂2b

∂η∂t
< 0

=⇒ ṗ < 0 ; q̇y < 0 ; q̇ > 0 ; q̇x = η̇x+ ηẋ > 0 =⇒ ẋ > 0 .

Hence a deterioration of the coal energy conversion performance because
of technical progress in the C.U.E. industry may only happen in a rather per-
verse episode during which the production of coal energy would expand, the
energy price would decrease together with the renewable energy production,
and the coal consumption would increase and thus also the carbon emissions.

23The possibility of rebound was first noticed by Jevons (1865). For a recent exposition
see Brookes (2000) and Khazoom (1980).
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5.1.2 The constrained phase

Turn now to the climate constrained regime when the ’ceiling paradox’ occurs
in the original model. We show in appendix A.3.2 that:

η̇ > 0 and q̇x = η̇x̄ > 0

q̇y < 0

q̇ > 0 and ṗ < 0 .

Hence, contrarily to the original model, the useful energy price decreases
and the aggregate production rate of U.E. increases during the constrained
phase. The energy price being declining, the production of renewable U. E.
should also decrease (see (5.4)). Since qx(t) = η(t)x̄ and q̇x(t) = q̇(t)−q̇y(t) >
0, the economy increases its energy conversion performance, η̇(t) > 0. The
cost reduction induced by technical progress translates in improvements of
the coal energy performance, sustaining an increase of coal U.E. delivery and
a parallel fall of renewable U.E. delivery.

Because of technical advances in fossil useful energy generation, the econ-
omy relies more and more on fossil fuels, experiencing a sort of ’reverse en-
ergy transition’ from renewables back to coal energy. Introducing technical
progress in C.U.E production results in an even more paradoxical conclu-
sion as in the original model. Facing the climate constraint and benefiting
from less costly conversion techniques for coal energy thanks to technical
improvements, the economy relies more on fossil fuels and shrinks down the
renewable energy production. Instead of a constant energy price, technical
progress induces declining prices and useful energy consumption increases.

Turning to the dynamics of the shadow cost of coal use:

ω̇ =
1

∆

{
∂b

∂t

[
u′′ − ∂2c

∂q2y

]
∂2b

∂η2
− u′′x̄ ∂

2c

∂q2y

[
η
∂2b

∂η∂t
− ∂b

∂t

]}
.

where:

∆ =
∂2b

∂η2
∂2c

∂q2y
− u′′

[
∂2b

∂η2
+ x̄

∂2c

∂q2y

]
> 0 .
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If δ(η, t) stays constant, ∂2b/∂η∂t− (1/η)∂b/∂t = 0 implies that ω̇ > 0.

Last, time differentiating the f.o.c relative to x, u′η = w+ b+ ζλZ , while
taking into account that ∂b/∂η = u′ by the f.o.c relative to η, we get:

u′′ηq̇ − ẇ − ∂b

∂t
= ζλ̇Z . (5.6)

Since the first two terms of the l.h.s are negative and the third one is positive
we cannot conclude, although on average λ̇Z must be negative since λZ tends
to 0 at the end of the period.

5.2 Technical progress in useful solar energy production

Let c(y, t) denote the production cost function of S.U.E and assume that
both ∂c/∂t < 0 and ∂2c/∂y∂t < 0: the solar useful energy industry benefits
from a continuous drift down of its production cost both on average and at
the margin.

5.2.1 Unconstrained time phases

The dynamics of the variables now obey (see Appendix A.3 for a proof):

η̇ =
1

η∂2b/∂η2
ω̇ (5.7)

ẋ =
x

η2∂2b/∂η2

[
η

x

∂2b/∂η2

∂2c/∂q2y

∂2c

∂qy∂t
− ω̇(1 + θ)

]
(5.8)

q̇x =
x

η∂2b/∂η2

[
η

x

∂2b/∂η2

∂2c/∂q2y

∂2c

∂qy∂t
− θω̇

]
(5.9)

q̇y =
1

η∂2c/∂q2y

[
ω̇ − ∂2c

∂qy∂t

]
(5.10)

q̇ =
1

ηu′′
ω̇ and ṗ =

1

η
ω̇ . (5.11)

Since ω̇(t) > 0 during such time phases and ∂2c/∂qy∂t < 0 by assumption,
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we conclude from (5.7)-(5.11) that:

η̇ > 0 , ẋ < 0 and q̇x < 0

q̇y > 0

q̇ < 0 and ṗ > 0 .

The dynamics of the variables during the unconstrained time phases are
qualitatively similar to the no technical progress case (see Proposition 1).
Benefiting from an increasing competitive advantage with respect to the coal
energy production industry, the useful solar energy sector increases its share
in the fuel mix, expanding its production rate. The optimality conditions
implying that the useful energy price evolves in the same direction as the
shadow cost of coal energy when there is no technical progress in the C.U.E
industry, the energy price rises over time while the aggregate energy con-
sumption decreases. Such time dynamics has two consequences for the C.U.E
sector. The rise of the energy price incites the coal energy industry to boost
its energy conversion performance so that η(t) increases. On the other hand,
the increased competitiveness of solar energy induces a fall of the production
rate of C.U.E and thus the industry cuts down its coal consumption rate,
inducing in turn a fall of its polluting emissions rate.

5.2.2 The constrained phase

We show in appendix A. 3 that:

η̇ < 0 and q̇x = η̇x̄ < 0

q̇ > 0 and ṗ < 0

q̇y = q̇ − q̇x > 0 .

Contrarily to the no technical progress case where the full shadow cost
of coal energy, and thus the useful energy price, remains constant through-
out the climate constrained phase, technical advances in renewable energy
generation allows for a continuous fall of the shadow cost of coal and the
energy price. The C.U.E sector reacts to the declining trend of energy prices
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by reducing its energy conversion performance, η(t) decreases. The coal con-
sumption rate being constant at the level x̄, the production of C.U.E thus
declines. On the other hand the S.U.E sector expands its energy production
rate, taking an increasing share in the fuel mix.

Last, since now ∂b/∂t = 0, then (5.6) reduces to

λ̇Z =
u′′ηq̇ − ẇ

η
< 0 .

The optimal carbon price falls over time like in the original model. The
rising competitiveness of solar energy relaxes even more the social cost of the
carbon constraint.

6 Concluding remarks

We have shown that without technical progress the optimal energy choices of
the society may seem paradoxical when the atmospheric CO2 concentration
constraint is active since then, amongst the ways allowing to by-pass the
constraint, none must be taken. The first one would consist in increasing the
efficiency in the fossil fuel energy sector but it is optimal to hold constant
the transformation rate of the fossil primary resource into useful energy. The
second one would consist in increasing the production of clean renewable
energy. But if the clean energy is not exploited before the arrival at the
ceiling it must stay non-exploited under the ceiling regime, and if exploited
before the arrival and then at an increasing rate, its development must be
stopped once the CO2 concentration attains its maximum permitted level.

Non disruptive exogenous smooth technical progress in the fossil fuel sec-
tor and in the clean renewable one although both improve the competitive-
ness of the useful energy production, have however contrasted effects, some of
which are even more paradoxical. Technical progress in the fossil fuel sector
only results in an increase of the transformation rate of the primary fossil
resource into useful energy, hence an increase of the fossil energy production
and a decrease of the pollution per unit of useful energy, together with a de-
crease of the production of clean energy but smaller than the increase of the
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fossil one. Hence under the ceiling regime the energy consumption increases
and the share of clean energy in the energy mix continuously declines.

On the contrary the technical progress in only the clean renewable sec-
tor results in a continuous decrease of the transformation rate of the fossil
resource into useful energy, efficiency decreases once the CO2 concentration
hits its ceiling, thus a decrease of the fossil useful energy production and an
increase of the CO2 emissions per unit of fossil useful energy. Simultane-
ously the production of clean energy increases and more than the decrease of
the fossil one. Thus under the ceiling regime the useful energy consumption
increases and the share of clean energy in the fuel mix is improving.

We have left aside the problem of the distribution of the benefits generated
by the technical progress, amongst the final users, the mining sector, the fossil
energy transformation sector and the clean energy sector. That would require
a complete comparative dynamics of the optimal paths and we doubt that
strong results could be obtained under purely qualitative assumptions, the
kind of assumptions retained in the present paper. Furthermore to clearly
assess the distribution of the net gains it would be necessary to examine
the problem of who bear the cost of the research allowing such progress, a
problem we leave for further research.
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Appendix

A.1 Proof that λZ(t) = 0 if the ceiling is at-
tained at an isolated point tZ

The proof is by contradiction. Assume that there exists tZ > 0, such that
Z(tZ) = Z̄, Z(t) < Z̄, t 6= tZ , and λZ(t−Z) = λZ0e

(ρ+α)t−Z > 0. Because
Z(t) < Z̄, t ≥ tZ , then by (3.13), λZ(t) = 0, ≥ tZ , hence ω(t−Z) > ω(t+Z); and
because the price path must be time continuous, then:

lim
t↑tZ

u′
(
η(t)x(t) + qy(t)

)
= p(tZ) = lim

t↓tZ
u′
(
η(t)x(t) + qy(t)

)
,

hence, by (3.5):

η(t−Z) = η(tZ) = η(t+Z) ,

implying together with (3.6) and the above inequality ω(t−Z) > ω(t+Z), that:

p(tZ) = lim
t↑tZ

u′
(
η(t)x(t) + qy(t)

)
=
[
ω(t−Z) + b

(
η(tZ)

)]
/η(tZ)

>
[
ω(t+Z) + b

(
η(tZ)

)]
/η(tZ) = lim

t↓tZ
u′
(
η(t)x(t) + qy(t)

)
= p(tZ) ,

a contradiction.

A.2 Differentiability at ty and tX

Let us first examine the problem of the differentiability of the U.E. price
path at the time ty at which begins the S.U.E production and assume that
ty ∈ (0, tZ) ∪ (t̄Z , tX).24

Consider the f.o.c. (3.6):

p(t)η(t) = ω(t) + b
(
η(t)

)
.

24If either c′(0+) ≤ p(0) so that ty = 0, or c′(0+) = u′(η̂x̄), where η̄ is the constant
value of η(t) during the phase at the ceiling, so that ty = t̄Z , then clearly the price path
is time differentiable excepted at times tZ and t̄Z , and possibly at time tX , if tX < +∞.
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Time differentiating at the times at which ṗ(t) is well defined and taking into
account that p = b′ by (3.5), we obtain:

ṗ(t) =
ω̇(t)

η(t)
. (A.2.1)

Since p(t) is continuous then η(ty) is well defined. Next, by (3.11):

ω̇(t) =

 ρλX(t) + ζρλZ0e
(ρ+α)t , t ∈ (0, tZ)

ρλX(t) , t ∈ (t̄Z , tX) .
(A.2.2)

Thus whatever the case, ω̇(ty) is well defined, hence also ṗ(ty).

However, although the paths of total U.E production, coal extraction,
and both C.U.E and S.U.E production are all continuous, only the total U.E
production path is differentiable at ty.

Since p(t) is differentiable at t = ty, then q(t) too is differentiable:

q̇(ty) =
ṗ(ty)

u′′(q
(
q(ty)

) < 0 ,

and also η(t), since by (3.5):

η̇(ty) =
ṗ(ty)

b′′
(
η(ty)

) > 0 .

Next, from (3.7):

q̇y(t
+
y ) = lim

t↓ty
q̇y(t) = lim

t↓ty

ṗ(ty)

c′′
(
qy(t)

) =
ṗ(ty)

c′′(0+)
> 0 ,

so that:

q̇y(t
−
y ) = lim

t↑ty
q̇y(t) = 0 < lim

t↓ty
q̇y(t) = q̇y(t

+
y ) ,

hence:

q̇x(t
−
y ) = q̇(t−y ) > q̇(ty)− q̇y(t+y ) = q̇x(t

+
y )

x(t−y ) = q̇(t−y )/η(ty) > q̇(t+y )/η(ty) > ẋ(t+y ) .
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Let us examine now what happens at tX when tX <∞.

From (A.2.2), because λX(t−X) = 0, then ω̇(t−X) = 0 so that, from (A.2.1)
and η̃ > 0, we obtain:

ṗ(tX) =
ω̇(t−X)

η(t−X)
=

0

η̃
= 0 = ṗ(tX) .

Thus the price path is differentiable at tX when tX < ∞: ṗ(tX) = 0;
hence q̇(tX) = 0 and also q̇y(tX) = ṗ(tX)/c′′(q̃) = 0, so that q̇x(tX) =
q̇(tX) − q̇y(tX) = 0. Because η(tX) = η̃ > 0 is well defined, then ẋ(tX) =
q̇x(tX)/η(tX) = 0.

A.3 Optimal dynamics with exogenous techni-
cal progress

We consider first the unconstrained phases and next the constrained one.

A.3.1 Unconstrained phases

Assume that both energy sources are competitive, then the system of f.o.c.’s
(3.5)-(3.7) writes:

u′(η(t)x(t) + qy(t)) =
∂b(η(t), t)

∂η
(A.3.1)

u′(η(t)x(t) + qy(t))η(t) = ω(t) + b(η(t), t) (A.3.2)

u′(η(t)x(t) + qy(t)) =
∂c(qy(t), t)

∂qy
. (A.3.3)

Substituting ∂b/∂η for u′ from (A.3.1) in (A.3.2) then η∗(ω, t), the optimal
transformation rate as a function of the full marginal user cost of the coal
input, ω, and time t, appears now as solving:

∂b(η, t)

∂η
− b(η, t)

η
=

ω

η
. (A.3.4)
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The equation (A.3.4) is, for the technical progress case, the analogue of (3.14)
absent any progress.

Time differentiating the set of above conditions yields the following sys-
tem in matrix form (dropping the time index):

u′′x− ∂2b
∂η2

u′′η u′′

u′′xη u′′η2 u′′η

u′′x u′′η u′′ − ∂2c
∂q2y



η̇

ẋ

q̇y

 =


∂2b
∂η∂t

∂b
∂t

+ ω̇

∂2c
∂qy∂t

 .

Let D denote the determinant of this system:

D = η2u′′
∂2b

∂η2
∂2c

∂q2y
< 0 .

Technical progress in C.U.E production

Assume that ∂c/∂t = 0, hence ∂2c/∂qy∂t = 0. Technical progress hap-
pens only in coal energy production. Applying the Cramer rule, we get:

η̇ =
1

D

∣∣∣∣∣∣∣∣∣∣∣

∂2b
∂η∂t

u′′η u′′

∂b
∂t

+ ω̇η u′′η2 u′′η

0 u′′η u′′ − ∂2c
∂q2y

∣∣∣∣∣∣∣∣∣∣∣
=

1

D

{
∂2b

∂η∂t

[
(u′′η)

2 − u′′η2c′′ − (u′′η)
2
]

−
(
∂b

∂t
+ ω̇

)[
u′′η

(
u′′ − ∂2c

∂q2y

)
− (u′′)

2
η

]}

=
u′′η ∂

2c
∂q2y

D

[
− ∂2b

∂η∂t
η +

∂b

∂t
+ ω̇

]
=

1

η∂2b/∂η2

[
ω̇ +

∂b

∂t
− ∂2b

∂η∂t
η

]
.
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ẋ =
1

D

∣∣∣∣∣∣∣∣∣∣∣

u′′x− ∂2b
∂η2

∂2b
∂η∂t

u′′

u′′xη ∂b
∂t

+ ω̇ u′′η

u′′x 0 u′′ − ∂2c
∂q2y

∣∣∣∣∣∣∣∣∣∣∣
=

1

D

{
− ∂2b

∂η∂t

[
(u′′)

2
xη − u′′xη ∂c

2

∂q2y
− (u′′)

2

]
+

(
ω̇ +

∂b

∂t

)[(
u′′x− ∂2b

∂η2

)(
u′′ − ∂2c

∂q2y

)
− (u′′)

2
x

]}
=

1

D

{
u′′xη

∂2b

∂η∂t

∂c2

∂q2y
−
(
ω̇ +

∂b

∂t

)[
u′′x

∂2c

∂q2y
+ u′′

∂2b

∂η2
− ∂2b

∂η2
∂2c

∂q2y

]}
=

x

η2∂b2/∂η2

{
η
∂2b

∂η∂t
−
(
ω̇ +

∂b

∂t

)[
1 +

∂2b

∂η2

(
∂2c/∂q2y − u′′

u′′x∂c2/∂q2y

)]}

q̇y =
1

D

∣∣∣∣∣∣∣∣∣∣
u′′x− ∂b

∂t
u′′η u′′

u′′xη u′′η2 ∂b
∂t
− ω̇

u′′x u′′η 0

∣∣∣∣∣∣∣∣∣∣
=

1

D

{
∂2b

∂η∂t

[
(u′′η)

2
x− (u′′η)

2
x
]

−
(
ω̇ +

∂b

∂t

)[
(u′′)

2
xη − u′′η ∂

2b

∂η2
− (u′′)

2
xη

]}
=

1

η∂2c/∂q2y

(
ω̇ +

∂b

∂t

)
.

Since the f.o.c (3.7) writes equivalently p = ∂c/∂qy,

ṗ =
∂2c

∂q2y
q̇y =⇒ ṗ =

1

η

[
ω̇ +

∂b

∂t

]
,

and:

ṗ = u′′q̇ =⇒ q̇ =
1

ηu′′

[
ω̇ +

∂b

∂t

]
.

These are the expressions given in the text.
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Technical progress in S.U.E production

Assume that ∂b/∂t = 0 hence ∂2b/∂η∂t = 0. Technical progress happens
only in the S.U.E production sector.Then:

η̇ =
1

D

∣∣∣∣∣∣∣∣∣∣

0 u′′η u′′

ω̇ u′′η2 u′′η

∂2c
∂qy∂t

u′′η u′′ − ∂2c
∂q2y

∣∣∣∣∣∣∣∣∣∣
=

1

D

{
−ω̇

[
(u′′)

2
η − u′′η ∂

2c

∂q2y
− (u′′)

2
η

]
+

∂2c

∂qy∂t

[
(u′′η)

2 − (u′′η)
2
]}

=
1

η∂2b/∂η2
ω̇ .

ẋ =
1

D

∣∣∣∣∣∣∣∣∣∣∣

u′′x− ∂2b
∂η2

0 u′′

u′′xη ω̇ u′′η

u′′x ∂2c
∂qy∂t

u′′ − ∂2c
∂q2y

∣∣∣∣∣∣∣∣∣∣∣
=

1

D

{
ω̇

[(
u′′x− ∂2b

∂η2

)(
u′′ − ∂2c

∂q2y

)
− (u′′)

2
x

]
− ∂2c

∂qy∂t

[
(u′′)

2
xη − u′′η ∂

2b

∂η2
− (u′′)

2
xη

]}
=

x

η2∂2c/∂q2y

{
η

x

∂2b/∂η2

∂2c/∂q2y

∂2c

∂qy∂t
− ω̇

[
1 +

∂2b

∂η2

(
u′′ − ∂2c/∂q2y
u′′x∂2c/∂q2y

)]}
.
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q̇x = η̇x+ ηẋ

=
1

D

{
ω̇u′′η

∂c2

∂q2y
x+ u′′η2

∂2b

∂η2
∂2c

∂qy∂t

+ηω̇

[
∂2b

∂η2
∂2c

∂q2y
− u′′x∂

2c

∂q2y
− u′′ ∂

2b

∂η2

]}
=

1

u′′η∂2c/∂q2y

[
ω̇

(
∂c2

∂q2y
− u′′

)
+ u′′η

∂2c

∂qy∂t

]
.

q̇y =
1

D

∣∣∣∣∣∣∣∣∣∣∣

u′′x− ∂2b
∂η2

u′′η 0

u′′xη u′′η2 ω̇

u′′x u′′η ∂2c
∂qy∂t

∣∣∣∣∣∣∣∣∣∣∣
=

1

D

{
−ω̇

[
(u′′)

2
ηx− u′′η ∂

2b

∂η2
− (u′′)

2
xη

]
+

∂2c

∂qy∂t

[
(u′′η)

2
x− u′′η2 ∂

2b

∂η2
− (u′′η)

2
x

]}
=

1

η∂2c/∂q2y

[
ω̇ − η ∂2c

∂qy∂t

]
.

Since ω̇ > 0 during the unconstrained phases and ∂2c/∂qy∂t < 0, it is
immediate that η̇ > 0, ẋ < 0, q̇x < 0 and q̇y > 0, as claimed in the text.
Furthermore:

p =
∂b

∂η
=⇒ ṗ = η̇

∂2b

∂η2
=

1

η
ω̇ > 0

=⇒ q̇ =
1

u′′
ṗ =

1

u′′η
ω̇ < 0 .
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A.3.2 The constrained phase

Since x(t) = x̄, the paths of the coal energy transformation rate and the
S.U.E. production rate, (η(t), qy(t)) are solution of:

u′ (η(t)x̄+ qy(t)) =
∂b(η(t), t)

∂η

u′ (η(t)x̄+ qy(t)) =
∂c(qy(t), t)

∂qy
.

Time differentiating yields the following system in matrix form: u′′x̄− ∂2b
∂η2

u′′

u′′x̄ u′′ − ∂2c
∂q2y


 η̇

q̇y

 =

 ∂2b
∂η∂t

∂2c
∂qy∂t

 .

Let ∆ denote the determinant of this system:

∆ =
∂2b

∂η2
∂2c

∂q2y
− u′′

[
∂2b

∂η2
+ x̄

∂2c

∂q2y

]
> 0 .

When only the C.U.E production sector benefits from technical advances,
we obtain through the Cramer rule:

η̇ =
1

∆

∣∣∣∣∣∣∣
∂2b
∂η∂t

u′′

0 u′′ − ∂2c
∂q2y

∣∣∣∣∣∣∣
=

1

∆

[
u′′ − ∂2c

∂q2y

]
∂2b

∂η∂t
> 0 ;

q̇y =
1

∆

∣∣∣∣∣∣
u′′x̄− ∂2b

∂η2
∂2b
∂η∂t

u′′x̄ 0

∣∣∣∣∣∣
= − 1

∆
u′′x̄

∂2b

∂η∂t
< 0 .

Then:

q̇ = η̇x̄+ q̇y = − 1

∆
x̄
∂2c

∂q2y

∂2b

∂η∂t
> 0 .
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When only the S.U.E production sector benefits from technical progress,
we obtain similarly:

η̇ =
1

∆

∣∣∣∣∣∣
0 u′′

∂2c
∂qy∂t

u′′ − ∂2c
∂q2y

∣∣∣∣∣∣
= − 1

∆
u′′

∂2c

∂qy∂t
< 0 ;

q̇y =
1

∆

∣∣∣∣∣∣∣
u′′x̄− ∂2b

∂η2
0

u′′x̄ ∂2c
∂qy∂t

∣∣∣∣∣∣∣
=

1

∆

[
u′′x̄− ∂2b

∂η2

]
∂2c

∂qy∂t
> 0 .

Since qx = ηx̄, q̇x = η̇x̄ < 0 and:

q̇ = η̇x̄+ q̇y = − 1

∆

∂2b

∂η2
∂2c

∂qy∂t
> 0 .

We conclude that ṗ = u′′q̇ < 0 in the both cases of a technical progress
affecting the C.U.E sector only or the S.U.E sector only.
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Figure 1: Determination of the Optimal Energy Transformation
Rate in the C.U.E Industry and the Un-burnable Coal Stock.
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Figure 2: Optimal Price Path of Useful Energy. Case tX <∞.

N.B. ω̄ = ω(t) and η̂ ≡ η(t), t ∈ [tZ , t̄Z ].
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Figure 3: Optimal Paths of Useful Energy Production. Case: 0 <
ty < tZ and tX <∞.
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Figure 4: Optimal Paths of Coal Extraction and Coal Useful Energy
Production. Case: 0 < ty < tZ and tX <∞.
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Figure 5: Technical Progress in Coal Useful Energy Production.
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